1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-27 06:35:04 +00:00
CLK/Machines/MSX/MSX.cpp
2020-06-19 23:36:51 -04:00

817 lines
26 KiB
C++

//
// MSX.cpp
// Clock Signal
//
// Created by Thomas Harte on 24/11/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "MSX.hpp"
#include <algorithm>
#include "DiskROM.hpp"
#include "Keyboard.hpp"
#include "ROMSlotHandler.hpp"
#include "../../Analyser/Static/MSX/Cartridge.hpp"
#include "Cartridges/ASCII8kb.hpp"
#include "Cartridges/ASCII16kb.hpp"
#include "Cartridges/Konami.hpp"
#include "Cartridges/KonamiWithSCC.hpp"
#include "../../Processors/Z80/Z80.hpp"
#include "../../Components/1770/1770.hpp"
#include "../../Components/9918/9918.hpp"
#include "../../Components/8255/i8255.hpp"
#include "../../Components/AudioToggle/AudioToggle.hpp"
#include "../../Components/AY38910/AY38910.hpp"
#include "../../Components/KonamiSCC/KonamiSCC.hpp"
#include "../../Storage/Tape/Parsers/MSX.hpp"
#include "../../Storage/Tape/Tape.hpp"
#include "../../Activity/Source.hpp"
#include "../MachineTypes.hpp"
#include "../../Configurable/Configurable.hpp"
#include "../../Outputs/Log.hpp"
#include "../../Outputs/Speaker/Implementation/CompoundSource.hpp"
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../../Outputs/Speaker/Implementation/SampleSource.hpp"
#include "../../Configurable/StandardOptions.hpp"
#include "../../ClockReceiver/ForceInline.hpp"
#include "../../ClockReceiver/JustInTime.hpp"
#include "../../Analyser/Static/MSX/Target.hpp"
namespace MSX {
class AYPortHandler: public GI::AY38910::PortHandler {
public:
AYPortHandler(Storage::Tape::BinaryTapePlayer &tape_player) : tape_player_(tape_player) {
joysticks_.emplace_back(new Joystick);
joysticks_.emplace_back(new Joystick);
}
void set_port_output(bool port_b, uint8_t value) {
if(port_b) {
// Bits 0-3: touchpad handshaking (?)
// Bit 4-5: monostable timer pulses
// Bit 6: joystick select
selected_joystick_ = (value >> 6) & 1;
// Bit 7: code LED, if any
}
}
uint8_t get_port_input(bool port_b) {
if(!port_b) {
// Bits 0-5: Joystick (up, down, left, right, A, B)
// Bit 6: keyboard switch (not universal)
// Bit 7: tape input
return
(static_cast<Joystick *>(joysticks_[selected_joystick_].get())->get_state() & 0x3f) |
0x40 |
(tape_player_.get_input() ? 0x00 : 0x80);
}
return 0xff;
}
const std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() {
return joysticks_;
}
private:
Storage::Tape::BinaryTapePlayer &tape_player_;
std::vector<std::unique_ptr<Inputs::Joystick>> joysticks_;
size_t selected_joystick_ = 0;
class Joystick: public Inputs::ConcreteJoystick {
public:
Joystick() :
ConcreteJoystick({
Input(Input::Up),
Input(Input::Down),
Input(Input::Left),
Input(Input::Right),
Input(Input::Fire, 0),
Input(Input::Fire, 1),
}) {}
void did_set_input(const Input &input, bool is_active) final {
uint8_t mask = 0;
switch(input.type) {
default: return;
case Input::Up: mask = 0x01; break;
case Input::Down: mask = 0x02; break;
case Input::Left: mask = 0x04; break;
case Input::Right: mask = 0x08; break;
case Input::Fire:
if(input.info.control.index >= 2) return;
mask = input.info.control.index ? 0x20 : 0x10;
break;
}
if(is_active) state_ &= ~mask; else state_ |= mask;
}
uint8_t get_state() {
return state_;
}
private:
uint8_t state_ = 0xff;
};
};
class ConcreteMachine:
public Machine,
public CPU::Z80::BusHandler,
public MachineTypes::TimedMachine,
public MachineTypes::AudioProducer,
public MachineTypes::ScanProducer,
public MachineTypes::MediaTarget,
public MachineTypes::MappedKeyboardMachine,
public MachineTypes::JoystickMachine,
public Configurable::Device,
public MemoryMap,
public ClockingHint::Observer,
public Activity::Source {
public:
using Target = Analyser::Static::MSX::Target;
ConcreteMachine(const Target &target, const ROMMachine::ROMFetcher &rom_fetcher):
z80_(*this),
vdp_(TI::TMS::TMS9918A),
i8255_(i8255_port_handler_),
ay_(GI::AY38910::Personality::AY38910, audio_queue_),
audio_toggle_(audio_queue_),
scc_(audio_queue_),
mixer_(ay_, audio_toggle_, scc_),
speaker_(mixer_),
tape_player_(3579545 * 2),
i8255_port_handler_(*this, audio_toggle_, tape_player_),
ay_port_handler_(tape_player_) {
set_clock_rate(3579545);
std::memset(unpopulated_, 0xff, sizeof(unpopulated_));
clear_all_keys();
ay_.set_port_handler(&ay_port_handler_);
speaker_.set_input_rate(3579545.0f / 2.0f);
tape_player_.set_clocking_hint_observer(this);
// Set the AY to 50% of available volume, the toggle to 10% and leave 40% for an SCC.
mixer_.set_relative_volumes({0.5f, 0.1f, 0.4f});
// Install the proper TV standard and select an ideal BIOS name.
const std::string machine_name = "MSX";
std::vector<ROMMachine::ROM> required_roms = {
{machine_name, "any MSX BIOS", "msx.rom", 32*1024, 0x94ee12f3}
};
bool is_ntsc = true;
uint8_t character_generator = 1; /* 0 = Japan, 1 = USA, etc, 2 = USSR */
uint8_t date_format = 1; /* 0 = Y/M/D, 1 = M/D/Y, 2 = D/M/Y */
uint8_t keyboard = 1; /* 0 = Japan, 1 = USA, 2 = France, 3 = UK, 4 = Germany, 5 = USSR, 6 = Spain */
// TODO: CRCs below are incomplete, at best.
switch(target.region) {
case Target::Region::Japan:
required_roms.emplace_back(machine_name, "a Japanese MSX BIOS", "msx-japanese.rom", 32*1024, 0xee229390);
vdp_->set_tv_standard(TI::TMS::TVStandard::NTSC);
is_ntsc = true;
character_generator = 0;
date_format = 0;
break;
case Target::Region::USA:
required_roms.emplace_back(machine_name, "an American MSX BIOS", "msx-american.rom", 32*1024, 0);
vdp_->set_tv_standard(TI::TMS::TVStandard::NTSC);
is_ntsc = true;
character_generator = 1;
date_format = 1;
break;
case Target::Region::Europe:
required_roms.emplace_back(machine_name, "a European MSX BIOS", "msx-european.rom", 32*1024, 0);
vdp_->set_tv_standard(TI::TMS::TVStandard::PAL);
is_ntsc = false;
character_generator = 1;
date_format = 2;
break;
}
// Fetch the necessary ROMs; try the region-specific ROM first,
// but failing that fall back on patching the main one.
size_t disk_index = 0;
if(target.has_disk_drive) {
disk_index = required_roms.size();
required_roms.emplace_back(machine_name, "the MSX-DOS ROM", "disk.rom", 16*1024, 0x721f61df);
}
const auto roms = rom_fetcher(required_roms);
if((!roms[0] && !roms[1]) || (target.has_disk_drive && !roms[2])) {
throw ROMMachine::Error::MissingROMs;
}
// Figure out which BIOS to use, either a specific one or the generic
// one appropriately patched.
if(roms[1]) {
memory_slots_[0].source = std::move(*roms[1]);
memory_slots_[0].source.resize(32768);
} else {
memory_slots_[0].source = std::move(*roms[0]);
memory_slots_[0].source.resize(32768);
memory_slots_[0].source[0x2b] = uint8_t(
(is_ntsc ? 0x00 : 0x80) |
(date_format << 4) |
character_generator
);
memory_slots_[0].source[0x2c] = keyboard;
}
for(size_t c = 0; c < 8; ++c) {
for(size_t slot = 0; slot < 3; ++slot) {
memory_slots_[slot].read_pointers[c] = unpopulated_;
memory_slots_[slot].write_pointers[c] = scratch_;
}
memory_slots_[3].read_pointers[c] =
memory_slots_[3].write_pointers[c] = &ram_[c * 8192];
}
map(0, 0, 0, 32768);
page_memory(0);
// Add a disk cartridge if any disks were supplied.
if(target.has_disk_drive) {
memory_slots_[2].set_handler(new DiskROM(memory_slots_[2].source));
memory_slots_[2].source = std::move(*roms[disk_index]);
memory_slots_[2].source.resize(16384);
map(2, 0, 0x4000, 0x2000);
unmap(2, 0x6000, 0x2000);
}
// Insert the media.
insert_media(target.media);
// Type whatever has been requested.
if(!target.loading_command.empty()) {
type_string(target.loading_command);
}
}
~ConcreteMachine() {
audio_queue_.flush();
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final {
vdp_->set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const final {
return vdp_->get_scaled_scan_status();
}
void set_display_type(Outputs::Display::DisplayType display_type) final {
vdp_->set_display_type(display_type);
}
Outputs::Display::DisplayType get_display_type() const final {
return vdp_->get_display_type();
}
Outputs::Speaker::Speaker *get_speaker() final {
return &speaker_;
}
void run_for(const Cycles cycles) final {
z80_.run_for(cycles);
}
float get_confidence() final {
if(performed_unmapped_access_ || pc_zero_accesses_ > 1) return 0.0f;
if(memory_slots_[1].handler) {
return memory_slots_[1].handler->get_confidence();
}
return 0.5f;
}
std::string debug_type() final {
if(memory_slots_[1].handler) {
return "MSX:" + memory_slots_[1].handler->debug_type();
}
return "MSX";
}
bool insert_media(const Analyser::Static::Media &media) final {
if(!media.cartridges.empty()) {
const auto &segment = media.cartridges.front()->get_segments().front();
memory_slots_[1].source = segment.data;
map(1, 0, uint16_t(segment.start_address), std::min(segment.data.size(), 65536 - segment.start_address));
auto msx_cartridge = dynamic_cast<Analyser::Static::MSX::Cartridge *>(media.cartridges.front().get());
if(msx_cartridge) {
switch(msx_cartridge->type) {
default: break;
case Analyser::Static::MSX::Cartridge::Konami:
memory_slots_[1].set_handler(new Cartridge::KonamiROMSlotHandler(*this, 1));
break;
case Analyser::Static::MSX::Cartridge::KonamiWithSCC:
memory_slots_[1].set_handler(new Cartridge::KonamiWithSCCROMSlotHandler(*this, 1, scc_));
break;
case Analyser::Static::MSX::Cartridge::ASCII8kb:
memory_slots_[1].set_handler(new Cartridge::ASCII8kbROMSlotHandler(*this, 1));
break;
case Analyser::Static::MSX::Cartridge::ASCII16kb:
memory_slots_[1].set_handler(new Cartridge::ASCII16kbROMSlotHandler(*this, 1));
break;
}
}
}
if(!media.tapes.empty()) {
tape_player_.set_tape(media.tapes.front());
}
if(!media.disks.empty()) {
DiskROM *disk_rom = get_disk_rom();
if(disk_rom) {
size_t drive = 0;
for(auto &disk : media.disks) {
disk_rom->set_disk(disk, drive);
drive++;
if(drive == 2) break;
}
}
}
set_use_fast_tape();
return true;
}
void type_string(const std::string &string) final {
std::transform(
string.begin(),
string.end(),
std::back_inserter(input_text_),
[](unsigned char c) -> unsigned char { return (c == '\n') ? '\r' : c; }
);
}
bool can_type(char c) const final {
// Make an effort to type the entire printable ASCII range.
return c >= 32 && c < 127;
}
// MARK: MSX::MemoryMap
void map(int slot, std::size_t source_address, uint16_t destination_address, std::size_t length) final {
assert(!(destination_address & 8191));
assert(!(length & 8191));
assert(size_t(destination_address) + length <= 65536);
for(std::size_t c = 0; c < (length >> 13); ++c) {
if(memory_slots_[slot].wrapping_strategy == ROMSlotHandler::WrappingStrategy::Repeat) source_address %= memory_slots_[slot].source.size();
memory_slots_[slot].read_pointers[(destination_address >> 13) + c] =
(source_address < memory_slots_[slot].source.size()) ? &memory_slots_[slot].source[source_address] : unpopulated_;
source_address += 8192;
}
page_memory(paged_memory_);
}
void unmap(int slot, uint16_t destination_address, std::size_t length) final {
assert(!(destination_address & 8191));
assert(!(length & 8191));
assert(size_t(destination_address) + length <= 65536);
for(std::size_t c = 0; c < (length >> 13); ++c) {
memory_slots_[slot].read_pointers[(destination_address >> 13) + c] = nullptr;
}
page_memory(paged_memory_);
}
// MARK: Ordinary paging.
void page_memory(uint8_t value) {
paged_memory_ = value;
for(std::size_t c = 0; c < 8; c += 2) {
read_pointers_[c] = memory_slots_[value & 3].read_pointers[c];
write_pointers_[c] = memory_slots_[value & 3].write_pointers[c];
read_pointers_[c+1] = memory_slots_[value & 3].read_pointers[c+1];
write_pointers_[c+1] = memory_slots_[value & 3].write_pointers[c+1];
value >>= 2;
}
set_use_fast_tape();
}
// MARK: Z80::BusHandler
forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) {
// Per the best information I currently have, the MSX inserts an extra cycle into each opcode read,
// but otherwise runs without pause.
const HalfCycles addition((cycle.operation == CPU::Z80::PartialMachineCycle::ReadOpcode) ? 2 : 0);
const HalfCycles total_length = addition + cycle.length;
vdp_ += total_length;
time_since_ay_update_ += total_length;
memory_slots_[0].cycles_since_update += total_length;
memory_slots_[1].cycles_since_update += total_length;
memory_slots_[2].cycles_since_update += total_length;
memory_slots_[3].cycles_since_update += total_length;
if(cycle.is_terminal()) {
uint16_t address = cycle.address ? *cycle.address : 0x0000;
switch(cycle.operation) {
case CPU::Z80::PartialMachineCycle::ReadOpcode:
if(use_fast_tape_) {
if(address == 0x1a63) {
// TAPION
// Enable the tape motor.
i8255_.write(0xab, 0x8);
// Disable interrupts.
z80_.set_value_of_register(CPU::Z80::Register::IFF1, 0);
z80_.set_value_of_register(CPU::Z80::Register::IFF2, 0);
// Use the parser to find a header, and if one is found then populate
// LOWLIM and WINWID, and reset carry. Otherwise set carry.
using Parser = Storage::Tape::MSX::Parser;
std::unique_ptr<Parser::FileSpeed> new_speed = Parser::find_header(tape_player_);
if(new_speed) {
ram_[0xfca4] = new_speed->minimum_start_bit_duration;
ram_[0xfca5] = new_speed->low_high_disrimination_duration;
z80_.set_value_of_register(CPU::Z80::Register::Flags, 0);
} else {
z80_.set_value_of_register(CPU::Z80::Register::Flags, 1);
}
// RET.
*cycle.value = 0xc9;
break;
}
if(address == 0x1abc) {
// TAPIN
// Grab the current values of LOWLIM and WINWID.
using Parser = Storage::Tape::MSX::Parser;
Parser::FileSpeed tape_speed;
tape_speed.minimum_start_bit_duration = ram_[0xfca4];
tape_speed.low_high_disrimination_duration = ram_[0xfca5];
// Ask the tape parser to grab a byte.
int next_byte = Parser::get_byte(tape_speed, tape_player_);
// If a byte was found, return it with carry unset. Otherwise set carry to
// indicate error.
if(next_byte >= 0) {
z80_.set_value_of_register(CPU::Z80::Register::A, uint16_t(next_byte));
z80_.set_value_of_register(CPU::Z80::Register::Flags, 0);
} else {
z80_.set_value_of_register(CPU::Z80::Register::Flags, 1);
}
// RET.
*cycle.value = 0xc9;
break;
}
}
if(!address) {
pc_zero_accesses_++;
}
if(read_pointers_[address >> 13] == unpopulated_) {
performed_unmapped_access_ = true;
}
pc_address_ = address; // This is retained so as to be able to name the source of an access to cartridge handlers.
[[fallthrough]];
case CPU::Z80::PartialMachineCycle::Read:
if(read_pointers_[address >> 13]) {
*cycle.value = read_pointers_[address >> 13][address & 8191];
} else {
int slot_hit = (paged_memory_ >> ((address >> 14) * 2)) & 3;
memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.flush<HalfCycles>());
*cycle.value = memory_slots_[slot_hit].handler->read(address);
}
break;
case CPU::Z80::PartialMachineCycle::Write: {
write_pointers_[address >> 13][address & 8191] = *cycle.value;
int slot_hit = (paged_memory_ >> ((address >> 14) * 2)) & 3;
if(memory_slots_[slot_hit].handler) {
update_audio();
memory_slots_[slot_hit].handler->run_for(memory_slots_[slot_hit].cycles_since_update.flush<HalfCycles>());
memory_slots_[slot_hit].handler->write(address, *cycle.value, read_pointers_[pc_address_ >> 13] != memory_slots_[0].read_pointers[pc_address_ >> 13]);
}
} break;
case CPU::Z80::PartialMachineCycle::Input:
switch(address & 0xff) {
case 0x98: case 0x99:
*cycle.value = vdp_->read(address);
z80_.set_interrupt_line(vdp_->get_interrupt_line());
time_until_interrupt_ = vdp_->get_time_until_interrupt();
break;
case 0xa2:
update_audio();
ay_.set_control_lines(GI::AY38910::ControlLines(GI::AY38910::BC2 | GI::AY38910::BC1));
*cycle.value = ay_.get_data_output();
ay_.set_control_lines(GI::AY38910::ControlLines(0));
break;
case 0xa8: case 0xa9:
case 0xaa: case 0xab:
*cycle.value = i8255_.read(address);
break;
default:
*cycle.value = 0xff;
break;
}
break;
case CPU::Z80::PartialMachineCycle::Output: {
const int port = address & 0xff;
switch(port) {
case 0x98: case 0x99:
vdp_->write(address, *cycle.value);
z80_.set_interrupt_line(vdp_->get_interrupt_line());
time_until_interrupt_ = vdp_->get_time_until_interrupt();
break;
case 0xa0: case 0xa1:
update_audio();
ay_.set_control_lines(GI::AY38910::ControlLines(GI::AY38910::BDIR | GI::AY38910::BC2 | ((port == 0xa0) ? GI::AY38910::BC1 : 0)));
ay_.set_data_input(*cycle.value);
ay_.set_control_lines(GI::AY38910::ControlLines(0));
break;
case 0xa8: case 0xa9:
case 0xaa: case 0xab:
i8255_.write(address, *cycle.value);
break;
case 0xfc: case 0xfd: case 0xfe: case 0xff:
// printf("RAM banking %02x: %02x\n", port, *cycle.value);
break;
}
} break;
case CPU::Z80::PartialMachineCycle::Interrupt:
*cycle.value = 0xff;
// Take this as a convenient moment to jump into the keyboard buffer, if desired.
if(!input_text_.empty()) {
// The following are KEYBUF per the Red Book; its address and its definition as DEFS 40.
const int buffer_start = 0xfbf0;
const int buffer_size = 40;
// Also from the Red Book: GETPNT is at F3FAH and PUTPNT is at F3F8H.
int read_address = ram_[0xf3fa] | (ram_[0xf3fb] << 8);
int write_address = ram_[0xf3f8] | (ram_[0xf3f9] << 8);
// Write until either the string is exhausted or the write_pointer is immediately
// behind the read pointer; temporarily map write_address and read_address into
// buffer-relative values.
std::size_t characters_written = 0;
write_address -= buffer_start;
read_address -= buffer_start;
while(characters_written < input_text_.size()) {
const int next_write_address = (write_address + 1) % buffer_size;
if(next_write_address == read_address) break;
ram_[write_address + buffer_start] = uint8_t(input_text_[characters_written]);
++characters_written;
write_address = next_write_address;
}
input_text_.erase(input_text_.begin(), input_text_.begin() + std::string::difference_type(characters_written));
// Map the write address back into absolute terms and write it out again as PUTPNT.
write_address += buffer_start;
ram_[0xf3f8] = uint8_t(write_address);
ram_[0xf3f9] = uint8_t(write_address >> 8);
}
break;
default: break;
}
}
if(!tape_player_is_sleeping_)
tape_player_.run_for(int(cycle.length.as_integral()));
if(time_until_interrupt_ > 0) {
time_until_interrupt_ -= total_length;
if(time_until_interrupt_ <= HalfCycles(0)) {
z80_.set_interrupt_line(true, time_until_interrupt_);
}
}
return addition;
}
void flush() {
vdp_.flush();
update_audio();
audio_queue_.perform();
}
void set_keyboard_line(int line) {
selected_key_line_ = line;
}
uint8_t read_keyboard() {
return key_states_[selected_key_line_];
}
void clear_all_keys() final {
std::memset(key_states_, 0xff, sizeof(key_states_));
}
void set_key_state(uint16_t key, bool is_pressed) final {
int mask = 1 << (key & 7);
int line = key >> 4;
if(is_pressed) key_states_[line] &= ~mask; else key_states_[line] |= mask;
}
KeyboardMapper *get_keyboard_mapper() final {
return &keyboard_mapper_;
}
// MARK: - Configuration options.
std::unique_ptr<Reflection::Struct> get_options() final {
auto options = std::make_unique<Options>(Configurable::OptionsType::UserFriendly);
options->output = get_video_signal_configurable();
options->quickload = allow_fast_tape_;
return options;
}
void set_options(const std::unique_ptr<Reflection::Struct> &str) final {
const auto options = dynamic_cast<Options *>(str.get());
set_video_signal_configurable(options->output);
allow_fast_tape_ = options->quickload;
set_use_fast_tape();
}
// MARK: - Sleeper
void set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference) final {
tape_player_is_sleeping_ = tape_player_.preferred_clocking() == ClockingHint::Preference::None;
set_use_fast_tape();
}
// MARK: - Activity::Source
void set_activity_observer(Activity::Observer *observer) final {
DiskROM *disk_rom = get_disk_rom();
if(disk_rom) {
disk_rom->set_activity_observer(observer);
}
i8255_port_handler_.set_activity_observer(observer);
}
// MARK: - Joysticks
const std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() final {
return ay_port_handler_.get_joysticks();
}
private:
DiskROM *get_disk_rom() {
return dynamic_cast<DiskROM *>(memory_slots_[2].handler.get());
}
void update_audio() {
speaker_.run_for(audio_queue_, time_since_ay_update_.divide_cycles(Cycles(2)));
}
class i8255PortHandler: public Intel::i8255::PortHandler {
public:
i8255PortHandler(ConcreteMachine &machine, Audio::Toggle &audio_toggle, Storage::Tape::BinaryTapePlayer &tape_player) :
machine_(machine), audio_toggle_(audio_toggle), tape_player_(tape_player) {}
void set_value(int port, uint8_t value) {
switch(port) {
case 0: machine_.page_memory(value); break;
case 2: {
// TODO:
// b6 caps lock LED
// b5 audio output
// b4: cassette motor relay
tape_player_.set_motor_control(!(value & 0x10));
if(activity_observer_) activity_observer_->set_led_status("Tape motor", !(value & 0x10));
// b7: keyboard click
bool new_audio_level = !!(value & 0x80);
if(audio_toggle_.get_output() != new_audio_level) {
machine_.update_audio();
audio_toggle_.set_output(new_audio_level);
}
// b0-b3: keyboard line
machine_.set_keyboard_line(value & 0xf);
} break;
default: LOG("Unrecognised: MSX set 8255 output port " << port << " to value " << PADHEX(2) << value); break;
}
}
uint8_t get_value(int port) {
if(port == 1) {
return machine_.read_keyboard();
} else LOG("MSX attempted to read from 8255 port " << port);
return 0xff;
}
void set_activity_observer(Activity::Observer *observer) {
activity_observer_ = observer;
if(activity_observer_) {
activity_observer_->register_led("Tape motor");
activity_observer_->set_led_status("Tape motor", tape_player_.get_motor_control());
}
}
private:
ConcreteMachine &machine_;
Audio::Toggle &audio_toggle_;
Storage::Tape::BinaryTapePlayer &tape_player_;
Activity::Observer *activity_observer_ = nullptr;
};
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
JustInTimeActor<TI::TMS::TMS9918> vdp_;
Intel::i8255::i8255<i8255PortHandler> i8255_;
Concurrency::DeferringAsyncTaskQueue audio_queue_;
GI::AY38910::AY38910<false> ay_;
Audio::Toggle audio_toggle_;
Konami::SCC scc_;
Outputs::Speaker::CompoundSource<GI::AY38910::AY38910<false>, Audio::Toggle, Konami::SCC> mixer_;
Outputs::Speaker::LowpassSpeaker<Outputs::Speaker::CompoundSource<GI::AY38910::AY38910<false>, Audio::Toggle, Konami::SCC>> speaker_;
Storage::Tape::BinaryTapePlayer tape_player_;
bool tape_player_is_sleeping_ = false;
bool allow_fast_tape_ = false;
bool use_fast_tape_ = false;
void set_use_fast_tape() {
use_fast_tape_ = !tape_player_is_sleeping_ && allow_fast_tape_ && tape_player_.has_tape() && !(paged_memory_&3);
}
i8255PortHandler i8255_port_handler_;
AYPortHandler ay_port_handler_;
uint8_t paged_memory_ = 0;
uint8_t *read_pointers_[8];
uint8_t *write_pointers_[8];
struct MemorySlots {
uint8_t *read_pointers[8];
uint8_t *write_pointers[8];
void set_handler(ROMSlotHandler *slot_handler) {
handler.reset(slot_handler);
wrapping_strategy = handler->wrapping_strategy();
}
std::unique_ptr<ROMSlotHandler> handler;
std::vector<uint8_t> source;
HalfCycles cycles_since_update;
ROMSlotHandler::WrappingStrategy wrapping_strategy = ROMSlotHandler::WrappingStrategy::Repeat;
} memory_slots_[4];
uint8_t ram_[65536];
uint8_t scratch_[8192];
uint8_t unpopulated_[8192];
HalfCycles time_since_ay_update_;
HalfCycles time_until_interrupt_;
uint8_t key_states_[16];
int selected_key_line_ = 0;
std::string input_text_;
MSX::KeyboardMapper keyboard_mapper_;
int pc_zero_accesses_ = 0;
bool performed_unmapped_access_ = false;
uint16_t pc_address_;
};
}
using namespace MSX;
Machine *Machine::MSX(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
using Target = Analyser::Static::MSX::Target;
const Target *const msx_target = dynamic_cast<const Target *>(target);
return new ConcreteMachine(*msx_target, rom_fetcher);
}
Machine::~Machine() {}