1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-30 04:50:08 +00:00
CLK/Components/6522/6522.hpp

424 lines
12 KiB
C++

//
// 6522.hpp
// Clock Signal
//
// Created by Thomas Harte on 06/06/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#ifndef _522_hpp
#define _522_hpp
#include <cstdint>
#include <typeinfo>
#include <cstdio>
namespace MOS {
/*!
Implements a template for emulation of the MOS 6522 Versatile Interface Adaptor ('VIA').
The VIA provides:
* two timers, each of which may trigger interrupts and one of which may repeat;
* two digial input/output ports; and
* a serial-to-parallel shifter.
Consumers should derive their own curiously-recurring-template-pattern subclass,
implementing bus communications as required.
*/
template <class T> class MOS6522 {
private:
enum InterruptFlag: uint8_t {
CA2ActiveEdge = 1 << 0,
CA1ActiveEdge = 1 << 1,
ShiftRegister = 1 << 2,
CB2ActiveEdge = 1 << 3,
CB1ActiveEdge = 1 << 4,
Timer2 = 1 << 5,
Timer1 = 1 << 6,
};
public:
enum Port {
A = 0,
B = 1
};
enum Line {
One = 0,
Two = 1
};
/*! Sets a register value. */
inline void set_register(int address, uint8_t value)
{
address &= 0xf;
// printf("6522 [%s]: %0x <- %02x\n", typeid(*this).name(), address, value);
switch(address)
{
case 0x0:
registers_.output[1] = value;
static_cast<T *>(this)->set_port_output(Port::B, value, registers_.data_direction[1]); // TODO: handshake
registers_.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | ((registers_.peripheral_control&0x20) ? 0 : InterruptFlag::CB2ActiveEdge));
reevaluate_interrupts();
break;
case 0xf:
case 0x1:
registers_.output[0] = value;
static_cast<T *>(this)->set_port_output(Port::A, value, registers_.data_direction[0]); // TODO: handshake
registers_.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | ((registers_.peripheral_control&0x02) ? 0 : InterruptFlag::CB2ActiveEdge));
reevaluate_interrupts();
break;
// // No handshake, so write directly
// registers_.output[0] = value;
// static_cast<T *>(this)->set_port_output(0, value);
// break;
case 0x2:
registers_.data_direction[1] = value;
break;
case 0x3:
registers_.data_direction[0] = value;
break;
// Timer 1
case 0x6: case 0x4: registers_.timer_latch[0] = (registers_.timer_latch[0]&0xff00) | value; break;
case 0x5: case 0x7:
registers_.timer_latch[0] = (registers_.timer_latch[0]&0x00ff) | (uint16_t)(value << 8);
registers_.interrupt_flags &= ~InterruptFlag::Timer1;
if(address == 0x05)
{
registers_.next_timer[0] = registers_.timer_latch[0];
timer_is_running_[0] = true;
}
reevaluate_interrupts();
break;
// Timer 2
case 0x8: registers_.timer_latch[1] = value; break;
case 0x9:
registers_.interrupt_flags &= ~InterruptFlag::Timer2;
registers_.next_timer[1] = registers_.timer_latch[1] | (uint16_t)(value << 8);
timer_is_running_[1] = true;
reevaluate_interrupts();
break;
// Shift
case 0xa: registers_.shift = value; break;
// Control
case 0xb:
registers_.auxiliary_control = value;
break;
case 0xc:
// printf("Peripheral control %02x\n", value);
registers_.peripheral_control = value;
// TODO: simplify below; trying to avoid improper logging of unimplemented warnings in input mode
if(value & 0x08)
{
switch(value & 0x0e)
{
default: printf("Unimplemented control line mode %d\n", (value >> 1)&7); break;
case 0x0c: static_cast<T *>(this)->set_control_line_output(Port::A, Line::Two, false); break;
case 0x0e: static_cast<T *>(this)->set_control_line_output(Port::A, Line::Two, true); break;
}
}
if(value & 0x80)
{
switch(value & 0xe0)
{
default: printf("Unimplemented control line mode %d\n", (value >> 5)&7); break;
case 0xc0: static_cast<T *>(this)->set_control_line_output(Port::B, Line::Two, false); break;
case 0xe0: static_cast<T *>(this)->set_control_line_output(Port::B, Line::Two, true); break;
}
}
break;
// Interrupt control
case 0xd:
registers_.interrupt_flags &= ~value;
reevaluate_interrupts();
break;
case 0xe:
if(value&0x80)
registers_.interrupt_enable |= value;
else
registers_.interrupt_enable &= ~value;
reevaluate_interrupts();
break;
}
}
/*! Gets a register value. */
inline uint8_t get_register(int address)
{
address &= 0xf;
// printf("6522 %p: %d\n", this, address);
switch(address)
{
case 0x0:
registers_.interrupt_flags &= ~(InterruptFlag::CB1ActiveEdge | InterruptFlag::CB2ActiveEdge);
reevaluate_interrupts();
return get_port_input(Port::B, registers_.data_direction[1], registers_.output[1]);
case 0xf: // TODO: handshake, latching
case 0x1:
registers_.interrupt_flags &= ~(InterruptFlag::CA1ActiveEdge | InterruptFlag::CA2ActiveEdge);
reevaluate_interrupts();
return get_port_input(Port::A, registers_.data_direction[0], registers_.output[0]);
case 0x2: return registers_.data_direction[1];
case 0x3: return registers_.data_direction[0];
// Timer 1
case 0x4:
registers_.interrupt_flags &= ~InterruptFlag::Timer1;
reevaluate_interrupts();
return registers_.timer[0] & 0x00ff;
case 0x5: return registers_.timer[0] >> 8;
case 0x6: return registers_.timer_latch[0] & 0x00ff;
case 0x7: return registers_.timer_latch[0] >> 8;
// Timer 2
case 0x8:
registers_.interrupt_flags &= ~InterruptFlag::Timer2;
reevaluate_interrupts();
return registers_.timer[1] & 0x00ff;
case 0x9: return registers_.timer[1] >> 8;
case 0xa: return registers_.shift;
case 0xb: return registers_.auxiliary_control;
case 0xc: return registers_.peripheral_control;
case 0xd: return registers_.interrupt_flags | (get_interrupt_line() ? 0x80 : 0x00);
case 0xe: return registers_.interrupt_enable | 0x80;
}
return 0xff;
}
inline void set_control_line_input(Port port, Line line, bool value)
{
switch(line)
{
case Line::One:
if( value != control_inputs_[port].line_one &&
value == !!(registers_.peripheral_control & (port ? 0x10 : 0x01))
)
{
registers_.interrupt_flags |= port ? InterruptFlag::CB1ActiveEdge : InterruptFlag::CA1ActiveEdge;
reevaluate_interrupts();
}
control_inputs_[port].line_one = value;
break;
case Line::Two:
// TODO: output modes, but probably elsewhere?
if( value != control_inputs_[port].line_two && // i.e. value has changed ...
!(registers_.peripheral_control & (port ? 0x80 : 0x08)) && // ... and line is input ...
value == !!(registers_.peripheral_control & (port ? 0x40 : 0x04)) // ... and it's either high or low, as required
)
{
registers_.interrupt_flags |= port ? InterruptFlag::CB2ActiveEdge : InterruptFlag::CA2ActiveEdge;
reevaluate_interrupts();
}
control_inputs_[port].line_two = value;
break;
}
}
#define phase2() \
registers_.last_timer[0] = registers_.timer[0];\
registers_.last_timer[1] = registers_.timer[1];\
\
if(registers_.timer_needs_reload)\
{\
registers_.timer_needs_reload = false;\
registers_.timer[0] = registers_.timer_latch[0];\
}\
else\
registers_.timer[0] --;\
\
registers_.timer[1] --; \
if(registers_.next_timer[0] >= 0) { registers_.timer[0] = (uint16_t)registers_.next_timer[0]; registers_.next_timer[0] = -1; }\
if(registers_.next_timer[1] >= 0) { registers_.timer[1] = (uint16_t)registers_.next_timer[1]; registers_.next_timer[1] = -1; }\
// IRQ is raised on the half cycle after overflow
#define phase1() \
if((registers_.timer[1] == 0xffff) && !registers_.last_timer[1] && timer_is_running_[1])\
{\
timer_is_running_[1] = false;\
registers_.interrupt_flags |= InterruptFlag::Timer2;\
reevaluate_interrupts();\
}\
\
if((registers_.timer[0] == 0xffff) && !registers_.last_timer[0] && timer_is_running_[0])\
{\
registers_.interrupt_flags |= InterruptFlag::Timer1;\
reevaluate_interrupts();\
\
if(registers_.auxiliary_control&0x40)\
registers_.timer_needs_reload = true;\
else\
timer_is_running_[0] = false;\
}
/*!
Runs for a specified number of half cycles.
Although the original chip accepts only a phase-2 input, timer reloads are specified as occuring
1.5 cycles after the timer hits zero. It therefore may be necessary to emulate at half-cycle precision.
The first emulated half-cycle will be the period between the trailing edge of a phase-2 input and the
next rising edge. So it should align with a full system's phase-1. The next emulated half-cycle will be
that which occurs during phase-2.
Callers should decide whether they are going to use @c run_for_half_cycles or @c run_for_cycles, and not
intermingle usage.
*/
inline void run_for_half_cycles(unsigned int number_of_cycles)
{
if(is_phase2_)
{
phase2();
number_of_cycles--;
}
while(number_of_cycles >= 2)
{
phase1();
phase2();
number_of_cycles -= 2;
}
if(number_of_cycles)
{
phase1();
is_phase2_ = true;
}
else
{
is_phase2_ = false;
}
}
/*!
Runs for a specified number of cycles.
Callers should decide whether they are going to use @c run_for_half_cycles or @c run_for_cycles, and not
intermingle usage.
*/
inline void run_for_cycles(unsigned int number_of_cycles)
{
while(number_of_cycles--)
{
phase1();
phase2();
}
}
#undef phase1
#undef phase2
/*! @returns @c true if the IRQ line is currently active; @c false otherwise. */
inline bool get_interrupt_line()
{
uint8_t interrupt_status = registers_.interrupt_flags & registers_.interrupt_enable & 0x7f;
return !!interrupt_status;
}
MOS6522() :
timer_is_running_{false, false},
last_posted_interrupt_status_(false),
is_phase2_(false)
{}
private:
// Expected to be overridden
uint8_t get_port_input(Port port) { return 0xff; }
void set_port_output(Port port, uint8_t value, uint8_t direction_mask) {}
void set_control_line_output(Port port, Line line, bool value) {}
void set_interrupt_status(bool status) {}
// Input/output multiplexer
uint8_t get_port_input(Port port, uint8_t output_mask, uint8_t output)
{
uint8_t input = static_cast<T *>(this)->get_port_input(port);
return (input & ~output_mask) | (output & output_mask);
}
// Phase toggle
bool is_phase2_;
// Delegate and communications
bool last_posted_interrupt_status_;
inline void reevaluate_interrupts()
{
bool new_interrupt_status = get_interrupt_line();
if(new_interrupt_status != last_posted_interrupt_status_)
{
last_posted_interrupt_status_ = new_interrupt_status;
static_cast<T *>(this)->set_interrupt_status(new_interrupt_status);
}
}
// The registers
struct Registers {
uint8_t output[2], input[2], data_direction[2];
uint16_t timer[2], timer_latch[2], last_timer[2];
int next_timer[2];
uint8_t shift;
uint8_t auxiliary_control, peripheral_control;
uint8_t interrupt_flags, interrupt_enable;
bool timer_needs_reload;
// "A low reset (RES) input clears all R6522 internal registers to logic 0"
Registers() :
output{0, 0}, input{0, 0}, data_direction{0, 0},
auxiliary_control(0), peripheral_control(0),
interrupt_flags(0), interrupt_enable(0),
last_timer{0, 0}, timer_needs_reload(false),
next_timer{-1, -1} {}
} registers_;
// control state
struct {
bool line_one, line_two;
} control_inputs_[2];
// Internal state other than the registers
bool timer_is_running_[2];
};
/*!
Provided for optional composition with @c MOS6522, @c MOS6522IRQDelegate provides for a delegate
that will receive IRQ line change notifications.
*/
class MOS6522IRQDelegate {
public:
class Delegate {
public:
virtual void mos6522_did_change_interrupt_status(void *mos6522) = 0;
};
inline void set_interrupt_delegate(Delegate *delegate)
{
delegate_ = delegate;
}
inline void set_interrupt_status(bool new_status)
{
if(delegate_) delegate_->mos6522_did_change_interrupt_status(this);
}
private:
Delegate *delegate_;
};
}
#endif /* _522_hpp */