mirror of
https://github.com/TomHarte/CLK.git
synced 2024-12-25 03:32:01 +00:00
398 lines
18 KiB
C++
398 lines
18 KiB
C++
//
|
|
// CRT.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 19/07/2015.
|
|
// Copyright © 2015 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "CRT.hpp"
|
|
#include "CRTOpenGL.hpp"
|
|
#include <stdarg.h>
|
|
#include <math.h>
|
|
#include <algorithm>
|
|
|
|
using namespace Outputs::CRT;
|
|
|
|
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
|
|
{
|
|
_openGL_output_builder->set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator);
|
|
|
|
const unsigned int syncCapacityLineChargeThreshold = 2;
|
|
const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
|
|
const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid
|
|
|
|
// To quote:
|
|
//
|
|
// "retrace interval; The interval of time for the return of the blanked scanning beam of
|
|
// a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs
|
|
// for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV."
|
|
|
|
_time_multiplier = (2000 + cycles_per_line - 1) / cycles_per_line;
|
|
|
|
// store fundamental display configuration properties
|
|
_height_of_display = height_of_display;
|
|
_cycles_per_line = cycles_per_line * _time_multiplier;
|
|
|
|
// generate timing values implied by the given arbuments
|
|
_sync_capacitor_charge_threshold = (int)(syncCapacityLineChargeThreshold * _cycles_per_line);
|
|
|
|
// create the two flywheels
|
|
_horizontal_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6));
|
|
_vertical_flywheel = std::unique_ptr<Flywheel>(new Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line));
|
|
|
|
// figure out the divisor necessary to get the horizontal flywheel into a 16-bit range
|
|
unsigned int real_clock_scan_period = (_cycles_per_line * height_of_display) / (_time_multiplier * _common_output_divisor);
|
|
_vertical_flywheel_output_divider = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (_time_multiplier * _common_output_divisor));
|
|
|
|
_openGL_output_builder->set_timing(_cycles_per_line, _height_of_display, _horizontal_flywheel->get_scan_period(), _vertical_flywheel->get_scan_period(), _vertical_flywheel_output_divider);
|
|
}
|
|
|
|
void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType)
|
|
{
|
|
switch(displayType)
|
|
{
|
|
case DisplayType::PAL50:
|
|
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 1135, 4);
|
|
break;
|
|
|
|
case DisplayType::NTSC60:
|
|
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
CRT::CRT(unsigned int common_output_divisor) :
|
|
_sync_capacitor_charge_level(0),
|
|
_is_receiving_sync(false),
|
|
_sync_period(0),
|
|
_common_output_divisor(common_output_divisor),
|
|
_is_writing_composite_run(false),
|
|
_delegate(nullptr),
|
|
_frames_since_last_delegate_call(0) {}
|
|
|
|
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth) : CRT(common_output_divisor)
|
|
{
|
|
_openGL_output_builder = std::unique_ptr<OpenGLOutputBuilder>(new OpenGLOutputBuilder(buffer_depth));
|
|
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator);
|
|
}
|
|
|
|
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) : CRT(common_output_divisor)
|
|
{
|
|
_openGL_output_builder = std::unique_ptr<OpenGLOutputBuilder>(new OpenGLOutputBuilder(buffer_depth));
|
|
set_new_display_type(cycles_per_line, displayType);
|
|
}
|
|
|
|
#pragma mark - Sync loop
|
|
|
|
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
|
|
{
|
|
return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
|
|
}
|
|
|
|
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
|
|
{
|
|
return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
|
|
}
|
|
|
|
#define output_position_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 0])
|
|
#define output_position_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfPosition + 2])
|
|
#define output_tex_x(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 0])
|
|
#define output_tex_y(v) (*(uint16_t *)&next_run[OutputVertexSize*v + OutputVertexOffsetOfTexCoord + 2])
|
|
#define output_lateral(v) next_run[OutputVertexSize*v + OutputVertexOffsetOfLateral]
|
|
|
|
#define source_input_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 0])
|
|
#define source_input_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfInputPosition + 2])
|
|
#define source_output_position_x(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 0])
|
|
#define source_output_position_y(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfOutputPosition + 2])
|
|
#define source_phase(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 0]
|
|
#define source_amplitude(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 1]
|
|
#define source_offset(v) next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseAmplitudeAndOffset + 2]
|
|
#define source_phase_time(v) (*(uint16_t *)&next_run[SourceVertexSize*v + SourceVertexOffsetOfPhaseTime])
|
|
|
|
void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y)
|
|
{
|
|
number_of_cycles *= _time_multiplier;
|
|
|
|
bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data));
|
|
|
|
while(number_of_cycles) {
|
|
|
|
unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event;
|
|
Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event);
|
|
Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event);
|
|
|
|
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
|
|
// set it to false for the next run through this loop (if any)
|
|
unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
|
|
|
|
hsync_requested = false;
|
|
vsync_requested = false;
|
|
|
|
bool is_output_segment = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
|
|
uint8_t *next_run = nullptr;
|
|
if(is_output_segment)
|
|
{
|
|
next_run = (_openGL_output_builder->get_output_device() == Monitor) ? _openGL_output_builder->get_next_output_run() : _openGL_output_builder->get_next_source_run();
|
|
}
|
|
|
|
// Vertex output is arranged for triangle strips, as:
|
|
//
|
|
// 2 [4/5]
|
|
//
|
|
// [0/1] 3
|
|
if(next_run)
|
|
{
|
|
if(_openGL_output_builder->get_output_device() == Monitor)
|
|
{
|
|
// set the type, initial raster position and type of this run
|
|
output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
|
|
output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = tex_x;
|
|
|
|
// these things are constants across the line so just throw them out now
|
|
output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = output_tex_y(3) = output_tex_y(4) = output_tex_y(5) = tex_y;
|
|
output_lateral(0) = output_lateral(1) = output_lateral(3) = 0;
|
|
output_lateral(2) = output_lateral(4) = output_lateral(5) = 1;
|
|
}
|
|
else
|
|
{
|
|
source_input_position_x(0) = tex_x;
|
|
source_input_position_y(0) = source_input_position_y(1) = tex_y;
|
|
source_output_position_x(0) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
source_output_position_y(0) = source_output_position_y(1) = _openGL_output_builder->get_composite_output_y();
|
|
source_phase(0) = source_phase(1) = _colour_burst_phase;
|
|
source_amplitude(0) = source_amplitude(1) = _colour_burst_amplitude;
|
|
source_phase_time(0) = source_phase_time(1) = _colour_burst_time;
|
|
source_offset(0) = 0;
|
|
source_offset(1) = 255;
|
|
}
|
|
}
|
|
|
|
// decrement the number of cycles left to run for and increment the
|
|
// horizontal counter appropriately
|
|
number_of_cycles -= next_run_length;
|
|
|
|
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
|
|
if(vsync_charging)
|
|
_sync_capacitor_charge_level += next_run_length;
|
|
else
|
|
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0);
|
|
|
|
// react to the incoming event...
|
|
_horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
|
|
_vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
|
|
|
|
if(next_run)
|
|
{
|
|
// if this is a data run then advance the buffer pointer
|
|
if(type == Scan::Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider);
|
|
|
|
if(_openGL_output_builder->get_output_device() == Monitor)
|
|
{
|
|
// store the final raster position
|
|
output_position_x(3) = output_position_x(4) = output_position_x(5) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_position_y(3) = output_position_y(4) = output_position_y(5) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
|
|
output_tex_x(3) = output_tex_x(4) = output_tex_x(5) = tex_x;
|
|
|
|
_openGL_output_builder->complete_output_run(6);
|
|
}
|
|
else
|
|
{
|
|
source_input_position_x(1) = tex_x;
|
|
source_output_position_x(1) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
|
|
_openGL_output_builder->complete_source_run();
|
|
}
|
|
}
|
|
|
|
// if this is horizontal retrace then advance the output line counter and bookend an output run
|
|
if(_openGL_output_builder->get_output_device() == Television)
|
|
{
|
|
Flywheel::SyncEvent honoured_event = Flywheel::SyncEvent::None;
|
|
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event;
|
|
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event;
|
|
bool needs_endpoint =
|
|
(honoured_event == Flywheel::SyncEvent::StartRetrace && _is_writing_composite_run) ||
|
|
(honoured_event == Flywheel::SyncEvent::EndRetrace && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace());
|
|
|
|
if(needs_endpoint)
|
|
{
|
|
uint8_t *next_run = _openGL_output_builder->get_next_output_run();
|
|
|
|
output_position_x(0) = output_position_x(1) = output_position_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_position_y(0) = output_position_y(1) = output_position_y(2) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider);
|
|
output_tex_x(0) = output_tex_x(1) = output_tex_x(2) = (uint16_t)_horizontal_flywheel->get_current_output_position();
|
|
output_tex_y(0) = output_tex_y(1) = output_tex_y(2) = _openGL_output_builder->get_composite_output_y();
|
|
output_lateral(0) = 0;
|
|
output_lateral(1) = _is_writing_composite_run ? 1 : 0;
|
|
output_lateral(2) = 1;
|
|
|
|
_openGL_output_builder->complete_output_run(3);
|
|
_is_writing_composite_run ^= true;
|
|
}
|
|
|
|
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace)
|
|
{
|
|
_openGL_output_builder->increment_composite_output_y();
|
|
}
|
|
}
|
|
|
|
// if this is vertical retrace then adcance a field
|
|
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace)
|
|
{
|
|
if(_delegate)
|
|
{
|
|
_frames_since_last_delegate_call++;
|
|
if(_frames_since_last_delegate_call == 100)
|
|
{
|
|
_delegate->crt_did_end_batch_of_frames(this, _frames_since_last_delegate_call, _vertical_flywheel->get_and_reset_number_of_surprises());
|
|
_frames_since_last_delegate_call = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef output_position_x
|
|
#undef output_position_y
|
|
#undef output_tex_x
|
|
#undef output_tex_y
|
|
#undef output_lateral
|
|
|
|
#undef input_input_position_x
|
|
#undef input_input_position_y
|
|
#undef input_output_position_x
|
|
#undef input_output_position_y
|
|
#undef input_phase
|
|
#undef input_amplitude
|
|
#undef input_phase_age
|
|
|
|
#pragma mark - stream feeding methods
|
|
|
|
void CRT::output_scan(const Scan *const scan)
|
|
{
|
|
const bool this_is_sync = (scan->type == Scan::Type::Sync);
|
|
const bool is_trailing_edge = (_is_receiving_sync && !this_is_sync);
|
|
const bool is_leading_edge = (!_is_receiving_sync && this_is_sync);
|
|
_is_receiving_sync = this_is_sync;
|
|
|
|
// This introduces a blackout period close to the expected vertical sync point in which horizontal syncs are not
|
|
// recognised, effectively causing the horizontal flywheel to freewheel during that period. This attempts to seek
|
|
// the problem that vertical sync otherwise often starts halfway through a scanline, which confuses the horizontal
|
|
// flywheel. I'm currently unclear whether this is an accurate solution to this problem.
|
|
const bool hsync_requested = is_leading_edge && !_vertical_flywheel->is_near_expected_sync();
|
|
const bool vsync_requested = is_trailing_edge && (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold);
|
|
|
|
// simplified colour burst logic: if it's within the back porch we'll take it
|
|
if(scan->type == Scan::Type::ColourBurst)
|
|
{
|
|
if(_horizontal_flywheel->get_current_time() < (_horizontal_flywheel->get_standard_period() * 12) >> 6)
|
|
{
|
|
_colour_burst_time = (uint16_t)_horizontal_flywheel->get_current_time();
|
|
_colour_burst_phase = scan->phase;
|
|
_colour_burst_amplitude = scan->amplitude;
|
|
}
|
|
}
|
|
|
|
// TODO: inspect raw data for potential colour burst if required
|
|
|
|
_sync_period = _is_receiving_sync ? (_sync_period + scan->number_of_cycles) : 0;
|
|
advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y);
|
|
}
|
|
|
|
/*
|
|
These all merely channel into advance_cycles, supplying appropriate arguments
|
|
*/
|
|
void CRT::output_sync(unsigned int number_of_cycles)
|
|
{
|
|
Scan scan{
|
|
.type = Scan::Type::Sync,
|
|
.number_of_cycles = number_of_cycles
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_blank(unsigned int number_of_cycles)
|
|
{
|
|
Scan scan {
|
|
.type = Scan::Type::Blank,
|
|
.number_of_cycles = number_of_cycles
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_level(unsigned int number_of_cycles)
|
|
{
|
|
Scan scan {
|
|
.type = Scan::Type::Level,
|
|
.number_of_cycles = number_of_cycles,
|
|
.tex_x = _openGL_output_builder->get_last_write_x_posiiton(),
|
|
.tex_y = _openGL_output_builder->get_last_write_y_posiiton()
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude)
|
|
{
|
|
Scan scan {
|
|
.type = Scan::Type::ColourBurst,
|
|
.number_of_cycles = number_of_cycles,
|
|
.phase = phase,
|
|
.amplitude = amplitude
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
|
|
{
|
|
_openGL_output_builder->reduce_previous_allocation_to(number_of_cycles / source_divider);
|
|
Scan scan {
|
|
.type = Scan::Type::Data,
|
|
.number_of_cycles = number_of_cycles,
|
|
.tex_x = _openGL_output_builder->get_last_write_x_posiiton(),
|
|
.tex_y = _openGL_output_builder->get_last_write_y_posiiton(),
|
|
.source_divider = source_divider
|
|
};
|
|
output_scan(&scan);
|
|
}
|
|
|
|
Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio)
|
|
{
|
|
first_cycle_after_sync *= _time_multiplier;
|
|
number_of_cycles *= _time_multiplier;
|
|
number_of_lines++;
|
|
|
|
// determine prima facie x extent
|
|
unsigned int horizontal_period = _horizontal_flywheel->get_standard_period();
|
|
unsigned int horizontal_scan_period = _horizontal_flywheel->get_scan_period();
|
|
unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period;
|
|
|
|
float start_x = (float)((unsigned)first_cycle_after_sync - horizontal_retrace_period) / (float)horizontal_scan_period;
|
|
float width = (float)number_of_cycles / (float)horizontal_scan_period;
|
|
|
|
// determine prima facie y extent
|
|
unsigned int vertical_period = _vertical_flywheel->get_standard_period();
|
|
unsigned int vertical_scan_period = _vertical_flywheel->get_scan_period();
|
|
unsigned int vertical_retrace_period = vertical_period - vertical_scan_period;
|
|
float start_y = (float)(((unsigned)first_line_after_sync * horizontal_period) - vertical_retrace_period) / (float)vertical_scan_period;
|
|
float height = (float)((unsigned)number_of_lines * horizontal_period) / vertical_scan_period;
|
|
|
|
// adjust to ensure aspect ratio is correct
|
|
float adjusted_aspect_ratio = (3.0f*aspect_ratio / 4.0f);
|
|
float ideal_width = height * adjusted_aspect_ratio;
|
|
if(ideal_width > width)
|
|
{
|
|
start_x -= (ideal_width - width) * 0.5f;
|
|
width = ideal_width;
|
|
}
|
|
else
|
|
{
|
|
float ideal_height = width / adjusted_aspect_ratio;
|
|
start_y -= (ideal_height - height) * 0.5f;
|
|
height = ideal_height;
|
|
}
|
|
|
|
return Rect(start_x, start_y, width, height);
|
|
}
|