1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-22 12:33:29 +00:00
CLK/Machines/Enterprise/Enterprise.cpp
2021-06-15 17:44:39 -04:00

261 lines
7.9 KiB
C++

//
// Enterprise.cpp
// Clock Signal
//
// Created by Thomas Harte on 10/06/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#include "Enterprise.hpp"
#include "Nick.hpp"
#include "../MachineTypes.hpp"
#include "../../Processors/Z80/Z80.hpp"
#include "../../Analyser/Static/Enterprise/Target.hpp"
#include "../../ClockReceiver/JustInTime.hpp"
namespace Enterprise {
/*
Notes to self on timing:
Nick divides each line into 57 windows; each window lasts 16 cycles and dedicates the
first 10 of those to VRAM accesses, leaving the final six for a Z80 video RAM access
if one has been requested.
The Z80 has a separate, asynchronous 4Mhz clock. That's that.
The documentation is also very forward in emphasising that Nick generates phaselocked
(i.e. in-phase) PAL video.
So: 57*16 = 912 cycles/line.
A standard PAL line lasts 64µs and during that time outputs 283.7516 colour cycles.
I shall _guess_ that the Enterprise stretches each line to 284 colour cycles rather than
reducing it to 283.
Therefore 912 cycles occurs in 284/283.7516 * 64 µs, which would appear to give an ideal
clock rate of around:
14,237,536.27 Hz.
Given that there's always some leeway in a receiver, I'm modelling that as 14,237,536 cycles,
which means that Nick runs 444923/125000 times as fast as the Z80. Which is around 3.56 times
as fast.
If that's true then the 6-cycle window is around 1.69 Z80 cycles long. Given that the Z80
clock in an Enterprise can be stopped in half-cycle increments only, the Z80 can only be
guaranteed to have around a 1.19 cycle minimum for its actual access. I'm therefore further
postulating that the clock stoppage takes place so as to align the final cycle of a relevant
access over the available window.
*/
class ConcreteMachine:
public CPU::Z80::BusHandler,
public Machine,
public MachineTypes::ScanProducer,
public MachineTypes::TimedMachine {
public:
ConcreteMachine([[maybe_unused]] const Analyser::Static::Enterprise::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
z80_(*this),
nick_(ram_.end() - 65536) {
// Request a clock of 4Mhz; this'll be mapped upwards for Nick and Dave elsewhere.
set_clock_rate(4'000'000);
constexpr ROM::Name exos_name = ROM::Name::EnterpriseEXOS;
const auto request = ROM::Request(exos_name);
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
const auto &exos = roms.find(exos_name)->second;
memcpy(exos_.data(), exos.data(), std::min(exos_.size(), exos.size()));
// Take a reasonable guess at the initial memory configuration:
// put EXOS into the first bank since this is a Z80 and therefore
// starts from address 0; the third instruction in EXOS is a jump
// to $c02e so it's reasonable to assume EXOS is in the highest bank
// too, and it appears to act correctly if it's the first 16kb that's
// in the highest bank. From there I guess: all banks are initialised
// to 0.
page<0>(0x00);
page<1>(0x00);
page<2>(0x00);
page<3>(0x00);
}
// MARK: - Z80::BusHandler.
forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) {
using PartialMachineCycle = CPU::Z80::PartialMachineCycle;
const uint16_t address = cycle.address ? *cycle.address : 0x0000;
// TODO: possibly apply an access penalty.
nick_ += cycle.length;
switch(cycle.operation) {
default: break;
case CPU::Z80::PartialMachineCycle::Input:
switch(address & 0xff) {
default:
printf("Unhandled input: %04x\n", address);
assert(false);
break;
case 0xb0: *cycle.value = pages_[0]; break;
case 0xb1: *cycle.value = pages_[1]; break;
case 0xb2: *cycle.value = pages_[2]; break;
case 0xb3: *cycle.value = pages_[3]; break;
case 0xb4:
printf("TODO: interrupt enable/reset read\n");
*cycle.value = 0xff;
break;
case 0xb5:
printf("TODO: Keyboard/joystick input\n");
*cycle.value = 0xff;
break;
}
break;
case CPU::Z80::PartialMachineCycle::Output:
switch(address & 0xff) {
default:
printf("Unhandled output: %04x\n", address);
assert(false);
break;
case 0x80: case 0x81: case 0x82: case 0x83:
case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b:
case 0x8c: case 0x8d: case 0x8e: case 0x8f:
nick_->write(address, *cycle.value);
break;
case 0xb0: page<0>(*cycle.value); break;
case 0xb1: page<1>(*cycle.value); break;
case 0xb2: page<2>(*cycle.value); break;
case 0xb3: page<3>(*cycle.value); break;
case 0xa0: case 0xa1: case 0xa2: case 0xa3:
case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab:
case 0xac: case 0xad: case 0xae: case 0xaf:
printf("TODO: audio adjust %04x <- %02x\n", address, *cycle.value);
break;
case 0xb4:
printf("TODO: interrupt enable/reset write %02x\n", *cycle.value);
break;
case 0xb5:
printf("TODO: Keyboard/etc %02x\n", *cycle.value);
break;
case 0xb6:
printf("TODO: printer output %02x\n", *cycle.value);
break;
case 0xbf:
printf("TODO: Dave sysconfig %02x\n", *cycle.value);
break;
}
break;
case CPU::Z80::PartialMachineCycle::Read:
case CPU::Z80::PartialMachineCycle::ReadOpcode:
if(read_pointers_[address >> 14]) {
*cycle.value = read_pointers_[address >> 14][address];
} else {
*cycle.value = 0xff;
}
break;
case CPU::Z80::PartialMachineCycle::Write:
if(write_pointers_[address >> 14]) {
write_pointers_[address >> 14][address] = *cycle.value;
}
break;
}
return HalfCycles(0);
}
void flush() {
nick_.flush();
}
private:
// MARK: - Memory layout
std::array<uint8_t, 256 * 1024> ram_;
std::array<uint8_t, 32 * 1024> exos_;
const uint8_t min_ram_slot_ = 0xff - 3;
const uint8_t *read_pointers_[4] = {nullptr, nullptr, nullptr, nullptr};
uint8_t *write_pointers_[4] = {nullptr, nullptr, nullptr, nullptr};
uint8_t pages_[4] = {0x80, 0x80, 0x80, 0x80};
template <size_t slot> void page(uint8_t offset) {
pages_[slot] = offset;
if(offset < 2) {
page<slot>(&exos_[offset * 0x4000], nullptr);
return;
}
// Of whatever size of RAM I've declared above, use only the final portion.
// This correlated with Nick always having been handed the final 64kb and,
// at least while the RAM is the first thing declared above, does a little
// to benefit data locality. Albeit not in a useful sense.
if(offset >= min_ram_slot_) {
const auto ram_floor = 4194304 - ram_.size();
const size_t address = offset * 0x4000 - ram_floor;
page<slot>(&ram_[address], &ram_[address]);
return;
}
page<slot>(nullptr, nullptr);
}
template <size_t slot> void page(const uint8_t *read, uint8_t *write) {
read_pointers_[slot] = read ? read - (slot * 0x4000) : nullptr;
write_pointers_[slot] = write ? write - (slot * 0x4000) : nullptr;
}
// MARK: - ScanProducer
void set_scan_target(Outputs::Display::ScanTarget *scan_target) override {
nick_.last_valid()->set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const override {
return nick_.last_valid()->get_scaled_scan_status();
}
// MARK: - TimedMachine
void run_for(const Cycles cycles) override {
z80_.run_for(cycles);
}
// MARK: - Chips.
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
JustInTimeActor<Nick, HalfCycles, 444923, 125000> nick_;
// Cf. timing guesses above.
};
}
using namespace Enterprise;
Machine *Machine::Enterprise(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
using Target = Analyser::Static::Enterprise::Target;
const Target *const enterprise_target = dynamic_cast<const Target *>(target);
return new Enterprise::ConcreteMachine(*enterprise_target, rom_fetcher);
}
Machine::~Machine() {}