mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-23 03:32:32 +00:00
394ee61c78
The Amstrad CPC and ZX80/81 have made the jump so far, subject to caveats. The macOS build is unlikely currently to work properly.
520 lines
15 KiB
C++
520 lines
15 KiB
C++
//
|
|
// ZX8081.cpp
|
|
// Clock Signal
|
|
//
|
|
// Created by Thomas Harte on 04/06/2017.
|
|
// Copyright 2017 Thomas Harte. All rights reserved.
|
|
//
|
|
|
|
#include "ZX8081.hpp"
|
|
|
|
#include "../MediaTarget.hpp"
|
|
#include "../CRTMachine.hpp"
|
|
#include "../KeyboardMachine.hpp"
|
|
|
|
#include "../../Components/AY38910/AY38910.hpp"
|
|
#include "../../Processors/Z80/Z80.hpp"
|
|
#include "../../Storage/Tape/Tape.hpp"
|
|
#include "../../Storage/Tape/Parsers/ZX8081.hpp"
|
|
|
|
#include "../../ClockReceiver/ForceInline.hpp"
|
|
|
|
#include "../Utility/MemoryFuzzer.hpp"
|
|
#include "../Utility/Typer.hpp"
|
|
|
|
#include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
|
|
|
|
#include "../../Analyser/Static/ZX8081/Target.hpp"
|
|
|
|
#include "Keyboard.hpp"
|
|
#include "Video.hpp"
|
|
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace {
|
|
// The clock rate is 3.25Mhz.
|
|
const unsigned int ZX8081ClockRate = 3250000;
|
|
}
|
|
|
|
// TODO:
|
|
// Quiksilva sound support:
|
|
// 7FFFh.W PSG index
|
|
// 7FFEh.R/W PSG data
|
|
|
|
namespace ZX8081 {
|
|
|
|
enum ROMType: uint8_t {
|
|
ZX80 = 0, ZX81
|
|
};
|
|
|
|
template<bool is_zx81> class ConcreteMachine:
|
|
public CRTMachine::Machine,
|
|
public MediaTarget::Machine,
|
|
public KeyboardMachine::MappedMachine,
|
|
public Configurable::Device,
|
|
public Utility::TypeRecipient<CharacterMapper>,
|
|
public CPU::Z80::BusHandler,
|
|
public Machine {
|
|
public:
|
|
ConcreteMachine(const Analyser::Static::ZX8081::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
|
|
Utility::TypeRecipient<CharacterMapper>(is_zx81),
|
|
z80_(*this),
|
|
tape_player_(ZX8081ClockRate),
|
|
ay_(GI::AY38910::Personality::AY38910, audio_queue_),
|
|
speaker_(ay_) {
|
|
set_clock_rate(ZX8081ClockRate);
|
|
speaker_.set_input_rate(static_cast<float>(ZX8081ClockRate) / 2.0f);
|
|
clear_all_keys();
|
|
|
|
const bool use_zx81_rom = target.is_ZX81 || target.ZX80_uses_ZX81_ROM;
|
|
const auto roms =
|
|
use_zx81_rom ?
|
|
rom_fetcher({ {"ZX8081", "the ZX81 BASIC ROM", "zx81.rom", 8 * 1024, 0x4b1dd6eb} }) :
|
|
rom_fetcher({ {"ZX8081", "the ZX80 BASIC ROM", "zx80.rom", 4 * 1024, 0x4c7fc597} });
|
|
|
|
if(!roms[0]) throw ROMMachine::Error::MissingROMs;
|
|
|
|
rom_ = std::move(*roms[0]);
|
|
rom_.resize(use_zx81_rom ? 8192 : 4096);
|
|
|
|
if constexpr (is_zx81) {
|
|
tape_trap_address_ = 0x37c;
|
|
tape_return_address_ = 0x380;
|
|
vsync_start_ = HalfCycles(32);
|
|
vsync_end_ = HalfCycles(64);
|
|
automatic_tape_motor_start_address_ = 0x0340;
|
|
automatic_tape_motor_end_address_ = 0x03c3;
|
|
} else {
|
|
tape_trap_address_ = 0x220;
|
|
tape_return_address_ = 0x248;
|
|
vsync_start_ = HalfCycles(26);
|
|
vsync_end_ = HalfCycles(66);
|
|
automatic_tape_motor_start_address_ = 0x0206;
|
|
automatic_tape_motor_end_address_ = 0x024d;
|
|
}
|
|
rom_mask_ = static_cast<uint16_t>(rom_.size() - 1);
|
|
|
|
switch(target.memory_model) {
|
|
case Analyser::Static::ZX8081::Target::MemoryModel::Unexpanded:
|
|
ram_.resize(1024);
|
|
ram_base_ = 16384;
|
|
ram_mask_ = 1023;
|
|
break;
|
|
case Analyser::Static::ZX8081::Target::MemoryModel::SixteenKB:
|
|
ram_.resize(16384);
|
|
ram_base_ = 16384;
|
|
ram_mask_ = 16383;
|
|
break;
|
|
case Analyser::Static::ZX8081::Target::MemoryModel::SixtyFourKB:
|
|
ram_.resize(65536);
|
|
ram_base_ = 8192;
|
|
ram_mask_ = 65535;
|
|
break;
|
|
}
|
|
Memory::Fuzz(ram_);
|
|
|
|
if(!target.loading_command.empty()) {
|
|
type_string(target.loading_command);
|
|
}
|
|
|
|
insert_media(target.media);
|
|
}
|
|
|
|
~ConcreteMachine() {
|
|
audio_queue_.flush();
|
|
}
|
|
|
|
forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) {
|
|
const HalfCycles previous_counter = horizontal_counter_;
|
|
horizontal_counter_ += cycle.length;
|
|
time_since_ay_update_ += cycle.length;
|
|
|
|
if(previous_counter < vsync_start_ && horizontal_counter_ >= vsync_start_) {
|
|
video_.run_for(vsync_start_ - previous_counter);
|
|
set_hsync(true);
|
|
line_counter_ = (line_counter_ + 1) & 7;
|
|
if(nmi_is_enabled_) {
|
|
z80_.set_non_maskable_interrupt_line(true);
|
|
}
|
|
video_.run_for(horizontal_counter_ - vsync_start_);
|
|
} else if(previous_counter < vsync_end_ && horizontal_counter_ >= vsync_end_) {
|
|
video_.run_for(vsync_end_ - previous_counter);
|
|
set_hsync(false);
|
|
if(nmi_is_enabled_) {
|
|
z80_.set_non_maskable_interrupt_line(false);
|
|
z80_.set_wait_line(false);
|
|
}
|
|
video_.run_for(horizontal_counter_ - vsync_end_);
|
|
} else {
|
|
video_.run_for(cycle.length);
|
|
}
|
|
|
|
if constexpr (is_zx81) horizontal_counter_ %= HalfCycles(Cycles(207));
|
|
if(!tape_advance_delay_) {
|
|
tape_player_.run_for(cycle.length);
|
|
} else {
|
|
tape_advance_delay_ = std::max(tape_advance_delay_ - cycle.length, HalfCycles(0));
|
|
}
|
|
|
|
if(nmi_is_enabled_ && !z80_.get_halt_line() && z80_.get_non_maskable_interrupt_line()) {
|
|
z80_.set_wait_line(true);
|
|
}
|
|
|
|
if(!cycle.is_terminal()) {
|
|
return Cycles(0);
|
|
}
|
|
|
|
const uint16_t address = cycle.address ? *cycle.address : 0;
|
|
bool is_opcode_read = false;
|
|
switch(cycle.operation) {
|
|
case CPU::Z80::PartialMachineCycle::Output:
|
|
if(!nmi_is_enabled_) {
|
|
line_counter_ = 0;
|
|
set_vsync(false);
|
|
}
|
|
if(!(address & 2)) nmi_is_enabled_ = false;
|
|
if(!(address & 1)) nmi_is_enabled_ = is_zx81;
|
|
|
|
// The below emulates the ZonX AY expansion device.
|
|
if constexpr (is_zx81) {
|
|
if((address&0xef) == 0xcf) {
|
|
ay_set_register(*cycle.value);
|
|
} else if((address&0xef) == 0x0f) {
|
|
ay_set_data(*cycle.value);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CPU::Z80::PartialMachineCycle::Input: {
|
|
uint8_t value = 0xff;
|
|
if(!(address&1)) {
|
|
if(!nmi_is_enabled_) set_vsync(true);
|
|
|
|
uint16_t mask = 0x100;
|
|
for(int c = 0; c < 8; c++) {
|
|
if(!(address & mask)) value &= key_states_[c];
|
|
mask <<= 1;
|
|
}
|
|
|
|
value &= ~(tape_player_.get_input() ? 0x00 : 0x80);
|
|
}
|
|
|
|
// The below emulates the ZonX AY expansion device.
|
|
if constexpr (is_zx81) {
|
|
if((address&0xef) == 0xcf) {
|
|
value &= ay_read_data();
|
|
}
|
|
}
|
|
*cycle.value = value;
|
|
} break;
|
|
|
|
case CPU::Z80::PartialMachineCycle::Interrupt:
|
|
// resetting event is M1 and IOREQ both simultaneously having leading edges;
|
|
// that happens 2 cycles before the end of INTACK. So the timer was reset and
|
|
// now has advanced twice.
|
|
horizontal_counter_ = HalfCycles(2);
|
|
|
|
*cycle.value = 0xff;
|
|
break;
|
|
|
|
case CPU::Z80::PartialMachineCycle::Refresh:
|
|
// The ZX80 and 81 signal an interrupt while refresh is active and bit 6 of the refresh
|
|
// address is low. The Z80 signals a refresh, providing the refresh address during the
|
|
// final two cycles of an opcode fetch. Therefore communicate a transient signalling
|
|
// of the IRQ line if necessary.
|
|
if(!(address & 0x40)) {
|
|
z80_.set_interrupt_line(true, Cycles(-2));
|
|
z80_.set_interrupt_line(false);
|
|
}
|
|
if(has_latched_video_byte_) {
|
|
std::size_t char_address = static_cast<std::size_t>((address & 0xfe00) | ((latched_video_byte_ & 0x3f) << 3) | line_counter_);
|
|
const uint8_t mask = (latched_video_byte_ & 0x80) ? 0x00 : 0xff;
|
|
if(char_address < ram_base_) {
|
|
latched_video_byte_ = rom_[char_address & rom_mask_] ^ mask;
|
|
} else {
|
|
latched_video_byte_ = ram_[address & ram_mask_] ^ mask;
|
|
}
|
|
|
|
video_.output_byte(latched_video_byte_);
|
|
has_latched_video_byte_ = false;
|
|
}
|
|
break;
|
|
|
|
case CPU::Z80::PartialMachineCycle::ReadOpcode:
|
|
// Check for use of the fast tape hack.
|
|
if(use_fast_tape_hack_ && address == tape_trap_address_) {
|
|
const uint64_t prior_offset = tape_player_.get_tape()->get_offset();
|
|
const int next_byte = parser_.get_next_byte(tape_player_.get_tape());
|
|
if(next_byte != -1) {
|
|
const uint16_t hl = z80_.get_value_of_register(CPU::Z80::Register::HL);
|
|
ram_[hl & ram_mask_] = static_cast<uint8_t>(next_byte);
|
|
*cycle.value = 0x00;
|
|
z80_.set_value_of_register(CPU::Z80::Register::ProgramCounter, tape_return_address_ - 1);
|
|
|
|
// Assume that having read one byte quickly, we're probably going to be asked to read
|
|
// another shortly. Therefore, temporarily disable the tape motor for 1000 cycles in order
|
|
// to avoid fighting with real time. This is a stop-gap fix.
|
|
tape_advance_delay_ = 1000;
|
|
return 0;
|
|
} else {
|
|
tape_player_.get_tape()->set_offset(prior_offset);
|
|
}
|
|
}
|
|
|
|
// Check for automatic tape control.
|
|
if(use_automatic_tape_motor_control_) {
|
|
tape_player_.set_motor_control((address >= automatic_tape_motor_start_address_) && (address < automatic_tape_motor_end_address_));
|
|
}
|
|
is_opcode_read = true;
|
|
|
|
case CPU::Z80::PartialMachineCycle::Read:
|
|
if(address < ram_base_) {
|
|
*cycle.value = rom_[address & rom_mask_];
|
|
} else {
|
|
const uint8_t value = ram_[address & ram_mask_];
|
|
|
|
// If this is an M1 cycle reading from above the 32kb mark and HALT is not
|
|
// currently active, latch for video output and return a NOP. Otherwise,
|
|
// just return the value as read.
|
|
if(is_opcode_read && address&0x8000 && !(value & 0x40) && !z80_.get_halt_line()) {
|
|
latched_video_byte_ = value;
|
|
has_latched_video_byte_ = true;
|
|
*cycle.value = 0;
|
|
} else *cycle.value = value;
|
|
}
|
|
break;
|
|
|
|
case CPU::Z80::PartialMachineCycle::Write:
|
|
if(address >= ram_base_) {
|
|
ram_[address & ram_mask_] = *cycle.value;
|
|
}
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
if(typer_) typer_->run_for(cycle.length);
|
|
return HalfCycles(0);
|
|
}
|
|
|
|
forceinline void flush() {
|
|
video_.flush();
|
|
if constexpr (is_zx81) {
|
|
update_audio();
|
|
audio_queue_.perform();
|
|
}
|
|
}
|
|
|
|
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final {
|
|
video_.set_scan_target(scan_target);
|
|
}
|
|
|
|
Outputs::Display::ScanStatus get_scaled_scan_status() const final {
|
|
return video_.get_scaled_scan_status();
|
|
}
|
|
|
|
Outputs::Speaker::Speaker *get_speaker() final {
|
|
return is_zx81 ? &speaker_ : nullptr;
|
|
}
|
|
|
|
void run_for(const Cycles cycles) final {
|
|
z80_.run_for(cycles);
|
|
}
|
|
|
|
bool insert_media(const Analyser::Static::Media &media) final {
|
|
if(!media.tapes.empty()) {
|
|
tape_player_.set_tape(media.tapes.front());
|
|
}
|
|
|
|
set_use_fast_tape();
|
|
return !media.tapes.empty();
|
|
}
|
|
|
|
void type_string(const std::string &string) final {
|
|
Utility::TypeRecipient<CharacterMapper>::add_typer(string);
|
|
}
|
|
|
|
bool can_type(char c) final {
|
|
return Utility::TypeRecipient<CharacterMapper>::can_type(c);
|
|
}
|
|
|
|
// MARK: - Keyboard
|
|
void set_key_state(uint16_t key, bool is_pressed) final {
|
|
const auto line = key >> 8;
|
|
|
|
// Check for special cases.
|
|
if(line > 7) {
|
|
switch(key) {
|
|
#define ShiftedKey(source, base) \
|
|
case source: \
|
|
set_key_state(KeyShift, is_pressed); \
|
|
set_key_state(base, is_pressed); \
|
|
break;
|
|
|
|
ShiftedKey(KeyDelete, Key0);
|
|
ShiftedKey(KeyBreak, KeySpace);
|
|
ShiftedKey(KeyUp, Key7);
|
|
ShiftedKey(KeyDown, Key6);
|
|
ShiftedKey(KeyLeft, Key5);
|
|
ShiftedKey(KeyRight, Key8);
|
|
ShiftedKey(KeyEdit, is_zx81 ? Key1 : KeyEnter);
|
|
#undef ShiftedKey
|
|
}
|
|
} else {
|
|
if(is_pressed)
|
|
key_states_[line] &= uint8_t(~key);
|
|
else
|
|
key_states_[line] |= uint8_t(key);
|
|
}
|
|
}
|
|
|
|
void clear_all_keys() final {
|
|
memset(key_states_, 0xff, 8);
|
|
}
|
|
|
|
// MARK: - Tape control
|
|
|
|
void set_use_automatic_tape_motor_control(bool enabled) {
|
|
use_automatic_tape_motor_control_ = enabled;
|
|
if(!enabled) {
|
|
tape_player_.set_motor_control(false);
|
|
}
|
|
}
|
|
|
|
void set_tape_is_playing(bool is_playing) final {
|
|
tape_player_.set_motor_control(is_playing);
|
|
}
|
|
|
|
bool get_tape_is_playing() final {
|
|
return tape_player_.get_motor_control();
|
|
}
|
|
|
|
// MARK: - Typer timing
|
|
HalfCycles get_typer_delay() final {
|
|
return z80_.get_is_resetting() ? Cycles(7'000'000) : Cycles(0);
|
|
}
|
|
|
|
HalfCycles get_typer_frequency() final {
|
|
return Cycles(146'250);
|
|
}
|
|
|
|
KeyboardMapper *get_keyboard_mapper() final {
|
|
return &keyboard_mapper_;
|
|
}
|
|
|
|
// MARK: - Configuration options.
|
|
std::unique_ptr<Reflection::Struct> get_options() final {
|
|
auto options = std::make_unique<Options>(Configurable::OptionsType::UserFriendly); // OptionsType is arbitrary, but not optional.
|
|
options->automatic_tape_motor_control = use_automatic_tape_motor_control_;
|
|
options->quickload = allow_fast_tape_hack_;
|
|
return options;
|
|
}
|
|
|
|
void set_options(const std::unique_ptr<Reflection::Struct> &str) {
|
|
const auto options = dynamic_cast<Options *>(str.get());
|
|
set_use_automatic_tape_motor_control(options->automatic_tape_motor_control);
|
|
allow_fast_tape_hack_ = options->quickload;
|
|
set_use_fast_tape();
|
|
}
|
|
|
|
private:
|
|
CPU::Z80::Processor<ConcreteMachine, false, is_zx81> z80_;
|
|
Video video_;
|
|
|
|
uint16_t tape_trap_address_, tape_return_address_;
|
|
uint16_t automatic_tape_motor_start_address_, automatic_tape_motor_end_address_;
|
|
|
|
std::vector<uint8_t> ram_;
|
|
uint16_t ram_mask_, ram_base_;
|
|
|
|
std::vector<uint8_t> rom_;
|
|
uint16_t rom_mask_;
|
|
|
|
bool vsync_ = false, hsync_ = false;
|
|
int line_counter_ = 0;
|
|
|
|
uint8_t key_states_[8];
|
|
ZX8081::KeyboardMapper keyboard_mapper_;
|
|
|
|
HalfClockReceiver<Storage::Tape::BinaryTapePlayer> tape_player_;
|
|
Storage::Tape::ZX8081::Parser parser_;
|
|
|
|
bool nmi_is_enabled_ = false;
|
|
|
|
HalfCycles vsync_start_, vsync_end_;
|
|
HalfCycles horizontal_counter_;
|
|
|
|
uint8_t latched_video_byte_ = 0;
|
|
bool has_latched_video_byte_ = false;
|
|
|
|
bool use_fast_tape_hack_ = false;
|
|
bool allow_fast_tape_hack_ = false;
|
|
void set_use_fast_tape() {
|
|
use_fast_tape_hack_ = allow_fast_tape_hack_ && tape_player_.has_tape();
|
|
}
|
|
bool use_automatic_tape_motor_control_;
|
|
HalfCycles tape_advance_delay_ = 0;
|
|
|
|
// MARK: - Video
|
|
inline void set_vsync(bool sync) {
|
|
vsync_ = sync;
|
|
update_sync();
|
|
}
|
|
|
|
inline void set_hsync(bool sync) {
|
|
hsync_ = sync;
|
|
update_sync();
|
|
}
|
|
|
|
inline void update_sync() {
|
|
video_.set_sync(vsync_ || hsync_);
|
|
}
|
|
|
|
// MARK: - Audio
|
|
Concurrency::DeferringAsyncTaskQueue audio_queue_;
|
|
using AY = GI::AY38910::AY38910<false>;
|
|
AY ay_;
|
|
Outputs::Speaker::LowpassSpeaker<AY> speaker_;
|
|
HalfCycles time_since_ay_update_;
|
|
inline void ay_set_register(uint8_t value) {
|
|
update_audio();
|
|
ay_.set_control_lines(GI::AY38910::BC1);
|
|
ay_.set_data_input(value);
|
|
ay_.set_control_lines(GI::AY38910::ControlLines(0));
|
|
}
|
|
inline void ay_set_data(uint8_t value) {
|
|
update_audio();
|
|
ay_.set_control_lines(GI::AY38910::ControlLines(GI::AY38910::BC2 | GI::AY38910::BDIR));
|
|
ay_.set_data_input(value);
|
|
ay_.set_control_lines(GI::AY38910::ControlLines(0));
|
|
}
|
|
inline uint8_t ay_read_data() {
|
|
update_audio();
|
|
ay_.set_control_lines(GI::AY38910::ControlLines(GI::AY38910::BC2 | GI::AY38910::BC1));
|
|
const uint8_t value = ay_.get_data_output();
|
|
ay_.set_control_lines(GI::AY38910::ControlLines(0));
|
|
return value;
|
|
}
|
|
inline void update_audio() {
|
|
speaker_.run_for(audio_queue_, time_since_ay_update_.divide_cycles(Cycles(2)));
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
using namespace ZX8081;
|
|
|
|
// See header; constructs and returns an instance of the ZX80 or 81.
|
|
Machine *Machine::ZX8081(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
|
|
const Analyser::Static::ZX8081::Target *const zx_target = dynamic_cast<const Analyser::Static::ZX8081::Target *>(target);
|
|
|
|
// Instantiate the correct type of machine.
|
|
if(zx_target->is_ZX81) return new ZX8081::ConcreteMachine<true>(*zx_target, rom_fetcher);
|
|
else return new ZX8081::ConcreteMachine<false>(*zx_target, rom_fetcher);
|
|
}
|
|
|
|
Machine::~Machine() {}
|