1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-22 12:33:29 +00:00
CLK/OSBindings/SDL/main.cpp
2024-10-15 21:49:42 -04:00

1325 lines
47 KiB
C++

//
// main.cpp
// Clock Signal
//
// Created by Thomas Harte on 04/11/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include <algorithm>
#include <array>
#include <atomic>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <memory>
#include <sys/stat.h>
#include <SDL.h>
#include "../../Analyser/Static/StaticAnalyser.hpp"
#include "../../Machines/Utility/MachineForTarget.hpp"
#include "../../ClockReceiver/TimeTypes.hpp"
#include "../../ClockReceiver/ScanSynchroniser.hpp"
#include "../../Machines/MachineTypes.hpp"
#include "../../Activity/Observer.hpp"
#include "../../Outputs/OpenGL/Primitives/Rectangle.hpp"
#include "../../Outputs/OpenGL/ScanTarget.hpp"
#include "../../Outputs/OpenGL/Screenshot.hpp"
#include "../../Reflection/Enum.hpp"
#include "../../Reflection/Struct.hpp"
namespace {
struct MachineRunner {
MachineRunner() {
frame_lock_.clear();
}
~MachineRunner() {
stop();
}
void start() {
last_time_ = Time::nanos_now();
timer_ = SDL_AddTimer(timer_period, &sdl_callback, reinterpret_cast<void *>(this));
}
void stop() {
if(timer_) {
// SDL doesn't define whether SDL_RemoveTimer will block until any pending calls
// have been completed, or will return instantly. So: do an ordered shutdown,
// then remove the timer.
state_ = State::Stopping;
while(state_ == State::Stopping) {
frame_lock_.clear();
}
SDL_RemoveTimer(timer_);
timer_ = 0;
}
}
void signal_vsync() {
const auto now = Time::nanos_now();
const auto previous_vsync_time = vsync_time_.load();
vsync_time_.store(now);
// Update estimate of current frame time.
frame_time_average_ -= frame_times_[frame_time_pointer_];
frame_times_[frame_time_pointer_] = now - previous_vsync_time;
frame_time_average_ += frame_times_[frame_time_pointer_];
frame_time_pointer_ = (frame_time_pointer_ + 1) & (frame_times_.size() - 1);
_frame_period.store((1e9 * 32.0) / double(frame_time_average_));
}
void signal_did_draw() {
frame_lock_.clear();
}
void set_speed_multiplier(double multiplier) {
scan_synchroniser_.set_base_speed_multiplier(multiplier);
}
std::mutex *machine_mutex;
Machine::DynamicMachine *machine;
private:
SDL_TimerID timer_ = 0;
Time::Nanos last_time_ = 0;
std::atomic<Time::Nanos> vsync_time_;
std::atomic_flag frame_lock_;
enum class State {
Running,
Stopping,
Stopped
};
std::atomic<State> state_{State::Running};
Time::ScanSynchroniser scan_synchroniser_;
// A slightly clumsy means of trying to derive frame rate from calls to
// signal_vsync(); SDL_DisplayMode provides only an integral quantity
// whereas, empirically, it's fairly common for monitors to run at the
// NTSC-esque frame rates of 59.94Hz.
std::array<Time::Nanos, 32> frame_times_;
Time::Nanos frame_time_average_ = 0;
size_t frame_time_pointer_ = 0;
std::atomic<double> _frame_period;
static constexpr Uint32 timer_period = 4;
static Uint32 sdl_callback(Uint32, void *param) {
reinterpret_cast<MachineRunner *>(param)->update();
return timer_period;
}
void update() {
// If a shutdown is in progress, signal stoppage and do nothing.
if(state_ != State::Running) {
state_ = State::Stopped;
return;
}
// Get time now and determine how long it has been since the last time this
// function was called. If it's more than half a second then forego any activity
// now, as there's obviously been some sort of substantial time glitch.
const auto time_now = Time::nanos_now();
if(time_now - last_time_ > Time::Nanos(500'000'000)) {
last_time_ = time_now - Time::Nanos(500'000'000);
}
const auto vsync_time = vsync_time_.load();
std::unique_lock lock_guard(*machine_mutex);
const auto scan_producer = machine->scan_producer();
const auto timed_machine = machine->timed_machine();
bool split_and_sync = false;
if(last_time_ < vsync_time && time_now >= vsync_time) {
split_and_sync = scan_synchroniser_.can_synchronise(scan_producer->get_scan_status(), _frame_period);
}
if(split_and_sync) {
timed_machine->run_for(double(vsync_time - last_time_) / 1e9);
timed_machine->flush_output(MachineTypes::TimedMachine::Output::All);
timed_machine->set_speed_multiplier(
scan_synchroniser_.next_speed_multiplier(scan_producer->get_scan_status())
);
// This is a bit of an SDL ugliness; wait here until the next frame is drawn.
// That is, unless and until I can think of a good way of running background
// updates via a share group — possibly an extra intermediate buffer is needed?
lock_guard.unlock();
while(frame_lock_.test_and_set());
lock_guard.lock();
timed_machine->run_for(double(time_now - vsync_time) / 1e9);
timed_machine->flush_output(MachineTypes::TimedMachine::Output::All);
} else {
timed_machine->set_speed_multiplier(scan_synchroniser_.get_base_speed_multiplier());
timed_machine->run_for(double(time_now - last_time_) / 1e9);
timed_machine->flush_output(MachineTypes::TimedMachine::Output::All);
}
last_time_ = time_now;
}
};
struct SpeakerDelegate: public Outputs::Speaker::Speaker::Delegate {
// This is empirically the best that I can seem to do with SDL's timer precision.
static constexpr size_t buffered_samples = 1024;
bool is_stereo = false;
void speaker_did_complete_samples(Outputs::Speaker::Speaker *, const std::vector<int16_t> &buffer) final {
std::lock_guard lock_guard(audio_buffer_mutex_);
const size_t buffer_size = buffered_samples * (is_stereo ? 2 : 1);
if(audio_buffer_.size() > buffer_size) {
audio_buffer_.erase(audio_buffer_.begin(), audio_buffer_.end() - buffer_size);
}
audio_buffer_.insert(audio_buffer_.end(), buffer.begin(), buffer.end());
}
void audio_callback(Uint8 *stream, int len) {
std::lock_guard lock_guard(audio_buffer_mutex_);
// SDL buffer length is in bytes, so there's no need to adjust for stereo/mono in here.
const std::size_t sample_length = size_t(len) / sizeof(int16_t);
const std::size_t copy_length = std::min(sample_length, audio_buffer_.size());
int16_t *const target = static_cast<int16_t *>(static_cast<void *>(stream));
std::memcpy(stream, audio_buffer_.data(), copy_length * sizeof(int16_t));
if(copy_length < sample_length) {
std::memset(&target[copy_length], 0, (sample_length - copy_length) * sizeof(int16_t));
}
audio_buffer_.erase(audio_buffer_.begin(), audio_buffer_.begin() + copy_length);
}
static void SDL_audio_callback(void *userdata, Uint8 *stream, int len) {
reinterpret_cast<SpeakerDelegate *>(userdata)->audio_callback(stream, len);
}
SDL_AudioDeviceID audio_device;
std::mutex audio_buffer_mutex_;
std::vector<int16_t> audio_buffer_;
};
class ActivityObserver: public Activity::Observer {
public:
ActivityObserver(Activity::Source *source, float aspect_ratio) {
// Get the suorce to supply all LEDs and drives.
source->set_activity_observer(this);
// The objective is to display drives on one side of the screen, other LEDs on the other. Drives
// may or may not have LEDs and this code intends to display only those which do; so a quick
// comparative processing of the two lists is called for.
// Strip the list of drives to only those which have LEDs. Thwy're the ones that'll be displayed.
drives_.resize(std::remove_if(drives_.begin(), drives_.end(), [this](const std::string &string) {
return std::find(leds_.begin(), leds_.end(), string) == leds_.end();
}) - drives_.begin());
// Remove from the list of LEDs any which are drives. Those will be represented separately.
leds_.resize(std::remove_if(leds_.begin(), leds_.end(), [this](const std::string &string) {
return std::find(drives_.begin(), drives_.end(), string) != drives_.end();
}) - leds_.begin());
set_aspect_ratio(aspect_ratio);
}
void set_aspect_ratio(float aspect_ratio) {
std::lock_guard lock_guard(mutex);
lights_.clear();
// Generate a bunch of LEDs for connected drives.
constexpr float height = 0.05f;
const float width = height / aspect_ratio;
const float right_x = 1.0f - 2.0f * width;
float y = 1.0f - 2.0f * height;
for(const auto &drive: drives_) {
lights_.emplace(drive, std::make_unique<Outputs::Display::OpenGL::Rectangle>(right_x, y, width, height));
y -= height * 2.0f;
}
/*
This would generate LEDs for things other than drives; I'm declining for now
due to the inexpressiveness of just painting a rectangle.
const float left_x = -1.0f + 2.0f * width;
y = 1.0f - 2.0f * height;
for(const auto &led: leds_) {
lights_.emplace(led, std::make_unique<OpenGL::Rectangle>(left_x, y, width, height));
y -= height * 2.0f;
}
*/
}
void draw() {
std::lock_guard lock_guard(mutex);
for(const auto &lit_led: lit_leds_) {
if(blinking_leds_.find(lit_led) == blinking_leds_.end() && lights_.find(lit_led) != lights_.end())
lights_[lit_led]->draw(0.0, 0.8, 0.0);
}
blinking_leds_.clear();
}
private:
std::vector<std::string> leds_;
void register_led(const std::string &name, uint8_t) final {
std::lock_guard lock_guard(mutex);
leds_.push_back(name);
}
std::vector<std::string> drives_;
void register_drive(const std::string &name) final {
std::lock_guard lock_guard(mutex);
drives_.push_back(name);
}
void set_led_status(const std::string &name, bool lit) final {
std::lock_guard lock_guard(mutex);
if(lit) lit_leds_.insert(name);
else lit_leds_.erase(name);
}
void announce_drive_event(const std::string &name, DriveEvent) final {
std::lock_guard lock_guard(mutex);
blinking_leds_.insert(name);
}
std::map<std::string, std::unique_ptr<Outputs::Display::OpenGL::Rectangle>> lights_;
std::set<std::string> lit_leds_;
std::set<std::string> blinking_leds_;
std::mutex mutex;
};
bool KeyboardKeyForSDLScancode(SDL_Scancode scancode, Inputs::Keyboard::Key &key) {
#define BIND(x, y) case SDL_SCANCODE_##x: key = Inputs::Keyboard::Key::y; break;
switch(scancode) {
default: return false;
BIND(F1, F1) BIND(F2, F2) BIND(F3, F3) BIND(F4, F4) BIND(F5, F5) BIND(F6, F6)
BIND(F7, F7) BIND(F8, F8) BIND(F9, F9) BIND(F10, F10) BIND(F11, F11) BIND(F12, F12)
BIND(1, k1) BIND(2, k2) BIND(3, k3) BIND(4, k4) BIND(5, k5)
BIND(6, k6) BIND(7, k7) BIND(8, k8) BIND(9, k9) BIND(0, k0)
BIND(Q, Q) BIND(W, W) BIND(E, E) BIND(R, R) BIND(T, T)
BIND(Y, Y) BIND(U, U) BIND(I, I) BIND(O, O) BIND(P, P)
BIND(A, A) BIND(S, S) BIND(D, D) BIND(F, F) BIND(G, G)
BIND(H, H) BIND(J, J) BIND(K, K) BIND(L, L)
BIND(Z, Z) BIND(X, X) BIND(C, C) BIND(V, V)
BIND(B, B) BIND(N, N) BIND(M, M)
BIND(KP_7, Keypad7) BIND(KP_8, Keypad8) BIND(KP_9, Keypad9)
BIND(KP_4, Keypad4) BIND(KP_5, Keypad5) BIND(KP_6, Keypad6)
BIND(KP_1, Keypad1) BIND(KP_2, Keypad2) BIND(KP_3, Keypad3)
BIND(KP_0, Keypad0)
BIND(ESCAPE, Escape)
BIND(PRINTSCREEN, PrintScreen) BIND(SCROLLLOCK, ScrollLock) BIND(PAUSE, Pause)
BIND(GRAVE, BackTick) BIND(MINUS, Hyphen) BIND(EQUALS, Equals) BIND(BACKSPACE, Backspace)
BIND(TAB, Tab)
BIND(LEFTBRACKET, OpenSquareBracket) BIND(RIGHTBRACKET, CloseSquareBracket)
BIND(BACKSLASH, Backslash)
BIND(CAPSLOCK, CapsLock) BIND(SEMICOLON, Semicolon)
BIND(APOSTROPHE, Quote) BIND(RETURN, Enter)
BIND(LSHIFT, LeftShift) BIND(COMMA, Comma) BIND(PERIOD, FullStop)
BIND(SLASH, ForwardSlash) BIND(RSHIFT, RightShift)
BIND(LCTRL, LeftControl) BIND(LALT, LeftOption) BIND(LGUI, LeftMeta)
BIND(SPACE, Space)
BIND(RCTRL, RightControl) BIND(RALT, RightOption) BIND(RGUI, RightMeta)
BIND(LEFT, Left) BIND(RIGHT, Right) BIND(UP, Up) BIND(DOWN, Down)
BIND(INSERT, Insert) BIND(HOME, Home) BIND(PAGEUP, PageUp)
BIND(DELETE, Delete) BIND(END, End) BIND(PAGEDOWN, PageDown)
BIND(NUMLOCKCLEAR, NumLock) BIND(KP_DIVIDE, KeypadSlash) BIND(KP_MULTIPLY, KeypadAsterisk)
BIND(KP_PLUS, KeypadPlus) BIND(KP_MINUS, KeypadMinus) BIND(KP_ENTER, KeypadEnter)
BIND(KP_DECIMAL, KeypadDecimalPoint)
BIND(KP_EQUALS, KeypadEquals)
BIND(HELP, Help)
// SDL doesn't seem to have scancodes for hash or keypad delete?
}
#undef BIND
return true;
}
struct ParsedArguments {
std::vector<std::string> file_names;
std::map<std::string, std::string> selections; // The empty string will be inserted for arguments without an = suffix.
void apply(Reflection::Struct *reflectable) const {
for(const auto &argument: selections) {
// Replace any dashes with underscores in the argument name.
std::string property;
std::transform(argument.first.begin(), argument.first.end(), std::back_inserter(property), [](char c) { return c == '-' ? '_' : c; });
if(argument.second.empty()) {
Reflection::set<bool>(*reflectable, property, true);
} else {
Reflection::fuzzy_set(*reflectable, property, argument.second);
}
}
}
};
/*! Parses an argc/argv pair to discern program arguments. */
ParsedArguments parse_arguments(int argc, char *argv[]) {
ParsedArguments arguments;
for(int index = 1; index < argc; ++index) {
char *arg = argv[index];
// Accepted format is:
//
// --flag sets a Boolean option to true.
// --flag=value sets the value for a list option.
// name sets the file name to load.
// Anything starting with a dash always makes a selection; otherwise it's a file name.
if(arg[0] == '-') {
while(*arg == '-') arg++;
// Check for an equals sign, to discern a Boolean selection from a list selection.
std::string argument = arg;
std::size_t split_index = argument.find("=");
if(split_index == std::string::npos) {
arguments.selections[argument]; // To create an entry with the default empty string.
} else {
const std::string name = argument.substr(0, split_index);
std::string value = argument.substr(split_index+1, std::string::npos);
arguments.selections[name] = value;
}
} else {
arguments.file_names.push_back(arg);
}
}
return arguments;
}
std::string final_path_component(const std::string &path) {
// An empty path has no final component.
if(path.empty()) {
return "";
}
// Find the last slash...
auto final_slash = path.find_last_of("/\\");
// If no slash was found at all, return the whole path.
if(final_slash == std::string::npos) {
return path;
}
// If a slash was found in the final position, remove it and recurse.
if(final_slash == path.size() - 1) {
return final_path_component(path.substr(0, path.size() - 1));
}
// Otherwise return everything from just after the slash to the end of the path.
return path.substr(final_slash+1, path.size() - final_slash - 1);
}
/*!
Executes @c command and returns its STDOUT.
*/
std::string system_get(const char *command) {
struct pcloser {
void operator()(FILE *file) {
pclose(dir);
}
};
std::unique_ptr<FILE, pcloser> pipe(popen(command, "r"));
if(!pipe) return "";
std::string result;
while(!feof(pipe.get())) {
std::array<char, 256> buffer;
if(fgets(buffer.data(), buffer.size(), pipe.get()) != nullptr)
result += buffer.data();
}
return result;
}
/*!
Maintains a communicative window title.
*/
class DynamicWindowTitler {
public:
DynamicWindowTitler(SDL_Window *window) : window_(window), file_name_(SDL_GetWindowTitle(window)) {}
std::string window_title() {
if(!mouse_is_captured_) return file_name_;
return file_name_ + " (press control+escape to release mouse)";
}
void set_mouse_is_captured(bool is_captured) {
mouse_is_captured_ = is_captured;
update_window_title();
}
void set_file_name(const std::string &name) {
file_name_ = name;
update_window_title();
}
private:
void update_window_title() {
SDL_SetWindowTitle(window_, window_title().c_str());
}
bool mouse_is_captured_ = false;
SDL_Window *window_ = nullptr;
std::string file_name_;
};
/*!
Provides a wrapper for SDL_Joystick pointers that can keep track
of historic hat values.
*/
class SDLJoystick {
public:
SDLJoystick(SDL_Joystick *joystick) : joystick_(joystick) {
hat_values_.resize(SDL_JoystickNumHats(joystick));
}
~SDLJoystick() {
SDL_JoystickClose(joystick_);
}
/// @returns The underlying SDL_Joystick.
SDL_Joystick *get() {
return joystick_;
}
/// @returns A reference to the storage for the previous state of hat @c c.
Uint8 &last_hat_value(int c) {
return hat_values_[c];
}
/// @returns The logic OR of all stored hat states.
Uint8 hat_values() {
Uint8 value = 0;
for(const auto hat_value: hat_values_) {
value |= hat_value;
}
return value;
}
private:
SDL_Joystick *joystick_;
std::vector<Uint8> hat_values_;
};
}
int main(int argc, char *argv[]) {
SDL_Window *window = nullptr;
// Attempt to parse arguments.
const ParsedArguments arguments = parse_arguments(argc, argv);
// This may be printed either as
const std::string usage_suffix = " [file or --new={machine}] [OPTIONS] [--rompath={path to ROMs}] [--speed={speed multiplier, e.g. 1.5}] [--logical-keyboard] [--volume={0.0 to 1.0}]";
// Print a help message if requested.
if(arguments.selections.find("help") != arguments.selections.end() || arguments.selections.find("h") != arguments.selections.end()) {
const auto all_machines = Machine::AllMachines(Machine::Type::DoesntRequireMedia, false);
std::cout << "Usage: " << final_path_component(argv[0]) << usage_suffix << std::endl;
std::cout << "Use alt+enter to toggle full screen display. Use control+shift+V to paste text." << std::endl;
std::cout << "Required machine type **and all options** are determined from the file if specified; otherwise use:" << std::endl << std::endl;
std::cout << "\t--new={";
bool is_first = true;
for(const auto &name: all_machines) {
if(!is_first) std::cout << "|";
std::cout << name;
is_first = false;
}
std::cout << "}" << std::endl << std::endl;
std::cout << "Media is required to start the: ";
const auto other_machines = Machine::AllMachines(Machine::Type::RequiresMedia, true);
is_first = true;
for(const auto &name: other_machines) {
if(!is_first) std::cout << ", ";
std::cout << name;
is_first = false;
}
std::cout << "." << std::endl << std::endl;
std::cout << "Further machine options:" << std::endl << std::endl;
const auto targets = Machine::TargetsByMachineName(false);
const auto runtime_options = Machine::AllOptionsByMachineName();
const auto machine_names = Machine::AllMachines(Machine::Type::Any, true);
for(const auto &machine: machine_names) {
const auto target = targets.find(machine);
const auto options = runtime_options.find(machine);
const auto target_reflectable = dynamic_cast<Reflection::Struct *>(target != targets.end() ? target->second.get() : nullptr);
const auto options_reflectable = dynamic_cast<Reflection::Struct *>(options != runtime_options.end() ? options->second.get() : nullptr);
// Don't print a section for this machine if it has no construction and no runtime options objects.
if(!target_reflectable && !options_reflectable) continue;
const auto target_keys = target_reflectable ? target_reflectable->all_keys() : std::vector<std::string>();
const auto options_keys = options_reflectable ? options_reflectable->all_keys() : std::vector<std::string>();
// Don't print a section for this machine if it doesn't actually have any options.
if(target_keys.empty() && options_keys.empty()) {
continue;
}
std::cout << machine << ":" << std::endl;
// Join the two lists of properties and sort the result.
std::vector<std::string> all_options = options_keys;
all_options.insert(all_options.end(), target_keys.begin(), target_keys.end());
std::sort(all_options.begin(), all_options.end());
for(const auto &option: all_options) {
// Replace any underscores with hyphens, better to conform to command-line norms.
std::string mapped_option;
std::transform(option.begin(), option.end(), std::back_inserter(mapped_option), [](char c) { return c == '_' ? '-' : c; });
std::cout << '\t' << "--" << mapped_option;
auto source = target_reflectable;
auto type = target_reflectable ? target_reflectable->type_of(option) : nullptr;
if(!type) {
source = options_reflectable;
type = options_reflectable->type_of(option);
}
// Is this a registered enum? If so, list options.
if(!Reflection::Enum::name(*type).empty()) {
std::cout << "={";
bool is_first = true;
for(const auto &value: source->values_for(option)) {
if(!is_first) std::cout << '|';
is_first = false;
std::cout << value;
}
std::cout << "}";
}
// The above effectively assumes that every field is either a
// Boolean or an enum. This may need to be revisted. It also
// assumes no name collisions, but that's kind of unavoidable.
std::cout << std::endl;
}
std::cout << std::endl;
}
return EXIT_SUCCESS;
}
// Determine the machine for the supplied file, if any, or from --new.
Analyser::Static::TargetList targets;
const auto new_argument = arguments.selections.find("new");
std::string long_machine_name;
if(new_argument != arguments.selections.end() && !new_argument->second.empty()) {
// Perform for a case-insensitive search against short names.
const auto short_names = Machine::AllMachines(Machine::Type::DoesntRequireMedia, false);
auto short_name = short_names.begin();
while(short_name != short_names.end()) {
if(std::equal(
short_name->begin(), short_name->end(),
new_argument->second.begin(), new_argument->second.end(),
[](char a, char b) { return tolower(b) == tolower(a); })) {
break;
}
++short_name;
}
// If a match was found, use the corresponding long name to look up a suitable
// Analyser::Statuc::Target and move that to the targets list.
if(short_name != short_names.end()) {
long_machine_name = Machine::AllMachines(Machine::Type::DoesntRequireMedia, true)[short_name - short_names.begin()];
auto targets_by_machine = Machine::TargetsByMachineName(false);
std::unique_ptr<Analyser::Static::Target> tgt = std::move(targets_by_machine[long_machine_name]);
targets.push_back(std::move(tgt));
}
} else if(!arguments.file_names.empty()) {
// Take the first file name that actually implies a machine.
auto file_name = arguments.file_names.begin();
while(file_name != arguments.file_names.end() && targets.empty()) {
targets = Analyser::Static::GetTargets(*file_name);
++file_name;
}
}
if(targets.empty()) {
if(!arguments.file_names.empty()) {
std::cerr << "Cannot open ";
bool is_first = true;
for(const auto &name: arguments.file_names) {
if(!is_first) std::cerr << ", ";
is_first = false;
std::cerr << name;
}
std::cerr << "; no target machine found" << std::endl;
return EXIT_FAILURE;
}
if(!new_argument->second.empty()) {
std::cerr << "Unknown machine: " << new_argument->second << std::endl;
return EXIT_FAILURE;
}
std::cerr << "Usage: " << final_path_component(argv[0]) << usage_suffix << std::endl;
std::cerr << "Use --help to learn more about available options." << std::endl;
return EXIT_FAILURE;
}
MachineRunner machine_runner;
SpeakerDelegate speaker_delegate;
// For vanilla SDL purposes, assume system ROMs can be found in one of:
//
// /usr/local/share/CLK/[system];
// /usr/share/CLK/[system]; or
// [user-supplied path]/[system]
ROM::Request missing_roms;
std::vector<std::string> checked_paths;
ROMMachine::ROMFetcher rom_fetcher = [&missing_roms, &arguments, &checked_paths]
(const ROM::Request &roms) -> ROM::Map {
std::vector<std::string> paths = {
"/usr/local/share/CLK/",
"/usr/share/CLK/"
};
const auto rompath = arguments.selections.find("rompath");
if(rompath != arguments.selections.end()) {
std::string path = rompath->second;
// Ensure the path ends in a slash.
if(path.back() != '/') {
path += '/';
}
// If ~ is present, expand it to %HOME%.
const size_t tilde_position = path.find("~");
if(tilde_position != std::string::npos) {
path.replace(tilde_position, 1, getenv("HOME"));
}
paths.push_back(path);
}
ROM::Map results;
for(const auto &description: roms.all_descriptions()) {
for(const auto &file_name: description.file_names) {
FILE *file = nullptr;
std::vector<std::string> rom_checked_paths;
for(const auto &path: paths) {
std::string local_path = path + description.machine_name + "/" + file_name;
file = std::fopen(local_path.c_str(), "rb");
rom_checked_paths.push_back(local_path);
if(file) break;
}
if(!file) {
std::copy(rom_checked_paths.begin(), rom_checked_paths.end(), std::back_inserter(checked_paths));
continue;
}
std::vector<uint8_t> data;
std::fseek(file, 0, SEEK_END);
data.resize(std::ftell(file));
std::fseek(file, 0, SEEK_SET);
std::size_t read = fread(data.data(), 1, data.size(), file);
std::fclose(file);
if(read == data.size()) {
results[description.name] = std::move(data);
} else {
std::copy(rom_checked_paths.begin(), rom_checked_paths.end(), std::back_inserter(checked_paths));
}
}
}
missing_roms = roms.subtract(results);
return results;
};
// Apply all command-line options to the targets.
for(auto &target: targets) {
auto reflectable_target = dynamic_cast<Reflection::Struct *>(target.get());
if(!reflectable_target) continue;
arguments.apply(reflectable_target);
}
// Create and configure a machine.
::Machine::Error error;
std::mutex machine_mutex;
std::unique_ptr<::Machine::DynamicMachine> machine(::Machine::MachineForTargets(targets, rom_fetcher, error));
if(!machine) {
switch(error) {
default: break;
case ::Machine::Error::MissingROM: {
std::cerr << "Could not find system ROMs; please install to /usr/local/share/CLK/ or /usr/share/CLK/, or provide a --rompath, e.g. --rompath=~/ROMs." << std::endl;
std::cerr << "Needed but didn't find";
using DescriptionFlag = ROM::Description::DescriptionFlag;
std::wcerr << missing_roms.description(DescriptionFlag::Filename | DescriptionFlag::CRC, L'*');
std::cerr << std::endl << std::endl << "Searched unsuccessfully: ";
bool is_first = true;
for(const auto &path: checked_paths) {
if(!is_first) std::cerr << "; ";
std::cerr << path;
is_first = false;
}
std::cerr << std::endl;
} break;
}
return EXIT_FAILURE;
}
// Apply all command-line options to the machines.
auto configurable = machine->configurable_device();
if(configurable) {
const auto options = configurable->get_options();
arguments.apply(options.get());
configurable->set_options(options);
}
// Apply the speed multiplier, if one was requested.
{
const auto speed_argument = arguments.selections.find("speed");
if(speed_argument != arguments.selections.end()) {
const char *speed_string = speed_argument->second.c_str();
char *end;
const double speed = strtod(speed_string, &end);
if(size_t(end - speed_string) != strlen(speed_string)) {
std::cerr << "Unable to parse speed: " << speed_string << std::endl;
} else if(speed <= 0.0) {
std::cerr << "Cannot run at speed " << speed_string << "; speeds must be positive." << std::endl;
} else {
machine_runner.set_speed_multiplier(speed);
}
}
}
// Apply the desired output volume, if requested.
{
const auto volume_argument = arguments.selections.find("volume");
if(volume_argument != arguments.selections.end()) {
const char *volume_string = volume_argument->second.c_str();
char *end;
const double volume = strtod(volume_string, &end);
if(size_t(end - volume_string) != strlen(volume_string)) {
std::cerr << "Unable to parse volume: " << volume_string << std::endl;
} else if(volume < 0.0 || volume > 1.0) {
std::cerr << "Cannot run with volume " << volume_string << "; volumes must be between 0.0 and 1.0." << std::endl;
} else {
const auto audio_producer = machine->audio_producer();
if(audio_producer) {
const auto speaker = machine->audio_producer()->get_speaker();
if(speaker) speaker->set_output_volume(volume);
}
}
}
}
// Check whether a 'logical' keyboard has been requested, or the machine would prefer one anyway.
const bool logical_keyboard =
(arguments.selections.find("logical-keyboard") != arguments.selections.end()) ||
(machine->keyboard_machine() && machine->keyboard_machine()->prefers_logical_input());
if(logical_keyboard) {
SDL_StartTextInput();
}
// Ensure all media is inserted, if this machine accepts it.
{
auto media_target = machine->media_target();
if(media_target) {
Analyser::Static::Media media;
for(const auto &file_name: arguments.file_names) {
media += Analyser::Static::GetMedia(file_name);
}
media_target->insert_media(media);
}
}
// Attempt to set up video and audio.
if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO) < 0) {
std::cerr << "SDL could not initialize! SDL_Error: " << SDL_GetError() << std::endl;
return EXIT_FAILURE;
}
// Ask for no depth buffer, a core profile and vsync-aligned rendering.
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 2);
SDL_GL_SetSwapInterval(1);
window = SDL_CreateWindow( long_machine_name.empty() ? final_path_component(arguments.file_names.front()).c_str() : long_machine_name.c_str(),
SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED,
400, 300,
SDL_WINDOW_OPENGL | SDL_WINDOW_RESIZABLE);
DynamicWindowTitler window_titler(window);
SDL_GLContext gl_context = nullptr;
if(window) {
gl_context = SDL_GL_CreateContext(window);
}
if(!window || !gl_context) {
std::cerr << "Could not create " << (window ? "OpenGL context" : "window");
std::cerr << "; reported error: \"" << SDL_GetError() << "\"" << std::endl;
return EXIT_FAILURE;
}
SDL_GL_MakeCurrent(window, gl_context);
GLint target_framebuffer = 0;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &target_framebuffer);
// Setup output, assuming a CRT machine for now, and prepare a best-effort updater.
Outputs::Display::OpenGL::ScanTarget scan_target(target_framebuffer);
std::unique_ptr<ActivityObserver> activity_observer;
bool uses_mouse;
std::vector<SDLJoystick> joysticks;
machine_runner.machine_mutex = &machine_mutex;
const auto setup_machine_input_output = [&scan_target, &machine, &speaker_delegate, &activity_observer, &joysticks, &uses_mouse, &machine_runner] {
// Wire up the best-effort updater, its delegate, and the speaker delegate.
machine_runner.machine = machine.get();
machine->scan_producer()->set_scan_target(&scan_target);
// For now, lie about audio output intentions.
const auto audio_producer = machine->audio_producer();
if(audio_producer) {
auto speaker = audio_producer->get_speaker();
if(speaker) {
// Create an audio pipe.
SDL_AudioSpec desired_audio_spec;
SDL_AudioSpec obtained_audio_spec;
SDL_zero(desired_audio_spec);
desired_audio_spec.freq = 48000; // TODO: how can I get SDL to reveal the output rate of this machine?
desired_audio_spec.format = AUDIO_S16;
desired_audio_spec.channels = 1 + int(speaker->get_is_stereo());
desired_audio_spec.samples = Uint16(SpeakerDelegate::buffered_samples);
desired_audio_spec.callback = SpeakerDelegate::SDL_audio_callback;
desired_audio_spec.userdata = &speaker_delegate;
speaker_delegate.audio_device = SDL_OpenAudioDevice(nullptr, 0, &desired_audio_spec, &obtained_audio_spec, SDL_AUDIO_ALLOW_FREQUENCY_CHANGE);
speaker->set_output_rate(obtained_audio_spec.freq, desired_audio_spec.samples, obtained_audio_spec.channels == 2);
speaker_delegate.is_stereo = obtained_audio_spec.channels == 2;
speaker->set_delegate(&speaker_delegate);
SDL_PauseAudioDevice(speaker_delegate.audio_device, 0);
}
}
/*
If the machine offers anything for activity observation,
create and register an activity observer.
*/
Activity::Source *const activity_source = machine->activity_source();
if(activity_source) {
activity_observer = std::make_unique<ActivityObserver>(activity_source, 4.0f / 3.0f);
} else {
activity_observer = nullptr;
}
// If this is a joystick machine, check for and open attached joysticks.
const auto joystick_machine = machine->joystick_machine();
if(joystick_machine) {
SDL_InitSubSystem(SDL_INIT_JOYSTICK);
for(int c = 0; c < SDL_NumJoysticks(); ++c) {
joysticks.emplace_back(SDL_JoystickOpen(c));
}
} else {
joysticks.clear();
}
// Keep a record of whether mouse events can be forwarded.
uses_mouse = !!machine->mouse_machine();
};
setup_machine_input_output();
int window_width, window_height;
SDL_GetWindowSize(window, &window_width, &window_height);
// SDL 2.x delivers key up/down events and text inputs separately even when they're correlated;
// this struct and map is used to correlate them by time.
struct KeyPress {
uint32_t timestamp = 0;
std::string input;
SDL_Scancode scancode = SDL_SCANCODE_UNKNOWN;
SDL_Keycode keycode = SDLK_UNKNOWN;
bool is_down = true;
bool repeat = false;
KeyPress(uint32_t timestamp, const char *text) : timestamp(timestamp), input(text) {}
KeyPress(uint32_t timestamp, SDL_Scancode scancode, SDL_Keycode keycode, bool is_down, bool repeat) :
timestamp(timestamp), scancode(scancode), keycode(keycode), is_down(is_down), repeat(repeat) {}
KeyPress() = default;
};
std::vector<KeyPress> keypresses;
// Run the main event loop until the OS tells us to quit.
bool should_quit = false;
Uint32 fullscreen_mode = 0;
machine_runner.start();
while(!should_quit) {
// Draw a new frame, indicating completion of the draw to the machine runner.
scan_target.update(int(window_width), int(window_height));
scan_target.draw(int(window_width), int(window_height));
if(activity_observer) activity_observer->draw();
machine_runner.signal_did_draw();
// Wait for presentation of that frame, posting a vsync.
SDL_GL_SwapWindow(window);
machine_runner.signal_vsync();
// NB: machine_mutex is *not* currently locked, therefore it shouldn't
// be 'most' of the time — assuming most of the time is spent waiting
// on vsync, anyway.
// Grab the machine lock and process all pending events.
std::lock_guard lock_guard(machine_mutex);
const auto keyboard_machine = machine->keyboard_machine();
SDL_Event event;
while(SDL_PollEvent(&event)) {
switch(event.type) {
case SDL_QUIT: should_quit = true; break;
case SDL_WINDOWEVENT:
switch (event.window.event) {
case SDL_WINDOWEVENT_RESIZED: {
GLint target_framebuffer = 0;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &target_framebuffer);
scan_target.set_target_framebuffer(target_framebuffer);
SDL_GetWindowSize(window, &window_width, &window_height);
if(activity_observer) activity_observer->set_aspect_ratio(float(window_width) / float(window_height));
} break;
default: break;
}
break;
case SDL_DROPFILE: {
const Analyser::Static::Media media = Analyser::Static::GetMedia(event.drop.file);
// If the new file is only media, insert it; if it is a state snapshot then
// tear down the entire machine and replace it.
if(!media.empty()) {
machine->media_target()->insert_media(media);
break;
}
targets = Analyser::Static::GetTargets(event.drop.file);
if(targets.empty()) break;
::Machine::Error error;
std::unique_ptr<::Machine::DynamicMachine> new_machine(::Machine::MachineForTargets(targets, rom_fetcher, error));
if(error != Machine::Error::None) break;
machine = std::move(new_machine);
static_cast<Outputs::Display::ScanTarget *>(&scan_target)->will_change_owner();
setup_machine_input_output();
window_titler.set_file_name(final_path_component(event.drop.file));
} break;
case SDL_TEXTINPUT:
keypresses.emplace_back(event.text.timestamp, event.text.text);
break;
case SDL_KEYDOWN:
case SDL_KEYUP: {
if(event.type == SDL_KEYDOWN) {
// Syphon off the key-press if it's control+shift+V (paste).
if(event.key.keysym.sym == SDLK_v && (SDL_GetModState()&KMOD_CTRL) && (SDL_GetModState()&KMOD_SHIFT)) {
if(keyboard_machine) {
keyboard_machine->type_string(SDL_GetClipboardText());
break;
}
}
// Use ctrl+escape to release the mouse (if captured).
if(event.key.keysym.sym == SDLK_ESCAPE && (SDL_GetModState()&KMOD_CTRL)) {
SDL_SetRelativeMouseMode(SDL_FALSE);
window_titler.set_mouse_is_captured(false);
}
// Capture ctrl+shift+d as a take-a-screenshot command.
if(event.key.keysym.sym == SDLK_d && (SDL_GetModState()&KMOD_CTRL) && (SDL_GetModState()&KMOD_SHIFT)) {
// Grab the screen buffer.
Outputs::Display::OpenGL::Screenshot screenshot(4, 3);
// Pick the directory for images. Try `xdg-user-dir PICTURES` first.
std::string target_directory = system_get("xdg-user-dir PICTURES");
// Make sure there are no newlines.
target_directory.erase(std::remove(target_directory.begin(), target_directory.end(), '\n'), target_directory.end());
target_directory.erase(std::remove(target_directory.begin(), target_directory.end(), '\r'), target_directory.end());
// Fall back on the HOME directory if necessary.
if(target_directory.empty()) target_directory = getenv("HOME");
// Find the first available name of the form ~/clk-screenshot-<number>.bmp.
size_t index = 0;
std::string target;
while(true) {
target = target_directory + "/clk-screenshot-" + std::to_string(index) + ".bmp";
struct stat file_stats;
if(stat(target.c_str(), &file_stats))
break;
++index;
}
// Create a suitable SDL surface and save the thing.
const bool is_big_endian = SDL_BYTEORDER == SDL_BIG_ENDIAN;
SDL_Surface *const surface = SDL_CreateRGBSurfaceFrom(
screenshot.pixel_data.data(),
screenshot.width, screenshot.height,
8*4,
screenshot.width*4,
is_big_endian ? 0xff000000 : 0x000000ff,
is_big_endian ? 0x00ff0000 : 0x0000ff00,
is_big_endian ? 0x0000ff00 : 0x00ff0000,
0);
SDL_SaveBMP(surface, target.c_str());
SDL_FreeSurface(surface);
break;
}
}
// Syphon off alt+enter (toggle full-screen) upon key up only; this was previously a key down action,
// but the SDL_KEYDOWN announcement was found to be reposted after changing graphics mode on some
// systems, causing a loop of changes, so key up is safer.
if(event.type == SDL_KEYUP && event.key.keysym.sym == SDLK_RETURN && (SDL_GetModState()&KMOD_ALT)) {
fullscreen_mode ^= SDL_WINDOW_FULLSCREEN_DESKTOP;
SDL_SetWindowFullscreen(window, fullscreen_mode);
SDL_ShowCursor((fullscreen_mode&SDL_WINDOW_FULLSCREEN_DESKTOP) ? SDL_DISABLE : SDL_ENABLE);
// Announce a potential discontinuity in keyboard input.
const auto keyboard_machine = machine->keyboard_machine();
if(keyboard_machine) {
keyboard_machine->get_keyboard().reset_all_keys();
}
break;
}
keypresses.emplace_back(
event.text.timestamp,
event.key.keysym.scancode,
event.key.keysym.sym,
event.type == SDL_KEYDOWN,
event.key.repeat);
} break;
case SDL_MOUSEBUTTONDOWN:
case SDL_MOUSEBUTTONUP: {
if(uses_mouse && event.type == SDL_MOUSEBUTTONDOWN && !SDL_GetRelativeMouseMode()) {
SDL_SetRelativeMouseMode(SDL_TRUE);
window_titler.set_mouse_is_captured(true);
break;
}
const auto mouse_machine = machine->mouse_machine();
if(mouse_machine) {
mouse_machine->get_mouse().set_button_pressed(
event.button.button % mouse_machine->get_mouse().get_number_of_buttons(),
event.type == SDL_MOUSEBUTTONDOWN);
}
} break;
case SDL_MOUSEMOTION: {
if(SDL_GetRelativeMouseMode()) {
const auto mouse_machine = machine->mouse_machine();
if(mouse_machine) {
mouse_machine->get_mouse().move(event.motion.xrel, event.motion.yrel);
}
}
} break;
default: break;
}
}
std::vector<KeyPress> matched_keypresses;
if(logical_keyboard) {
// Look for potential keypress merges; SDL doesn't in any capacity guarantee that keypresses that produce
// symbols will be delivered with the same timestamp. So look for any pairs of recorded kepresses that are
// close together temporally and otherwise seem to match.
if(keypresses.size()) {
auto next_keypress = keypresses.begin();
while(next_keypress != keypresses.end()) {
auto keypress = next_keypress;
++next_keypress;
// If the two appear to pair off, push a combination and advance twice.
// Otherwise, keep just the first and advance once.
if(
next_keypress != keypresses.end() &&
keypress->timestamp >= next_keypress->timestamp - 5 &&
keypress->is_down && next_keypress->is_down &&
!keypress->input.size() != !next_keypress->input.size() &&
(keypress->scancode != SDL_SCANCODE_UNKNOWN) != (next_keypress->scancode != SDL_SCANCODE_UNKNOWN)) {
KeyPress combined_keypress;
if(keypress->scancode != SDL_SCANCODE_UNKNOWN) {
combined_keypress.scancode = keypress->scancode;
combined_keypress.keycode = keypress->keycode;
combined_keypress.input = std::move(next_keypress->input);
} else {
combined_keypress.scancode = next_keypress->scancode;
combined_keypress.keycode = next_keypress->keycode;
combined_keypress.input = std::move(keypress->input);
};
++next_keypress;
matched_keypresses.push_back(combined_keypress);
} else {
matched_keypresses.push_back(*keypress);
}
}
}
}
// Handle accumulated key states.
const auto joystick_machine = machine->joystick_machine();
for (const auto &keypress: logical_keyboard ? matched_keypresses : keypresses) {
// Try to set this key on the keyboard first, if there is one.
if(keyboard_machine) {
Inputs::Keyboard::Key key = Inputs::Keyboard::Key::Space;
if(KeyboardKeyForSDLScancode(keypress.scancode, key)) {
// In principle there's no need for a conditional here; in practice logical_keyboard mode
// is sufficiently untested on SDL, and somewhat too reliant on empirical timestamp behaviour,
// for it to be trustworthy enough otherwise to expose.
if(logical_keyboard) {
if(keyboard_machine->apply_key(key, keypress.input.size() ? keypress.input[0] : 0, keypress.is_down, keypress.repeat, logical_keyboard)) {
continue;
}
} else {
// This is a slightly terrible way of obtaining a symbol for the key, e.g. for letters it will always return
// the capital letter version, at least empirically. But it'll have to do for now.
const char *key_name = SDL_GetKeyName(keypress.keycode);
if(keyboard_machine->get_keyboard().set_key_pressed(key, (strlen(key_name) == 1) ? key_name[0] : 0, keypress.is_down, keypress.repeat)) {
continue;
}
}
}
}
// Having failed that, try converting it into a joystick action.
if(joystick_machine) {
auto &joysticks = joystick_machine->get_joysticks();
if(!joysticks.empty()) {
const bool is_pressed = keypress.is_down;
switch(keypress.scancode) {
case SDL_SCANCODE_LEFT: joysticks[0]->set_input(Inputs::Joystick::Input::Left, is_pressed); break;
case SDL_SCANCODE_RIGHT: joysticks[0]->set_input(Inputs::Joystick::Input::Right, is_pressed); break;
case SDL_SCANCODE_UP: joysticks[0]->set_input(Inputs::Joystick::Input::Up, is_pressed); break;
case SDL_SCANCODE_DOWN: joysticks[0]->set_input(Inputs::Joystick::Input::Down, is_pressed); break;
case SDL_SCANCODE_SPACE: joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed); break;
case SDL_SCANCODE_A: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 0), is_pressed); break;
case SDL_SCANCODE_S: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 1), is_pressed); break;
case SDL_SCANCODE_D: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 2), is_pressed); break;
case SDL_SCANCODE_F: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 3), is_pressed); break;
default: {
if(keypress.input.size()) {
joysticks[0]->set_input(Inputs::Joystick::Input(keypress.input[0]), is_pressed);
}
} break;
}
}
}
}
keypresses.clear();
// Push new joystick state, if any.
if(joystick_machine) {
auto &machine_joysticks = joystick_machine->get_joysticks();
for(size_t c = 0; c < joysticks.size(); ++c) {
size_t target = c % machine_joysticks.size();
// Post the first two analogue axes presented by the controller as horizontal and vertical inputs,
// unless the user seems to be using a hat.
// SDL will return a value in the range [-32768, 32767], so map from that to [0, 1.0]
if(!joysticks[c].hat_values()) {
const float x_axis = float(SDL_JoystickGetAxis(joysticks[c].get(), 0) + 32768) / 65535.0f;
const float y_axis = float(SDL_JoystickGetAxis(joysticks[c].get(), 1) + 32768) / 65535.0f;
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Horizontal), x_axis);
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Vertical), y_axis);
}
// Forward hats as directions; hats always override analogue inputs.
const int number_of_hats = SDL_JoystickNumHats(joysticks[c].get());
for(int hat = 0; hat < number_of_hats; ++hat) {
const Uint8 hat_value = SDL_JoystickGetHat(joysticks[c].get(), hat);
const Uint8 changes = hat_value ^ joysticks[c].last_hat_value(hat);
joysticks[c].last_hat_value(hat) = hat_value;
if(changes & SDL_HAT_UP) {
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Up), !!(hat_value & SDL_HAT_UP));
}
if(changes & SDL_HAT_DOWN) {
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Down), !!(hat_value & SDL_HAT_DOWN));
}
if(changes & SDL_HAT_LEFT) {
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Left), !!(hat_value & SDL_HAT_LEFT));
}
if(changes & SDL_HAT_RIGHT) {
machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Right), !!(hat_value & SDL_HAT_RIGHT));
}
}
// Forward all fire buttons, retaining their original indices.
const int number_of_buttons = SDL_JoystickNumButtons(joysticks[c].get());
for(int button = 0; button < number_of_buttons; ++button) {
machine_joysticks[target]->set_input(
Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Fire, button),
SDL_JoystickGetButton(joysticks[c].get(), button) ? true : false);
}
}
}
}
// Clean up.
machine_runner.stop(); // Ensure no further updates will occur.
joysticks.clear();
SDL_DestroyWindow( window );
SDL_Quit();
return EXIT_SUCCESS;
}