1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 08:49:37 +00:00
CLK/Machines/Apple/Macintosh/Audio.cpp
2019-06-11 19:53:22 -04:00

103 lines
3.4 KiB
C++

//
// Audio.cpp
// Clock Signal
//
// Created by Thomas Harte on 31/05/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Audio.hpp"
using namespace Apple::Macintosh;
namespace {
const std::size_t sample_length = 352;
}
Audio::Audio(Concurrency::DeferringAsyncTaskQueue &task_queue) : task_queue_(task_queue) {}
// MARK: - Inputs
void Audio::post_sample(uint8_t sample) {
// Grab the read and write pointers, ensure there's room for a new sample and, if not,
// drop this one.
const auto write_pointer = sample_queue_.write_pointer.load();
const auto read_pointer = sample_queue_.read_pointer.load();
const decltype(write_pointer) next_write_pointer = (write_pointer + 1) % sample_queue_.buffer.size();
if(next_write_pointer == read_pointer) {
return;
}
sample_queue_.buffer[write_pointer] = sample;
sample_queue_.write_pointer.store(next_write_pointer);
}
void Audio::set_volume(int volume) {
// Post the volume change as a deferred event.
task_queue_.defer([=] () {
volume_ = volume;
});
}
void Audio::set_enabled(bool on) {
// Post the enabled mask change as a deferred event.
task_queue_.defer([=] () {
enabled_mask_ = on ? 1 : 0;
});
}
// MARK: - Output generation
bool Audio::is_zero_level() {
return !volume_ || !enabled_mask_;
}
void Audio::set_sample_volume_range(std::int16_t range) {
// Some underflow here doesn't really matter.
volume_multiplier_ = range / (7 * 255);
}
void Audio::get_samples(std::size_t number_of_samples, int16_t *target) {
const auto write_pointer = sample_queue_.write_pointer.load();
auto read_pointer = sample_queue_.read_pointer.load();
// TODO: the implementation below acts as if the hardware uses pulse-amplitude modulation;
// in fact it uses pulse-width modulation. But the scale for pulses isn't specified, so
// that's something to return to.
// TODO: temporary implementation. Very inefficient. Replace.
for(std::size_t sample = 0; sample < number_of_samples; ++sample) {
target[sample] = volume_multiplier_ * int16_t(sample_queue_.buffer[read_pointer] * volume_ * enabled_mask_);
++subcycle_offset_;
if(subcycle_offset_ == sample_length) {
// printf("%d: %d\n", sample_queue_.buffer[read_pointer], volume_multiplier_ * int16_t(sample_queue_.buffer[read_pointer]));
subcycle_offset_ = 0;
const unsigned int next_read_pointer = (read_pointer + 1) % sample_queue_.buffer.size();
if(next_read_pointer != write_pointer) {
read_pointer = next_read_pointer;
}
}
}
sample_queue_.read_pointer.store(read_pointer);
}
void Audio::skip_samples(std::size_t number_of_samples) {
const auto write_pointer = sample_queue_.write_pointer.load();
auto read_pointer = sample_queue_.read_pointer.load();
// Number of samples that would be consumed is (number_of_samples + subcycle_offset_) / sample_length.
const unsigned int samples_passed = static_cast<unsigned int>((number_of_samples + subcycle_offset_) / sample_length);
subcycle_offset_ = (number_of_samples + subcycle_offset_) % sample_length;
// Get also number of samples available.
const unsigned int samples_available = static_cast<unsigned int>((write_pointer + sample_queue_.buffer.size() - read_pointer) % sample_queue_.buffer.size());
// Advance by whichever of those is the lower number.
const auto samples_to_consume = std::min(samples_available, samples_passed);
read_pointer = (read_pointer + samples_to_consume) % sample_queue_.buffer.size();
sample_queue_.read_pointer.store(read_pointer);
}