1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-25 16:31:42 +00:00
CLK/OSBindings/Mac/Clock SignalTests/ARMDecoderTests.mm
2024-02-29 10:18:09 -05:00

390 lines
12 KiB
Plaintext

//
// ARMDecoderTests.m
// Clock Signal
//
// Created by Thomas Harte on 16/02/2024.
// Copyright 2024 Thomas Harte. All rights reserved.
//
#import <XCTest/XCTest.h>
#include "../../../InstructionSets/ARM/BarrelShifter.hpp"
#include "../../../InstructionSets/ARM/OperationMapper.hpp"
#include "../../../InstructionSets/ARM/Registers.hpp"
#include "../../../Numeric/Carry.hpp"
using namespace InstructionSet::ARM;
namespace {
struct Memory {
template <typename IntT>
bool write(uint32_t address, IntT source, Mode mode, bool trans) {
(void)address;
(void)source;
(void)mode;
(void)trans;
return true;
}
template <typename IntT>
bool read(uint32_t address, IntT &source, Mode mode, bool trans) {
(void)address;
(void)source;
(void)mode;
(void)trans;
return true;
}
};
template <typename MemoryT>
struct Scheduler {
bool should_schedule(Condition condition) {
return registers_.test(condition);
}
template <bool allow_register, bool set_carry, typename FieldsT>
uint32_t decode_shift(FieldsT fields, uint32_t &rotate_carry, uint32_t pc_offset) {
uint32_t shift_amount;
if constexpr (allow_register) {
if(fields.shift_count_is_register()) {
// "When R15 appears in either of the Rn or Rs positions it will give the value
// of the PC alone, with the PSR bits replaced by zeroes. ...
//
// If a register is used to specify the shift amount, the
// PC will be 8 bytes ahead when used as Rs."
shift_amount =
fields.shift_register() == 15 ?
registers_.pc(8) :
registers_.active[fields.shift_register()];
} else {
shift_amount = fields.shift_amount();
}
} else {
shift_amount = fields.shift_amount();
}
// "When R15 appears in the Rm position it will give the value of the PC together
// with the PSR flags to the barrel shifter. ...
//
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
// when used as Rn or Rm."
uint32_t operand2;
if(fields.operand2() == 15) {
operand2 = registers_.pc_status(pc_offset);
} else {
operand2 = registers_.active[fields.operand2()];
}
shift<set_carry>(fields.shift_type(), operand2, shift_amount, rotate_carry);
return operand2;
}
template <Flags f> void perform(DataProcessing fields) {
constexpr DataProcessingFlags flags(f);
const bool shift_by_register = !flags.operand2_is_immediate() && fields.shift_count_is_register();
// Write a raw result into the PC proxy if the target is R15; it'll be stored properly later.
uint32_t pc_proxy = 0;
auto &destination = fields.destination() == 15 ? pc_proxy : registers_.active[fields.destination()];
// "When R15 appears in either of the Rn or Rs positions it will give the value
// of the PC alone, with the PSR bits replaced by zeroes. ...
//
// If the shift amount is specified in the instruction, the PC will be 8 bytes ahead.
// If a register is used to specify the shift amount, the PC will be ... 12 bytes ahead
// when used as Rn or Rm."
const uint32_t operand1 =
(fields.operand1() == 15) ?
registers_.pc(shift_by_register ? 12 : 8) :
registers_.active[fields.operand1()];
uint32_t operand2;
uint32_t rotate_carry = registers_.c();
// Populate carry from the shift only if it'll be used.
constexpr bool shift_sets_carry = is_logical(flags.operation()) && flags.set_condition_codes();
// Get operand 2.
if constexpr (flags.operand2_is_immediate()) {
operand2 = fields.immediate();
if(fields.rotate()) {
shift<ShiftType::RotateRight, shift_sets_carry>(operand2, fields.rotate(), rotate_carry);
}
} else {
operand2 = decode_shift<true, shift_sets_carry>(fields, rotate_carry, shift_by_register ? 12 : 8);
}
// Perform the data processing operation.
uint32_t conditions = 0;
switch(flags.operation()) {
// Logical operations.
case DataProcessingOperation::AND: conditions = destination = operand1 & operand2; break;
case DataProcessingOperation::EOR: conditions = destination = operand1 ^ operand2; break;
case DataProcessingOperation::ORR: conditions = destination = operand1 | operand2; break;
case DataProcessingOperation::BIC: conditions = destination = operand1 & ~operand2; break;
case DataProcessingOperation::MOV: conditions = destination = operand2; break;
case DataProcessingOperation::MVN: conditions = destination = ~operand2; break;
case DataProcessingOperation::TST: conditions = operand1 & operand2; break;
case DataProcessingOperation::TEQ: conditions = operand1 ^ operand2; break;
case DataProcessingOperation::ADD:
case DataProcessingOperation::ADC:
case DataProcessingOperation::CMN:
conditions = operand1 + operand2;
if constexpr (flags.operation() == DataProcessingOperation::ADC) {
conditions += registers_.c();
}
if constexpr (flags.set_condition_codes()) {
registers_.set_c(Numeric::carried_out<true, 31>(operand1, operand2, conditions));
registers_.set_v(Numeric::overflow<true>(operand1, operand2, conditions));
}
if constexpr (!is_comparison(flags.operation())) {
destination = conditions;
}
break;
case DataProcessingOperation::SUB:
case DataProcessingOperation::SBC:
case DataProcessingOperation::CMP:
conditions = operand1 - operand2;
if constexpr (flags.operation() == DataProcessingOperation::SBC) {
conditions -= registers_.c();
}
if constexpr (flags.set_condition_codes()) {
registers_.set_c(Numeric::carried_out<false, 31>(operand1, operand2, conditions));
registers_.set_v(Numeric::overflow<false>(operand1, operand2, conditions));
}
if constexpr (!is_comparison(flags.operation())) {
destination = conditions;
}
break;
case DataProcessingOperation::RSB:
case DataProcessingOperation::RSC:
conditions = operand2 - operand1;
if constexpr (flags.operation() == DataProcessingOperation::RSC) {
conditions -= registers_.c();
}
if constexpr (flags.set_condition_codes()) {
registers_.set_c(Numeric::carried_out<false, 31>(operand2, operand1, conditions));
registers_.set_v(Numeric::overflow<false>(operand2, operand1, conditions));
}
destination = conditions;
break;
}
if constexpr (flags.set_condition_codes()) {
// "When Rd is a register other than R15, the condition code flags in the PSR may be
// updated from the ALU flags as described above. When Rd is R15 and the S flag in
// the instruction is set, the PSR is overwritten by the corresponding ALU result.
//
// ... if the instruction is of a type which does not normally produce a result
// (CMP, CMN, TST, TEQ) but Rd is R15 and the S bit is set, the result will be used in
// this case to update those PSR flags which are not protected by virtue of the
// processor mode."
if(fields.destination() == 15) {
if constexpr (is_comparison(flags.operation())) {
registers_.set_status(pc_proxy);
} else {
registers_.set_status(pc_proxy);
registers_.set_pc(pc_proxy);
}
} else {
// Set N and Z in a unified way.
registers_.set_nz(conditions);
// Set C from the barrel shifter if applicable.
if constexpr (shift_sets_carry) {
registers_.set_c(rotate_carry);
}
}
} else {
// "If the S flag is clear when Rd is R15, only the 24 PC bits of R15 will be written."
if(fields.destination() == 15) {
registers_.set_pc(pc_proxy);
}
}
}
template <Flags f> void perform(Multiply fields) {
constexpr MultiplyFlags flags(f);
// R15 rules:
//
// * Rs: no PSR, 8 bytes ahead;
// * Rn: with PSR, 8 bytes ahead;
// * Rm: with PSR, 12 bytes ahead.
const uint32_t multiplicand = fields.multiplicand() == 15 ? registers_.pc(8) : registers_.active[fields.multiplicand()];
const uint32_t multiplier = fields.multiplier() == 15 ? registers_.pc_status(8) : registers_.active[fields.multiplier()];
const uint32_t accumulator =
flags.operation() == MultiplyFlags::Operation::MUL ? 0 :
(fields.multiplicand() == 15 ? registers_.pc_status(12) : registers_.active[fields.accumulator()]);
const uint32_t result = multiplicand * multiplier + accumulator;
if constexpr (flags.set_condition_codes()) {
registers_.set_nz(result);
// V is unaffected; C is undefined.
}
if(fields.destination() != 15) {
registers_.active[fields.destination()] = result;
}
}
template <Flags f> void perform(Branch branch) {
constexpr BranchFlags flags(f);
if constexpr (flags.operation() == BranchFlags::Operation::BL) {
registers_.active[14] = registers_.pc(4);
}
registers_.set_pc(registers_.pc(8) + branch.offset());
}
template <Flags f> void perform(SingleDataTransfer transfer) {
constexpr SingleDataTransferFlags flags(f);
// Calculate offset.
uint32_t offset;
if constexpr (flags.offset_is_immediate()) {
offset = transfer.immediate();
} else {
// The 8 shift control bits are described in 6.2.3, but
// the register specified shift amounts are not available
// in this instruction class.
uint32_t carry = registers_.c();
offset = decode_shift<false, false>(transfer, carry, 8);
}
// Obtain base address.
uint32_t address =
transfer.base() == 15 ?
registers_.pc(8) :
registers_.active[transfer.base()];
// Determine what the address will be after offsetting.
uint32_t offsetted_address = address;
if constexpr (flags.add_offset()) {
offsetted_address += offset;
} else {
offsetted_address -= offset;
}
// If preindexing, apply now.
if constexpr (flags.pre_index()) {
address = offsetted_address;
}
constexpr bool trans = !flags.pre_index() && flags.write_back_address();
if constexpr (flags.operation() == SingleDataTransferFlags::Operation::STR) {
const uint32_t source =
transfer.source() == 15 ?
registers_.pc_status(12) :
registers_.active[transfer.source()];
bool did_write;
if constexpr (flags.transfer_byte()) {
did_write = bus_.template write<uint8_t>(address, uint8_t(source), registers_.mode(), trans);
} else {
did_write = bus_.template write<uint32_t>(address, source, registers_.mode(), trans);
}
if(!did_write) {
registers_.exception<Registers::Exception::DataAbort>();
return;
}
} else {
bool did_read;
uint32_t value;
if constexpr (flags.transfer_byte()) {
uint8_t target;
did_read = bus_.template read<uint8_t>(address, target, registers_.mode(), trans);
value = target;
} else {
did_read = bus_.template read<uint32_t>(address, value, registers_.mode(), trans);
// TODO: "An address offset from a word boundary will cause the data to be rotated into the
// register so that the addressed byte occuplies bits 0 to 7.
}
if(!did_read) {
registers_.exception<Registers::Exception::DataAbort>();
return;
}
if(transfer.destination() == 15) {
registers_.set_pc(value);
} else {
registers_.active[transfer.destination()] = value;
}
}
// If either postindexing or else with writeback, update base.
if constexpr (!flags.pre_index() || flags.write_back_address()) {
if(transfer.base() == 15) {
registers_.set_pc(offsetted_address);
} else {
registers_.active[transfer.base()] = offsetted_address;
}
}
}
template <Flags> void perform(BlockDataTransfer) {}
void software_interrupt() {
registers_.exception<Registers::Exception::SoftwareInterrupt>();
}
void unknown() {
registers_.exception<Registers::Exception::UndefinedInstruction>();
}
// Act as if no coprocessors present.
template <Flags> void perform(CoprocessorRegisterTransfer) {
registers_.exception<Registers::Exception::UndefinedInstruction>();
}
template <Flags> void perform(CoprocessorDataOperation) {
registers_.exception<Registers::Exception::UndefinedInstruction>();
}
template <Flags> void perform(CoprocessorDataTransfer) {
registers_.exception<Registers::Exception::UndefinedInstruction>();
}
MemoryT bus_;
private:
Registers registers_;
};
}
@interface ARMDecoderTests : XCTestCase
@end
@implementation ARMDecoderTests
- (void)testXYX {
Scheduler<Memory> scheduler;
for(int c = 0; c < 65536; c++) {
InstructionSet::ARM::dispatch(c << 16, scheduler);
}
InstructionSet::ARM::dispatch(0xEAE06900, scheduler);
}
@end