1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00
CLK/Machines/Amiga/Chipset.cpp

1420 lines
45 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// Chipset.cpp
// Clock Signal
//
// Created by Thomas Harte on 22/07/2021.
// Copyright © 2021 Thomas Harte. All rights reserved.
//
#include "Chipset.hpp"
//#ifndef NDEBUG
//#define NDEBUG
//#endif
#define LOG_PREFIX "[Amiga chipset] "
#include "../../Outputs/Log.hpp"
#include <algorithm>
#include <cassert>
using namespace Amiga;
namespace {
template <typename EnumT, EnumT... T> struct Mask {
static constexpr uint16_t value = 0;
};
template <typename EnumT, EnumT F, EnumT... T> struct Mask<EnumT, F, T...> {
static constexpr uint16_t value = uint16_t(F) | Mask<EnumT, T...>::value;
};
template <InterruptFlag... Flags> struct InterruptMask: Mask<InterruptFlag, Flags...> {};
template <DMAFlag... Flags> struct DMAMask: Mask<DMAFlag, Flags...> {};
/// Expands @c source so that b7 is the least-significant bit of the most-significant byte of the result,
/// b6 is the least-significant bit of the next most significant byte, etc. b0 stays in place.
constexpr uint64_t expand_bitplane_byte(uint8_t source) {
uint64_t result = source; // 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 abcd efgh
result = (result | (result << 28)) & 0x0000'000f'0000'000f; // 0000 0000 0000 0000 0000 0000 0000 abcd 0000 0000 0000 0000 0000 0000 0000 efgh
result = (result | (result << 14)) & 0x0003'0003'0003'0003; // 0000 0000 0000 00ab 0000 0000 0000 00cd 0000 0000 0000 00ef 0000 0000 0000 00gh
result = (result | (result << 7)) & 0x0101'0101'0101'0101; // 0000 000a 0000 000b 0000 000c 0000 000d 0000 000e 0000 000f 0000 000g 0000 000h
return result;
}
/// Expands @c source from b15 ... b0 to 000b15 ... 000b0.
constexpr uint64_t expand_sprite_word(uint16_t source) {
uint64_t result = source;
result = (result | (result << 24)) & 0x0000'00ff'0000'00ff;
result = (result | (result << 12)) & 0x000f'000f'000f'000f;
result = (result | (result << 6)) & 0x0303'0303'0303'0303;
result = (result | (result << 3)) & 0x1111'1111'1111'1111;
return result;
}
// A very small selection of test cases.
static_assert(expand_bitplane_byte(0xff) == 0x01'01'01'01'01'01'01'01);
static_assert(expand_bitplane_byte(0x55) == 0x00'01'00'01'00'01'00'01);
static_assert(expand_bitplane_byte(0xaa) == 0x01'00'01'00'01'00'01'00);
static_assert(expand_bitplane_byte(0x00) == 0x00'00'00'00'00'00'00'00);
static_assert(expand_sprite_word(0xffff) == 0x11'11'11'11'11'11'11'11);
static_assert(expand_sprite_word(0x5555) == 0x01'01'01'01'01'01'01'01);
static_assert(expand_sprite_word(0xaaaa) == 0x10'10'10'10'10'10'10'10);
static_assert(expand_sprite_word(0x0000) == 0x00'00'00'00'00'00'00'00);
}
#define DMA_CONSTRUCT *this, reinterpret_cast<uint16_t *>(map.chip_ram.data()), map.chip_ram.size() >> 1
Chipset::Chipset(MemoryMap &map, int input_clock_rate) :
blitter_(DMA_CONSTRUCT),
sprites_{
{DMA_CONSTRUCT}, {DMA_CONSTRUCT}, {DMA_CONSTRUCT}, {DMA_CONSTRUCT},
{DMA_CONSTRUCT}, {DMA_CONSTRUCT}, {DMA_CONSTRUCT}, {DMA_CONSTRUCT}
},
bitplanes_(DMA_CONSTRUCT),
copper_(DMA_CONSTRUCT),
audio_(DMA_CONSTRUCT, input_clock_rate),
crt_(908, 4, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red4Green4Blue4),
cia_a_handler_(map, disk_controller_, mouse_),
cia_b_handler_(disk_controller_),
cia_a(cia_a_handler_),
cia_b(cia_b_handler_),
disk_(DMA_CONSTRUCT),
disk_controller_(Cycles(input_clock_rate), *this, disk_, cia_b),
keyboard_(cia_a.serial_input) {
disk_controller_.set_clocking_hint_observer(this);
joysticks_.emplace_back(new Joystick());
cia_a_handler_.set_joystick(&joystick(0));
// Very conservatively crop, to roughly the centre 90% of a frame.
crt_.set_visible_area(Outputs::Display::Rect(0.05f, 0.045f, 0.9f, 0.9f));
}
#undef DMA_CONSTRUCT
Chipset::Changes Chipset::run_for(HalfCycles length) {
return run<false>(length);
}
Chipset::Changes Chipset::run_until_cpu_slot() {
return run<true>();
}
void Chipset::set_cia_interrupts(bool cia_a_interrupt, bool cia_b_interrupt) {
// TODO: are these really latched, or are they active live?
// If latched, is it only on a leading edge?
// interrupt_requests_ &= ~InterruptMask<InterruptFlag::IOPortsAndTimers, InterruptFlag::External>::value;
interrupt_requests_ |=
(cia_a_interrupt ? InterruptMask<InterruptFlag::IOPortsAndTimers>::value : 0) |
(cia_b_interrupt ? InterruptMask<InterruptFlag::External>::value : 0);
update_interrupts();
}
void Chipset::posit_interrupt(InterruptFlag flag) {
interrupt_requests_ |= uint16_t(flag);
update_interrupts();
}
void DMADeviceBase::posit_interrupt(InterruptFlag flag) {
chipset_.posit_interrupt(flag);
}
template <int cycle> void Chipset::output() {
// Notes to self on guesses below:
//
// Hardware stop is at 0x18;
// 12/64 * 227 = 42.5625
//
// "However, horizontal blanking actually limits the displayable
// video to 368 low resolution pixel"
//
// => 184 windows out of 227 are visible, which concurs.
//
// Advance audio.
audio_.output();
// Trigger any sprite loads encountered.
constexpr auto dcycle = cycle << 1;
for(int c = 0; c < 8; c += 2) {
if( sprites_[c].visible &&
dcycle <= sprites_[c].h_start &&
dcycle+2 > sprites_[c].h_start) {
sprite_shifters_[c >> 1].load<0>(
sprites_[c].data[1],
sprites_[c].data[0],
sprites_[c].h_start & 1);
}
if( sprites_[c+1].visible &&
dcycle <= sprites_[c + 1].h_start &&
dcycle+2 > sprites_[c + 1].h_start) {
sprite_shifters_[c >> 1].load<1>(
sprites_[c + 1].data[1],
sprites_[c + 1].data[0],
sprites_[c + 1].h_start & 1);
}
}
//
// Horizontal sync: HC18HC35;
// Horizontal blank: HC15HC53.
//
// Beyond that: guesswork.
//
// So, from cycle 0:
//
// 15 cycles border/pixels;
// 3 cycles blank;
// 17 cycles sync;
// 3 cycles blank;
// 9 cycles colour burst;
// 6 cycles blank;
// then more border/pixels to end of line.
//
// (???)
constexpr int end_of_pixels = 15;
constexpr int blank1 = 3 + end_of_pixels;
constexpr int sync = 17 + blank1;
constexpr int blank2 = 3 + sync;
constexpr int burst = 9 + blank2;
constexpr int blank3 = 6 + burst;
static_assert(blank3 == 53);
#define LINK(location, action, length) \
if(cycle == (location)) { \
crt_.action((length) * 4); \
}
if(y_ < vertical_blank_height_) {
if(!cycle) {
flush_output();
}
// Put three lines of sync at the centre of the vertical blank period.
// Offset by half a line if interlaced and on an odd frame.
const int midline = vertical_blank_height_ >> 1;
if(is_long_field_) {
if(y_ < midline - 1 || y_ > midline + 2) {
LINK(blank1, output_blank, blank1);
LINK(sync, output_sync, sync - blank1);
LINK(line_length_ - 1, output_blank, line_length_ - 1 - sync);
} else if(y_ == midline - 1) {
LINK(113, output_blank, 113);
LINK(line_length_ - 1, output_sync, line_length_ - 1 - 113);
} else if(y_ == midline + 2) {
LINK(113, output_sync, 113);
LINK(line_length_ - 1, output_blank, line_length_ - 1 - 113);
} else {
LINK(blank1, output_sync, blank1);
LINK(sync, output_blank, sync - blank1);
LINK(line_length_ - 1, output_sync, line_length_ - 1 - sync);
}
} else {
if(y_ < midline - 1 || y_ > midline + 1) {
LINK(blank1, output_blank, blank1);
LINK(sync, output_sync, sync - blank1);
LINK(line_length_ - 1, output_blank, line_length_ - 1 - sync);
} else {
LINK(blank1, output_sync, blank1);
LINK(sync, output_blank, sync - blank1);
LINK(line_length_ - 1, output_sync, line_length_ - 1 - sync);
}
}
} else {
// TODO: incorporate the lowest display window bits elsewhere.
display_horizontal_ |= cycle == (display_window_start_[0] >> 1);
display_horizontal_ &= cycle != (display_window_stop_[0] >> 1);
if(cycle == end_of_pixels) {
flush_output();
}
// Output the correct sequence of blanks, syncs and burst atomically.
LINK(blank1, output_blank, blank1 - end_of_pixels);
LINK(sync, output_sync, sync - blank1);
LINK(blank2, output_blank, blank2 - sync);
LINK(burst, output_default_colour_burst, burst - blank2); // TODO: only if colour enabled.
LINK(blank3, output_blank, blank3 - burst);
if constexpr (cycle < end_of_pixels || cycle > blank3) {
const bool is_pixel_display = display_horizontal_ && fetch_vertical_;
if(
(is_pixel_display == is_border_) ||
(is_border_ && border_colour_ != palette_[0])) {
flush_output();
is_border_ = !is_pixel_display;
border_colour_ = palette_[0];
}
if(is_pixel_display) {
if(!pixels_) {
uint16_t *const new_pixels = reinterpret_cast<uint16_t *>(crt_.begin_data(4 * size_t(line_length_ + end_of_pixels - cycle)));
if(new_pixels) {
flush_output();
}
pixels_ = new_pixels;
}
if(pixels_) {
// TODO:
//
// (1) dump bit 5 of a six-bitplane playfield if this Chipset doesn't support extra half-bright.
// (2) priorities, in general;
// (3) collisions;
// (4) a much less dense implementation. In particular: map from [16]-bit input to present or
// absent flags, use those to update collisions and then to index a mask table for compositing.
// Which would mean getting through the whole ordeal without branching... as soon as I come up
// with a branchless method for priorities. Hmmmm.
const uint32_t source = bitplane_pixels_.get(is_high_res_);
// TODO:
if(dual_playfields_) {
// Dense: just write both.
if(even_over_odd_) {
pixels_[0] = palette_[8 + (source >> 27) & 7];
pixels_[1] = palette_[8 + (source >> 19) & 7];
pixels_[2] = palette_[8 + (source >> 11) & 7];
pixels_[3] = palette_[8 + (source >> 3) & 7];
if((source >> 24) & 7) pixels_[0] = palette_[(source >> 24) & 7];
if((source >> 16) & 7) pixels_[1] = palette_[(source >> 16) & 7];
if((source >> 8) & 7) pixels_[2] = palette_[(source >> 8) & 7];
if(source & 7) pixels_[3] = palette_[source & 7];
} else {
pixels_[0] = palette_[(source >> 24) & 7];
pixels_[1] = palette_[(source >> 16) & 7];
pixels_[2] = palette_[(source >> 8) & 7];
pixels_[3] = palette_[source & 7];
if((source >> 27) & 7) pixels_[0] = palette_[8 + (source >> 27) & 7];
if((source >> 19) & 7) pixels_[1] = palette_[8 + (source >> 19) & 7];
if((source >> 11) & 7) pixels_[2] = palette_[8 + (source >> 11) & 7];
if((source >> 3) & 7) pixels_[3] = palette_[8 + (source >> 3) & 7];
}
} else {
pixels_[0] = swizzled_palette_[source >> 24];
pixels_[1] = swizzled_palette_[(source >> 16) & 0xff];
pixels_[2] = swizzled_palette_[(source >> 8) & 0xff];
pixels_[3] = swizzled_palette_[source & 0xff];
}
for(int c = 3; c >= 0; --c) {
const auto data = sprite_shifters_[c].get();
if(!data) continue;
const int base = (c << 2) + 16;
if(sprites_[(c << 1) + 1].attached) {
// Left pixel.
if(data >> 4) {
pixels_[0] = pixels_[1] = palette_[16 + (data >> 4)];
}
// Right pixel.
if(data & 15) {
pixels_[2] = pixels_[3] = palette_[16 + (data & 15)];
}
} else {
// Left pixel.
if(data >> 6) {
pixels_[0] = pixels_[1] = palette_[base + (data >> 6)];
}
if((data >> 4) & 3) {
pixels_[0] = pixels_[1] = palette_[base + ((data >> 4)&3)];
}
// Right pixel.
if((data >> 2) & 3) {
pixels_[2] = pixels_[3] = palette_[base + ((data >> 2)&3)];
}
if(data & 3) {
pixels_[2] = pixels_[3] = palette_[base + (data & 3)];
}
}
}
pixels_ += 4;
}
}
++zone_duration_;
}
}
#undef LINK
// Update all active pixel shifters.
bitplane_pixels_.shift(is_high_res_);
sprite_shifters_[0].shift();
sprite_shifters_[1].shift();
sprite_shifters_[2].shift();
sprite_shifters_[3].shift();
// Reload if anything is pending.
if(has_next_bitplanes_) {
has_next_bitplanes_ = false;
bitplane_pixels_.set(
previous_bitplanes_,
next_bitplanes_,
odd_delay_,
even_delay_
);
previous_bitplanes_ = next_bitplanes_;
}
}
void Chipset::flush_output() {
if(!zone_duration_) return;
if(is_border_) {
uint16_t *const pixels = reinterpret_cast<uint16_t *>(crt_.begin_data(1));
if(pixels) {
*pixels = border_colour_;
}
crt_.output_data(zone_duration_ * 4, 1);
} else {
crt_.output_data(zone_duration_ * 4);
}
zone_duration_ = 0;
pixels_ = nullptr;
}
/// @returns @c true if this was a CPU slot; @c false otherwise.
template <int cycle, bool stop_if_cpu> bool Chipset::perform_cycle() {
constexpr uint16_t AudioFlags[] = {
DMAMask<DMAFlag::AudioChannel0, DMAFlag::AllBelow>::value,
DMAMask<DMAFlag::AudioChannel1, DMAFlag::AllBelow>::value,
DMAMask<DMAFlag::AudioChannel2, DMAFlag::AllBelow>::value,
DMAMask<DMAFlag::AudioChannel3, DMAFlag::AllBelow>::value,
};
constexpr auto BlitterFlag = DMAMask<DMAFlag::Blitter, DMAFlag::AllBelow>::value;
constexpr auto BitplaneFlag = DMAMask<DMAFlag::Bitplane, DMAFlag::AllBelow>::value;
constexpr auto CopperFlag = DMAMask<DMAFlag::Copper, DMAFlag::AllBelow>::value;
constexpr auto DiskFlag = DMAMask<DMAFlag::Disk, DMAFlag::AllBelow>::value;
constexpr auto SpritesFlag = DMAMask<DMAFlag::Sprites, DMAFlag::AllBelow>::value;
// Update state as to whether bitplane fetching should happen now.
//
// TODO: figure out how the hard stops factor into this.
//
// Top priority: bitplane collection.
// TODO: mask off fetch_window_'s lower bits. (Dependant on high/low-res?)
// Also: fetch_stop_ and that + 12/8 is the best I can discern from the Hardware Reference,
// but very obviously isn't how the actual hardware works. Explore on that.
fetch_horizontal_ |= cycle == fetch_window_[0];
if(cycle == fetch_window_[1]) fetch_stop_ = cycle + (is_high_res_ ? 12 : 8);
fetch_horizontal_ &= cycle != fetch_stop_;
if((dma_control_ & BitplaneFlag) == BitplaneFlag) {
// TODO: offer a cycle for bitplane collection.
// Probably need to indicate odd or even?
if(fetch_vertical_ && fetch_horizontal_ && bitplanes_.advance_dma(cycle)) {
did_fetch_ = true;
return false;
}
}
if constexpr (cycle & 1) {
// Odd slot use/priority:
//
// 1. Bitplane fetches [dealt with above].
// 2. Refresh, disk, audio, or sprites. Depending on region.
//
// Blitter and CPU priority is dealt with below.
if constexpr (cycle >= 0x07 && cycle < 0x0d) {
if((dma_control_ & DiskFlag) == DiskFlag) {
if(disk_.advance_dma()) {
return false;
}
}
}
if constexpr (cycle >= 0xd && cycle < 0x14) {
constexpr auto channel = (cycle - 0xd) >> 1;
if((dma_control_ & AudioFlags[channel]) == AudioFlags[channel]) {
if(audio_.advance_dma(channel)) {
return false;
}
}
}
if constexpr (cycle >= 0x15 && cycle < 0x35) {
if((dma_control_ & SpritesFlag) == SpritesFlag) {
constexpr auto sprite_id = (cycle - 0x15) >> 2;
if(sprites_[sprite_id].advance_dma(y_)) {
return false;
}
}
}
} else {
// Bitplanes being dealt with, specific odd-cycle responsibility
// is just possibly to pass to the Copper.
//
// The Blitter and CPU are dealt with outside of the odd/even test.
if((dma_control_ & CopperFlag) == CopperFlag) {
if(copper_.advance_dma(uint16_t(((y_ & 0xff) << 8) | (cycle & 0xfe)))) {
return false;
}
} else {
copper_.stop();
}
}
// Down here: give first refusal to the Blitter, otherwise
// pass on to the CPU.
return (dma_control_ & BlitterFlag) != BlitterFlag || !blitter_.advance_dma();
}
/// Performs all slots starting with @c first_slot and ending just before @c last_slot.
/// If @c stop_on_cpu is true, stops upon discovery of a CPU slot.
///
/// @returns the number of slots completed if @c stop_on_cpu was true and a CPU slot was found.
/// @c -1 otherwise.
template <bool stop_on_cpu> int Chipset::advance_slots(int first_slot, int last_slot) {
if(first_slot == last_slot) {
return -1;
}
assert(last_slot > first_slot);
#define C(x) \
case x: \
if constexpr(stop_on_cpu) {\
if(perform_cycle<x, stop_on_cpu>()) {\
return x - first_slot;\
}\
} else {\
perform_cycle<x, stop_on_cpu>(); \
} \
output<x>(); \
if((x + 1) == last_slot) break; \
[[fallthrough]]
#define C10(x) C(x); C(x+1); C(x+2); C(x+3); C(x+4); C(x+5); C(x+6); C(x+7); C(x+8); C(x+9);
switch(first_slot) {
C10(0); C10(10); C10(20); C10(30); C10(40);
C10(50); C10(60); C10(70); C10(80); C10(90);
C10(100); C10(110); C10(120); C10(130); C10(140);
C10(150); C10(160); C10(170); C10(180); C10(190);
C10(200); C10(210);
C(220); C(221); C(222); C(223); C(224);
C(225); C(226); C(227); C(228);
default: assert(false);
}
#undef C
return -1;
}
template <bool stop_on_cpu> Chipset::Changes Chipset::run(HalfCycles length) {
Changes changes;
// This code uses 'pixels' as a measure, which is equivalent to one pixel clock time,
// or half a cycle.
auto pixels_remaining = length.as<int>();
int hsyncs = 0, vsyncs = 0;
// Update raster position, spooling out graphics.
while(pixels_remaining) {
// Determine number of pixels left on this line.
const int line_pixels = std::min(pixels_remaining, (line_length_ * 4) - line_cycle_);
const int start_slot = line_cycle_ >> 2;
const int end_slot = (line_cycle_ + line_pixels) >> 2;
const int actual_slots = advance_slots<stop_on_cpu>(start_slot, end_slot);
if(stop_on_cpu && actual_slots >= 0) {
// Run until the end of the named slot.
if(actual_slots) {
const int actual_line_pixels =
(4 - (line_cycle_ & 3)) + ((actual_slots - 1) << 2);
line_cycle_ += actual_line_pixels;
changes.duration += HalfCycles(actual_line_pixels);
}
// Just ensure an exit.
pixels_remaining = 0;
} else {
line_cycle_ += line_pixels;
changes.duration += HalfCycles(line_pixels);
pixels_remaining -= line_pixels;
}
// Advance intraline counter and possibly ripple upwards into
// lines and fields.
if(line_cycle_ == (line_length_ * 4)) {
++hsyncs;
line_cycle_ = 0;
++y_;
fetch_vertical_ |= y_ == display_window_start_[1];
fetch_vertical_ &= y_ != display_window_stop_[1];
if(did_fetch_) {
bitplanes_.do_end_of_line();
previous_bitplanes_.clear();
}
did_fetch_ = false;
fetch_horizontal_ = false;
fetch_stop_ = 0xffff;
if(y_ == short_field_height_ + is_long_field_) {
++vsyncs;
interrupt_requests_ |= InterruptMask<InterruptFlag::VerticalBlank>::value;
update_interrupts();
y_ = 0;
// TODO: the manual is vague on when this happens. Try to find out.
copper_.reload<0>();
// TODO: is this really how sprite DMA proceeds?
for(int c = 0; c < 8; c++) {
sprites_[c].reset_dma();
}
// Toggle next field length if interlaced.
is_long_field_ ^= interlace_;
}
}
assert(line_cycle_ < line_length_ * 4);
}
// Advance the keyboard's serial output, at
// close enough to 1,000,000 ticks/second.
keyboard_divider_ += changes.duration;
keyboard_.run_for(keyboard_divider_.divide(HalfCycles(14)));
// The CIAs are on the E clock.
cia_divider_ += changes.duration;
const HalfCycles e_clocks = cia_divider_.divide(HalfCycles(20));
if(e_clocks > HalfCycles(0)) {
cia_a.run_for(e_clocks);
cia_b.run_for(e_clocks);
}
// Propagate TOD updates to the CIAs, and feed their new interrupt
// outputs back to here.
cia_a.advance_tod(vsyncs);
cia_b.advance_tod(hsyncs);
set_cia_interrupts(cia_a.get_interrupt_line(), cia_b.get_interrupt_line());
// Update the disk controller, if any drives are active.
if(!disk_controller_is_sleeping_) {
disk_controller_.run_for(changes.duration.cycles());
}
// Record the interrupt level.
// TODO: is this useful?
changes.interrupt_level = interrupt_level_;
return changes;
}
void Chipset::post_bitplanes(const BitplaneData &data) {
// Posted bitplanes should be received at the end of the
// current memory slot. So put them aside for now, and
// deal with them momentarily.
has_next_bitplanes_ = true;
next_bitplanes_ = data;
}
void Chipset::BitplaneShifter::set(const BitplaneData &previous, const BitplaneData &next, int odd_delay, int even_delay) {
const uint16_t planes[6] = {
uint16_t(((previous[0] << 16) | next[0]) >> even_delay),
uint16_t(((previous[1] << 16) | next[1]) >> odd_delay),
uint16_t(((previous[2] << 16) | next[2]) >> even_delay),
uint16_t(((previous[3] << 16) | next[3]) >> odd_delay),
uint16_t(((previous[4] << 16) | next[4]) >> even_delay),
uint16_t(((previous[5] << 16) | next[5]) >> odd_delay),
};
// Swizzle bits into the form:
//
// [b5 b3 b1 b4 b2 b0]
//
// ... and assume a suitably adjusted palette is in use elsewhere.
// This makes dual playfields very easy to separate.
data_[0] =
(expand_bitplane_byte(uint8_t(planes[0])) << 0) |
(expand_bitplane_byte(uint8_t(planes[2])) << 1) |
(expand_bitplane_byte(uint8_t(planes[4])) << 2) |
(expand_bitplane_byte(uint8_t(planes[1])) << 3) |
(expand_bitplane_byte(uint8_t(planes[3])) << 4) |
(expand_bitplane_byte(uint8_t(planes[5])) << 5);
data_[1] =
(expand_bitplane_byte(uint8_t(planes[0] >> 8)) << 0) |
(expand_bitplane_byte(uint8_t(planes[2] >> 8)) << 1) |
(expand_bitplane_byte(uint8_t(planes[4] >> 8)) << 2) |
(expand_bitplane_byte(uint8_t(planes[1] >> 8)) << 3) |
(expand_bitplane_byte(uint8_t(planes[3] >> 8)) << 4) |
(expand_bitplane_byte(uint8_t(planes[5] >> 8)) << 5);
}
void Chipset::update_interrupts() {
interrupt_level_ = 0;
const uint16_t enabled_requests = interrupt_enable_ & interrupt_requests_ & 0x3fff;
if(enabled_requests && (interrupt_enable_ & 0x4000)) {
if(enabled_requests & InterruptMask<InterruptFlag::External>::value) {
interrupt_level_ = 6;
} else if(enabled_requests & InterruptMask<InterruptFlag::SerialPortReceive, InterruptFlag::DiskSyncMatch>::value) {
interrupt_level_ = 5;
} else if(enabled_requests & InterruptMask<InterruptFlag::AudioChannel0, InterruptFlag::AudioChannel1, InterruptFlag::AudioChannel2, InterruptFlag::AudioChannel3>::value) {
interrupt_level_ = 4;
} else if(enabled_requests & InterruptMask<InterruptFlag::Copper, InterruptFlag::VerticalBlank, InterruptFlag::Blitter>::value) {
interrupt_level_ = 3;
} else if(enabled_requests & InterruptMask<InterruptFlag::IOPortsAndTimers>::value) {
interrupt_level_ = 2;
} else if(enabled_requests & InterruptMask<InterruptFlag::SerialPortTransmit, InterruptFlag::DiskBlock, InterruptFlag::Software>::value) {
interrupt_level_ = 1;
}
}
}
void Chipset::perform(const CPU::MC68000::Microcycle &cycle) {
using Microcycle = CPU::MC68000::Microcycle;
#define RW(address) address | ((cycle.operation & Microcycle::Read) << 12)
#define Read(address) address | (Microcycle::Read << 12)
#define Write(address) address
#define ApplySetClear(target, mask) { \
const uint16_t value = cycle.value16(); \
if(value & 0x8000) { \
target |= (value & mask); \
} else { \
target &= ~(value & mask); \
} \
}
const uint32_t register_address = *cycle.address & 0x1fe;
switch(RW(register_address)) {
default:
LOG("Unimplemented chipset " << (cycle.operation & Microcycle::Read ? "read" : "write") << " " << PADHEX(6) << *cycle.address);
if(cycle.operation & Microcycle::Read) {
cycle.set_value16(0xffff);
}
break;
// Raster position.
case Read(0x004): { // VPOSR; b15 = LOF, b0 = b8 of y position.
const uint16_t position = uint16_t(y_ >> 8);
cycle.set_value16(
position |
(is_long_field_ ? 0x8000 : 0x0000)
);
// b8b14 should be:
// 00 for PAL Agnus or fat Agnus
// 10 for NTSC Agnus or fat Agnus
// 20 for PAL high-res
// 30 for NTSC high-res
} break;
case Read(0x006): { // VHPOSR; b0b7 = horizontal; b8b15 = low bits of vertical position.
const uint16_t position = uint16_t(((line_cycle_ >> 1) & 0x00ff) | (y_ << 8));
cycle.set_value16(position);
} break;
case Write(0x02a): // VPOSW
LOG("TODO: write vertical position high " << PADHEX(4) << cycle.value16());
break;
case Write(0x02c): { // VHPOSW
LOG("TODO: write vertical position low " << PADHEX(4) << cycle.value16());
const uint16_t value = cycle.value16();
is_long_field_ = value & 0x8000;
} break;
// Joystick/mouse input.
case Read(0x00a): // JOY0DAT
cycle.set_value16(mouse_.get_position());
break;
case Read(0x00c): // JOY1DAT
cycle.set_value16(joystick(0).get_position());
break;
case Write(0x034): // POTGO
// LOG("TODO: pot port start");
break;
case Read(0x016): // POTGOR / POTINP
// LOG("TODO: pot port read");
cycle.set_value16(0xff00);
break;
// Disk DMA and control.
case Write(0x020): disk_.set_pointer<0, 16>(cycle.value16()); break; // DSKPTH
case Write(0x022): disk_.set_pointer<0, 0>(cycle.value16()); break; // DSKPTL
case Write(0x024): disk_.set_length(cycle.value16()); break; // DSKLEN
case Write(0x026): // DSKDAT
LOG("TODO: disk DMA; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address);
break;
case Write(0x09e): // ADKCON
LOG("Write disk control");
ApplySetClear(paula_disk_control_, 0x7fff);
disk_controller_.set_control(paula_disk_control_);
disk_.set_control(paula_disk_control_);
audio_.set_modulation_flags(paula_disk_control_);
break;
case Read(0x010): // ADKCONR
LOG("Read disk control");
cycle.set_value16(paula_disk_control_);
break;
case Write(0x07e): // DSKSYNC
disk_controller_.set_sync_word(cycle.value16());
break;
case Read(0x01a): // DSKBYTR
LOG("TODO: disk status");
assert(false); // Not yet implemented.
break;
// Refresh.
case Write(0x028): // REFPTR
LOG("TODO (maybe): refresh; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address);
break;
// Serial port.
case Read(0x018): // SERDATR
LOG("TODO: serial data and status");
cycle.set_value16(0x3000); // i.e. transmit buffer empty.
break;
case Write(0x030): // SERDAT
LOG("TODO: serial data: " << PADHEX(4) << cycle.value16());
break;
case Write(0x032): // SERPER
LOG("TODO: serial control: " << PADHEX(4) << cycle.value16());
serial_.set_control(cycle.value16());
break;
// DMA management.
case Read(0x002): // DMACONR
cycle.set_value16(dma_control_ | blitter_.get_status());
break;
case Write(0x096): // DMACON
ApplySetClear(dma_control_, 0x1fff);
audio_.set_channel_enables(dma_control_);
break;
// Interrupts.
case Write(0x09a): // INTENA
ApplySetClear(interrupt_enable_, 0x7fff);
update_interrupts();
break;
case Read(0x01c): // INTENAR
cycle.set_value16(interrupt_enable_);
break;
case Write(0x09c): // INTREQ
ApplySetClear(interrupt_requests_, 0x7fff);
update_interrupts();
audio_.set_interrupt_requests(interrupt_requests_);
break;
case Read(0x01e): // INTREQR
cycle.set_value16(interrupt_requests_);
break;
// Display management.
case Write(0x08e): { // DIWSTRT
const uint16_t value = cycle.value16();
display_window_start_[0] = value & 0xff;
display_window_start_[1] = value >> 8;
} break;
case Write(0x090): { // DIWSTOP
const uint16_t value = cycle.value16();
display_window_stop_[0] = 0x100 | (value & 0xff);
display_window_stop_[1] = value >> 8;
display_window_stop_[1] |= ((value >> 7) & 0x100) ^ 0x100;
} break;
case Write(0x092): // DDFSTRT
if(fetch_window_[0] != cycle.value16()) {
LOG("Fetch window start set to " << std::dec << cycle.value16());
}
fetch_window_[0] = cycle.value16();
break;
case Write(0x094): // DDFSTOP
// TODO: something in my interpretation of ddfstart and ddfstop
// means a + 8 is needed below for high-res displays. Investigate.
if(fetch_window_[1] != cycle.value16()) {
LOG("Fetch window stop set to " << std::dec << fetch_window_[1]);
}
fetch_window_[1] = cycle.value16();
break;
// Bitplanes.
case Write(0x0e0): bitplanes_.set_pointer<0, 16>(cycle.value16()); break; // BPL1PTH
case Write(0x0e2): bitplanes_.set_pointer<0, 0>(cycle.value16()); break; // BPL1PTL
case Write(0x0e4): bitplanes_.set_pointer<1, 16>(cycle.value16()); break; // BPL2PTH
case Write(0x0e6): bitplanes_.set_pointer<1, 0>(cycle.value16()); break; // BPL2PTL
case Write(0x0e8): bitplanes_.set_pointer<2, 16>(cycle.value16()); break; // BPL3PTH
case Write(0x0ea): bitplanes_.set_pointer<2, 0>(cycle.value16()); break; // BPL3PTL
case Write(0x0ec): bitplanes_.set_pointer<3, 16>(cycle.value16()); break; // BPL4PTH
case Write(0x0ee): bitplanes_.set_pointer<3, 0>(cycle.value16()); break; // BPL4PTL
case Write(0x0f0): bitplanes_.set_pointer<4, 16>(cycle.value16()); break; // BPL5PTH
case Write(0x0f2): bitplanes_.set_pointer<4, 0>(cycle.value16()); break; // BPL5PTL
case Write(0x0f4): bitplanes_.set_pointer<5, 16>(cycle.value16()); break; // BPL6PTH
case Write(0x0f6): bitplanes_.set_pointer<5, 0>(cycle.value16()); break; // BPL6PTL
case Write(0x100): { // BPLCON0
const auto value = cycle.value16();
bitplanes_.set_control(value);
is_high_res_ = value & 0x8000;
hold_and_modify_ = value & 0x0800;
dual_playfields_ = value & 0x0400;
interlace_ = value & 0x0004;
// LOG("New video control at " << std::dec << y_ << "; high res: " << is_high_res_ << " HAM: " << hold_and_modify_ << " dual: " << dual_playfields_ << " interlace: " << interlace_);
} break;
case Write(0x102): { // BPLCON1
const uint8_t delay = cycle.value8_low();
odd_delay_ = delay & 0x0f;
even_delay_ = delay >> 4;
} break;
case Write(0x104): { // BPLCON2
const auto value = cycle.value16();
odd_priority_ = value & 7;
even_priority_ = (value >> 3) & 7;
even_over_odd_ = value & 0x40;
} break;
case Write(0x106): // BPLCON3 (ECS)
LOG("TODO: Bitplane control; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address);
break;
case Write(0x108): bitplanes_.set_modulo<0>(cycle.value16()); break; // BPL1MOD
case Write(0x10a): bitplanes_.set_modulo<1>(cycle.value16()); break; // BPL2MOD
case Write(0x110):
case Write(0x112):
case Write(0x114):
case Write(0x116):
case Write(0x118):
case Write(0x11a):
LOG("TODO: Bitplane data; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address);
break;
case Read(0x110): case Read(0x112): case Read(0x114): case Read(0x116):
case Read(0x118): case Read(0x11a):
cycle.set_value16(0xffff);
LOG("Invalid read at " << PADHEX(6) << *cycle.address);
break;
// Blitter.
case Read(0x040): blitter_.set_control(0, 0xffff); break; // UGH. Have fallen into quite a hole here with my
case Read(0x042): blitter_.set_control(1, 0xffff); break; // Read/Write macros. TODO: some sort of canonical decode?
// Templatey to hit the usual Read/Write cases first?
case Write(0x040): blitter_.set_control(0, cycle.value16()); break;
case Write(0x042): blitter_.set_control(1, cycle.value16()); break;
case Write(0x044): blitter_.set_first_word_mask(cycle.value16()); break;
case Write(0x046): blitter_.set_last_word_mask(cycle.value16()); break;
case Write(0x048): blitter_.set_pointer<2, 16>(cycle.value16()); break;
case Write(0x04a): blitter_.set_pointer<2, 0>(cycle.value16()); break;
case Write(0x04c): blitter_.set_pointer<1, 16>(cycle.value16()); break;
case Write(0x04e): blitter_.set_pointer<1, 0>(cycle.value16()); break;
case Write(0x050): blitter_.set_pointer<0, 16>(cycle.value16()); break;
case Write(0x052): blitter_.set_pointer<0, 0>(cycle.value16()); break;
case Write(0x054): blitter_.set_pointer<3, 16>(cycle.value16()); break;
case Write(0x056): blitter_.set_pointer<3, 0>(cycle.value16()); break;
case Write(0x058): blitter_.set_size(cycle.value16()); break;
case Write(0x05a): blitter_.set_minterms(cycle.value16()); break;
case Write(0x05c): blitter_.set_vertical_size(cycle.value16()); break;
case Write(0x05e): blitter_.set_horizontal_size(cycle.value16()); break;
case Write(0x060): blitter_.set_modulo<2>(cycle.value16()); break;
case Write(0x062): blitter_.set_modulo<1>(cycle.value16()); break;
case Write(0x064): blitter_.set_modulo<0>(cycle.value16()); break;
case Write(0x066): blitter_.set_modulo<3>(cycle.value16()); break;
case Write(0x070): blitter_.set_data(2, cycle.value16()); break;
case Write(0x072): blitter_.set_data(1, cycle.value16()); break;
case Write(0x074): blitter_.set_data(0, cycle.value16()); break;
// Audio.
#define Audio(index, pointer) \
case Write(pointer + 0): audio_.set_pointer<index, 16>(cycle.value16()); break; \
case Write(pointer + 2): audio_.set_pointer<index, 0>(cycle.value16()); break; \
case Write(pointer + 4): audio_.set_length(index, cycle.value16()); break; \
case Write(pointer + 6): audio_.set_period(index, cycle.value16()); break; \
case Write(pointer + 8): audio_.set_volume(index, cycle.value16()); break; \
case Write(pointer + 10): audio_.set_data(index, cycle.value16()); break; \
Audio(0, 0x0a0);
Audio(1, 0x0b0);
Audio(2, 0x0c0);
Audio(3, 0x0d0);
#undef Audio
// Copper.
case Write(0x02e): copper_.set_control(cycle.value16()); break; // COPCON
case Write(0x080): copper_.set_pointer<0, 16>(cycle.value16()); break; // COP1LCH
case Write(0x082): copper_.set_pointer<0, 0>(cycle.value16()); break; // COP1LCL
case Write(0x084): copper_.set_pointer<1, 16>(cycle.value16()); break; // COP2LCH
case Write(0x086): copper_.set_pointer<1, 0>(cycle.value16()); break; // COP2LCL
case Write(0x088): case Read(0x088):
copper_.reload<0>();
break;
case Write(0x08a): case Read(0x08a):
copper_.reload<1>();
break;
case Write(0x08c):
LOG("TODO: coprocessor instruction fetch identity " << PADHEX(4) << cycle.value16());
break;
// Sprites.
#define Sprite(index, pointer, position) \
case Write(pointer + 0): sprites_[index].set_pointer<0, 16>(cycle.value16()); break; \
case Write(pointer + 2): sprites_[index].set_pointer<0, 0>(cycle.value16()); break; \
case Write(position + 0): sprites_[index].set_start_position(cycle.value16()); break; \
case Write(position + 2): sprites_[index].set_stop_and_control(cycle.value16()); break; \
case Write(position + 4): sprites_[index].set_image_data(0, cycle.value16()); break; \
case Write(position + 6): sprites_[index].set_image_data(1, cycle.value16()); break;
Sprite(0, 0x120, 0x140);
Sprite(1, 0x124, 0x148);
Sprite(2, 0x128, 0x150);
Sprite(3, 0x12c, 0x158);
Sprite(4, 0x130, 0x160);
Sprite(5, 0x134, 0x168);
Sprite(6, 0x138, 0x170);
Sprite(7, 0x13c, 0x178);
#undef Sprite
// Colour palette.
case Write(0x180): case Write(0x182): case Write(0x184): case Write(0x186):
case Write(0x188): case Write(0x18a): case Write(0x18c): case Write(0x18e):
case Write(0x190): case Write(0x192): case Write(0x194): case Write(0x196):
case Write(0x198): case Write(0x19a): case Write(0x19c): case Write(0x19e):
case Write(0x1a0): case Write(0x1a2): case Write(0x1a4): case Write(0x1a6):
case Write(0x1a8): case Write(0x1aa): case Write(0x1ac): case Write(0x1ae):
case Write(0x1b0): case Write(0x1b2): case Write(0x1b4): case Write(0x1b6):
case Write(0x1b8): case Write(0x1ba): case Write(0x1bc): case Write(0x1be): {
// Store once in regular, linear order.
const auto entry_address = (register_address - 0x180) >> 1;
uint8_t *const entry = reinterpret_cast<uint8_t *>(&palette_[entry_address]);
entry[0] = cycle.value8_high();
entry[1] = cycle.value8_low();
// Also store in bit-swizzled order. In this array,
// instead of being indexed as [b4 b3 b2 b1 b0], index
// as [b3 b1 b4 b2 b0], and include a second set of the
// 32 colours, stored as half-bright.
const auto swizzled_address =
(entry_address&0x01) |
((entry_address&0x02) << 2) |
((entry_address&0x04) >> 1) |
((entry_address&0x08) << 1) |
((entry_address&0x10) >> 2);
uint8_t *const swizzled_entry = reinterpret_cast<uint8_t *>(&swizzled_palette_[swizzled_address]);
swizzled_entry[0] = cycle.value8_high();
swizzled_entry[1] = cycle.value8_low();
swizzled_entry[64] = (swizzled_entry[0] >> 1) & 0x77;
swizzled_entry[65] = (swizzled_entry[1] >> 1) & 0x77;
} break;
}
#undef ApplySetClear
#undef Write
#undef Read
#undef RW
}
// MARK: - Bitplanes.
bool Chipset::Bitplanes::advance_dma(int cycle) {
#define BIND_CYCLE(offset, plane) \
case offset: \
if(plane_count_ > plane) { \
next[plane] = ram_[pointer_[plane] & ram_mask_]; \
++pointer_[plane]; \
if constexpr (!plane) { \
chipset_.post_bitplanes(next); \
} \
return true; \
} \
return false;
if(is_high_res_) {
switch(cycle&3) {
default: return false;
BIND_CYCLE(0, 3);
BIND_CYCLE(1, 1);
BIND_CYCLE(2, 2);
BIND_CYCLE(3, 0);
}
} else {
switch(cycle&7) {
default: return false;
/* Omitted: 0. */
BIND_CYCLE(1, 3);
BIND_CYCLE(2, 5);
BIND_CYCLE(3, 1);
/* Omitted: 4. */
BIND_CYCLE(5, 2);
BIND_CYCLE(6, 4);
BIND_CYCLE(7, 0);
}
}
return false;
#undef BIND_CYCLE
}
void Chipset::Bitplanes::do_end_of_line() {
// Apply modulos here. Posssibly correct?
pointer_[0] += modulos_[1];
pointer_[2] += modulos_[1];
pointer_[4] += modulos_[1];
pointer_[1] += modulos_[0];
pointer_[3] += modulos_[0];
pointer_[5] += modulos_[0];
}
void Chipset::Bitplanes::set_control(uint16_t control) {
is_high_res_ = control & 0x8000;
plane_count_ = (control >> 12) & 7;
// TODO: who really has responsibility for clearing the other
// bit plane fields?
std::fill(next.begin() + plane_count_, next.end(), 0);
if(plane_count_ == 7) {
plane_count_ = 4;
}
}
// MARK: - Sprites.
void Chipset::Sprite::set_start_position(uint16_t value) {
v_start_ = (v_start_ & 0xff00) | (value >> 8);
h_start = uint16_t((h_start & 0x0001) | ((value & 0xff) << 1));
}
void Chipset::Sprite::set_stop_and_control(uint16_t value) {
h_start = uint16_t((h_start & 0x01fe) | (value & 0x01));
v_stop_ = uint16_t((value >> 8) | ((value & 0x02) << 7));
v_start_ = uint16_t((v_start_ & 0x00ff) | ((value & 0x04) << 6));
attached = value & 0x80;
visible = active_ = false; // 'Disarm' the sprite.
}
void Chipset::Sprite::set_image_data(int slot, uint16_t value) {
data[slot] = value;
active_ |= slot == 0;
visible = active_ && vertical_in_range_;
}
bool Chipset::Sprite::advance_dma(int y) {
switch(dma_state_) {
// i.e. stopped.
default: return false;
// FetchStart: fetch the first control word and proceed to the second.
case DMAState::FetchStart:
set_start_position(ram_[pointer_[0] & ram_mask_]);
++pointer_[0];
dma_state_ = DMAState::FetchStopAndControl;
return true;
// FetchStopAndControl: fetch second control word and wait for V start.
case DMAState::FetchStopAndControl:
set_stop_and_control(ram_[pointer_[0] & ram_mask_]);
++pointer_[0];
dma_state_ = DMAState::WaitingForStart;
return true;
// WaitingForStart: repeat until V start is found.
case DMAState::WaitingForStart:
if(y != v_start_) {
return false;
}
vertical_in_range_ = true;
visible = active_;
[[fallthrough]];
// FetchData1: if v end is reached, stop DMA. Otherwise fetch a word
// and proceed to FetchData0.
case DMAState::FetchData1:
if(y == v_stop_) {
dma_state_ = DMAState::FetchStart;
visible = vertical_in_range_ = false;
return false;
}
set_image_data(1, ram_[pointer_[0] & ram_mask_]);
++pointer_[0];
dma_state_ = DMAState::FetchData0;
return true;
// FetchData0: fetch a word and proceed back to FetchData1.
case DMAState::FetchData0:
set_image_data(0, ram_[pointer_[0] & ram_mask_]);
++pointer_[0];
dma_state_ = DMAState::FetchData1;
return true;
}
return false;
}
void Chipset::Sprite::reset_dma() {
dma_state_ = DMAState::FetchStart;
}
template <int sprite> void Chipset::TwoSpriteShifter::load(
uint16_t lsb,
uint16_t msb,
int delay) {
constexpr int sprite_shift = sprite << 1;
const int delay_shift = delay << 2;
// Clear out any current sprite pixels; this is a reload.
data_ &= 0xcccc'cccc'cccc'ccccull >> (sprite_shift + delay_shift);
// Map LSB and MSB up to 64-bits and load into the shifter.
const uint64_t new_data =
(
expand_sprite_word(lsb) |
(expand_sprite_word(msb) << 1)
) << sprite_shift;
data_ |= new_data >> delay_shift;
overflow_ |= uint8_t((new_data << 8) >> delay_shift);
}
// MARK: - CRT connection.
void Chipset::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
crt_.set_scan_target(scan_target);
}
Outputs::Display::ScanStatus Chipset::get_scaled_scan_status() const {
return crt_.get_scaled_scan_status();
}
void Chipset::set_display_type(Outputs::Display::DisplayType type) {
crt_.set_display_type(type);
}
Outputs::Display::DisplayType Chipset::get_display_type() const {
return crt_.get_display_type();
}
// MARK: - CIA A.
Chipset::CIAAHandler::CIAAHandler(MemoryMap &map, DiskController &controller, Mouse &mouse) :
map_(map), controller_(controller), mouse_(mouse) {}
void Chipset::CIAAHandler::set_port_output(MOS::MOS6526::Port port, uint8_t value) {
if(port) {
// CIA A, Port B: Parallel port output.
LOG("TODO: parallel output " << PADHEX(2) << +value);
} else {
// CIA A, Port A:
//
// b7: /FIR1
// b6: /FIR0
// b5: /RDY
// b4: /TRK0
// b3: /WPRO
// b2: /CHNG
// b1: /LED [output]
// b0: OVL [output]
if(observer_) {
observer_->set_led_status(led_name, !(value & 2));
}
map_.set_overlay(value & 1);
}
}
uint8_t Chipset::CIAAHandler::get_port_input(MOS::MOS6526::Port port) {
if(port) {
LOG("TODO: parallel input?");
} else {
// Use the mouse as FIR0, the joystick as FIR1.
return
controller_.get_rdy_trk0_wpro_chng() &
mouse_.get_cia_button() &
(1 | (joystick_->get_cia_button() << 1));
}
return 0xff;
}
void Chipset::CIAAHandler::set_activity_observer(Activity::Observer *observer) {
observer_ = observer;
if(observer) {
observer->register_led(led_name, Activity::Observer::LEDPresentation::Persistent);
}
}
// MARK: - CIA B.
Chipset::CIABHandler::CIABHandler(DiskController &controller) : controller_(controller) {}
void Chipset::CIABHandler::set_port_output(MOS::MOS6526::Port port, uint8_t value) {
if(port) {
// CIA B, Port B:
//
// Disk motor control, drive and head selection,
// and stepper control:
controller_.set_mtr_sel_side_dir_step(value);
} else {
// CIA B, Port A: Serial port control.
//
// b7: /DTR
// b6: /RTS
// b5: /CD
// b4: /CTS
// b3: /DSR
// b2: SEL
// b1: POUT
// b0: BUSY
LOG("TODO: DTR/RTS/etc: " << PADHEX(2) << +value);
}
}
uint8_t Chipset::CIABHandler::get_port_input(MOS::MOS6526::Port) {
LOG("Unexpected: input for CIA B");
return 0xff;
}
// MARK: - ClockingHintObserver.
void Chipset::set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference preference) {
disk_controller_is_sleeping_ = preference == ClockingHint::Preference::None;
}
// MARK: - Mouse.
int Chipset::Mouse::get_number_of_buttons() {
return 2;
}
void Chipset::Mouse::set_button_pressed(int button, bool is_set) {
switch(button) {
case 0:
cia_state_ = (cia_state_ &~ 0x40) | (is_set ? 0 : 0x40);
break;
default:
break;
}
}
uint8_t Chipset::Mouse::get_cia_button() const {
return cia_state_;
}
void Chipset::Mouse::reset_all_buttons() {
cia_state_ = 0xff;
}
void Chipset::Mouse::move(int x, int y) {
position_[0] += x;
position_[1] += y;
}
Inputs::Mouse &Chipset::get_mouse() {
return mouse_;
}
uint16_t Chipset::Mouse::get_position() {
// The Amiga hardware retains only eight bits of position
// for the mouse; its software polls frequently and maps
// changes into a larger space.
//
// On modern computers with 5k+ displays and trackpads, it
// proved empirically possible to overflow the hardware
// counters more quickly than software would poll.
//
// Therefore the approach taken for mapping mouse motion
// into the Amiga is to do it in steps of no greater than
// [-128, +127], as per the below.
const int pending[] = {
position_[0], position_[1]
};
const int8_t change[] = {
int8_t(std::clamp(pending[0], -128, 127)),
int8_t(std::clamp(pending[1], -128, 127))
};
position_[0] -= change[0];
position_[1] -= change[1];
declared_position_[0] += change[0];
declared_position_[1] += change[1];
return uint16_t(
(declared_position_[1] << 8) |
declared_position_[0]
);
}
// MARK: - Joystick.
// TODO: add second fire button.
Chipset::Joystick::Joystick() :
ConcreteJoystick({
Input(Input::Up),
Input(Input::Down),
Input(Input::Left),
Input(Input::Right),
Input(Input::Fire, 0),
}) {}
void Chipset::Joystick::did_set_input(const Input &input, bool is_active) {
// Accumulate state.
inputs_[input.type] = is_active;
// Determine what that does to the two position bits.
const auto low =
(inputs_[Input::Type::Down] ^ inputs_[Input::Type::Right]) |
(inputs_[Input::Type::Right] << 1);
const auto high =
(inputs_[Input::Type::Up] ^ inputs_[Input::Type::Left]) |
(inputs_[Input::Type::Left] << 1);
// Ripple upwards if that affects the mouse position counters.
const uint8_t previous_low = position_ & 3;
uint8_t low_upper = (position_ >> 2) & 0x3f;
const uint8_t previous_high = (position_ >> 8) & 3;
uint8_t high_upper = (position_ >> 10) & 0x3f;
if(!low && previous_low == 3) ++low_upper;
if(!previous_low && low == 3) --low_upper;
if(!high && previous_high == 3) ++high_upper;
if(!previous_high && high == 3) --high_upper;
position_ = uint16_t(
low | ((low_upper & 0x3f) << 2) |
(high << 8) | ((high_upper & 0x3f) << 10)
);
}
uint16_t Chipset::Joystick::get_position() const {
return position_;
}
uint8_t Chipset::Joystick::get_cia_button() const {
return inputs_[Input::Type::Fire] ? 0xbf : 0xff;
}
// MARK: - Synchronisation.
void Chipset::flush() {
}