
The Cycle-Accurate

Game Boy Docs
Version 0.0.X

by Antonio Niño Díaz (AntonioND)

 Antonio Niño Díaz (AntonioND), 2014, 2015

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

Index
1. Introduction..5
2. Memory..6

2.1. General Memory Map...6
2.2. Jump Vectors in ROM0...6
2.3. Cartridge Header in ROM0...6
2.4. External Memory and Hardware...6
2.5. I/O Register Unreadable Bits..7
2.6. Boot ROMs...7
2.7. FF70h – SVBK – GBC Mode – WRAM Bank (R/W)...7
2.8. FF4Fh – VBK – GBC Mode – VRAM Bank (R/W)..7
2.9. Unused Memory Area at E000h – FDFFh..7
2.10. Unused Memory Area at FEA0h – FEFFh...8

3. CPU..10
3.1. General Information..10
3.2. Initial Register Values...10
3.3. CPU Instruction Set..11
3.4. HALT Mode..11
3.5. STOP Mode...11
3.6. Entering STOP Mode correctly...11
3.7. FF4Dh – KEY1 – GBC Mode – Speed Switch (R/W)...12
3.8. Speed Switch...12
3.9. Undefined Opcodes...13

4. Interrupts...14
4.1. Vector 0040h – Vertical Blanking Interrupt..14
4.2. Vector 0048h – LCD STAT Interrupt..14
4.3. Vector 0050h – Timer Interrupt..14
4.4. Vector 0058h – Serial Interrupt...14
4.5. Vector 0060h – Joypad Interrupt...14
4.6. IME – Interrupt Master Enable Flag...14
4.7. FF0Fh – IF – Interrupt Flags (R/W)...15
4.8. FFFFh – IE – Interrupt Enable (R/W)..15
4.9. Interrupt Handling...15
4.10. The HALT Instruction Behaviour...16

5. Timer...18
5.1. FF04h – DIV – Divider Register (R/W*)...18

5.1.1. Interaction with APU..19
5.2. FF05h – TIMA – Timer Counter (R/W)...19
5.3. FF06h – TIMA – Timer Modulo (R/W)..19
5.4. FF07h – TAC – Timer Control (R/W)..19
5.5. Timer Obscure Behaviour...19
5.6. Timer Overflow Behaviour...22

6. Serial...24
7. Joypad...25

7.1. FF00h – P1 – Joypad (R/W)...25
7.2. Reading the Joypad...25
7.3. Joypad Interrupt..26
7.4. Software-Triggered Joypad Interrupt..26

8. Video controller..27

8.1. The LCD...27
8.2. FF40h – LCDC – LCD Control (R/W)...27
8.3. FF44h – LY – LCD Current Scanline (R)...28
8.4. FF45h – LYC – LY Compare (R/W)...28
8.5. FF41h – STAT – LCD Status (R/W)...28
8.6. VBL Interrupt..28
8.7. STAT Interrupt..29
8.8. LY, STAT and IF Timings. VBL interrupt...29

8.8.1. Timings in DMG...29
8.8.2. Timings in CGB in DMG mode..30
8.8.3. Timings in CGB in CGB mode (single speed)..30
8.8.4. Timings in CGB in CGB mode (double speed)..30

8.9. LY, LYC, STAT and IF Timings. STAT LY=LYC interrupt..31
8.9.1. Timings in DMG...31
8.9.2. Timings in CGB in DMG mode..32
8.9.3. Timings in CGB in CGB mode (single speed)..33
8.9.4. Timings in CGB in CGB mode (double speed)..35

8.10. LY, STAT and IF Timings. STAT Mode 1 interrupt..36
8.10.1. Timings in DMG...36
8.10.2. Timings in CGB in DMG mode..37
8.10.3. Timings in CGB in CGB mode (single speed)..37
8.10.4. Timings in CGB in CGB mode (double speed)..38

8.11. LY, STAT and IF Timings. STAT Mode 2 interrupt..38
8.11.1. Timings in DMG...38
8.11.2. Timings in CGB in DMG mode..39
8.11.3. Timings in CGB in CGB mode (single speed)..40
8.11.4. Timings in CGB in CGB mode (double speed)...41

8.12. LY, STAT and IF Timings. STAT Mode 0 interrupt..42
8.13. FF42h – SCY – BG Scroll Y (R/W)...42
8.14. FF43h – SCX – BG Scroll X (R/W)...43
8.15. FF4Ah – WY – Window Y Position (R/W)..43
8.16. FF4Bh – WX – Window X Position (R/W)..43

8.16.1. Window Display Depending on WX and WY..43
8.17. Accessing Unavailable VRAM and OAM..43

8.17.1. Reading from OAM in Mode 2...43
8.17.2. Reading from OAM in Mode 3...43
8.17.3. Reading from VRAM in Mode 3..43
8.17.4. Reading from GBC Palette RAM in Mode 2..44
8.17.5. Reading from GBC Palette RAM in Mode 3..44

9. DMA...45
9.1. FF46h – DMA – OAM DMA Transfer (R/W)..45
9.2. FF51h – HDMA1 – GBC Mode – HDMA Source, High (W)..46
9.3. FF52h – HDMA2 – GBC Mode – HDMA Source, Low (W)..46
9.4. FF53h – HDMA3 – GBC Mode – HDMA Destination, High (W)..46
9.5. FF54h – HDMA4 – GBC Mode – HDMA Destination, Low (W)...46
9.6. FF55h – HDMA5 – GBC Mode – HDMA Length/Mode/Start (R/W)...................................46

9.6.1. GDMA – General Purpose DMA..46
9.6.2. HDMA – H-Blank DMA...47
9.6.3. GDMA/HDMA Allowed Source Addresses...47

10. Audio Processing Unit..49
11. The Game Boy Cartridge..50

11.1. The Cartridge Header..50

11.2. Memory Bank Controllers..52
11.2.1. None (32KB ROM)...53
11.2.2. MBC1 (2MB ROM. 32KB RAM. DMG, SGB)...53
11.2.3. MBC2 (256KB ROM. 512 × 4 bits RAM. DMG, SGB)..54
11.2.4. MBC3 (2MB ROM. 64KB RAM. RTC. DMG, SGB, CGB).......................................54
11.2.5. MBC5 (8MB ROM. 128KB RAM. DMG, SGB, CGB)...56
11.2.6. Pocket Camera...56

12. Credits...57
13. Changelog...58

1. Introduction
Since nobody seems to care about documenting the Game Boy good enough to make a cycle-
accurate emulator (the only “documentation” there is right now is the source code of the emulator
Gambatte, and it requires a lot of time to understand how it works), I've decided to document it
myself. The reason is that I'm making my own GB emulator and I just can't find any of the
information I want, so I decided to document the GB while I code my own open-source emulator
(GiiBiiAdvance) and check if my assumptions are correct. I started with the timer, but I plan to
document the complete Game Boy and Game Boy Color.

I'm using information from the Pan Docs (a lot from here, in fact), the source code of Gambatte and
some other documents by other authors (all of them in the credits of this file), but the most
important source of knowledge about the Game Boy is the Game Boy itself! That's why I've created
lots of test ROMs to verify specific behaviours of the original hardware. I have an original GB, a
GB Pocket, two different GB Color (both are GBC-D), a GB Advance and a GBA SP. While most
of the test give the same results in every hardware, there are some things that are different, so I've
tried to document them as detailed as I can.

Here are some abbreviations and nomenclature I'll use in this document:

- DMG/GB: Original Game Boy (Dot Matrix Game)

- MGB/GBP: Game Boy Pocket / Game Boy Light

- SGB/SGB2: Super Game Boy / Super Game Boy 2

- CGB/GBC: Game Boy Color

- AGB/GBA: Game Boy Advance

- AGS/GBA SP: Game Boy Advance SP

- Clock: Oscillator clock frequency is 4194304 Hz (8388608 Hz in double speed mode).

- Cycle: CPU cycle frequency is 1048576 Hz (2097152 Hz in double speed mode).

Whenever I write sample code I'll use RGBDS syntax, and I'll use the definitions of the file
“Gameboy Hardware definitions” (hardware.inc).

https://github.com/bentley/rgbds
https://github.com/sinamas/gambatte
http://problemkaputt.de/pandocs.htm
https://github.com/AntonioND/giibiiadvance
https://github.com/sinamas/gambatte

2. Memory

2.1. General Memory Map
Addresses Name Description

0000h – 3FFFh ROM0 Non-switchable ROM Bank.

4000h – 7FFFh ROMX Switchable ROM bank.

8000h – 9FFFh VRAM Video RAM, switchable (0-1) in GBC mode.

A000h – BFFFh SRAM External RAM in cartridge, often battery buffered.

C000h – CFFFh WRAM0 Work RAM.

D000h – DFFFh WRAMX Work RAM, switchable (1-7) in GBC mode

E000h – FDFFh ECHO Description of the behaviour below.

FE00h – FE9Fh OAM (Object Attribute Table) Sprite information table.

FEA0h – FEFFh UNUSED Description of the behaviour below.

FF00h – FF7Fh I/O Registers I/O registers are mapped here.

FF80h – FFFEh HRAM Internal CPU RAM

FFFFh IE Register Interrupt enable flags.

2.2. Jump Vectors in ROM0
Some addresses in ROM0 are jump vectors:

0000h,0008h,0010h,0018h,0020h,0028h,0030h,0038h – For RST instruction of CPU.
0040h,0048h,0050h,0058h,0060h – Interrupt Vectors (VBL,LCD,Timer,Serial,Joypad)

Unused vectors may be used for whatever purpose the program wants. RST are special instructions
like CALL, but they are 1 byte long instructions (CALL are 3 bytes long) and need 2 cycles less.

2.3. Cartridge Header in ROM0
The data from 100h to 14Fh of the ROM bank 0 is the ROM header. Contains some information
about the program and the cartridge used. Some games don't fill this area correctly, though. For
more information, read the chapter about it. This is really important because if the checksums here
are incorrect the Game Boy won't jump to the cartridge code. The header is also important for
enabling GBC and SGB functions (read the chapter for more information).

2.4. External Memory and Hardware
Areas from 0000h – 7FFFh and A000h – BFFFh are mapped to the cartridge. The first area is
usually used for ROM, and the second one is used for RAM and external registers (if any). Writes to

ROM area are interpreted by the Memory Bank Controller (MBC) chip. If there is no cartridge
connected both areas will return FFh when read.

2.5. I/O Register Unreadable Bits
All unreadable bits of I/O registers return 1. In general, all unused bits in I/O registers are
unreadable so they return 1. Some exceptions are:

- Unknown purpose (if any) registers. Some bits of them can be read and written.

- The IE register (only the 5 lower bits are used, but the upper 3 can hold any value).

2.6. Boot ROMs
All Game Boy models have a small program that is run when the GB is powered on. This program
initializes some registers and some memory areas (depending on the model) and perorms some
checks with values in the ROM header. So far (2014/12) have been dumped:

- DMG: Mapped to 0000h – 00FFh.

- MGB: Mapped to 0000h – 00FFh. It has been dumped from a Game Boy Pocket, it is unknown if
Game Boy Light has a different one. Probably not, since DMG and MGB are only 1 byte different.

- SGB: Mapped to 0000h – 00FFh.

- CGB: Mapped to 0000h – 00FFh and 0200h – 08FFh.

2.7. FF70h – SVBK – GBC Mode – WRAM Bank (R/W)
This register selects the WRAM bank mapped to D000h – DFFFh. If bank 0 is selected, the actual
mapped bank is 1, but the register will still read 0. The bank at C000h – CFFFh is always 0.

Only the lower 3 bits are (R/W), the rest return '1'. In DMG and GBC in DMG mode it returns FFh.

Bits 0-2 - Select WRAM Bank

2.8. FF4Fh – VBK – GBC Mode – VRAM Bank (R/W)
This register selects the VRAM bank mapped to 8000h – 9FFFh.

Only the lower bit is (R/W), the rest return '1'. In DMG it returns Ffh. In GBC in DMG mode it
returns FEh (always bank 0 selected).

Bit 0 - Select VRAM Bank

Memory at 8000h – 97FFh contains 192 tiles in both banks. Memory at 9800h – 9FFFh contains
two 32×32 tile maps in bank 0, and the corresponding attribute maps in bank 1.

2.9. Unused Memory Area at E000h – FDFFh
In CGB/AGB/AGS this area is just a mirror of the WRAM. Reads and writes from this area are
redirected to C000h – DDFFh. In DMG/MGB(/SGB?) this area works a bit different. With normal
cartridges, it has the same behaviour as the CGB one. With some flashcarts and probably some
pirate cartridges both WRAM and SRAM are active when accessing this area:

- Writes to this area are redirected to both WRAM (C000h – DDFFh) and SRAM (A000h – BDFFh)
areas. This is probably caused because both chip enable signals are set to '1' because of a too simple
chip selection circuit.

- Reads from this area are calculated by reading from WRAM and SRAM, and then performing a
bitwise AND to the two values. IMPORTANT: There is the possibility that this could damage the
hardware, as it short-circuits two different signals! This shouldn't happen with writing because the
chip data buses are in high-impedance mode.

This means that when SRAM is disabled this is just a mirror of WRAM like CGB (as SRAM would
read FFh and writes to SRAM are ignored).

2.10. Unused Memory Area at FEA0h – FEFFh
This small area also has a different behaviour depending on the GB model. It doesn't matter if the
Game Boy is in DMG or CGB mode. Reading and writing is restricted to video modes where the
OAM memory isn't being accessed by the video hardware, the same way as OAM.

- DMG/MGB(/SGB?): Writes are ignored. Reading from this area returns 00h.

- CGB: There are another 32 bytes at FEA0h – FEBFh. At FEC0h – FECFh there are another 16
bytes that are repeated in FED0h – FEDFh, FEE0h – FEEFh and FEF0h – FEFFh. Reading and
writing to any of this 4 blocks will change the same 16 bytes. This is true for revision D of the GBC
CPU. For example:

FEA0h 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

FEB0h 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

FEC0h 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

FED0h 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

FEE0h 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

FEF0h 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

BGB emulates this in a different way, with three groups of 8 bytes. The first 8 bytes are repeated in
FEA0h – FEBFh, the second group is repeated in FEC0h – FEDFh and the last one in FEE0h –
FEFFh. Revision of the GBC CPU is unknown. Example:

FEA0h 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

FEB0h 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

FEC0h 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17

FED0h 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17

FEE0h 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27

FEF0h 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27

Other revisions may have different behaviours.

- AGB/AGS: Writes are ignored. Reading from this area returns NNh where N is the high nibble of
the lower byte of the address: FENXh. The value of X doesn't matter.

3. CPU

3.1. General Information
The Game Boy CPU has an 8-bit data bus and a 16-bit address bus. It has 8 bit and 16 bit registers,
and some of the 8 bit registers can be used together to form a 16-bit value and use it like a number
or an address:

CPU Registers

16bit Hi Lo Name/Function

AF A - Accumulator & Flags

BC B C

DE D E

HL H L

SP - - Stack Pointer

PC - - Program Counter

Flag Register

Bit Name Explanation

7 Z Zero Flag

6 N Add/Sub Flag (BCD)

5 H Half Carry Flag (BCD)

4 C Carry Flag

3-0 - Not used (always zero)

Contains information about the last instruction
that affected the flags.

The Zero Flag and the Carry Flag are used for conditional instructions. The Carry flag is also used
by arithmetic and logic instructions. The BCD Flags are used only by DAA instruction.

The F register can't be accessed normally, only by doing a “push af/pop bc”, for example. The lower
four bits are always zero, even if a “pop af” instruction tries to write other values.

3.2. Initial Register Values
The initial register values depend on the Game Boy model. In GBC, GBA and GBA SP they also
change if the game is DMG only or not. The values don't depend on the user interaction (during
GBC boot ROM if the game is DMG only). To detect the hardware, most games use the values of
registers A and B. To check if it is a SGB games send the command packet to enable multiplayer.

DMG mode

Reg DMG MGB SGB SGB2 CGB AGB AGS

AF 01B0h FFB0h 0100h FF??h 1180h 1100h 1100h

BC 0013h 0013h 0014h ????h 0000h 0100h 0100h

DE 00D8h 00D8h 0000h ????h 0008h 0008h 0008h

HL 014Dh 014Dh C060h ????h 007Ch 007Ch 007Ch

SP FFFEh FFFEh FFFEh ????h FFFEh FFFEh FFFEh

PC 0100h 0100h 0100h 0100h 0100h 0100h 0100h

GBC mode

Reg CGB AGB AGS

AF 1180h 1100h 1100h

BC 0000h 0100h 0100h

DE FF56h FF56h FF56h

HL 000Dh 000Dh 000Dh

SP FFFEh FFFEh FFFEh

PC 0100h 0100h 0100h

Note: SGB values haven't been verified on hardware.

3.3. CPU Instruction Set

Random notes:

- EI instruction enables IME the following cycle to its execution. RETI doesn't have this behaviour,
it enables them right away. DI doesn't have any delay either.

- HALT, when it doesn't enter the HALT mode, needs 4 clocks to complete.

3.4. HALT Mode
HALT mode is exited when a flag in register IF is set and the corresponding flag in IE is also set,
regardless of the value of IME. The only difference is that IME='1' will make the CPU jump to the
interrupt vector (and clear the IF flag), while IME='0' will only make the CPU continue executing
instructions, but the jump won't be performed (and the IF flag won't be cleared).

...

...

3.5. STOP Mode
During STOP mode all the Game Boy is halted, even peripherals like the sound. The LCD behaves
differently in each hardware.

LCD OFF:

- DMG/MGB: LCD OFF. No sound.

- GBC/GBA: Black screen. Sound.

LCD ON:

- DMG/MGB: White screen. No sound.

- GBC/GBA: White screen. Sound.

3.6. Entering STOP Mode correctly
In order to enter it correctly some of the P1 select bits should be selected (to select buttons to exit
STOP mode) and IE should be 00h. If no output lines of P1 are selected (set to '0') STOP mode will
never exit. Sample code:

ld a,[rIE]
ld b,a ; Save IE.
xor a,a
ld [rIE],a ; Clear IE.
ld a,$00
ld [rP1],a ; Select both joypad lines to exit with any button.

stop

ld a,b
ld [rIE],a ; Restore IE

3.7. FF4Dh – KEY1 – GBC Mode – Speed Switch (R/W)
This register is used to prepare the GBC to switch between double and single speed modes. It also
tells the current mode the CPU is on. GBC starts in single speed mode.

Bit 7 - Current Speed (0=Normal, 1=Double) (Read Only)
Bit 0 - Prepare Speed Switch (0=No, 1=Prepare) (Read/Write)

The other bits are unused and return '1'. In DMG and GBC in DMG mode this register returns FFh
(even though the CPU is in single speed mode).

After switching speed, bit 0 will be cleared automatically.

The only circuits not affected by a speed switch are the video and audio ones.

3.8. Speed Switch
CPU speed switch takes (128 × 1024 - 76) clocks (including the clocks to fetch and execute the
STOP instruction). It needs the same clock amount when switching from single speed and from
double speed. I've measured it with the timer, so the 76 clocks could be there because at some point
during the speed change the clock does weird things. Sample code to switch speed:

CPU_fast::
 ld a,[rKEY1]
 bit 7,a
 jr z,CPU_switch ; Check if CPU is in double speed mode.
 ret

CPU_slow::
 ld a,[rKEY1]
 bit 7,a
 jr nz,CPU_switch ; Check if CPU is in single speed mode.
 ret

CPU_switch:
 ld a,[rIE]
 ld b,a ; Save IE.
 xor a,a
 ld [rIE],a ; Clear IE.
 ld a,$30
 ld [rP1],a ; Disable joypad lines.
 ld a,$01
 ld [rKEY1],a ; Prepare CPU for speed switch.

 stop ; Switch speed.

 ld a,b
 ld [rIE],a ; Restore IE.
 ret

- If P1 register bits 4 or 5 are selected (set to '0') and any key is pressed during the speed switch, the
CPU will hang, probably because of the STOP mode being cancelled.

- During speed switch, no HDMA is executed, even though all peripherals keeps running, because it
depends on the CPU.

3.9. Undefined Opcodes
Undefined opcodes hang the CPU, but sound (even fade in/out and that kind of things) and video
hardware keep working. Probably serial keeps working, but that has not been tested.

Another kind of undefined opcodes is the form 10h XXh where XXh is not 00h. That format of
opcode (corrupted STOP) will switch the LCD on.

4. Interrupts

4.1. Vector 0040h – Vertical Blanking Interrupt
This interrupt is triggered when the LCD controller enters V-Blank at scanline 144. This doesn't
happen if the LCD is off. For more information read the video controller chapter.

4.2. Vector 0048h – LCD STAT Interrupt
This interrupt can be configured to be triggered when some LCD events happen (like starting to
draw a scanline specified in LYC register). For more information read the video controller chapter.

4.3. Vector 0050h – Timer Interrupt
This interrupt is requested when TIMA overflows. There is a delay of one CPU cycle between the
overflow and the IF flag being set. For more information read the timer chapter.

4.4. Vector 0058h – Serial Interrupt
This interrupt is requested when a serial transfer of 1 byte is complete. For more information read
the serial chapter.

4.5. Vector 0060h – Joypad Interrupt
This interrupt is triggered when there is a transition from '1' to '0' in one of the P1 input lines. For
more information read the joypad chapter.

4.6. IME – Interrupt Master Enable Flag
This flag is not mapped to memory and can't be read by any means. The meaning of the flag is not
to enable or disable interrupts. In fact, what it does is enable the jump to the interrupt vectors.

0 = Disable jump to interrupt vectors.
1 = Enable jump to interrupt vectors.

IME can only be set to '1' by the instructions EI and RETI, and can only be set to '0' by DI (and the
CPU when jumping to an interrupt vector).

Note that EI doesn't enable the interrupts the same cycle it is executed, but the next cycle:

di
ld a,IEF_TIMER
ld [rIE],a
ld [rIF],a
ei
inc a ; This is still executed before jumping to the interrupt vector.
inc a ; This is executed after returning.
ld [hl+],a

4.7. FF0Fh – IF – Interrupt Flags (R/W)
Only the 5 lower bits of this register are (R/W), the others return '1' always when read.

Bit 4 – Joypad Interrupt Requested (1=Requested)
Bit 3 – Serial Interrupt Requested (1=Requested)
Bit 2 – Timer Interrupt Requested (1=Requested)
Bit 1 – LCD STAT Interrupt Requested (1=Requested)
Bit 0 – Vertical Blank Interrupt Requested (1=Requested)

Each bit is set to 1 automatically when an internal signal from that subsystem goes from '0' to '1', it
doesn't matter if the corresponding bit in IE is set. This is specially important in the case of LCD
STAT interrupt, as it will be explained in the video controller chapter. The bits in this register can be
set or reset manually too, the CPU will handle them the same way as when they are set by a real
event. If IF is written the same cycle one of its flags is set to '1', the written value is saved. CHECK
IF THIS HAPPENS WITH MODE 0 STAT INTERRUPT TOO

4.8. FFFFh – IE – Interrupt Enable (R/W)
All 8 bits of this register are (R/W), but only the 5 lower ones are used by the interrupt handler.

Bit 4 – Joypad Interrupt Enable (1=Enable, 0=Disable)
Bit 3 – Serial Interrupt Enable (1=Enable, 0=Disable)
Bit 2 – Timer Interrupt Enable (1=Enable, 0=Disable)
Bit 1 – LCD STAT Interrupt Enable (1=Enable, 0=Disable)
Bit 0 – Vertical Blank Interrupt Enable (1=Enable, 0=Disable)

4.9. Interrupt Handling
Interrupts are checked before fetching a new instruction. If any IF flag and the corresponding IE
flag are both '1' and IME is set to '1' too, the CPU will push the current PC into the stack, will jump
to the corresponding interrupt vector and set IME to '0'. If IME is '0', this won't happen. This flags
are only cleared when the CPU jumps to an interrupt vector because of an interrupt (or IF is written
manually).

If 2 or more interrupts are requested at the same time and the corresponding IE bits are set, the
vector with lower address has higher priority (vertical blank has the highest priority, joypad the
lowest priority).

It takes 20 clocks to dispatch an interrupt. If CPU is in HALT mode, another extra 4 clocks are
needed. This timings are the same in every Game Boy model or in double/single speeds in
CGB/AGB/AGS.

 Interrupt Service Routine

According to Z80 datasheets, the following occurs when control is being transferred to an interrupt
handler:

1. Two wait states are executed (2 machine cycles pass while nothing occurs, presumably the CPU
is executing NOPs during this time).
2. The current PC is pushed onto the stack, this process consumes 2 more machine cycles.
3. The high byte of the PC is set to 0, the low byte is set to the address of the handler
($40,$48,$50,$58,$60). This consumes one last machine cycle.

The entire ISR should consume a total of 5 machine cycles. This has yet to be tested, but is what the
Z80 datasheet implies.

If IME='0' and CPU is halted, when any interrupt is triggered by setting any IF flag to '1' with the
corresponding bit in IE set to '1', it takes 4 clocks to exit halt mode, even if the CPU doesn't jump to
the interrupt vector.

The correct instruction to return from an interrupt vector is RETI, as it returns and enables
interrupts in the same instruction. If the program needs to handle interrupts during an interrupt
procedure, they can be enabled again with EI.

Some docs say that the return address pushed to stack in halt mode is the one of the halt itself, but
that's not true. The address pushed to stack is obviously the one of the next instruction after the halt.

4.10. The HALT Instruction Behaviour
HALT instruction has three different behaviours depending on IME, IE and IF. It behaves the same
way in all Game Boy models.

- IME = 1

HALT executed normally. CPU stops executing instructions until (IE & IF & 1F) != 0. When
a flag in IF is set and the corresponding IE flag is also set, the CPU jumps to the interrupt
vector. The return address pushed to the stack is the next instruction to the HALT, not the
HALT itself. The IF flag corresponding to the vector the CPU has jumped in is cleared.

- IME = 0

- (IE & IF & 1Fh) = 0

HALT mode is entered. It works like the IME = 1 case, but when a IF flag is set and
the corresponding IE flag is also set, the CPU doesn't jump to the interrupt vector, it
just continues executing instructions. The IF flags aren't cleared.

- (IE & IF & 1Fh) != 0

HALT mode is not entered. HALT bug occurs: The CPU fails to increase PC when
executing the next instruction. The IF flags aren't cleared. This results on weird
behaviour. For example:

One byte long instructions:

xor a,a
halt
inc a ; PC fails to increase, it is executed twice.
ld [hl+],a

The equivalent code with a non-bugged HALT instruction would be:

xor a,a
halt
inc a
inc a
ld [hl+],a ; [hl] is set to 2

With instructions that need more than one byte the results can be even worse:

xor a,a
halt
ld a,$14 ; $3E $14 is executed as $3E $3E $14
ld [hl+],a

The equivalent code with a non-bugged HALT instruction would be:

xor a,a
halt
ld a,$3E ; $3E $3E
inc d ; $14
ld [hl+],a ; [hl] is set to $3E, and register d is incremented

One way to prevent this bug is to always add a NOP instruction after the HALT.

There are no extra clocks as a result of this bug, only the corresponding to the actually executed
instructions.

5. Timer

The Game Boy timer subsystem is composed by the three timer registers (TIMA, TMA and TAC),
and the DIV register. This is a simplified schematic:

5.1. FF04h – DIV – Divider Register (R/W*)
It works by using an internal system 16 bit counter. The counter increases each clock (4 clocks per
nop) and the value of DIV is the 8 upper bits of the counter: it increases every 256 oscillator clocks.
The value of DIV is the actual bits of the system internal counter, not a mirror, not a register that
increases with the system internal counter: The actual bits of the counter mapped to memory.

DIV overflows at 64 Hz in normal speed mode, 128 Hz in double speed mode. It can be written, but
its value resets to 0 no matter what the value written is. In fact, the whole system internal counter is
set to 0. DIV is just its the 8 MSB of that counter, so DIV is set to 0 too.

- Serial clock is not derived from this counter, it is not affected by DIV register.

The initial values (when PC=0100h) of the internal counter for the different Game Boy models are:

- DMG/MGB: ABCCh.

- SGB/SGB2: Not tested. Different from DMG (different boot ROM).

- CGB: 1EA0h (GBC game), 267Ch (DMG game, no user interaction during boot).

- AGB/AGS: 1EA4h (GBC game), 2680h (DMG game, no user interaction during boot).

5.1.1. Interaction with APU

- The APU uses the DIV to update sweep (channel 1), fade in/out and time out, the same way the
timer uses it to update itself.

- In normal speed mode the APU updates when bit 5 of DIV goes from 1 to 0 (256 Hz). In double
speed mode, bit 6.

- Writing to DIV every instruction, for example, will make the APU produce the same frequency
with the same volume even if sweep and fade out are enabled.

- Writing to DIV doesn't affect the frequency itself. The waveform generation is driven by another
timer.

5.2. FF05h – TIMA – Timer Counter (R/W)
This register holds an 8 bit value that is the timer counter, it increases at a certain frequency until it
overflows. In that moment, the value in register TMA is loaded into TIMA and an interrupt is
requested if the corresponding IE flag is set and IME is set. The interrupt vector address is 0050h.

5.3. FF06h – TIMA – Timer Modulo (R/W)
The 8 bit value in this register is loaded into TIMA when it overflows.

5.4. FF07h – TAC – Timer Control (R/W)
This register enables/disables the timer and sets its frequency.

Bit 2 - Timer Enable (0=Disable, 1=Enable)
Bits 1-0 - Main Frequency Divider
 00: 4096 Hz (Increase every 1024 clocks)
 01: 262144 Hz (“ “ 16 clocks)
 10: 65536 Hz (“ “ 64 clocks)
 11: 16386 Hz (“ “ 256 clocks)

Only the lower 3 bits are (R/W).

5.5. Timer Obscure Behaviour
The signal used to increase the TIMA register is generated in a weird way. It selects the actual value
of one bit of the system internal counter, and performs an and operation with the enable bit in TAC.
This means that writing to the DIV register affects the timer too (writing to timer registers doesn't
affect the DIV register).

- For example, if DIV register is written every 12 clocks, even in the fastest timer configuration, it
will never increase. If the timer is configured to increase every 64 clocks but the program writes to
it every 20 clocks, it will never increase (but it would if it was configured to increase every 16
clocks).

The next picture is a schematic of the relationship between the DIV register and the timer in a DMG
or MGB for a better understanding of its behaviour:

As you can see, TAC register only selects the bit of the system internal counter that will be used to
increase the timer counter. Then, it performs a logical AND operation with the enable bit in TAC
and that signal goes to a falling edge detector.

For example, if timer is configured to increase every 64 clocks, TAC will select bit 5 of the system
internal counter. As soon as it overflows from bit 5 and goes back to 0, the falling edge detector will
trigger a pulse to increase TIMA register.

This circuit has three problems:

- When writing to DIV register the TIMA register can be increased if the counter has reached half
the clocks it needs to increase because the selected bit by the multiplexer will go from 1 to 0 (which
is a falling edge, that will be detected by the falling edge detector).

- When disabling the timer, if the corresponding bit in the system counter is set to 1, the falling edge
detector will see a change from 1 to 0, so TIMA will increase. This means that whenever half the
clocks of the count are reached, TIMA will increase when disabling the timer.

- When changing TAC register value, if the old selected bit by the multiplexer was 0, the new one is
1, and the new enable bit of TAC is set to 1, it will increase TIMA.

This behaviour is a lot glitchier in newer models. DMG and MGB behave the same way (SGB and
SGB2 haven't been tested), but GBC, AGB and AGS (GBA SP) are completely different. In fact,

different revisions of the GBC have a different behaviour. The DMG behaviour when writing to
TAC is this:

const unsigned int clocks[4] = {1024, 16, 64, 256} // Use the TAC value here

IF old_enable == 0 THEN
 glitch = 0 (*)
ELSE
 IF new_enable == 0 THEN
 glitch = (sys_clocks & (old_clocks/2)) != 0
 ELSE
 glitch = ((sys_clocks & (old_clocks/2)) != 0) && ((sys_clocks & (new_clocks/2)) == 0)
 END IF
END IF

For example, if the old TAC value was 6, old_clocks is 64 and old_enabled is 1. If the written TAC
value is 0, new_clocks is 1024 and new_enabled is 0.

The sentence marked with a (*) has a different behaviour in GBC (AGB and AGS seem to have
strange behaviour even in the other statements). When enabling the timer and maintaining the same
frequency it doesn't glitch. When disabling the timer it doesn't glitch either. When another change of
value happens (so timer is enabled after the write), the behaviour depends on a race condition, so it
cannot be predicted for every device. One possible explanation is that the AND gate corresponding
to the enable bit is placed after the edge detector, or even that the edge detector is asynchronous, but
I'm not sure about this, so the next schematic shouldn't be trusted:

Because all of this, timer initialization should be done carefully. A safe way to set up the timer is:

ld a,TACF_16KHZ|TACF_STOP
ld [rTAC],a ; Disable timer and load new frequency.
ld a,__TMA_VALUE__ ; __TMA_VALUE__ is any byte value.
ld [rTMA],a ; Load modulo value in both
ld [rTIMA],a ; TMA and TIMA registers.
ld a,TACF_16KHZ|TACF_START
ld [rDIV],a ; Synchronize system counter.
ld [rTAC],a ; Enable timer.

If the timer interrupt is going to be used:

ld b,~IEF_TIMER
ld a,[rIE]
and a,b
ld [rIE],a ; Clear IE timer flag.

xor a,a ; a = 0
ld [rTIMA],a ; Set TIMA to 0
ld a,TACF_16KHZ|TACF_STOP
ld [rTAC],a ; Disable timer and load new frequency.
ld a,__TMA_VALUE__ ; __TMA_VALUE__ is any byte value.
ld [rTMA],a ; Load modulo value in both
ld [rTIMA],a ; TMA and TIMA registers.

ld a,[rIF]
and a,b
ld [rIF],a ; Clear IF timer flag.
ld b,IEF_TIMER
ld a,[rIE]
or a,b
ld [rIE],a ; Set IE timer flag.

ld a,TACF_16KHZ|TACF_START
ld [rDIV],a ; Synchronize system counter.
ld [rTAC],a ; Enable timer.

5.6. Timer Overflow Behaviour
When TIMA overflows, the value from TMA is loaded and IF timer flag is set to 1, but this doesn't
happen immediately. Timer interrupt is delayed 1 cycle (4 clocks) from the TIMA overflow. It could
be less clocks, but the CPU can't check that. The TMA reload to TIMA is also delayed. For one
cycle, after overflowing TIMA, the value in TIMA is 00h, not TMA. This happens only when an
overflow happens, not when the upper bit goes from 1 to 0, it can't be done manually writing to
TIMA, the timer has to increment itself.

For example (SYS is the system internal counter divided by 4 for easier understanding, each
increment of the graph is 1 cycle, not 1 clock):

Timer overflows:

[A] [B]

SYS FD FE FF 00 01 02 03

TIMA FF FF FF 00 23 23 23

TMA 23 23 23 23 23 23 23

IF E0 E0 E0 E0 E4 E4 E4

Timer doesn't overflow:

[C]

SYS FD FE FF 00 01 02 03

TIMA 45 45 45 46 46 46 46

TMA 23 23 23 23 23 23 23

IF E0 E0 E0 E0 E0 E0 E0

- During the strange cycle [A] you can prevent the IF flag from being set and prevent the TIMA
from being reloaded from TMA by writing a value to TIMA. That new value will be the one that
stays in the TIMA register after the instruction. Writing to DIV, TAC or other registers won't prevent
the IF flag from being set or TIMA from being reloaded.

- If you write to TIMA during the cycle that TMA is being loaded to it [B], the write will be ignored
and TMA value will be written to TIMA instead.

- If register IF is written during [B], the written value will overwrite the automatic flag set to '1'. If a
'0' is written during this cycle, the interrupt won't happen.

- If TMA is written the same cycle it is loaded to TIMA [B], TIMA is also loaded with that value.

- This is a guessed schematic to explain the priorities with registers TIMA and TMA:

TMA is a latch. As soon as it is written, the output shows that value. That explains that when TMA
is written and TIMA is being incremented, the value written to TMA is also written to TIMA. It
doesn't affect the IF flag, though.

6. Serial
The serial hardware works with an internal timer that can't be reseted by any means. This is a
diagram of the control part of the serial:

TODO: check, document... everything that goes here…

SB is R/W

Unused bits in SC are 1
masks:
DMG/GBC in DMG mode: 7E
GBC: 7C

7. Joypad

7.1. FF00h – P1 – Joypad (R/W)
The buttons of the Game Boy are arranged in the form of a 2×4 matrix. This matrix has 2 input lines
(outputs from the CPU) and 4 output lines (inputs from the CPU).

Most programs read from this port several times as a delay to allow the inputs to stabilize.

This register is also used to send command packets to the SNES in the SGB and SGB2.

Bit 5 - P15 Select Button Keys (0=Select)
Bit 4 - P14 Select Direction Keys (0=Select)
Bit 3 - P13 Input Down or Start (0=Pressed) (Read Only)
Bit 2 - P12 Input Up or Select (0=Pressed) (Read Only)
Bit 1 - P11 Input Left or Button B (0=Pressed) (Read Only)
Bit 0 - P10 Input Right or Button A (0=Pressed) (Read Only)

Bits 6 and 7 always return 1.

The inputs to the CPU are pulled up by four resistors. They are only '0' when a CPU output is
selected (set to '0') and a button is pressed. This is a schematic of the circuit:

7.2. Reading the Joypad
This is a commonly used routine to read the joypad:

ld a,$10
ld [rP1],a ; select P14
ld a,[rP1]
ldh a,[rP1] ; Wait a few cycles.
cpl ; Complement A.
and a,$0F ; Get only first 4 bits.
swap a ; Swap it.

ld b,a
ld a,$20
ld [rP1],a ; Select P15.
ldh a,[rP1]
ldh a,[rP1]
ldh a,[rP1]
ldh a,[rP1]
ldh a,[rP1]
ldh a,[rP1] ; Wait a few MORE cycles.
cpl
and a,$0F
or a,b ; Put A and B together.
ld [JOYPAD_STATE],a ; Save joypad state.
ld a,$30 ; Deselect P14 and P15.
ld [rP1],a

The resulting byte is formed like this:

Bit 7 - Start (1=Pressed)
Bit 6 - Select (1=Pressed)
Bit 5 - B (1=Pressed)
Bit 4 - A (1=Pressed)
Bit 3 - Down (1=Pressed)
Bit 2 - Up (1=Pressed)
Bit 1 - Left (1=Pressed)
Bit 0 - Right (1=Pressed)

7.3. Joypad Interrupt
This interrupt is triggered when there is a transition from '1' to '0' in one of the P1 input lines. For
that to happen, one or two of the output lines have to be selected (with a '0' in that line). It can only
detect a key press if there are no other buttons pressed.

This interrupt is present in all Game Boy models. GBA SP seems to be the only model not affected
by key bouncing because of the different buttons used in it, or maybe because it uses low-pass
filters.

7.4. Software-Triggered Joypad Interrupt
This interrupt can be triggered by software. The interrupt itself is driven by an internal signal. When
that signal goes from '1' to '0', the IF flag is set to '1'. The signal is obtained by performing a logical
AND of the four input bits of P1.

Normally, the program would set the output bits to '0'. The joypad inputs are pulled up, so until the
user presses, the signals are '1' and the internal signal is '1'. When the user presses, at least one of
the inputs go to '0' and the internal signal is set to '0', so the IF flag is set.

If the user is pressing a button but both output lines are set to '1', the input lines are set to '1' too. If
the program sets the output lines to '0', one of the input bits will go to '0', setting the IF flag too.

8. Video controller

8.1. The LCD
The Game Boy LCD is 160×144 pixels. It can display 4 gray shades in DMG/MGB/SGB and 15-bit
depth colors in CGB/AGB/AGS. It can show a background and a window (another background over
the first one), and up to 40 sprites (10 per line) of 8×8 or 8×16 (everyone the same size). The DMG
has 1 palette of 4 gray shades for backgrounds and 2 palettes of 3 gray shades for sprites (color 0 is
transparent). The GBC has 8 palettes of 4 colors for backgrounds and 8 palettes of 3 colors for
sprites (color 0 is transparent). A vertical refresh happens every 70224 clocks (140448 in GBC
double speed mode): 59,7275 Hz

LCD timings are a bit different depending on the hardware. DMG and MGB (and SGB?) behave the
same way and CGB, AGB, AGS in another way (even in DMG compatibility mode).

8.2. FF40h – LCDC – LCD Control (R/W)
This register is used to enable or disable various elements (sprites, background, the LCD itself) and
to configure them.

Bit 7 - LCD Power (0=Off, 1=On)
Bit 6 - Window Tile Map (0=9800h-9BFFh, 1=9C00h-9FFFh)
Bit 5 - Window Enable (0=Disabled, 1=Enabled)
Bit 4 - BG & Window Tileset (0=8800h-97FFh, 1=8000h-8FFFh)
Bit 3 - BG Tile Map (0=9800h-9BFFh, 1=9C00h-9FFFh)
Bit 2 - Sprite Size (0=8×8, 1=8×16)
Bit 1 - Sprites Enabled (0=Disabled, 1=Enabled)
Bit 0 - BG Enabled (in DMG) (0=Disabled, 1=Enabled)

Turning off the LCD (by writing a 0 to bit 7) should only be done during V-Blank. Doing it outside
V-Blank period may damage the hardware (?).

Bit 0 of this register has different meanings depending on the Game Boy model.

• DMG/MGB/SGB: BG Enable. Window and sprites are unaffected by this bit.

• CGB/AGB/AGS:

◦ CGB mode: BG and Window Master Priority. If this bit is '0', sprites are always on top
of the bg and the window, regardless of BG attribute map and sprite priority flags.

◦ DMG compatibility mode: BG and Window Enable. If this bit is '0', both window and
background are disabled (bit 5 is ignored). This is a possible compatibility problem.

A disabled background is white (color 0?).

When the LCD is turned on the LCD controller starts working right away. The same happens when
turning the LCD off, it just stops working. Anyway, the LCD won't show any image during the first
frame it is turned on. The first drawn frame is the second one. In the DMG and MGB the screen will
be shown very light (the same as interframe blending: the previous white frame is mixed with the

correct frame). In the CGB, AGB and AGS the image is shown correctly (even in DMG mode). This
fact could even be exploited to get more than 60 FPS in CGB, AGB and AGS! The correct way to
do it is to turn the LCD on, wait one frame, wait until VBL of the second one, turn the LCD off,
turn it on immediately and wait for the second VBL again to repeat the process. The first actually
drawn frame is the second one. This means that in CGB, AGB and AGS the last frame is shown for
one frame (only one) after the LCD is powered off before going white (it's not updated, the image is
just still there).

If the second frame is stopped by turning LCD off midframe: In CGB, AGB and AGS, the lines that
are not drawn are just white. In DMG and MGB too, but if the LCD is turned on right away the next
frame starts to be drawn! In CGB, AGB and AGS those lines are white always.

The LCD is turned off the same cycle the bit 7 of LCDC is set to 0 in all GB models except for
AGB and AGS, where the LCD stays on for 1 more cycle. This affects the interrupts. If the LCD is
turned off the same cycle any IF bit is going from '0' to '1', the bit of IF will be set to '1'. If it's
switched off the cycle before, IF won't be set to '1' (except in AGB and AGS).

TODO: Test everything.

8.3. FF44h – LY – LCD Current Scanline (R)
This register indicates the current horizontal line that is being drawn. It can take any value from 0 to
153. When the LCD is off this register is fixed at 00h.

8.4. FF45h – LYC – LY Compare (R/W)
This value is used to trigger an interrupt when LY has the same value as LYC. Check STAT register
documentation below for more information.

8.5. FF41h – STAT – LCD Status (R/W)
This register is used to check the status of the LCD and to configure the LCD interrupt. For more
information about LCD interrupt read below.

Bit 6 - LY=LYC Check Enable (1=Enable) (Read/Write)
Bit 5 - Mode 2 OAM Check Enable (1=Enable) (Read/Write)
Bit 4 - Mode 1 V-Blank Check Enable (1=Enable) (Read/Write)
Bit 3 - Mode 0 H-Blank Check Enable (1=Enable) (Read/Write)
Bit 2 - LY=LYC Comparison Signal (1:LYC=LY) (Read Only)
Bits 1-0 - Screen Mode (Mode 0-3) (Read Only)
 0: H-Blank
 1: V-Blank
 2: Searching OAM-RAM
 3: Transferring Data to LCD Driver.

Bit 7 is unused and always returns '1'. Bits 0-2 return '0' when the LCD is off.

During mode 0 and mode 1 the CPU can access both VRAM and OAM. During mode 2 the CPU
can only access VRAM, not OAM. During mode 3 OAM and VRAM can't be accessed. In GBC
mode the CPU can't access Palette RAM (FF69h and FF6Bh) during mode 3.

A scanline normally takes 456 clocks (912 clocks in double speed mode) to complete. A scanline
starts in mode 2, then goes to mode 3 and, when the LCD controller has finished drawing the line
(the timings depend on lots of things) it goes to mode 0. During lines 144-153 the LCD controller is
in mode 1. Line 153 takes only a few clocks to complete (the exact timings are below). The rest of
the clocks of line 153 are spent in line 0 in mode 1!

Bit 2 is set to '1' even if Bit 6 is '0'. The timings are a bit strange, they are described below.

- VBL IRQ is not delayed, it's executed the same clock as PPU enters VBL screen mode.??????

-What happens when turning it on/off?

8.6. VBL Interrupt
Vertical Blank interrupt is triggered when the LCD controller enters the VBL screen mode (mode 1,
LY=144). This happens once per frame, so this interrupt is triggered 59.7 times per second. During
this period the VRAM and OAM can be accessed freely, so it's the best time to update graphics (for
example, use the OAM DMA to update sprites for next frame, or update tiles to make animations).

This period lasts 4560 clocks in normal speed mode and 9120 clocks in double speed mode. That's
exactly the time needed to draw 10 scanlines.

The VBL interrupt isn't triggered when the LCD is powered off or on, even when it was on VBL
mode. It's only triggered when the VBL period starts.

8.7. STAT Interrupt
This interrupt can be configured with register STAT.

The STAT IRQ is trigged by an internal signal.

This signal is set to 1 if:
 ((LY = LYC) AND (STAT.ENABLE_LYC_COMPARE = 1)) OR
 ((ScreenMode = 0) AND (STAT.ENABLE_HBL = 1)) OR
 ((ScreenMode = 2) AND (STAT.ENABLE_OAM = 1)) OR
 ((ScreenMode = 1) AND (STAT.ENABLE_VBL || STAT.ENABLE_OAM)) -> Not only
VBL!!??

-If LCD is off, the signal is 0.

-The STAT IRQ is triggered when this signal goes from 0 to 1 (rising edge). This explains some
cases when the IRQ is not triggered if 2 or more events are enabled. For example, when going from
HBL to OAM mode, if STAT.ENABLE_HBL and STAT.ENABLE_OAM are enabled, the signal
will stay 1 in the transition, so no IRQ will be triggered.

-It seems that this interrupt needs less time to execute in DMG than in CGB?

-DMG bug?

8.8. LY, STAT and IF Timings. VBL interrupt.
The next tables will show scanline timings (accurate to 4 clocks) of VBL interrupt. DMG has the
same timings as MGB. CGB has the same timings as AGB and AGS.

In the VBL IF Flag fields, a '1' means that this clock the IF flag will read '1'. Of course, the value

won't be changed to '0' unless interrupt is handled or the IF register is written manually, a '0' only
means that during that cycle the flag doesn't change to '1'. Note that the IF VBL bit is only changed
to '1' during one cycle (when the LCD controller goes from non-VBL mode to VBL mode). If the IF
register bit is set to '0' the same cycle it's going to '1', the interrupt isn't triggered (IF will remain '0').

8.8.1. Timings in DMG

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

VBL IF Flag 0 1 0 0 0 0

8.8.2. Timings in CGB in DMG mode

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

VBL IF Flag 0 1 0 0 0 0

8.8.3. Timings in CGB in CGB mode (single speed)

Line 143

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 143 143 143 143 ... 143 143 143 ... 143 (*)

STAT Mode 2 2 2 2 ... 2 3 3 ... 0 0

VBL IF Flag 0 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 (*)

STAT Mode 1 1 1 1 1 1

VBL IF Flag 1 0 0 0 0 0

8.8.4. Timings in CGB in CGB mode (double speed)

Line 143

Clocks 0 4 8 12 ... 160 164 168 ... 904 908

LY Register 143 143 143 143 ... 143 143 143 ... 143 143

STAT Mode 0 2 2 2 ... 2 3 3 ... 0 0

VBL IF Flag 0 0 0 0 0 0

Line 144

Clocks 0 4 8 12 904 908

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

VBL IF Flag 0 1 0 0 0 0

8.9. LY, LYC, STAT and IF Timings. STAT LY=LYC interrupt.
The next tables will show scanline timings (accurate to 4 clocks) but they don't show the change
from mode 3 to mode 0 because it depends on the number of sprites drawn, this will be explained
later. Mode 2 needs the same number of clocks to complete regardless of sprite size and the sprite
enable bits of LCDC register and the number of sprites in the line. DMG has the same timings as
MGB. CGB has the same timings as AGB and AGS.

Each scanline takes 456 clocks in normal speed mode and 912 clocks in double speed mode but
there are some strange things regarding the LY register and the LY=LYC comparison that are
explained below. The “LY to compare LYC” means that if LYC is equal to the value of the table, Bit
2 of STAT register is set to '1', if not it is set to '0'. Its timings are a bit different from the real LY
value. A '-' in this field means that it seems that Bit 2 is always '0' in this cycle, regardless of the
value of LYC.

In the IF Flag field, a '1' means that this clock the IF flag will read '1' if the LYC value is the one

that corresponds to LY (and STAT Bit 6 is set). Of course, the value won't be changed to '0' unless
LCD interrupt is handled or the IF register is written manually, a '0' only means that during that
cycle the flag doesn't change to '1' (if STAT register isn't modified).

Note that the IF VBL bit is only changed to '1' during one cycle (when the LCD controller goes
from non-VBL mode to VBL mode). If the IF register bit is set to '0' the same cycle it's going to '1',
the interrupt isn't triggered (IF will remain '0').

8.9.1. Timings in DMG

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 0 2 2 2 ... 2 2 3 ... 0 0

LY to compare LYC 0 0 0 0 ... 0 0 0 ... 0 0

IF Flag (LY=LYC) 0 0 0 0 ... 0 0 0 ... 0 0

Lines 1-143

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 13 13 13 13 ... 13 13 13 ... 13 13

STAT Mode 0 2 2 2 ... 2 2 3 ... 0 0

LY to compare LYC - 13 13 13 ... 13 13 13 ... 13 13

IF Flag (LY=LYC) 0 1 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

LY to compare LYC - 144 144 144 144 144

IF Flag (LY=LYC) 0 1 0 0 0 0

Lines 145-152

Clocks 0 4 8 12 448 452

LY Register 146 146 146 146 146 146

STAT Mode 1 1 1 1 1 1

LY to compare LYC - 146 146 146 146 146

IF Flag (LY=LYC) 0 1 0 0 0 0

Line 153

Clocks 0 4 8 12 16 448 452

LY Register 153 0 0 0 0 0 0

STAT Mode 1 1 1 1 1 1 1

LY to compare LYC - 153 - 0 0 0 0

IF Flag (LY=LYC) 0 1 0 1 0 0 0

8.9.2. Timings in CGB in DMG mode

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 1 2 2 2 ... 2 2 3 ... 0 0

LY to compare LYC 0 0 0 0 ... 0 0 0 ... 0 0

IF Flag (LY=LYC) 0 0 0 0 ... 0 0 0 ... 0 0

Lines 1-143

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 13 13 13 13 ... 13 13 13 ... 13 13

STAT Mode 0 2 2 2 ... 2 2 3 ... 0 0

LY to compare LYC 12 13 13 13 ... 13 13 13 ... 13 13

IF Flag (LY=LYC) 0 1 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

LY to compare LYC 143 144 144 144 144 144

IF Flag (LY=LYC) 0 1 0 0 0 0

Lines 145-152

Clocks 0 4 8 12 448 452

LY Register 146 146 146 146 146 146

STAT Mode 1 1 1 1 1 1

LY to compare LYC 145 146 146 146 146 146

IF Flag (LY=LYC) 0 1 0 0 0 0

Line 153

Clocks 0 4 8 12 16 448 452

LY Register 153 153 0 0 0 0 0

STAT Mode 1 1 1 1 1 1 1

LY to compare LYC 152 153 153 0 0 0 0

IF Flag (LY=LYC) 0 1 0 1 0 0 0

8.9.3. Timings in CGB in CGB mode (single speed)

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 (*)

STAT Mode 2 2 2 2 ... 2 3 3 ... 0 0

LY to compare LYC 0 0 0 0 ... 0 0 0 ... 0 0

IF Flag (LY=LYC) 0 0 0 0 ... 0 0 0 ... 0 0

Lines 1-143

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 13 13 13 13 ... 13 13 13 ... 13 (*)

STAT Mode 2 2 2 2 ... 2 3 3 ... 0 0

LY to compare LYC 13 13 13 13 ... 13 13 13 ... 13 13

IF Flag (LY=LYC) 1 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 (*)

STAT Mode 1 1 1 1 1 1

LY to compare LYC 144 144 144 144 144 144

IF Flag (LY=LYC) 1 0 0 0 0 0

Lines 145-152

Clocks 0 4 8 12 448 452

LY Register 146 146 146 146 146 (*)

STAT Mode 1 1 1 1 1 1

LY to compare LYC 146 146 146 146 146 146

IF Flag (LY=LYC) 1 0 0 0 0 0

Line 153

Clocks 0 4 8 12 448 452

LY Register 153 0 0 0 0 0

STAT Mode 1 1 1 1 1 1

LY to compare LYC 153 153 0 0 0 0

IF Flag (LY=LYC) 1 0 1 0 0 0

The value of (*) depends on the current scanline (and it's consistent between all tested GBC units

and models). Values for lines 0-152 are:

LY 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh

(*) 00h 00h 02h 00h 04h 04h 06h 00h 08h 08h 0Ah 08h 0Ch 0Ch 0Eh 00h

LY 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh

(*) 10h 10h 12h 10h 14h 14h 16h 10h 18h 18h 1Ah 18h 1Ch 1Ch 1Eh 00h

LY 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh

(*) 20h 20h 22h 20h 24h 24h 26h 20h 28h 28h 2Ah 28h 2Ch 2Ch 2Eh 20h

LY 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh

(*) 30h 30h 32h 30h 34h 34h 36h 30h 38h 38h 3Ah 38h 3Ch 3Ch 3Eh 00h

LY 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh

(*) 40h 40h 42h 40h 44h 44h 46h 40h 48h 48h 4Ah 48h 4Ch 4Ch 4Eh 40h

LY 50h 51h 52h 53h 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh

(*) 50h 50h 52h 50h 54h 54h 56h 50h 58h 58h 5Ah 58h 5Ch 5Ch 5Eh 40h

LY 60h 61h 62h 63h 64h 65h 66h 67h 68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh

(*) 60h 60h 62h 60h 64h 64h 66h 60h 68h 68h 6Ah 68h 6Ch 6Ch 6Eh 60h

LY 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh

(*) 70h 70h 72h 70h 74h 74h 76h 70h 78h 78h 7Ah 78h 7Ch 7Ch 7Eh 00h

LY 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh

(*) 80h 80h 82h 80h 84h 84h 86h 80h 88h 88h 8Ah 88h 8Ch 8Ch 8Eh 80h

LY 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h

(*) 90h 90h 92h 90h 94h 94h 96h 90h 98h -

Line 153 (99h) is shorter than the rest, it works different, so it doesn't follow the pattern of that
table. Take a look at the detailed timings for line 153.

A pattern is repeated every 8 lines (except for lines in the form NFh, that follow the same pattern
but it shows in the upper nibble). The following C code can be used to determine the correct value
for (*) depending on the current scanline:

unsigned char get_value_from_ly(unsigned char ly) // ly from 00h to 98h!
{
 const unsigned char pattern[9] = {0, 0, 2, 0, 4, 4, 6, 0, // Pattern
 8}; // To make it work with NFh lines
 if((ly & 0x0F) == 0x0F)
 return (pattern[(ly >> 4) & 0x0F] << 4);
 else
 return (pattern[ly & 7] | (ly & 0xF8));
}

8.9.4. Timings in CGB in CGB mode (double speed)

Line 0

Clocks 0 4 8 12 ... 160 164 168 ... 904 908

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 1 2 2 2 ... 2 3 3 ... 0 0

LY to compare LYC 0 0 0 0 ... 0 0 0 ... 0 0

IF Flag (LY=LYC) 0 0 0 0 ... 0 0 0 ... 0 0

Lines 1-143

Clocks 0 4 8 12 ... 160 164 168 ... 904 908

LY Register 13 13 13 13 ... 13 13 13 ... 13 13

STAT Mode 0 2 2 2 ... 2 3 3 ... 0 0

LY to compare LYC 12 13 13 13 ... 13 13 13 ... 13 13

IF Flag (LY=LYC) 0 1 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 904 908

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

LY to compare LYC 143 144 144 144 144 144

IF Flag (LY=LYC) 0 1 0 0 0 0

Lines 144-152

Clocks 0 4 8 12 904 908

LY Register 146 146 146 146 146 146

STAT Mode 1 1 1 1 1 1

LY to compare LYC 145 146 146 146 146 146

IF Flag (LY=LYC) 0 1 0 0 0 0

Line 153

Clocks 0 4 8 12 14 16 20 24 ... 904 908

LY Register 153 153 153 0 0 0 0 0 ... 0 0

STAT Mode 1 1 1 1 1 1 1 1 ... 1 1

LY to compare LYC 152 153 153 153 153 0 0 0 ... 0 0

IF Flag (LY=LYC) 0 1 0 0 0 1 0 0 ... 0 0

8.10. LY, STAT and IF Timings. STAT Mode 1 interrupt.
The next tables will show scanline timings (accurate to 4 clocks) of STAT Mode 1 (VBL mode)
interrupt. DMG has the same timings as MGB. CGB has the same timings as AGB and AGS. The
timings of the trigger of this interrupt are the same as the ones of the VBL interrupt.

In the IF Flag field, a '1' means that this clock the IF flag will read '1'. Of course, the value won't be

changed to '0' unless interrupt is handled or the IF register is written manually, a '0' only means that
during that cycle the flag doesn't change to '1'. Note that the interrupt is only triggered once. It can
only be triggered again if STAT register is written and M1 interrupt is disabled, and it is enabled
after that during VBL.

If the IF register is set to 0 the same cycle the IF flag is being set to '1' it will stay '0'. This can only
happen the first cycle of VBL (because 2 registers can't be written at once).

8.10.1. Timings in DMG

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 0 2 2 2 ... 2 2 3 ... 0 0

STAT IF Flag (M1) 0(*) 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

STAT IF Flag (M1) 0 1 1 1 1 1

Line 153

Clocks 0 4 8 12 16 448 452

LY Register 153 0 0 0 0 0 0

STAT Mode 1 1 1 1 1 1 1

STAT IF Flag (M1) 1 1 1 1 1 1 1

(*) Not actually tested, but it's supposed to be '0'. The test used to check that is affected by STAT
bug so it can't be tested.

8.10.2. Timings in CGB in DMG mode

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 1 2 2 2 ... 2 2 3 ... 0 0

STAT IF Flag (M1) 1(*) 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

STAT IF Flag (M1) 0 1 1 1 1 1

(*) This is '0' in AGB and AGS.

8.10.3. Timings in CGB in CGB mode (single speed)

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 (*)

STAT Mode 2 2 2 2 ... 2 3 3 ... 0 0

STAT IF Flag (M1) 0 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 (*)

STAT Mode 1 1 1 1 1 1

VBL IF Flag 1 0 0 0 0 0

STAT IF Flag (M1) 1 0 0 0 0 0

Line 153

Clocks 0 4 8 12 448 452

LY Register 153 0 0 0 0 0

STAT Mode 1 1 1 1 1 1

STAT IF Flag (M1) 1 1 1 1 1 1(*)

(*) This is '0' in AGB and AGS.

8.10.4. Timings in CGB in CGB mode (double speed)

Line 0

Clocks 0 4 8 12 ... 160 164 168 ... 904 908

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 1 2 2 2 ... 2 3 3 ... 0 0

STAT IF Flag (M1) 1 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 904 908

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

VBL IF Flag 0 1 0 0 0 0

STAT IF Flag (M1) 0 1 0 0 0 0

Line 153

Clocks 0 4 8 12 14 16 20 24 ... 904 908

LY Register 153 153 153 0 0 0 0 0 ... 0 0

STAT Mode 1 1 1 1 1 1 1 1 ... 1 1

STAT IF Flag (M1) 0 0 0 0 0 0 0 0 ... 0 0

Timings when writing to LYC. How many cycles does it take to update BIT(2)? Can it be measured
using software only?

Does STAT IF flag change to 1 automatically or does it have a delay in some cases?

Can the interrupt be disabled when writing to STAT or other registers just when changing the value
of IF?

Does LYC >153 trigger stat interrupt?

In GBC single speed, can the (*) cycle trigger LYC interrupt with the strange values?

DMG interrupt handling times are different than CGB. - check again!

8.11. LY, STAT and IF Timings. STAT Mode 2 interrupt.

TODO: Checking this right now...

YELLOW = TODO

8.11.1. Timings in DMG

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 0 2 2 2 ... 2 2 3 ... 0 0

STAT IF Flag (M2) 0 1 0 0 ... 0 0 0 ... 0 0

Lines 1-143 – verified for line 1

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 13 13 13 13 ... 13 13 13 ... 13 13

STAT Mode 0 2 2 2 ... 2 2 3 ... 0 0

STAT IF Flag (M2) 1 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 0 0 0

Lines 145-152

Clocks 0 4 8 12 448 452

LY Register 146 146 146 146 146 146

STAT Mode 1 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 0 0 0

Line 153

Clocks 0 4 8 12 16 448 452

LY Register 153 0 0 0 0 0 0

STAT Mode 1 1 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 1 0 0 0

8.11.2. Timings in CGB in DMG mode

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 1 2 2 2 ... 2 2 3 ... 0 0

STAT IF Flag (M2) 0 1 0 0 ... 0 0 0 ... 0 0

Lines 1-143 – verified for line 1

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 13 13 13 13 ... 13 13 13 ... 13 13

STAT Mode 0 2 2 2 ... 2 2 3 ... 0 0

STAT IF Flag (M2) 1 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 0 0 0

Lines 145-152

Clocks 0 4 8 12 448 452

LY Register 146 146 146 146 146 146

STAT Mode 1 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 0 0 0

Line 153

Clocks 0 4 8 12 16 448 452

LY Register 153 153 0 0 0 0 0

STAT Mode 1 1 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 1 0 0 0

8.11.3. Timings in CGB in CGB mode (single speed)

Line 0

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 0 0 0 0 ... 0 0 0 ... 0 (*)

STAT Mode 2 2 2 2 ... 2 3 3 ... 0 0

STAT IF Flag (M2) 1 0 0 0 ... 0 0 0 ... 0 0

Lines 1-143

Clocks 0 4 8 12 ... 76 80 84 ... 448 452

LY Register 13 13 13 13 ... 13 13 13 ... 13 (*)

STAT Mode 2 2 2 2 ... 2 3 3 ... 0 0

STAT IF Flag (M2) 1 0 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 448 452

LY Register 144 144 144 144 144 (*)

STAT Mode 1 1 1 1 1 1

STAT IF Flag (M2) 1 0 0 0 0 0

Lines 145-152

Clocks 0 4 8 12 448 452

LY Register 146 146 146 146 146 (*)

STAT Mode 1 1 1 1 1 1

STAT IF Flag (M2) 1 0 0 0 0 0

Line 153

Clocks 0 4 8 12 448 452

LY Register 153 0 0 0 0 0

STAT Mode 1 1 1 1 1 1

STAT IF Flag (M2) 1 0 1 0 0 0

8.11.4. Timings in CGB in CGB mode (double speed)

Line 0

Clocks 0 4 8 12 ... 160 164 168 ... 904 908

LY Register 0 0 0 0 ... 0 0 0 ... 0 0

STAT Mode 1 2 2 2 ... 2 3 3 ... 0 0

STAT IF Flag (M2) 0 1 0 0 ... 0 0 0 ... 0 0

Lines 1-143

Clocks 0 4 8 12 ... 160 164 168 ... 904 908

LY Register 13 13 13 13 ... 13 13 13 ... 13 13

STAT Mode 0 2 2 2 ... 2 3 3 ... 0 0

STAT IF Flag (M2) 0 1 0 0 ... 0 0 0 ... 0 0

Line 144

Clocks 0 4 8 12 904 908

LY Register 144 144 144 144 144 144

STAT Mode 0 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 0 0 0

Lines 144-152

Clocks 0 4 8 12 904 908

LY Register 146 146 146 146 146 146

STAT Mode 1 1 1 1 1 1

STAT IF Flag (M2) 0 1 0 0 0 0

Line 153

Clocks 0 4 8 12 14 16 20 24 ... 904 908

LY Register 153 153 153 0 0 0 0 0 ... 0 0

STAT Mode 1 1 1 1 1 1 1 1 ... 1 1

STAT IF Flag (M2) 0 1 0 0 0 1 0 0 ... 0 0

aaa

8.12. LY, STAT and IF Timings. STAT Mode 0 interrupt.
TODO THIS

MODE 3 TIMINGS DEPENDING ON THE NUMBER OF SPRITES!!!

8.13. FF42h – SCY – BG Scroll Y (R/W)
Specifies the Y coordinate of the background at the upper left pixel of the LCD.

8.14. FF43h – SCX – BG Scroll X (R/W)
Specifies the X coordinate of the background at the upper left pixel of the LCD.

The background map is 32×32 tiles (256×256 pixels). Any value can be written to SCX and SCY
(0-255). The background will wrap when exceeding the lower or right border.

8.15. FF4Ah – WY – Window Y Position (R/W)
Specifies the Y coordinate of the upper left corner of the window.

8.16. FF4Bh – WX – Window X Position (R/W)
Specifies the X coordinate (minus 7) of the upper left corner of the window.

The window is an alternate background that can be displayed over the normal background. This
window is drawn by resetting the LCD background state machine and changing to the window map.
This results in only being able to show the upper left part of the window map (and no wrapping,
logically). Priorities between window and sprites are shared with normal background.

The behaviour of this registers is a bit strange

8.16.1. Window Display Depending on WX and WY

The window is visible (if enabled) when WX=7-166, WY=0-143. A position of WX=7, WY=0
locates the window at upper left corner of the screen, covering normal background. Other values for
WX will give strange results:
TODO

8.17. Accessing Unavailable VRAM and OAM
When the PPU is accessing the video memory the CPU can't access it. The behaviour of OAM and
VRAM is different depending on the screen mode (2 or 3). OAM can't be accessed in modes 2 or 3,
and VRAM can't be accessed in mode 3.

8.17.1. Reading from OAM in Mode 2

Reads will return FFh regardless of the hardware. In GBC it doesn't matter if GBC functions are
enabled or disabled. It doesn't matter if sprites are enabled or disabled in LCDC.

8.17.2. Reading from OAM in Mode 3

…

…

…

8.17.3. Reading from VRAM in Mode 3

Todo...

8.17.4. Reading from GBC Palette RAM in Mode 2

Todo...

8.17.5. Reading from GBC Palette RAM in Mode 3

Todo...

9. DMA
The DMA is a special circuit designed to copy very fast. There are two DMAs in the Game Boy.
The first one is the OAM DMA, available in all Game Boy models. The second one is the
GDMA/HDMA, available only in CGB/AGB/AGS in GBC mode.

9.1. FF46h – DMA – OAM DMA Transfer (R/W)
This register starts the OAM DMA transfer. The written value specifies the upper byte of the source
address (XX00h). The destination address is always OAM. If this register is written when a copy is
active, it will be cancelled and a new copy will start. This copy needs 160 × 4 + 4 clocks to
complete in both double speed and single speeds modes. The copy starts after the 4 setup clocks,
and a new byte is copied every 4 clocks.

TODO: Test if the first 4 clocks are Read(0), and then every 4 clocks Read(n+1) and Write(n) are
performed at the same time. It would make sense.

Any written value (00h – FFh) will trigger the copy, but the copied data and the disabled memory
areas depend on the source area and the Game Boy model.

During this copy interrupts can still be triggered and the CPU can jump to interrupt vectors. This
shouldn't be a problem with VBL and LCD interrupts if DMA is used during V-Blank only, but the
timer, serial and joypad interrupts can still be a problem.

Programs usually have a small routine at HRAM that is called when the program needs to perform a
DMA copy. Most programs execute this routine during V-Blank as H-Blank is too short to perform
a full DMA copy.

 ld [rDMA],a ;Start DMA transfer. The A register has the source address.
 ld a,$28 ;Delay...
.wait:
 dec a
 jr nz,.wait
 ret

- If HALT or STOP mode are entered during a DMA copy, the copy will still complete correctly.
The same happens with GBC performing a speed switch. The copy is paused during HALT and
STOP modes, and it's also paused during the speed switch.

- Start DMA while HDMA? GDMA/HDMA while DMA?

9.2. FF51h – HDMA1 – GBC Mode – HDMA Source, High (W)
Specifies the higher byte of the source address. Always returns FFh when read.

9.3. FF52h – HDMA2 – GBC Mode – HDMA Source, Low (W)
Specifies the lower byte of the source address. Lower 4 bits are ignored, addresses are always
aligned to 10h (16 bytes). Always returns FFh when read.

9.4. FF53h – HDMA3 – GBC Mode – HDMA Destination, High
(W)

Specifies the higher byte of the destination address. Destination is always in VRAM (8000h –
9FFFh), the 3 upper bits are ignored. Always returns FFh when read.

9.5. FF54h – HDMA4 – GBC Mode – HDMA Destination, Low
(W)

Specifies the lower byte of the destination address. Lower 4 bits are ignored, addresses are always
aligned to 10h (16 bytes). Always returns FFh when read.

9.6. FF55h – HDMA5 – GBC Mode – HDMA Length/Mode/Start
(R/W)

This register specifies the length and mode of the transfer. It starts the copy when it is written.
Returns FFh in DMG and GBC in DMG mode.

Bit 7 – Transfer mode (0=GDMA, 1=HDMA)
Bits 6-0 – Blocks (Size = (Blocks+1)×16 bytes)

When a copy is finished, if another copy is started without changing the source/destination
addresses, it will continue from the last addresses of the previous copy. For example, writing 01h
twice to this register will copy the same data as when writing 03h.

A GDMA/HDMA copy cannot be interrupted by interrupts. The CPU will handle them after
finishing copying. This is not a problem for HDMA (probably), but it may be a problem if the
program is copying a large memory block and an important interrupt is triggered.

This DMA shouldn't be used in old cartridges, they aren't guaranteed to support reading latencies
fast enough to allow using this DMA. It doesn't seem to matter what MBC the game uses. Pokémon
Crystal (MBC3) uses HDMA, while most GBC games use MBC5.

9.6.1. GDMA – General Purpose DMA

All the data is transferred at once, and the CPU is halted until the copy is finished. This will try to
copy even if VRAM is being used by the LCD controller (so the writes will fail). This should be
used during V-Blank or when the screen is off (or for small blocks of data during H-Blank).

Timings:

- Single speed mode: (4 + 32 × blocks) clocks

- Double speed mode: (4 + 64 × blocks) clocks

The preparation time (4 clocks) is the same in single and double speed mode, but the actual transfer
needs the same time in both modes, so in double speed mode it needs twice the clocks than in single
speed mode.

When the transfer is finished this register will return FFh.

9.6.2. HDMA – H-Blank DMA

This mode will transfer one block (16 bytes) during each H-Blank. No data is transferred during V-
Blank (LY = 143 – 153), but the transfer will continue at LY = 0. During the copy periods the CPU
is stopped, the same as GDMA.

Source and destination addresses may be changed during the copy.

After writing a value to HDMA5 that starts the HDMA copy, the upper bit (that indicates HDMA
mode when set to '1') will be cleared. Reading from HDMA5 register will return the remaining
length (divided by 16, minus 1). A value of FFh indicates that the transfer has completed.

- If HDMA5 is written during a HDMA copy, the behaviour depends on the written bit 7.

- New bit 7 is 0: Stop copy. HDMA5 new value is (80h OR written_value).

 - New bit 7 is 1: Restart copy. New size is the value of written_value bits 0-6.

 This means that HDMA can't switch to GDMA with only one write. It must be stopped first.

- If the CPU is in HALT or STOP modes, the HDMA copy won't happen. It also won't happen
during a speed switch.

- If a HDMA transfer is started when the screen is off, one block is copied. The transfer is continued
the first H-Blank period after switching the screen on.

- HDMA will only copy one block when the screen is off, right when starting the copy. It will
continue after the screen is turned on. If the HDMA started when the screen was on, when the
screen is switched off it will copy one block after the switch.

- If ROM/VRAM banks are changed the copy will continue with the new banks.

- When a HDMA transfer is started during HBL it will start right away. There is no problem of
copying while VRAM is inaccessible, mode 2 is long enough to allow the HDMA copy the 16
bytes.

Timings (copy time per HBL):

- Single speed mode: (4 + 32) clocks

- Double speed mode: (4 + 64) clocks

9.6.3. GDMA/HDMA Allowed Source Addresses

The copying circuit can't read from any memory. Source address can be 0000h-7FFFh (ROM),
A000h-BFFFh (SRAM) or C000h-DFFFh (WRAM).

- Selecting an address in the range E000h-FFFFh will read addresses from A000h-BFFFh (SRAM).

- Selecting an address in the range 8000h-9FFFh (VRAM) will read incorrect data.

The incorrect data read when copying from VRAM depends on the mode (GDMA/HDMA) and the
hardware.

- CGB/AGB: The DMA circuit copies two unknown bytes and the rest of the bytes are FFh.

- AGS: The same, but only one byte.

In GDMA the corrupted bytes are copied once for the whole copy. In HDMA the corrupted bytes
are copied for each block.

TODO: In GDMA investigate the incorrect data pattern depending on the status of the LCD
controller and the hardware: screen on/off, mode 0,1,2,3.

...

…....

10. Audio Processing Unit

11. The Game Boy Cartridge

11.1. The Cartridge Header
The area at 0100h-014Fh of the ROM is reserved for some special information.

0100h – 0103h – Start Vector

When the boot ROM is exited the game execution starts at 0100h. Usually, games have a “nop”
here followed by a “jp 150h”.

0104h – 0133h – Nintendo Logo

This 48 bytes represent the Nintendo logo that is shown when the Game Boy is powered on (the
ones that appear corrupted if the cartridge is not inserted correctly, for example). They must be set
to specific values or the boot ROM won't jump to the game start vector (0100h). Some models
check more values than others. The DMG and MGB check the 48 bytes, the SGB doesn't check any
byte (the SNES does it). The GBC only checks the first 24 bytes.

The correct values are:

CE ED 66 66 CC 0D 00 0B 03 73 00 83 00 0C 00 0D
00 08 11 1F 88 89 00 0E DC CC 6E E6 DD DD D9 99
BB BB 67 63 6E 0E EC CC DD DC 99 9F BB B9 33 3E

0134h – 0143h – Game Title

Title of the game in upper case ASCII. The unused bytes after the title are filled with 00h. The last
few bytes are used for other things in GBC games. This is described below.

013Fh – 0142h – Manufacturer Code

This is a 4 character uppercase manufacturer code.

0143h – GBC Flag

This flag is used to enable GBC functions in CGB/AGB/AGS. The two used values that will make
the GBC enter GBC mode are C0h and 80h. Both have the same effect, but C0h means that the
game is GBC only and 80h means that the game can also run on older monochrome Game Boy
models.

Values with bit 7 set and bit 2 or bit 3 set will switch the GBC into a strange non-GBC-mode.
TODO: CHECK THIS USING THE GBC BOOT ROM. Any value with bit 7 set seems to have the
same effect, but check bits 2 and 3.

0144h – 0145h – New Licensee Code

A two character ASCII code that indicates the company or publisher of the game. Only used in
games released after the SGB, older games use the value at 014Bh.

0146h – SGB Flag

Specifies if the game supports SGB functions or not. This is checked by the SNES, not the SGB
boot ROM. A value of 00h indicates that there are no SGB functions (DMG or CGB only game). A
value of 03h indicates that the game supports SGB functions. Any other value will have the same
effect as a 00h.

0147h – Cartridge Type

Specifies the Memory Bank Controller (MBC) if any, and if there is aditional hardware in the
cartridge.

00h - ROM Only 14h - Unused

01h - MBC1 15h - Unused

02h - MBC1 + RAM 16h - Unused

03h - MBC1 + RAM + Battery 17h - Unused

04h - Unused 18h - Unused

05h - MBC2 19h - MBC5

06h - MBC2 + RAM + Battery 1Ah - MBC5 + RAM

07h - Unused 1Bh - MBC5 + RAM + Battery

08h - ROM + RAM 1Ch - MBC5 + Rumble

09h - ROM + RAM + Battery 1Dh - MBC5 + RAM + Rumble

0Ah - Unused 1Eh - MBC5 + RAM + Battery + Rumble

0Bh - MMM01 1Fh - Unused

0Ch - MMM01 + RAM 20h - MBC6 + RAM + Battery

0Dh - MMM01 + RAM + Battery 21h - Unused

0Eh - Unused 22h - MBC7 + RAM + Bat. + Accelerometer

0Fh - MBC3 + Timer + Battery ... - Unused

10h - MBC3 + RAM + Timer + Battery FCh - POCKET CAMERA

11h - MBC3 FDh - BANDAI TAMA5

12h - MBC3 + RAM FEh - HuC3

13h - MBC3 + RAM + Battery FFh - HuC1 + RAM + Battery

0148h – ROM Size

Specifies the ROM size, calculated as “32KB << NN”. The biggest known GBC ROM is 8MB.
Valid values are:

00h - 32KB - 2 banks (No MBC needed) 05h - 1MB - 64 banks

01h - 64KB - 4 banks 06h - 2MB - 128 banks

02h - 128KB - 8 banks 07h - 4MB - 256 banks

03h - 256KB - 16 banks 08h - 8MB - 512 banks

04h - 512KB - 32 banks

0149h – RAM Size

Specifies the RAM size (if any):

00h - None

01h - 2KB

02h - 8KB - 1 bank

03h - 32KB - 4 banks of 8KB

04h - 128KB - 16 banks of 8KB

05h - 64KB - 8 banks of 8 KB. Used by “Pokémon Crystal (J)”.

In MBC2 cartridges this value is 00h, but the MBC chip has an internal RAM of 512 × 4 bit.

014Ah – Destination Code

A value of 00h means that the game is supposed to be sold in Japan, a 01h means anywhere else.

014Bh – Old Licensee Code

Specifies the company or publisher of the game. A value of 33h indicates that the New Licensee
Code at 0144h-0145h is used instead. SGB functions require that this byte is 33h!

014Ch – ROM Version

Some games have more than one version, this byte indicates that. This value is usually 00h as most
games only have one version.

014Dh – Header Checksum

Contains a checksum of the cartridge header bytes 0134h-014Ch. It is calculated like this:

unsigned char sum = 0;
int i = 0x0134;
while(i <= 0x014C)
 sum = sum – Memory(i++) – 1;

The game won't run if this value is incorrect!

014Eh – 014Fh – Global Checksum

This is a 16 bit checksum (upper byte in 014Eh) of the whole ROM. This is calculated adding all
the values of the cartridge (except this two bytes). This is not verified in the Game Boy.

11.2. Memory Bank Controllers
MBCs are chips used to avoid the limitation of the 16 bit address bus of the Game Boy. This chips
are in the cartridge. They are used to select the ROM and RAM bank mapped to the Game Boy, and
they are also used to enable or disable the RAM (if any) and to control the external hardware
included in the cartridge (if any). The used MBC is specified in byte 0147h of the cartridge header.

Addresses at 0000h-7FFFh and A000h-BFFF can be used to read from cartridge hardware and to
write to it. ROM addresses are used to switch ROM and RAM banks and enable or disable RAM,
and RAM addresses are used to control extra hardware.

Disabled RAM will ignore any writes, and it will return FFh when read. If there is no RAM, any

reads from this area will also return FFh. RAM should be disabled when it's not being used to
protect the data. RAM is disabled on reset.

If there is no ROM at 0000h-7FFFh (for example, by turning the Game Boy on without an inserted
cartridge) this area will return FFh when read.

11.2.1. None (32KB ROM)

This games don't need a MBC. All the ROM can be mapped to 0000h-7FFFh directly. A RAM chip
up to 8KB may be connected to A000h-BFFFh, but a tiny circuit would be required to enable and
disable it.

11.2.2. MBC1 (2MB ROM. 32KB RAM. DMG, SGB)

This is the first MBC chip, used in most DMG and SGB games. This cartridge has a special register
that selects the upper bits of the ROM bank number or the RAM bank number, but can't specify
both at the same time.

0000h-3FFFh – ROM Bank 0 (Read)

This area contains the first 16KB of the ROM.

4000h-7FFFh – Switchable ROM bank (Read)

This area may contain any 16KB ROM bank. Bank numbers 00h, 20h, 40h, 60h cannot be used and
the following bank (01h, 21h, 41h, 61h) will be selected instead!

A000h-BFFFh – Switchable RAM bank (Read/Write)

This area is used to read and write from external RAM (if any). External RAM is often battery
buffered so its values are stored even if the Game Boy is turned off or the cartridge is removed.

0000h-1FFFh – RAM Enable (Write)

Writing to this address range any value with 0Ah in the lower 4 bits enables RAM, and any other
value disables it. Usually, 00h is used to disable RAM and 0Ah is used to enable it.

2000h-3FFFh – ROM Bank (Write)

This address range is used to select the lower 5 bits of ROM bank number (01h-1Fh). Writing 00h
will be translated to 01h. This will make banks 00h, 20h, 40h and 60h impossible to map, and banks
01h, 21h, 41h and 61h will be selected instead.

4000h-5FFFh – RAM Bank/Upper bits of ROM Bank (Write)

This is a 2 bit register that can select RAM banks 0 – 3 or can specify the upper 2 bits of ROM
bank, depending on the cartridge mode (see below).

6000h-7FFFh – ROM/RAM Mode (Write)

This is a 1 bit register that selects if the two bits in register at 4000h-5FFFh are used to select the
two upper bits of the ROM bank number or the RAM bank number.

Mode 0 will enable ROM Banking Mode (enabled by default). Only RAM bank 0 can be accessed
in this mode, even if the mapped bank before the mode change wasn't bank 0.

Mode 1 will enable RAM Banking Mode, and only ROM banks 01h-1Fh will be able to be
accessed. If other ROM bank is selected, ROM bank will be changed to the corresponding in 01h-
1Fh by clearing the upper 2 bits.

11.2.3. MBC2 (256KB ROM. 512 × 4 bits RAM. DMG, SGB)

This MBC can only support up to 16 ROM banks and has a RAM circuit inside the MBC2 chip
itself. The MBC chip has only 4 data lines, that's the reason only 16 ROM banks can be selected
and only 4 bits can be read/written at a time from/to RAM.

0000h-3FFFh – ROM Bank 0 (Read)

This area contains the first 16KB of the ROM.

4000h-7FFFh – Switchable ROM bank (Read)

This area may contain any 16KB ROM bank except for bank 0.

A000h-A1FFh – RAM (Read/Write)

This area is used to read and write from MBC2 RAM. Only the 4 lower bits are used, the upper bits
should be ignored when reading and will be ignored when writing. They probably return '1' when
read.

0000h-1FFFh – RAM Enable (Write)

Writing to this address range any value with 0Ah in the lower 4 bits enables RAM, and any other
value disables it. Usually, 00h is used to disable RAM and 0Ah is used to enable it.

The least significant bit of the upper address byte must be '0' to enable/disable cart RAM. For
example, the following addresses can be used to enable/disable cart RAM: 0000h-00FFh, 0200h-
02FFh, 0400h-04FFh, …, 1E00h-1EFFh. The suggested address range to use for MBC2 ram
enable/disable is 0000h-00FFh.

2000h-3FFFh – ROM Bank (Write)

The lower 4 bits written here will specify the ROM bank mapped to 4000h-7FFFh. The least
significant bit of the upper address byte must be '1' to select a ROM bank. For example, the
following addresses can be used to select a ROM bank: 2100h-21FFh, 2300h-23FFh, 2500h-25FFh,
…, 3F00h-3FFFh. The suggested address range to use for MBC2 ROM bank selection is 2100h-
21FFh.

11.2.4. MBC3 (2MB ROM. 64KB RAM. RTC. DMG, SGB, CGB)

This MBC can include a Real Time Clock. It uses an external 32.768 kHz Quartz Oscillator and an
external battery to continue running while the Game Boy is off. The RTC registers are mapped to
the same area as RAM, and can be selected by specifying special RAM bank numbers to 4000h-
5FFFh.

0000h-3FFFh – ROM Bank 0 (Read)

This area contains the first 16KB of the ROM.

4000h-7FFFh – Switchable ROM bank (Read)

This area may contain any 16KB ROM bank, including banks 20h, 40h and 60h (but not bank 00h).

A000h-BFFFh – RAM Bank/RTC Register (Read/Write)

When a RAM bank in the range 00h-07h is selected, that RAM bank in the cartridge will be
mapped to this area. When RAM banks in the range 08h-0Ch are selected, a single RTC register
will be mapped instead. When a register is mapped here, all the address range can be used to access
it. Usually A000h is used for that.

0000h-1FFFh – RAM and RTC Registers Enable (Write)

Writing to this address range any value with 0Ah in the lower 4 bits enables RAM and RTC
registers, and any other value disables them. Usually, 00h is used to disable them and 0Ah is used to
enable them.

2000h-3FFFh – ROM Bank (Write)

The 7 lower bits of the value written here is the ROM bank that will be mapped to 4000h-3FFFh.
Writing a 00h here will select bank 01h instead. Any other value will select the corresponding bank.

4000h-5FFFh – RAM Bank/RTC Register (Write)

This will select the RAM bank or RTC register to map to A000h-BFFFh.

6000h-7FFFh – Latch Clock Data (Write)

Writing 00h and then 01h latches the current time into the RTC registers, and that values won't
change until they are latched again. This is used for reading only, writing affects the actual RTC
value (not sure if latched registers are updated too). It's supposed that the registers are updated in
the 00h to 01h transition.

Some games like “Pokémon Crystal” write 00h, then 01h and then 00h. Other games like
“Cardcaptor Sakura - Itsumo Sakura-chan to Issho (Japan)” write 01h most times, and 00h to 01h
very few times.

RTC Registers:

08h - RTC Seconds 0-59 (0-3Bh)
09h - RTC Minutes 0-59 (0-3Bh)
0Ah - RTC Hours 0-23 (0-17h)
0Bh - RTC Lower 8 bits of Day Counter (0-FFh)
0Ch - RTC Upper 1 bit of Day Counter, Carry Bit, Halt Flag:
 Bit 0 Most significant bit of Day Counter (Bit 8)
 Bit 6 Halt (0=Active, 1=Stop Timer)
 Bit 7 Day Counter Carry Bit (1=Counter Overflow)

The Halt Flag should be set before writing to the RTC Registers.

The Carry Bit is set when the day count overflows from 511 to 0. This Carry Bit remains set until
the program resets it. This means that a game containing a MBC3 RTC should be used at least once
every 511 days for the game to know how much time has passed.

When accessing the RTC Registers it is recommended to execute a 4 cycles delay (normal speed

mode) between the separate accesses due to a slow hardware.

11.2.5. MBC5 (8MB ROM. 128KB RAM. DMG, SGB, CGB)

This MBC is the one used by most GBC games. Some MBC5 cartridges have an electric motor used
for rumble.

0000h-3FFFh – ROM Bank 0 (Read)

This area contains the first 16KB of the ROM.

4000h-7FFFh – Switchable ROM bank (Read)

This area may contain any 16KB ROM bank (including bank 00h?).

A000h-BFFFh – RAM Bank (Read/Write)

This contains the selected RAM bank.

0000h-1FFFh – RAM Enable (Write)

Writing to this address range any value with 0Ah in the lower 4 bits enables RAM, any other value
disables it.

2000h-2FFFh – ROM Bank (Low bits) (Write)

The value written here is the lower 8 bits of the ROM bank number.

3000h-3FFFh – ROM Bank (High bits) (Write)

The value written here is the higher 8 bits of the ROM bank number. There is only one game with
more than 256 ROM banks (“Densha de Go! 2 (Japan)” with an 8MB ROM), so only bit 0 is used.
In games that use 256 banks or less this register selects the lower 8 bits of the ROM bank too (?).

TODO: CHECK THIS AGAIN

4000h-5FFFh – RAM Bank/Enable Rumble (Write)

This will select the RAM bank or RTC register to map to A000h-BFFFh. In cartridges with rumble,
writing a '1' to bit 4 will enable the electric motor, writing a '0' will disable it. Games with rumble
can't have more than 8 RAM banks. The Game Boy can do some sort of PWM by writing '1' and '0'
to this bit quickly with different waiting periods. This way the motor can vibrate with more or less
intensity.

11.2.6. Pocket Camera

This is only used by 3 versions of the Game Boy camera ROM: “Pocket Camera (J)”, “Game Boy
Camera (U, E)” and “Game Boy Camera Gold (U)”.

Since a detailed documentation of this hardware would need a lot of space, it hasn't been included
here. Detailed documentation can be found in my document “Game Boy Camera Technical
Information”. At the time of writing this document, it's available at the following address:

https://github.com/AntonioND/gbcam-rev-engineer

https://github.com/AntonioND/gbcam-rev-engineer

12. The Cartridge Connector
The

PHI = 1MHz

13. Credits
- Pan Docs, by “Pan of Anthrox”, with contributions from Marat Fayzullin, Pascal Felber, Paul
Robson, “kOOPa” and (a lot from) Martin Korth “nocash”.

- The people at the IRC channel #gbdev in EFnet. Specially beware, for BGB emulator, which was
really useful when designing test ROMs before checking them in real hardware.

- Jonathan Gevaryahu “Lord Nightmare” for GBSOUND.txt.

- Carsten Sorensen for RGBDS and Anthony J. Bentley for maintaining it in Github.

- Sindre Aamås for Gambatte and its source code.

- GeeBee for the GB DEV FAQs.

- Otaku No Zoku for the Gameboy Crib Sheet.

14. Changelog
First version not finished yet!

	1. Introduction
	2. Memory
	2.1. General Memory Map
	2.2. Jump Vectors in ROM0
	2.3. Cartridge Header in ROM0
	2.4. External Memory and Hardware
	2.5. I/O Register Unreadable Bits
	2.6. Boot ROMs
	2.7. FF70h – SVBK – GBC Mode – WRAM Bank (R/W)
	2.8. FF4Fh – VBK – GBC Mode – VRAM Bank (R/W)
	2.9. Unused Memory Area at E000h – FDFFh
	2.10. Unused Memory Area at FEA0h – FEFFh

	3. CPU
	3.1. General Information
	3.2. Initial Register Values
	3.3. CPU Instruction Set
	3.4. HALT Mode
	3.5. STOP Mode
	3.6. Entering STOP Mode correctly
	3.7. FF4Dh – KEY1 – GBC Mode – Speed Switch (R/W)
	3.8. Speed Switch
	3.9. Undefined Opcodes

	4. Interrupts
	4.1. Vector 0040h – Vertical Blanking Interrupt
	4.2. Vector 0048h – LCD STAT Interrupt
	4.3. Vector 0050h – Timer Interrupt
	4.4. Vector 0058h – Serial Interrupt
	4.5. Vector 0060h – Joypad Interrupt
	4.6. IME – Interrupt Master Enable Flag
	4.7. FF0Fh – IF – Interrupt Flags (R/W)
	4.8. FFFFh – IE – Interrupt Enable (R/W)
	4.9. Interrupt Handling
	4.10. The HALT Instruction Behaviour

	5. Timer
	5.1. FF04h – DIV – Divider Register (R/W*)
	5.1.1. Interaction with APU

	5.2. FF05h – TIMA – Timer Counter (R/W)
	5.3. FF06h – TIMA – Timer Modulo (R/W)
	5.4. FF07h – TAC – Timer Control (R/W)
	5.5. Timer Obscure Behaviour
	5.6. Timer Overflow Behaviour

	6. Serial
	7. Joypad
	7.1. FF00h – P1 – Joypad (R/W)
	7.2. Reading the Joypad
	7.3. Joypad Interrupt
	7.4. Software-Triggered Joypad Interrupt

	8. Video controller
	8.1. The LCD
	8.2. FF40h – LCDC – LCD Control (R/W)
	8.3. FF44h – LY – LCD Current Scanline (R)
	8.4. FF45h – LYC – LY Compare (R/W)
	8.5. FF41h – STAT – LCD Status (R/W)
	8.6. VBL Interrupt
	8.7. STAT Interrupt
	8.8. LY, STAT and IF Timings. VBL interrupt.
	8.8.1. Timings in DMG
	8.8.2. Timings in CGB in DMG mode
	8.8.3. Timings in CGB in CGB mode (single speed)
	8.8.4. Timings in CGB in CGB mode (double speed)

	8.9. LY, LYC, STAT and IF Timings. STAT LY=LYC interrupt.
	8.9.1. Timings in DMG
	8.9.2. Timings in CGB in DMG mode
	8.9.3. Timings in CGB in CGB mode (single speed)
	8.9.4. Timings in CGB in CGB mode (double speed)

	8.10. LY, STAT and IF Timings. STAT Mode 1 interrupt.
	8.10.1. Timings in DMG
	8.10.2. Timings in CGB in DMG mode
	8.10.3. Timings in CGB in CGB mode (single speed)
	8.10.4. Timings in CGB in CGB mode (double speed)

	8.11. LY, STAT and IF Timings. STAT Mode 2 interrupt.
	8.11.1. Timings in DMG
	8.11.2. Timings in CGB in DMG mode
	8.11.3. Timings in CGB in CGB mode (single speed)
	8.11.4. Timings in CGB in CGB mode (double speed)

	8.12. LY, STAT and IF Timings. STAT Mode 0 interrupt.
	8.13. FF42h – SCY – BG Scroll Y (R/W)
	8.14. FF43h – SCX – BG Scroll X (R/W)
	8.15. FF4Ah – WY – Window Y Position (R/W)
	8.16. FF4Bh – WX – Window X Position (R/W)
	8.16.1. Window Display Depending on WX and WY

	8.17. Accessing Unavailable VRAM and OAM
	8.17.1. Reading from OAM in Mode 2
	8.17.2. Reading from OAM in Mode 3
	8.17.3. Reading from VRAM in Mode 3
	8.17.4. Reading from GBC Palette RAM in Mode 2
	8.17.5. Reading from GBC Palette RAM in Mode 3

	9. DMA
	9.1. FF46h – DMA – OAM DMA Transfer (R/W)
	9.2. FF51h – HDMA1 – GBC Mode – HDMA Source, High (W)
	9.3. FF52h – HDMA2 – GBC Mode – HDMA Source, Low (W)
	9.4. FF53h – HDMA3 – GBC Mode – HDMA Destination, High (W)
	9.5. FF54h – HDMA4 – GBC Mode – HDMA Destination, Low (W)
	9.6. FF55h – HDMA5 – GBC Mode – HDMA Length/Mode/Start (R/W)
	9.6.1. GDMA – General Purpose DMA
	9.6.2. HDMA – H-Blank DMA
	9.6.3. GDMA/HDMA Allowed Source Addresses

	10. Audio Processing Unit
	11. The Game Boy Cartridge
	11.1. The Cartridge Header
	11.2. Memory Bank Controllers
	11.2.1. None (32KB ROM)
	11.2.2. MBC1 (2MB ROM. 32KB RAM. DMG, SGB)
	11.2.3. MBC2 (256KB ROM. 512 × 4 bits RAM. DMG, SGB)
	11.2.4. MBC3 (2MB ROM. 64KB RAM. RTC. DMG, SGB, CGB)
	11.2.5. MBC5 (8MB ROM. 128KB RAM. DMG, SGB, CGB)
	11.2.6. Pocket Camera

	12. The Cartridge Connector
	13. Credits
	14. Changelog

