#include "stdafx.h" #include "../inc/mc6809.h" #include #include EightBit::mc6809::mc6809(Bus& bus) : BigEndianProcessor(bus) { RaisedPOWER.connect([this](EventArgs) { lowerBA(); lowerBS(); lowerRW(); }); } DEFINE_PIN_LEVEL_CHANGERS(NMI, mc6809); DEFINE_PIN_LEVEL_CHANGERS(FIRQ, mc6809); DEFINE_PIN_LEVEL_CHANGERS(HALT, mc6809); DEFINE_PIN_LEVEL_CHANGERS(BA, mc6809); DEFINE_PIN_LEVEL_CHANGERS(BS, mc6809); DEFINE_PIN_LEVEL_CHANGERS(RW, mc6809); int EightBit::mc6809::step() noexcept { resetCycles(); ExecutingInstruction.fire(*this); if (LIKELY(powered())) { m_prefix10 = m_prefix11 = false; if (UNLIKELY(halted())) handleHALT(); else if (UNLIKELY(lowered(RESET()))) handleRESET(); else if (UNLIKELY(lowered(NMI()))) handleNMI(); else if (UNLIKELY(lowered(FIRQ()) && !fastInterruptMasked())) handleFIRQ(); else if (UNLIKELY(lowered(INT()) && !interruptMasked())) handleINT(); else Processor::execute(fetchByte()); } ExecutedInstruction.fire(*this); assert(cycles() > 0); return cycles(); } // Interrupt (etc.) handlers void EightBit::mc6809::handleHALT() { raiseBA(); raiseBS(); } void EightBit::mc6809::handleRESET() noexcept { BigEndianProcessor::handleRESET(); memoryRead({ RESETvector, 0xff }); raiseNMI(); lowerBA(); raiseBS(); DP() = 0; CC() = setBit(CC(), IF); // Disable IRQ CC() = setBit(CC(), FF); // Disable FIRQ memoryRead(); memoryRead(); memoryRead(); jump(getWord()); eat(); } void EightBit::mc6809::handleNMI() { raiseNMI(); lowerBA(); raiseBS(); memoryRead(); memoryRead(); eat(); saveEntireRegisterState(); eat(); CC() = setBit(CC(), IF); // Disable IRQ CC() = setBit(CC(), FF); // Disable FIRQ jump(Processor::getWordPaged(0xff, NMIvector)); eat(); } void EightBit::mc6809::handleINT() noexcept { BigEndianProcessor::handleINT(); lowerBA(); raiseBS(); memoryRead(); memoryRead(); eat(); saveEntireRegisterState(); eat(); CC() = setBit(CC(), IF); // Disable IRQ jump(Processor::getWordPaged(0xff, IRQvector)); eat(); } void EightBit::mc6809::handleFIRQ() { raiseFIRQ(); lowerBA(); raiseBS(); memoryRead(); memoryRead(); eat(); savePartialRegisterState(); eat(); CC() = setBit(CC(), IF); // Disable IRQ CC() = setBit(CC(), FF); // Disable FIRQ jump(Processor::getWordPaged(0xff, FIRQvector)); eat(); } // void EightBit::mc6809::busWrite() noexcept { tick(); lowerRW(); Processor::busWrite(); } uint8_t EightBit::mc6809::busRead() noexcept { tick(); raiseRW(); return Processor::busRead(); } // void EightBit::mc6809::call(register16_t destination) noexcept { memoryRead(destination); eat(); BigEndianProcessor::pushWord(PC()); jump(destination); } void EightBit::mc6809::ret() noexcept { BigEndianProcessor::ret(); eat(); } // void EightBit::mc6809::execute() noexcept { lowerBA(); lowerBS(); const bool prefixed = m_prefix10 || m_prefix11; const bool unprefixed = !prefixed; if (unprefixed) { executeUnprefixed(); } else { if (m_prefix10) execute10(); else execute11(); } } void EightBit::mc6809::executeUnprefixed() { assert(!(m_prefix10 || m_prefix11)); assert(cycles() == 1); // One fetch switch (opcode()) { case 0x10: m_prefix10 = true; Processor::execute(fetchByte()); break; case 0x11: m_prefix11 = true; Processor::execute(fetchByte()); break; // ABX case 0x3a: memoryRead(); X() += B(); eat(); break; // ABX (inherent) // ADC case 0x89: A() = adc(A(), AM_immediate_byte()); break; // ADC (ADCA immediate) case 0x99: A() = adc(A(), AM_direct_byte()); break; // ADC (ADCA direct) case 0xa9: A() = adc(A(), AM_indexed_byte()); break; // ADC (ADCA indexed) case 0xb9: A() = adc(A(), AM_extended_byte()); break; // ADC (ADCA extended) case 0xc9: B() = adc(B(), AM_immediate_byte()); break; // ADC (ADCB immediate) case 0xd9: B() = adc(B(), AM_direct_byte()); break; // ADC (ADCB direct) case 0xe9: B() = adc(B(), AM_indexed_byte()); break; // ADC (ADCB indexed) case 0xf9: B() = adc(B(), AM_extended_byte()); break; // ADC (ADCB extended) // ADD case 0x8b: A() = add(A(), AM_immediate_byte()); break; // ADD (ADDA immediate) case 0x9b: A() = add(A(), AM_direct_byte()); break; // ADD (ADDA direct) case 0xab: A() = add(A(), AM_indexed_byte()); break; // ADD (ADDA indexed) case 0xbb: A() = add(A(), AM_extended_byte()); break; // ADD (ADDA extended) case 0xcb: B() = add(B(), AM_immediate_byte()); break; // ADD (ADDB immediate) case 0xdb: B() = add(B(), AM_direct_byte()); break; // ADD (ADDB direct) case 0xeb: B() = add(B(), AM_indexed_byte()); break; // ADD (ADDB indexed) case 0xfb: B() = add(B(), AM_extended_byte()); break; // ADD (ADDB extended) case 0xc3: D() = add(D(), AM_immediate_word()); break; // ADD (ADDD immediate) case 0xd3: D() = add(D(), AM_direct_word()); break; // ADD (ADDD direct) case 0xe3: D() = add(D(), AM_indexed_word()); break; // ADD (ADDD indexed) case 0xf3: D() = add(D(), AM_extended_word()); break; // ADD (ADDD extended) // AND case 0x84: A() = andr(A(), AM_immediate_byte()); break; // AND (ANDA immediate) case 0x94: A() = andr(A(), AM_direct_byte()); break; // AND (ANDA direct) case 0xa4: A() = andr(A(), AM_indexed_byte()); break; // AND (ANDA indexed) case 0xb4: A() = andr(A(), AM_extended_byte()); break; // AND (ANDA extended) case 0xc4: B() = andr(B(), AM_immediate_byte()); break; // AND (ANDB immediate) case 0xd4: B() = andr(B(), AM_direct_byte()); break; // AND (ANDB direct) case 0xe4: B() = andr(B(), AM_indexed_byte()); break; // AND (ANDB indexed) case 0xf4: B() = andr(B(), AM_extended_byte()); break; // AND (ANDB extended) case 0x1c: CC() &= AM_immediate_byte(); eat(); break; // AND (ANDCC immediate) // ASL/LSL case 0x08: RMW(AM_direct_byte, asl); break; // ASL (direct) case 0x48: memoryRead(); A() = asl(A()); break; // ASL (ASLA inherent) case 0x58: memoryRead(); B() = asl(B()); break; // ASL (ASLB inherent) case 0x68: RMW(AM_indexed_byte, asl); break; // ASL (indexed) case 0x78: RMW(AM_extended_byte, asl); break; // ASL (extended) // ASR case 0x07: RMW(AM_direct_byte, asr); break; // ASR (direct) case 0x47: memoryRead(); A() = asr(A()); break; // ASR (ASRA inherent) case 0x57: memoryRead(); B() = asr(B()); break; // ASR (ASRB inherent) case 0x67: RMW(AM_indexed_byte, asr); break; // ASR (indexed) case 0x77: RMW(AM_extended_byte, asr); break; // ASR (extended) // BIT case 0x85: bit(A(), AM_immediate_byte()); break; // BIT (BITA immediate) case 0x95: bit(A(), AM_direct_byte()); break; // BIT (BITA direct) case 0xa5: bit(A(), AM_indexed_byte()); break; // BIT (BITA indexed) case 0xb5: bit(A(), AM_extended_byte()); break; // BIT (BITA extended) case 0xc5: bit(B(), AM_immediate_byte()); break; // BIT (BITB immediate) case 0xd5: bit(B(), AM_direct_byte()); break; // BIT (BITB direct) case 0xe5: bit(B(), AM_indexed_byte()); break; // BIT (BITB indexed) case 0xf5: bit(B(), AM_extended_byte()); break; // BIT (BITB extended) // CLR case 0x0f: RMW(AM_direct_byte, clr); break; // CLR (direct) case 0x4f: memoryRead(); A() = clr(); break; // CLR (CLRA implied) case 0x5f: memoryRead(); B() = clr(); break; // CLR (CLRB implied) case 0x6f: RMW(AM_indexed_byte, clr); break; // CLR (indexed) case 0x7f: RMW(AM_extended_byte, clr); break; // CLR (extended) // CMP // CMPA case 0x81: cmp(A(), AM_immediate_byte()); break; // CMP (CMPA, immediate) case 0x91: cmp(A(), AM_direct_byte()); break; // CMP (CMPA, direct) case 0xa1: cmp(A(), AM_indexed_byte()); break; // CMP (CMPA, indexed) case 0xb1: cmp(A(), AM_extended_byte()); break; // CMP (CMPA, extended) // CMPB case 0xc1: cmp(B(), AM_immediate_byte()); break; // CMP (CMPB, immediate) case 0xd1: cmp(B(), AM_direct_byte()); break; // CMP (CMPB, direct) case 0xe1: cmp(B(), AM_indexed_byte()); break; // CMP (CMPB, indexed) case 0xf1: cmp(B(), AM_extended_byte()); break; // CMP (CMPB, extended) // CMPX case 0x8c: cmp(X(), AM_immediate_word()); break; // CMP (CMPX, immediate) case 0x9c: cmp(X(), AM_direct_word()); break; // CMP (CMPX, direct) case 0xac: cmp(X(), AM_indexed_word()); break; // CMP (CMPX, indexed) case 0xbc: cmp(X(), AM_extended_word()); break; // CMP (CMPX, extended) // COM case 0x03: RMW(AM_direct_byte, com); break; // COM (direct) case 0x43: memoryRead(); A() = com(A()); break; // COM (COMA inherent) case 0x53: memoryRead(); B() = com(B()); break; // COM (COMB inherent) case 0x63: RMW(AM_indexed_byte, com); break; // COM (indexed) case 0x73: RMW(AM_extended_byte, com); break; // COM (extended) // CWAI case 0x3c: cwai(AM_direct_byte()); break; // CWAI (direct) // DAA case 0x19: memoryRead(); A() = da(A()); break; // DAA (inherent) // DEC case 0x0a: RMW(AM_direct_byte, dec); break; // DEC (direct) case 0x4a: memoryRead(); A() = dec(A()); break; // DEC (DECA inherent) case 0x5a: memoryRead(); B() = dec(B()); break; // DEC (DECB inherent) case 0x6a: RMW(AM_indexed_byte, dec); break; // DEC (indexed) case 0x7a: RMW(AM_extended_byte, dec); break; // DEC (extended) // EOR // EORA case 0x88: A() = eorr(A(), AM_immediate_byte()); break; // EOR (EORA immediate) case 0x98: A() = eorr(A(), AM_direct_byte()); break; // EOR (EORA direct) case 0xa8: A() = eorr(A(), AM_indexed_byte()); break; // EOR (EORA indexed) case 0xb8: A() = eorr(A(), AM_extended_byte()); break; // EOR (EORA extended) // EORB case 0xc8: B() = eorr(B(), AM_immediate_byte()); break; // EOR (EORB immediate) case 0xd8: B() = eorr(B(), AM_direct_byte()); break; // EOR (EORB direct) case 0xe8: B() = eorr(B(), AM_indexed_byte()); break; // EOR (EORB indexed) case 0xf8: B() = eorr(B(), AM_extended_byte()); break; // EOR (EORB extended) // EXG case 0x1e: exg(AM_immediate_byte()); break; // EXG (R1,R2 immediate) // INC case 0x0c: RMW(AM_direct_byte, inc); break; // INC (direct) case 0x4c: memoryRead(); A() = inc(A()); break; // INC (INCA inherent) case 0x5c: memoryRead(); B() = inc(B()); break; // INC (INCB inherent) case 0x6c: RMW(AM_indexed_byte, inc); break; // INC (indexed) case 0x7c: RMW(AM_extended_byte, inc); break; // INC (extended) // JMP case 0x0e: jump(Address_direct()); break; // JMP (direct) case 0x6e: jump(Address_indexed()); break; // JMP (indexed) case 0x7e: jump(Address_extended()); break; // JMP (extended) // JSR case 0x9d: jsr(Address_direct()); break; // JSR (direct) case 0xad: jsr(Address_indexed()); break; // JSR (indexed) case 0xbd: jsr(Address_extended()); break; // JSR (extended) // LD // LDA case 0x86: A() = through(AM_immediate_byte()); break; // LD (LDA immediate) case 0x96: A() = through(AM_direct_byte()); break; // LD (LDA direct) case 0xa6: A() = through(AM_indexed_byte()); break; // LD (LDA indexed) case 0xb6: A() = through(AM_extended_byte()); break; // LD (LDA extended) // LDB case 0xc6: B() = through(AM_immediate_byte()); break; // LD (LDB immediate) case 0xd6: B() = through(AM_direct_byte()); break; // LD (LDB direct) case 0xe6: B() = through(AM_indexed_byte()); break; // LD (LDB indexed) case 0xf6: B() = through(AM_extended_byte()); break; // LD (LDB extended) // LDD case 0xcc: D() = through(AM_immediate_word()); break; // LD (LDD immediate) case 0xdc: D() = through(AM_direct_word()); break; // LD (LDD direct) case 0xec: D() = through(AM_indexed_word()); break; // LD (LDD indexed) case 0xfc: D() = through(AM_extended_word()); break; // LD (LDD extended) // LDU case 0xce: U() = through(AM_immediate_word()); break; // LD (LDU immediate) case 0xde: U() = through(AM_direct_word()); break; // LD (LDU direct) case 0xee: U() = through(AM_indexed_word()); break; // LD (LDU indexed) case 0xfe: U() = through(AM_extended_word()); break; // LD (LDU extended) // LDX case 0x8e: X() = through(AM_immediate_word()); break; // LD (LDX immediate) case 0x9e: X() = through(AM_direct_word()); break; // LD (LDX direct) case 0xae: X() = through(AM_indexed_word()); break; // LD (LDX indexed) case 0xbe: X() = through(AM_extended_word()); break; // LD (LDX extended) // LEA case 0x30: adjustZero(X() = Address_indexed()); break; // LEA (LEAX indexed) case 0x31: adjustZero(Y() = Address_indexed()); break; // LEA (LEAY indexed) case 0x32: S() = Address_indexed(); break; // LEA (LEAS indexed) case 0x33: U() = Address_indexed(); break; // LEA (LEAU indexed) // LSR case 0x04: RMW(AM_direct_byte, lsr); break; // LSR (direct) case 0x44: memoryRead(); A() = lsr(A()); break; // LSR (LSRA inherent) case 0x54: memoryRead(); B() = lsr(B()); break; // LSR (LSRB inherent) case 0x64: RMW(AM_indexed_byte, lsr); break; // LSR (indexed) case 0x74: RMW(AM_extended_byte, lsr); break; // LSR (extended) // MUL case 0x3d: memoryRead(); D() = mul(A(), B()); break; // MUL (inherent) // NEG case 0x00: RMW(AM_direct_byte, neg); break; // NEG (direct) case 0x40: memoryRead(); A() = neg(A()); break; // NEG (NEGA, inherent) case 0x50: memoryRead(); B() = neg(B()); break; // NEG (NEGB, inherent) case 0x60: RMW(AM_indexed_byte, neg); break; // NEG (indexed) case 0x70: RMW(AM_extended_byte, neg); break; // NEG (extended) // NOP case 0x12: memoryRead(); break; // NOP (inherent) // OR // ORA case 0x8a: A() = orr(A(), AM_immediate_byte()); break; // OR (ORA immediate) case 0x9a: A() = orr(A(), AM_direct_byte()); break; // OR (ORA direct) case 0xaa: A() = orr(A(), AM_indexed_byte()); break; // OR (ORA indexed) case 0xba: A() = orr(A(), AM_extended_byte()); break; // OR (ORA extended) // ORB case 0xca: B() = orr(B(), AM_immediate_byte()); break; // OR (ORB immediate) case 0xda: B() = orr(B(), AM_direct_byte()); break; // OR (ORB direct) case 0xea: B() = orr(B(), AM_indexed_byte()); break; // OR (ORB indexed) case 0xfa: B() = orr(B(), AM_extended_byte()); break; // OR (ORB extended) // ORCC case 0x1a: CC() |= AM_immediate_byte(); eat(); break; // OR (ORCC immediate) // PSH case 0x34: psh(S(), AM_immediate_byte()); break; // PSH (PSHS immediate) case 0x36: psh(U(), AM_immediate_byte()); break; // PSH (PSHU immediate) // PUL case 0x35: pul(S(), AM_immediate_byte()); break; // PUL (PULS immediate) case 0x37: pul(U(), AM_immediate_byte()); break; // PUL (PULU immediate) // ROL case 0x09: RMW(AM_direct_byte, rol); break; // ROL (direct) case 0x49: memoryRead(); A() = rol(A()); break; // ROL (ROLA inherent) case 0x59: memoryRead(); B() = rol(B()); break; // ROL (ROLB inherent) case 0x69: RMW(AM_indexed_byte, rol); break; // ROL (indexed) case 0x79: RMW(AM_extended_byte, rol); break; // ROL (extended) // ROR case 0x06: RMW(AM_direct_byte, ror); break; // ROR (direct) case 0x46: memoryRead(); A() = ror(A()); break; // ROR (RORA inherent) case 0x56: memoryRead(); B() = ror(B()); break; // ROR (RORB inherent) case 0x66: RMW(AM_indexed_byte, ror); break; // ROR (indexed) case 0x76: RMW(AM_extended_byte, ror); break; // ROR (extended) // RTI case 0x3B: memoryRead(); rti(); break; // RTI (inherent) // RTS case 0x39: memoryRead(); ret(); break; // RTS (inherent) // SBC // SBCA case 0x82: A() = sbc(A(), AM_immediate_byte()); break; // SBC (SBCA immediate) case 0x92: A() = sbc(A(), AM_direct_byte()); break; // SBC (SBCA direct) case 0xa2: A() = sbc(A(), AM_indexed_byte()); break; // SBC (SBCA indexed) case 0xb2: A() = sbc(A(), AM_extended_byte()); break; // SBC (SBCB extended) // SBCB case 0xc2: B() = sbc(B(), AM_immediate_byte()); break; // SBC (SBCB immediate) case 0xd2: B() = sbc(B(), AM_direct_byte()); break; // SBC (SBCB direct) case 0xe2: B() = sbc(B(), AM_indexed_byte()); break; // SBC (SBCB indexed) case 0xf2: B() = sbc(B(), AM_extended_byte()); break; // SBC (SBCB extended) // SEX case 0x1d: memoryRead(); A() = sex(B()); break; // SEX (inherent) // ST // STA case 0x97: memoryWrite(Address_direct(), through(A())); break; // ST (STA direct) case 0xa7: memoryWrite(Address_indexed(), through(A())); break; // ST (STA indexed) case 0xb7: memoryWrite(Address_extended(), through(A())); break; // ST (STA extended) // STB case 0xd7: memoryWrite(Address_direct(), through(B())); break; // ST (STB direct) case 0xe7: memoryWrite(Address_indexed(), through(B())); break; // ST (STB indexed) case 0xf7: memoryWrite(Address_extended(), through(B())); break; // ST (STB extended) // STD case 0xdd: Processor::setWord(Address_direct(), through(D())); break; // ST (STD direct) case 0xed: Processor::setWord(Address_indexed(), through(D())); break; // ST (STD indexed) case 0xfd: Processor::setWord(Address_extended(), through(D())); break; // ST (STD extended) // STU case 0xdf: Processor::setWord(Address_direct(), through(U())); break; // ST (STU direct) case 0xef: Processor::setWord(Address_indexed(), through(U())); break; // ST (STU indexed) case 0xff: Processor::setWord(Address_extended(), through(U())); break; // ST (STU extended) // STX case 0x9f: Processor::setWord(Address_direct(), through(X())); break; // ST (STX direct) case 0xaf: Processor::setWord(Address_indexed(), through(X())); break; // ST (STX indexed) case 0xbf: Processor::setWord(Address_extended(), through(X())); break; // ST (STX extended) // SUB // SUBA case 0x80: A() = sub(A(), AM_immediate_byte()); break; // SUB (SUBA immediate) case 0x90: A() = sub(A(), AM_direct_byte()); break; // SUB (SUBA direct) case 0xa0: A() = sub(A(), AM_indexed_byte()); break; // SUB (SUBA indexed) case 0xb0: A() = sub(A(), AM_extended_byte()); break; // SUB (SUBA extended) // SUBB case 0xc0: B() = sub(B(), AM_immediate_byte()); break; // SUB (SUBB immediate) case 0xd0: B() = sub(B(), AM_direct_byte()); break; // SUB (SUBB direct) case 0xe0: B() = sub(B(), AM_indexed_byte()); break; // SUB (SUBB indexed) case 0xf0: B() = sub(B(), AM_extended_byte()); break; // SUB (SUBB extended) // SUBD case 0x83: D() = sub(D(), AM_immediate_word()); break; // SUB (SUBD immediate) case 0x93: D() = sub(D(), AM_direct_word()); break; // SUB (SUBD direct) case 0xa3: D() = sub(D(), AM_indexed_word()); break; // SUB (SUBD indexed) case 0xb3: D() = sub(D(), AM_extended_word()); break; // SUB (SUBD extended) // SWI case 0x3f: memoryRead(); swi(); break; // SWI (inherent) XXXX // SYNC case 0x13: memoryRead(); halt(); break; // SYNC (inherent)XXXX // TFR case 0x1f: tfr(AM_immediate_byte()); break; // TFR (immediate) // TST case 0x0d: tst(AM_direct_byte()); break; // TST (direct) case 0x4d: memoryRead(); tst(A()); break; // TST (TSTA inherent) case 0x5d: memoryRead(); tst(B()); break; // TST (TSTB inherent) case 0x6d: tst(AM_indexed_byte()); break; // TST (indexed) case 0x7d: tst(AM_extended_byte()); break; // TST (extended) // Branching case 0x16: jump(Address_relative_word()); break; // BRA (LBRA relative) case 0x17: jsr(Address_relative_word()); break; // BSR (LBSR relative) case 0x20: jump(Address_relative_byte()); break; // BRA (relative) case 0x21: Address_relative_byte(); break; // BRN (relative) case 0x22: branchShort(HI()); break; // BHI (relative) case 0x23: branchShort(LS()); break; // BLS (relative) case 0x24: branchShort(!carry()); break; // BCC (relative) case 0x25: branchShort(carry()); break; // BCS (relative) case 0x26: branchShort(!zero()); break; // BNE (relative) case 0x27: branchShort(zero()); break; // BEQ (relative) case 0x28: branchShort(!overflow()); break; // BVC (relative) case 0x29: branchShort(overflow()); break; // BVS (relative) case 0x2a: branchShort(!negative()); break; // BPL (relative) case 0x2b: branchShort(negative()); break; // BMI (relative) case 0x2c: branchShort(GE()); break; // BGE (relative) case 0x2d: branchShort(LT()); break; // BLT (relative) case 0x2e: branchShort(GT()); break; // BGT (relative) case 0x2f: branchShort(LE()); break; // BLE (relative) case 0x8d: jsr(Address_relative_byte()); break; // BSR (relative) default: UNREACHABLE; } } void EightBit::mc6809::execute10() { assert(m_prefix10 && !m_prefix11); assert(cycles() == 2); // Two fetches switch (opcode()) { // CMP // CMPD case 0x83: cmp(D(), AM_immediate_word()); break; // CMP (CMPD, immediate) case 0x93: cmp(D(), AM_direct_word()); break; // CMP (CMPD, direct) case 0xa3: cmp(D(), AM_indexed_word()); break; // CMP (CMPD, indexed) case 0xb3: cmp(D(), AM_extended_word()); break; // CMP (CMPD, extended) // CMPY case 0x8c: cmp(Y(), AM_immediate_word()); break; // CMP (CMPY, immediate) case 0x9c: cmp(Y(), AM_direct_word()); break; // CMP (CMPY, direct) case 0xac: cmp(Y(), AM_indexed_word()); break; // CMP (CMPY, indexed) case 0xbc: cmp(Y(), AM_extended_word()); break; // CMP (CMPY, extended) // LD // LDS case 0xce: S() = through(AM_immediate_word()); break; // LD (LDS immediate) case 0xde: S() = through(AM_direct_word()); break; // LD (LDS direct) case 0xee: S() = through(AM_indexed_word()); break; // LD (LDS indexed) case 0xfe: S() = through(AM_extended_word()); break; // LD (LDS extended) // LDY case 0x8e: Y() = through(AM_immediate_word()); break; // LD (LDY immediate) case 0x9e: Y() = through(AM_direct_word()); break; // LD (LDY direct) case 0xae: Y() = through(AM_indexed_word()); break; // LD (LDY indexed) case 0xbe: Y() = through(AM_extended_word()); break; // LD (LDY extended) // Branching case 0x21: Address_relative_word(); break; // BRN (LBRN relative) case 0x22: branchLong(HI()); break; // BHI (LBHI relative) case 0x23: branchLong(LS()); break; // BLS (LBLS relative) case 0x24: branchLong(!carry()); break; // BCC (LBCC relative) case 0x25: branchLong(carry()); break; // BCS (LBCS relative) case 0x26: branchLong(!zero()); break; // BNE (LBNE relative) case 0x27: branchLong(zero()); break; // BEQ (LBEQ relative) case 0x28: branchLong(!overflow()); break; // BVC (LBVC relative) case 0x29: branchLong(overflow()); break; // BVS (LBVS relative) case 0x2a: branchLong(!negative()); break; // BPL (LBPL relative) case 0x2b: branchLong(negative()); break; // BMI (LBMI relative) case 0x2c: branchLong(GE()); break; // BGE (LBGE relative) case 0x2d: branchLong(LT()); break; // BLT (LBLT relative) case 0x2e: branchLong(GT()); break; // BGT (LBGT relative) case 0x2f: branchLong(LE()); break; // BLE (LBLE relative) // STS case 0xdf: Processor::setWord(Address_direct(), through(S())); break; // ST (STS direct) case 0xef: Processor::setWord(Address_indexed(), through(S())); break; // ST (STS indexed) case 0xff: Processor::setWord(Address_extended(), through(S())); break; // ST (STS extended) // STY case 0x9f: Processor::setWord(Address_direct(), through(Y())); break; // ST (STY direct) case 0xaf: Processor::setWord(Address_indexed(), through(Y())); break; // ST (STY indexed) case 0xbf: Processor::setWord(Address_extended(), through(Y())); break; // ST (STY extended) // SWI case 0x3f: memoryRead(); swi2(); break; // SWI (SWI2 inherent) default: UNREACHABLE; } } void EightBit::mc6809::execute11() { assert(!m_prefix10 && m_prefix11); assert(cycles() == 2); // Two fetches switch (opcode()) { // CMP // CMPU case 0x83: cmp(U(), AM_immediate_word()); break; // CMP (CMPU, immediate) case 0x93: cmp(U(), AM_direct_word()); break; // CMP (CMPU, direct) case 0xa3: cmp(U(), AM_indexed_word()); break; // CMP (CMPU, indexed) case 0xb3: cmp(U(), AM_extended_word()); break; // CMP (CMPU, extended) // CMPS case 0x8c: cmp(S(), AM_immediate_word()); break; // CMP (CMPS, immediate) case 0x9c: cmp(S(), AM_direct_word()); break; // CMP (CMPS, direct) case 0xac: cmp(S(), AM_indexed_word()); break; // CMP (CMPS, indexed) case 0xbc: cmp(S(), AM_extended_word()); break; // CMP (CMPS, extended) // SWI case 0x3f: memoryRead(); swi3(); break; // SWI (SWI3 inherent) default: UNREACHABLE; } } // void EightBit::mc6809::push(const uint8_t value) noexcept { pushS(value); } uint8_t EightBit::mc6809::pop() noexcept { return popS(); } void EightBit::mc6809::push(register16_t& stack, const uint8_t value) { memoryWrite(--stack, value); } uint8_t EightBit::mc6809::pop(register16_t& stack) { return memoryRead(stack++); } // EightBit::register16_t& EightBit::mc6809::RR(const int which) { ASSUME(which >= 0); ASSUME(which <= 3); switch (which) { case 0b00: return X(); case 0b01: return Y(); case 0b10: return U(); case 0b11: return S(); default: UNREACHABLE; } } EightBit::register16_t EightBit::mc6809::Address_relative_byte() { const auto address = PC() + (int8_t)fetchByte(); eat(); return address; } EightBit::register16_t EightBit::mc6809::Address_relative_word() { return PC() + (int16_t)fetchWord().word; } EightBit::register16_t EightBit::mc6809::Address_direct() { const auto offset = fetchByte(); eat(); return register16_t(offset, DP()); } EightBit::register16_t EightBit::mc6809::Address_indexed() { const auto type = fetchByte(); auto& r = RR((type & (Bit6 | Bit5)) >> 5); register16_t address = Mask16; if (type & Bit7) { const auto indirect = type & Bit4; switch (type & Mask4) { case 0b0000: // ,R+ ASSUME(!indirect); address = r++; memoryRead(PC()); eat(2); break; case 0b0001: // ,R++ address = r; r += 2; memoryRead(PC()); eat(3); break; case 0b0010: // ,-R ASSUME(!indirect); address = --r; memoryRead(PC()); eat(2); break; case 0b0011: // ,--R r -= 2; address = r; memoryRead(PC()); eat(3); break; case 0b0100: // ,R address = r; memoryRead(); break; case 0b0101: // B,R address = r + (int8_t)B(); memoryRead(PC()); eat(); break; case 0b0110: // A,R address = r + (int8_t)A(); memoryRead(PC()); eat(); break; case 0b1000: // n,R (eight-bit) address = r + (int8_t)fetchByte(); eat(); break; case 0b1001: // n,R (sixteen-bit) address = r + (int16_t)fetchWord().word; memoryRead(PC()); eat(2); break; case 0b1011: // D,R address = r + D(); memoryRead(PC()); memoryRead(PC() + 1); memoryRead(PC() + 2); eat(2); break; case 0b1100: // n,PCR (eight-bit) address = Address_relative_byte(); break; case 0b1101: // n,PCR (sixteen-bit) address = Address_relative_word(); memoryRead(PC()); eat(3); break; case 0b1111: // [n] assert(indirect); address = Address_extended(); memoryRead(PC()); break; default: UNREACHABLE; } if (indirect) { address = Processor::getWord(address); eat(); } } else { // EA = ,R + 5-bit offset address = r + signExtend(5, type & Mask5); memoryRead(PC()); eat(); } return address; } EightBit::register16_t EightBit::mc6809::Address_extended() { const auto ea = fetchWord(); eat(); return ea; } // uint8_t EightBit::mc6809::AM_immediate_byte() { return fetchByte(); } uint8_t EightBit::mc6809::AM_direct_byte() { return memoryRead(Address_direct()); } uint8_t EightBit::mc6809::AM_indexed_byte() { return memoryRead(Address_indexed()); } uint8_t EightBit::mc6809::AM_extended_byte() { return memoryRead(Address_extended()); } // EightBit::register16_t EightBit::mc6809::AM_immediate_word() { return fetchWord(); } EightBit::register16_t EightBit::mc6809::AM_direct_word() { return Processor::getWord(Address_direct()); } EightBit::register16_t EightBit::mc6809::AM_indexed_word() { return Processor::getWord(Address_indexed()); } EightBit::register16_t EightBit::mc6809::AM_extended_word() { return Processor::getWord(Address_extended()); } // void EightBit::mc6809::saveEntireRegisterState() { CC() = setBit(CC(), EF); saveRegisterState(); } void EightBit::mc6809::savePartialRegisterState() { CC() = clearBit(CC(), EF); saveRegisterState(); } void EightBit::mc6809::saveRegisterState() { psh(S(), CC() & EF ? 0xff : 0b10000001); } void EightBit::mc6809::restoreRegisterState() { pul(S(), CC() & EF ? 0xff : 0b10000001); } // uint8_t EightBit::mc6809::adc(const uint8_t operand, const uint8_t data) { return add(operand, data, carry()); } uint8_t EightBit::mc6809::add(const uint8_t operand, const uint8_t data, const uint8_t carry) { const register16_t addition = operand + data + carry; adjustAddition(operand, data, addition); return addition.low; } EightBit::register16_t EightBit::mc6809::add(const register16_t operand, const register16_t data) { const uint32_t addition = operand.word + data.word; adjustAddition(operand, data, addition); eat(); return addition & Mask16; } uint8_t EightBit::mc6809::andr(const uint8_t operand, const uint8_t data) { return through((uint8_t)(operand & data)); } uint8_t EightBit::mc6809::asl(uint8_t operand) { CC() = setBit(CC(), CF, operand & Bit7); adjustNZ(operand <<= 1); const auto overflow = carry() ^ (negative() >> 3); CC() = setBit(CC(), VF, overflow); return operand; } uint8_t EightBit::mc6809::asr(uint8_t operand) { CC() = setBit(CC(), CF, operand & Bit0); const uint8_t result = (operand >> 1) | Bit7; adjustNZ(result); return result; } void EightBit::mc6809::bit(const uint8_t operand, const uint8_t data) { andr(operand, data); } uint8_t EightBit::mc6809::clr(uint8_t) { CC() = clearBit(CC(), CF); return through((uint8_t)0U); } void EightBit::mc6809::cmp(const uint8_t operand, const uint8_t data) { sub(operand, data); } void EightBit::mc6809::cmp(const register16_t operand, const register16_t data) { sub(operand, data); } uint8_t EightBit::mc6809::com(const uint8_t operand) { CC() = setBit(CC(), CF); return through((uint8_t)~operand); } void EightBit::mc6809::cwai(const uint8_t data) { CC() &= data; memoryRead(PC()); eat(); saveEntireRegisterState(); halt(); } uint8_t EightBit::mc6809::da(uint8_t operand) { CC() = setBit(CC(), CF, operand > 0x99); const auto lowAdjust = halfCarry() || (lowNibble(operand) > 9); const auto highAdjust = carry() || (operand > 0x99); if (lowAdjust) operand += 6; if (highAdjust) operand += 0x60; return through(operand); } uint8_t EightBit::mc6809::dec(const uint8_t operand) { const register16_t subtraction = operand - 1; const auto result = subtraction.low; adjustNZ(result); adjustOverflow(operand, 1, subtraction); return result; } uint8_t EightBit::mc6809::eorr(const uint8_t operand, const uint8_t data) noexcept { return through((uint8_t)(operand ^ data)); } uint8_t& EightBit::mc6809::referenceTransfer8(const int specifier) noexcept { switch (specifier) { case 0b1000: return A(); case 0b1001: return B(); case 0b1010: return CC(); case 0b1011: return DP(); default: UNREACHABLE; } } EightBit::register16_t& EightBit::mc6809::referenceTransfer16(const int specifier) { switch (specifier) { case 0b0000: return D(); case 0b0001: return X(); case 0b0010: return Y(); case 0b0011: return U(); case 0b0100: return S(); case 0b0101: return PC(); default: UNREACHABLE; } } void EightBit::mc6809::exg(const uint8_t data) { const auto reg1 = highNibble(data); const auto reg2 = lowNibble(data); const bool type8 = !(reg1 & Bit3); // 8 bit exchange? ASSUME(type8 == !(reg2 & Bit3)); // Regardless, the register exchange must be equivalent if (type8) std::swap(referenceTransfer8(reg1), referenceTransfer8(reg2)); else std::swap(referenceTransfer16(reg1), referenceTransfer16(reg2)); eat(6); } uint8_t EightBit::mc6809::inc(uint8_t operand) { const register16_t addition = operand + 1; const auto result = addition.low; adjustNZ(result); adjustOverflow(operand, 1, addition); adjustHalfCarry(operand, 1, result); return result; } void EightBit::mc6809::jsr(const register16_t address) { call(address); } uint8_t EightBit::mc6809::lsr(uint8_t operand) { CC() = setBit(CC(), CF, operand & Bit0); adjustNZ(operand >>= 1); return operand; } EightBit::register16_t EightBit::mc6809::mul(const uint8_t first, const uint8_t second) { const register16_t result = first * second; adjustZero(result); CC() = setBit(CC(), CF, result.low & Bit7); eat(9); return result; } uint8_t EightBit::mc6809::neg(uint8_t operand) { CC() = setBit(CC(), VF, operand == Bit7); const register16_t result = 0 - operand; operand = result.low; adjustNZ(operand); adjustCarry(result); return operand; } uint8_t EightBit::mc6809::orr(const uint8_t operand, const uint8_t data) { return through((uint8_t)(operand | data)); } void EightBit::mc6809::psh(register16_t& stack, const uint8_t data) { eat(2); memoryRead(stack); if (data & Bit7) pushWord(stack, PC()); if (data & Bit6) // Pushing to the S stack means we must be pushing U pushWord(stack, &stack == &S() ? U() : S()); if (data & Bit5) pushWord(stack, Y()); if (data & Bit4) pushWord(stack, X()); if (data & Bit3) push(stack, DP()); if (data & Bit2) push(stack, B()); if (data & Bit1) push(stack, A()); if (data & Bit0) push(stack, CC()); } void EightBit::mc6809::pul(register16_t& stack, const uint8_t data) { eat(2); if (data & Bit0) CC() = pop(stack); if (data & Bit1) A() = pop(stack); if (data & Bit2) B() = pop(stack); if (data & Bit3) DP() = pop(stack); if (data & Bit4) X() = popWord(stack); if (data & Bit5) Y() = popWord(stack); if (data & Bit6) // Pulling from the S stack means we must be pulling U (&stack == &S() ? U() : S()) = popWord(stack); if (data & Bit7) PC() = popWord(stack); memoryRead(stack); } uint8_t EightBit::mc6809::rol(const uint8_t operand) { const auto carryIn = carry(); CC() = setBit(CC(), CF, operand & Bit7); CC() = setBit(CC(), VF, ((operand & Bit7) >> 7) ^ ((operand & Bit6) >> 6)); const uint8_t result = (operand << 1) | carryIn; adjustNZ(result); return result; } uint8_t EightBit::mc6809::ror(const uint8_t operand) { const auto carryIn = carry(); CC() = setBit(CC(), CF, operand & Bit0); const uint8_t result = (operand >> 1) | (carryIn << 7); adjustNZ(result); return result; } void EightBit::mc6809::rti() { restoreRegisterState(); eat(); } void EightBit::mc6809::swi() { eat(); saveEntireRegisterState(); CC() = setBit(CC(), IF); // Disable IRQ CC() = setBit(CC(), FF); // Disable FIRQ jump(Processor::getWordPaged(0xff, SWIvector)); eat(); } void EightBit::mc6809::swi2() { eat(); saveEntireRegisterState(); jump(Processor::getWordPaged(0xff, SWI2vector)); eat(); } void EightBit::mc6809::swi3() { eat(); saveEntireRegisterState(); jump(Processor::getWordPaged(0xff, SWI3vector)); eat(); } uint8_t EightBit::mc6809::sex(const uint8_t from) { adjustNZ(from); return from & Bit7 ? Mask8 : 0; } void EightBit::mc6809::tfr(const uint8_t data) { const auto reg1 = highNibble(data); const auto reg2 = lowNibble(data); const bool type8 = !!(reg1 & Bit3); // 8 bit transfer? ASSUME(type8 == !!(reg2 & Bit3)); // Regardless, the register transfer must be equivalent if (type8) referenceTransfer8(reg2) = referenceTransfer8(reg1); else referenceTransfer16(reg2) = referenceTransfer16(reg1); eat(4); } uint8_t EightBit::mc6809::sbc(const uint8_t operand, const uint8_t data) { return sub(operand, data, carry()); } uint8_t EightBit::mc6809::sub(const uint8_t operand, const uint8_t data, const uint8_t carry) { const register16_t subtraction = operand - data - carry; adjustSubtraction(operand, data, subtraction); return subtraction.low; } EightBit::register16_t EightBit::mc6809::sub(const register16_t operand, const register16_t data) { const uint32_t subtraction = operand.word - data.word; adjustSubtraction(operand, data, subtraction); eat(); return subtraction & Mask16; } void EightBit::mc6809::tst(const uint8_t data) { cmp(data, 0); }