51

When designing the M6889 we looked at a lot of M684G

data that indicated that constant offsets to index registers
were generally small or zero. We took this into account and
made both the 5-bit and no offset addressing submodes fit

entirely into the index po

wn

1

t-byte,

e
3

o

his really paid off, and
is the main reason the average additional bytes is so low.
The indexed submodes that add additional bytes (8 and 16-bit

offsets and extended indirect) are low in frequency { less

than 2%).

In addition to determining which indexed submodes
were used the most, I was interested in which index registers

were used most often. Below is the data:

Index register usage:

reg number %

u 2411 32.71
S 1891 24,43
b4 1762 23.90
V 1148 15.59
pc 231 3.13

This data shows that all the index registers are-
being wused in approximately egual proportions. Even the pro-
gram counter is used 3.13% of the time. The predominance of U
and S register indexing indicates that many M68¢9 programmers

are creating their data areas on the stacks by creating stuck

52
frames and then accessing thelir data relative to the stack
frame pointers. Visual inspection of the source code further

confirms this supposition indicating that the programmers are

writing position lndependent and re-—entrent programs. The high
freguency of subroutine calls also indicates that the programs

are modular. It was ocur goal as architects to encourage this
type of programming. It is apparent that, 1f vyou give the

programmers the tools to write good programs, they will do so.

PAIRS AND TRIPLES

Another area of interest to computer architects when

analyzing a computer's instruction set is the frequency of

cccurrence of inst

et
[

u

@]

ion combinations. This information can

[
83
(o1

e the archi

r+

ec

[
(a3

into the definition of new instructions on

&3}

uture upward compatible architectures. Toward this end,

I
analyzed the M6809 source code and looked for instruction

pairs and triples.
3.1. PAIRS

Table 3-1 contains the pairs of opcodes that appeared

statically more than 78 times in the 26,330 instructions

analyzed.

53

ct. pair ct. pair ct, pair
* 585 1d4dd std 125 beg lbsr B 1dx stx
* 362 1lbsr lbsr 124 std lbsr 85 1dd cmpd
* 289 lda sta 123 1lda 1dx 83 1dx tfr
® 279 ldx 1dy 121 1dd 1ibsr Bl addd std
¥ 254 1ldd 1dx 118 pshs lbsr * 82 cmpb bne
248 1dy pshu 118 1dx leax 82 leax bra
¥ 211 cmpa bne 165 std ldd 77 lbra lbra
172 1bsr leas 181 leax stx 75 rol rol
164 ldx 1bsr 98 1dd subd 74 bne 1da
*# 158 1db st 96 pshs 1dd 71 1lda pshu
*# 158 ldx 1dd 94 lda ora 71 ldx dsr
158 tfr puls 53 lda anda 71 leawx 1dd
146 cmpa beg 92 ora sta 7¢ 1db pshs
145 1dx pshu 9¢ Jsr dsr
138 leax pshs 87 lda cmpa

* referred to in the following discussion

Table 3-1: Static Instruction Pairs

From the raw data in Appendix III we find that there
are 1462 1dd instructions. The pair data indicates that 565 of
these are followed by std (34.54%). There are also 1797 lda's
followed by 289 sta's (16.88%) and 1617 1db's followed by 158

stb's (14.75%). This data speaks strongly for a move instruc-

tion as found on the PDP-11 and the MGREUG.

The

fowndt

bsr/1bsr pair indicates modular main program

loops that make a series of subroutine calls.

About 2% of the total instructions are compares fol-
lowed by branch equal or not equal. This is not surprising,

but most attempts to combine these instructions in past archi-

55

tectures have created instructions that are as big and as slow

as the two separate instructions.

Probably the most interesting data in the pairs

-
s

[

is that

o
Jot
b
i

&t here are 814 pairs of 1d16/14156.

=3
5

-

s indi-

[N

ot

cates that a M68000 type of move multiple instruction would be

of benefit to the ME809.
3.2. TRIPLES

Table 3-2 contains the triples that occurred (stati-
cally) over 30 times in the 26,330 total instructions

analyzed,

56

ct. triple ct. triple
245 1dx ldy pshu ¥ 41 cmpa beg cmpa
*# 243 1dd 1dx ldy 41 1bsr 1ldx leax
121 1dd std lbsr 41 144 std leax
116 std 1bsr leas 49 1dx 1bsr lbsr
9% beg lbsy lbsr 4@ leax 1du st¥
98 lda l1ldx pshu 4¢ stb 1ldx 1idd
85 std 1d4d std 46 std leax bra
84 1dd std 1dd 49 tfr puls tfr
78 ldx 1ldd std * 39 1da anda sta
74 1dx tfr puls 39 puls tfr puls
78 lbra lbra lbra 38 bra bra bra
*# 68 1lda ora sta 37 bra 1dd lbsr
65 leax pshs l1lbsr 37 1du std 1lbra
* 60 rol rol rol 37 leax bra 1ldd
58 pshs tfr leas 36 leax pshs leax
* 53 1dd subd std 3% beg cmpa beg
* 52 14d addd std 33 leax clrb stb
5¢ ldd 1ldu std % 33 ror ror ror
48 1dx leax pshs 33 stx lbsr leas
43 1da cmpa bne 31 leax stx leax
43 144 lbsr ldx 3¢ 1db 1dx pshu

* referred to in the following discussion

Table 3-2: Static Instruction Triples

Since there are a 243 load triples, this data also

backs up the benefit of the move multiple type of instruction.

Although their frequency is not as high as might be
expected, this data shows that the ‘bit set' and ‘bit clear’
sequences of load-or-store and load-and-store did occur 187
times. This low frequency indicates that it was probably &
good choice not to implement bit manipulation on the M6889.

However, this conclusion might not apply to an ME889 housed in

a single-chip microcomputer where the I/0 tends to be more bit

57

oriented.

The ldd-subd-std and ldd-addd-std sequences indicate

that 16-bit memory to memory adds and subtracts occur fre-

}79

foeoad

guent

o

The rotates are the only shift seguences that

appeared often. This shows the possible benefits of multi-bi

(%3

shifts. However, the nature of the data hides whether the
rotates were being made to the same register or memory loca-
tion or were part of longer multi-precision shifts. A cursory
examination of the source code indicates that the rotates were
used mostly for multi-precision rotates. If this is true, then

multi-bit shifts would not help.

3.3. OBSERVATIONS ON PAIRS AND TRIPLES

Despite the minor suggestions made above, there was
not much data that suggested that the M6809 lacks any simple
new instructions. No pair or triple accounted for more than 5%
of the total. This is not to say that the M68#9 instruction
set cannot be improved; only that the improvements will not be
made by fusing several existing instructions. New instruc-
tions would probably be complex instructions 1like procedure

entry, procedure exit or divide.

ME6809 VS. M680@ STATIC DATA

Since many of the decisions we made in the design of

the MG809 were based on the static data we toock for the M6807,

st
[ad

is interesting to compare the two computers.[BON4] Table
A

4-1 centains a comparison of the static instruction set data

for the two computers based on large classes.

Class M6BOO% ME8GI%
load 26.52 23.4
subroutine calls 12.49 186.2
conditional branches 16.87 11.8
store 9.856 15.3
push/pull 8.14 2.1
address manipulation 6.49 o
compare and test 5.63 5.3
control transfer 5.26 6.5

Table 4-1: M680¢ vs. MEBES Static Instruction Set Data

=3
0]

he basic nature of the instruction set usage hasn’

o

changed &ll that much from generaticon to generation. The new
M6849 push/pull and address manipulaticon instructions (lea‘’s;
have <changed the statistics some and demonstrate that the

ME869 is being used in a more modular fashion than the M68§0.

The comparison of the addressing modes, on the other
hand, show a marked difference in the usage. Table 4-2 shows

the comparison.

58

59
Addressing mode M6BEO9% M6800 %

indexed 27.%9 8.96
immediate 19.49 14.82
short relative 13.41 15.75
inherent 13.16 11,71
iong relative 11.68 &
extended 7.36 23.44
direct 3.64 18,33
accumulator a/b 3.34 6.98
indirect g.66 @

Table 4-2: M6808 vs. M6809 Addressing Modes

From the above data we could conclude that the ME8HD
is a computer where most of the code was written in absolute
mode (direct and extended = 41.77%) with only & small number
of indexed instructions. The M6889%9, on the other hand, is a
computer where most of the instructions are indexed, relative
or immediate. This implies that most M6809 code is position
independent and most M6800 ccde was not. Further, we Kknow
from the indexed addressing data discussed 1in a previous
chapter, that most of the indexed addressing is of the zero or
5-bit coffset varlety. By observing the actual source code, the
reason is apparent. Most M6809 programmers do write position
independent code, and they prefer to carve data areas off of
the hardware stack for their local wvariables. 1In addition,
since the number of local variables is relatively small, the
cffsets from the hardware stack pointer or a stack mark

pointer are generally small. The M6888 data shows no tendency

6o
towards this type of programming due to the lack of the neces-

sary addressing modes and indexable registers.

DYNAMIC ANALYSIS OF THE M6889

Although the static data wused in the previous

chapters 1s wuseful in predicting the size of a program, data

[N

taken while a p

g

ogram 1is actually executing is more useful in

determining the throughput of a computer. Alsc, the dynamic

data can b

(D

st be used to improve the performance of a follow-
on or new architecture. Unfortunately, reliable dynamic data
is much harder to obtain than static data; hence, not much

dynamic data exists for microprocessors. [SHU]

This chapter will analyze the dynamic data I took for
the M6889. It begins with a discussion of the data collection
methods used and the program mix., It then contains the
analysis data for the instruction set and the addressing

modes,

5.1. COLLECTING THE M6809 DYNAMIC DATA

There are two basic ways of collecting dynamic data.
One is to build special high speed hardware to monitor the
instruction execution of a computer. This method has the
advantage of being real-time, but has the disadvantage of

n order to reduce hardware costs, it is

oot

being very expensive.
usually necessary for the hardware to only take snapshots of a
fixed number of cycles. It is hoped that these snapshots will

faithfully represent the execution craracteristics of the

61

whole program.

The second method is to run programs using a simula-

tor. The simulator can be instrumented to cecllect the data

cycle by cycle. The problem with a simulator is that is slows
down the ©program's execution so much that the statistics may

de

hecome warped. This is e

i

pecially true for real-time programs.

o

In fact, many real-time programs won‘t run on a simulator at
all. Further, the simulator may have problems simulating the

1/0 and interrupt portions of the programs.

Back in 1978, we built a hardware/software simulator

]

for the M68E9. I+ runs on an MB8BES EXDRciser and faithfu

w

b

y
emulates the MABP9. It is smarter than most simulators because
it includes some hardware that lets the simulated program do
most I/0 operations and interrupts. For this report, I mod i~
fied this simulator to count the number of times each opcode
mode was executed. It also counts the number of

and addressin

i
[Xe}

indexed addressing postbyte occurs. Lastly, it

A

times each

[

counts total number of cycles.

-y

ator is a good tool, it «created

Yot

Although this simu
scme problems. The address space of the M688¢ EXORciser is
64K bytes, but the EXBUG firmware and the simulator hardware
and firmware took up over 24K bytes (1K = 1824 bytes). If the
program being emulated also required the MDOS disk operating

system, then wonly 16-20K of space was left for the program.

63
This made it impossible to take dynamic data from some large
programs. Further, even though the simulator can do some I/0
and interrupts, it can't do them in real-time, making it
impossible to emulate some real-time programs (e.g., the 089

operating system).

Lastly, and most disappointing, the address space
limitation made it impossible to simultaneously take dynamic
data on the instruction set and indexed addressing both by
percent of <count and by percent of time. That is, the data
gathered indicates wexactly how many times a particular
instruction was dynamically executed, but it cannot determine
what percent of the total execution time was taken by the
instruction. Sometimes it is possible to calculate this per-
centage after the fact from the available count data; some-~
times it 1s not. For example, in the program ‘chess’
(described later), the ‘branch equal’ opcode was 9.,93% of all
the opcodes sexecuted, Since all branch egquals are three

cycles long and since we know chess had 1,797,514 cycles, we

can calculate that 6.3%9% of the time was taken by branch

(o

equal. However, we cannot do the same calculation for load

accumulator because we do not know the average number of
cycles taken by the load accumulator instruction as it has
several addressing modes. We could use the average number of

cycles for each addressing mode, but this would only be an

approximation.

64
Anyone looking to expand on the work I did in this
report should try to find a method of obtaining the dynamic

data by percent of execution time as well as percent of count.

Py

This data would be very useful.

Once the data was taken by the EXORciser based simu-
lator, 1t was serially uploaded to the UNIX system where pro-
grams similar to the ones used for the static data were used

to do the dynamic analysis. This was convenient since it m

¢
w3
¥

an

that both the static and dynamic data were available on one

computer.

5.2. PROGRAM MIX

Due to the limitations mentioned above, I was on

o
e

able to analyze five programs dynamically. they are:

Chess chess playing program

Ed line editor

Mon small monitor

Mopet automatic test generator
M68359 floating point package

.
oy
0

chess program is a very high speed world-class chess pro-

o

fu

gram., The simulation consisted of simulating one medium com-

plexity move in the middle of a game.

The editor is a simple line editor similar to the one

described in Software Tools. [KER] It is written in assembly

language. The simulation consisted of executing each editor

65

command at least once on a small file.

The monitor is a simple monitor used for debugging in
a system where most of the programs are written in 'C?., It is
written in assembly language. The simulaticn consisted of

executing each monitor command once.

Mopet is a program that automatically generates and
then executes Dbreadboard tests. Mopet compiles its input,
autcomatically generates the test cases, and then executes
them. The simulation generated some test cases for a fictioconal
breadboard, then tried to execute them. It is written in a

mixture of Pascal and modular assembly language.

The M6839 is a floating point package that implements
the IEEE standard for flcating point. It was written in struc-
tured assembly language. The simulation consisted of calling

each available function six times with varing precision data.

In addition to the dynamic data for each o¢f these
programs, I also have the static data. This allows comparisons

to be made betwesn the static and the dynamic data.

Although I would like to have analyzed more programs,
I feel these programs are representative. However, I did not
feel justified in concatenating all the data intc one set of
data as I did in the static data. In the following sections

the dynamic data will be presented independently for each

66

simulated program.

The number of instructions and cycles in the simula-

tion for each program is given below:

program instructions cycles

mopet 451,131 2,815,244
chess 385,698 1,797,514
M683¢9 163,378 719,976
ed 149,521 762,876
mon 86,406 477,887
total 1,236,126 5,713,457

5.3. CYCLES / INSTRUCTION AND MIPS

A metric of interest for a processor is the number of
cycles taken by the average instruction and the millions of
instructions per second (MIPS) for each program . Table 5-]

contains this data:

program avg. cycles/instr. MIPS at 2 Mhz
M6839 4.41 <454
mopet 4.47 - 447
chess 4.66 426
ed 4.78 -425
mon 5.53 . 362
average 4.75 423

Table 5-1: Cycles/Instruction and MIPS for the M68¢9

67

This data is fairly consistent and a MIPS rate of
approximately .42 can probably be used to successfully esti-
mate the execution speed of an M6869 program. The slightly
higher number of cycles per instruction for the monitor seems
to stem from the fact that it had a large number of relatively

slow subroutine calls and returns,

5.4, MOST FREQUENTLY EXECUTED SINGLE OPCODES

Table 5-2 gives a matrix of the 18 most frequently

executed single opcodes for the five simulated programs:

chess ed mon mopet M6839

1. beg cmpa X ida = beg ror x
2. lda x bne cmpa # leax rol «
3. idb x lda x ibsr bne bra
4. bne beg rts cmpa # bit
5. leau bra pshs ida % lda x
5. bmi bsr puls bra cmpa #
7. jsr 1dx x 1dx x cmpx dir decb
8. 1dx # sta x ror stx dir bne
9. inc pshs leax idx x sta x
1¢. sta % bge blo idx dir cmpa #
where:

¥ = indexed

¥ = immediate

dir = direct

Table 5=2: Top 10 Most Frequently Executed Single Opcodes

The following single opcodes appeared at least three

times in the top 16 single opcodes: lda x (5), cmpa # (4), bne

{4), sta x (3}, beg (3}, bra (3}, and 1dx = {(3).

There are far fewer conclusions that can be drawn

iy
g
o]
e
F

this data than from the top 10 static data. I'm not sure

5

whether this is due to the statistically smaller sample of
data or whether it is characteristic of all dynamic data. I
tend to favor the later explanation. I think the individual

characteristics of the programmers and the applications begin

to surface more in the execution of programs.

5.5. MOST FREQUENTLY EXECUTED OPCODES BY CLASS

Using the same classes of opcodes as described in the

i

static data, we can determine what classes of instructions are
most frequently executed. Table 5-3 is the union of the top
18 classes for each program. Note, that it takes 24 separate
classes to get the union of the top 18 classes. This indi-
cates, once again, that the dynamic data is not as consistent

s the static data where the union of the top 18 only included

b

14 separate classes:

69

units = percent ¢f executed instructions
class chess ed mon mopet M6839
id 19.20 11.87 16.19 8.084 8.76
beg 9.93 6.56 1.44 12.97 .59
idie 7.81 8.8¢ 18.41 7.35 2.985
lea 5.96 4,82 3.72 12.95 2.92
st 4,85 5.81 1.49 2.19 4,22
stl6 4,23 3.58 3.28 4.26 1.88
bne 4,21 9.32 2.68 6.99 3.80
bit 3.49 2 .59 .32 91
bmi 3.22 .86 .86 .04 .43
inc 2.89 .46 1.48 .32 .92
cmp 2.74 13.18 6.56 8.68 9.35
jsr 2.64 6.45 3.29 2.60 B85
psh 2.19 3.37 4,20 1.45 1.55
rts 1.97 3.04 4.99 2.48 2.30
pul 1.84 2.49 3.99 .77 .95
cmplé 1.48 5.62 1.39 11.63 1.25
dec 1.21 g .28 .44 4,97
bra .95 6.47 .64 4.64 6.20
bilt .19 .29 g <81 5.62
bce (bhs) .11 027 .30 3.18 i.08
bes(blo) .87 41 3.56 1.68 .27
lbsr .04 .73 5,15 1.78 1.15
rol B2 .28 .86 -89 18.96
ror g 2 3.77 g 1g.63
other 19.74 7.32 26.94 8,12 16.01

Table 5=3: Unicn of the Top Ten Classes (Dynamic)

Some of the top 24 classes seem to be prevalent in
all the programs. Some of the other classes seem to be unigue
to a particular program and may not be valid data points for
the average program. The classes that seem significant in all

the programs are:

id

ldls

st

stlb
cmp
bne/beqg
lea
psh/pul
res

bra

Also from the union of the top 18 we see that the
conditional branches are executed often, but it appears every
programmer/compiler has its favorite type of conditional
branches. For example, the monitor has 3.56% branch on carry
sets and .38% branch on carry clears while the M6839 has .27%

branch on carry sets and 1.68% branch on carry clears.

5.6. MOST FREQUENTLY EXECUTED BY LARGE CLASS

Even though the dynamic data for small classes showed

a larger wvariation than it did for static, the variation fo

g

large classes is smaller. The larger classes remove more of
the preogrammery and compiler preferred individual small
classes. For example, whereas the small <class data did not
show any particular conditional branch that was very high in
execution frequency, the larger classes clearly show that the
conditional branches, as a large group, are very high in exe-
cution frequency. Table 5-4 contains the dynamic data for the

large classes,

71

units = percent of total instructions executed
Class chess editor monitor mopet M6839
load 27.81 20.67 20.51 15.4¢9 14.81
cond br 21.81 21.12 9.24 24.76 15.86
store 5.28 8.59 4,78 6.46 6.10
cmp tst 5.87 18.97 B.32 22.14 12.63
arith 5.15 1.91 1.41 g.48 1.86
addr 5.06 4.82 3.72 18.95 2.92
inc dec 4.10 .46 1.56 .76 5.89
psh pul 4.93 5.87 8.19 2.23 2.5¢
call 3.18 7.1 18,66 5.54 2.97
logical 2,65 2.508 2.51 .46 1.27
xfr 2.24 6.52 3.97 4,98 6.46
shifts .33 g.16 9.5¢ 7.45 23,33
total 98.72 95.87 84.27 94,59 92,648

Table 5-4: Dynamic Data By Large Classes

Below is the union of the top three large classes for

each program:

Class chess editor monitor mopet ME83¢
load 27.01 20.67 20.51 15.40 1g.81
cond br 21.81 21.12 9,24 24.76 15.86
store 9.08 8.59 4.78 6.46 6.10
cmp tst 6.87 18.97 8.32 22.14 12.63
call 3.18 7.18 19.66 5.54 2.97
shifts g.33 g.16 3,59 g.45 23.33

In both static and dynamic fregquency, loads and
stores make up the largest class of instructions by far. Next
in frequency in the dynamic data is the conditicnal branches.
Compares and tests also have a high dynamic frequency. Calls

have a high frequency, but not as high as in static. Probably

72
the most surprising result is that, in programs that have a
lot of shifts to begin with, the dynamic frequency of the

shifts is high.

L

.7. DYNAMIC STATISTICS BY PERCENT OF CYCLES

As mentioned in the beginning of this chapter, due to
memory constraints I was not able to instrument my simulator
to take the dynamic data in such a way as to determine the
percent of time (cycles) actually taken by a given opcode. I
did have the total cycles, however, and with this information

I was able to approximate the percent of cycles for some indi-

Pt
o

vidual classes of opcodes and for some larger classes for the

chess program.

As mentioned previously, some of the data is exact,
some is not. For instructions that take an invariant number of
cycles to execute, the percent of time can be calculated
exactly. For instructions with memory reference addressing
modes, I used the average values for the cycles. For example,
load has 4 basic addressing modes (immediate, direct,
extended, and indexed). The dynamic addressing mode data (in
a later section) gives the percentage of execution of these
modes. Using this percentage, I calculated the average number

of cycles required by a load.

Table 5~5 contains the execution data for the chess

73

program for some classes. Table 5-6 contains the same data for
larger classes. Both percent of instructions and percent of

cycles 1s given in both tables, and both are sorted by the

o

ercent of cycles.

op % instr. & cycles
id 19.28 18.09 *
idle 7.81 9.11 =*
beg .93 6.39
lea 5.86 5.65 %
stl6 4,23 5.47 =%
st 4,85 5.21 *
jsr 2.64 4.54 *
inc 2.89 4,31 %
psh 2.19 3.37
bit 3.49 3.28 %
clr 1.97 2.83 *#
tst 1.93 2.87 *
bne 4.21 2.71
cmp 2.74 2.57 %
add 2.59 2.43 *
rts 1.97 2,12
bmi 3.22 2.97
cmplb 1.49 2.81 *
dec i.21 1.8¢ =
and 1.32 1.16 *

* estimated

Table 5-5: Chess by Percent of Instructions and Cycles

Class % instr. % cycles
load 27.61 27.11
cond br 21.81 14.6¢
store S.88 19.68
cmp tst 6.87 7.45
psh pul 4.93 6.19
inc_dec 4.10 6.11
addr 5.96 5.69
arith 5,15 5.65
call 3.18 5.36
logical 2.65 2.48
wfr 2.24 1.77
shifts .33 .45
total 96 .72 93.58

Table 5-~6: Percent of Cycles for Large Class (Chess)

This data indicates that although conditional
branches are a large percentage of the instructions executed,
they are not as large a percentage by c¢vycles. Further, the
16-bit operations and read/modify/write instructions are

larger by «c¢ycles than by execut

fode

on count. Stores take
slightly more «c¢ycles than their count might suggest. This
probably occurs because stores don't include the faster
immediate addressing mode. Also the subroutine calls, returns

and push/pulls take & larger pe
P

i

<

o

nt of cycles.

5.8, DYNAMIC EXECUTION OF ADDRESSING MODES

This section presents the dynamic addressing mocde
data collected by the simulator. Table 5-7 contains the fre-

guency of execution of the various addressing modes for the

75

five programs,

mode chess ed mon mopet ME839
indexed 49.7% 33.74 28.76 31.85 41.4¢6
short relative 22.23 27.48 12.89 36.46 23.78
immediate 14.23 18.47 15.4%6 12.12 11.4%
direct 8.33 .06 2.904¢ 14,29 %.848
inherent 7.21 9,77 23.19 5.77 6.73
extended 3.98 8.93 3.29 2.98 .24
accumulator_a 1.51 7.99 16.33 g.84 .87
long relative 1.08 g.88 5.18 1.98 1.27
accumulator b g.72 g.64 2.7 g.5¢9 5.95
indirect g.69 6.00 %.28¢ .24 g.15

Table 5-7: Dynamic Addressing Mode Usage

In all five programs indexed addressing is by far the
most executed addressing mode. In fact, its dynamic fregquency
is about 10% higher than its static frequency. Short relative
addressing is a strong second with immediate third. If a
future architect were looking to improve the performance of
the M6869, it would be advantageous to look at speeding up
relative and indexed addressing. (More about this later.)

Indirect addressing is the big loser,

5.8.1. Indexed Addressing Dynamic Statistics

Since the frequency of indexed addressing is so high,
it is worthwhile to see how indexed addressing is being used

dynamically. The first parameter of interest is how many

additional <c¢ycles are added by the average indexed instruc-

tion. The following data is from the simulations:

program average cycles
mopet e 77
MEB39 1.889

ea 1.16
chess 1.21

mon 1,47

This indicates that every indexed instruction adds
between .77 and 1.47 cycles to its base time. This is reason-
able in light of the features provided by indexed addressing

on the M6889, Table 5-8 <contains the indexed addressing

o

reakdown for the five programs analyzed.

77

addr mode chess ed mon mopet M&839
+ 2.79 34.76 21.26 5.78 1.68
++ 1.57 1.48 0.20 3.686 g.06
- 1.15 2.02 8.085 4.26 .19
- 1.68 .00 .09 .00 .38
g offset 17.93 23.34 7.47 45,95 18.96
5 offset 62.90 3%.84 37.82 37.35 62.32
g8 offset 2.39 2.01 .09 .22 2.55
16 offset 6.77 g.41 2.00 1.21 2,60
pc8 off. 2.689 8.86 11.21 2.92 g.14
pcle off. g.0¢ .02 .88 .23 1.53
a offset 3.34 #.98 11.986 g.37 3.91
b cffset Z.35 .90 g.29 .26 15.893
d offset §.42 g.43 11.13 .27 g.35
ext. ind. 0.77 g.9¢ #.89 ¢.00 5.89

Table 5-8: Dynamic Indexed Addressing Statistics

The 5-bit and no offset indexed addressing are by far
the most frequently executed. If it were possible to make
these faster, it would certainly improve the M6889's perfor-
mance. Auto increment by 1 is used fairly often in an execut-
ing program. This is expected as almost all auto increment and
decrements are in loops by definition. The accumulator
indexed frequencies are lower than expected and are eclipsed

by the offset varieties.

POSSIBLE PERFORMANCE IMPROVEMENTS TO THE M6Bg9

The dynamic data in the previous chapter lead me to
consider what improvements could be made to the MSE849Y9 instruc-

tion set to increase 1its performance. Admittedly, I know some

(!

[
=2

of the detalls o e internals of the MG6889 which makes it
easier for me to predict what is possible and what is not.
Unfortunately, I cannot divulge in this report what I know for

proprietary reasons.

The data I will use to justify these recommendations
is the dynamic data. I can calculate the total cycles saved
by & proposed improvement and compare that with the total
number of cycles for all the dynamic data (5,713,497 cycles).

This gives me the percentage of the throughput improvement.

6.1. INSTRUCTION SET IMPROVEMENTS

When looking at the static and dynamic data for the
long «conditional branches, it 1is obvious that long branch

U

sy}
od

e

WL

and long branch not equal occur more freguently than any

oth

0]
L

page 2 conditional branches. Should lbne and 1lbeqg be
included on page 1 iIn future M6809's? If this made 1lbne and
lbeg cone cycle faster, it would improve performance .97%. Even
if it saved two cycles, it would only amount to .14%. This

improvement is not worth it.

What if all long branches were made 1 «c¢ycle faster

")

78

79

This would save 20,940 total cycles for a 2.73% throughput

improvement. Definitely worthwhile if it can be done.

By comparing the M68838 to the internally faster
ME8Z1, it seems reasonable to assume that one cycle could also

be removed from the instructions listed below.

throughput

improvement
A1l load effective address 1.47 3%
A1l subroutine calls (isr, bsr, lbsr) 1.99 %
A1l pushes and pulls B0 %
3.36 %

Adding these savings to the savings for long branches
we get 6.869 % improvement by speeding up the suggested

instructions,

6.2. ADDRESSING MODE IMPROVEMENTS

Again the M6881 leads me to believe that it should be
possible to remove one cycle from all direct and extended
instructions. Further, with the proper changes to the internal
architecture of the M6809%, I think we could save a cycle on

every indexed instruction. This gives the following savings:

84

All direct = 1,69 %
All extended = .78 %
All indexed = 7.706 %

16.17 %

In addition, I think the 5-bit offset indexed mode
could be reduced by cone additional cycle. Although their fre-
guencies are low, I think the change necessary to the internal
architecture to speed up the 5-bit offset would also speed up
the auto increments and decrements by two. These improvements

would improve the performance by 4.065%.

6.3. PUTTING IT ALL TOGETHER

The following table summarizes al

[

the proposed per-

formance Improvements:

Remove 1 cycle from:

All long branches (including lbra and lbsr) = 2.73 %
All subroutine calls (including lbsr) = 1,09 %
All load effective addresses = 1.47 %
All pushes and pulls = .80 %
211 direct addresses = 1,69 %
All extended addresses = .78 %
A1l indexed = 7.7 %
5-bit indexed and auto inc/dec by 2 = 4,85 %
total throughput improvement = 28.31 %

Table 6-1: Possible Performance Improvements

81

A 20% throughput improvement may not sound like much

compared to the typical marketing claims of 5, 18, 168 times
throughput improvement, but in reality a 26% throughput

improvement is significant.

In closing this chapter, let me make 1t c¢lear that
these are only the improvements that jumped ocut at me as I was
doing this report. I do not consider the main objective of
1is report to be to make recommendations to future archi-
tects. The main cbjective iIs to present the data so that

future architects can draw their own conclusions.

COMPARISON OF DYNAMIC VS. STATIC DATA

This chapter compares the dynamic data gathered on
the five programs that were simulated to the static data taken

five programs. The purpose is to help answer the

Qs
=
m

from the sa
question of whether static data can be used to predict the

dynamic characteristics of a processor.

7.1. INSTRUCTION SET COMPARISON

In the following sections the dynamic data for the
larger classes for each program will be compared to the static

data for the same program.
7.1.1. Chess

Below is the dynamic and static data for large

classes for the chess program.

82

83

Class dynamic 3% static %
{(by ct.) {by ct.)
load 27.81 24.17
cond_br 21.81 17.44
store 8.¢8 7.36
cmp_tst 6§.87 5.68
arith 5,15 4,34
addr 5,066 5.39
inc dec 4,18 6.14
psh pul 4.93 3.83
call 3.18 5,48
logical 2.65 2.98
cntrl xfr 2.24 4,33
shifts 2.33 g.73
total 5¢.72 9g .87

Table 7-1: Dynamic and Static Data For: Chess

The loads and conditional branches are slightly

higher in dynamic execution. The calls and control transfers

are higher in static appearance.

7.1.2, Editor

Below is the dynamic and static data for large

classes for the editor program.

Table 7-2:

Class dynamic % static %
{by ct.} {by ct.}
cond_br 21.1z2 13.58
load 28.67 24.93
cmp_tst 18.97 12.60
store 8.59 1¢.86
call 7.18 9.26
cntrl xfr £.52 4.94
psh_pul 5.87 19.58
addr 4.82 5.43
arith 1.81 1.74
logical .58 G.14
inc dec g.4¢6 G.42
shifts g.16 g.42
total 95.87 82.20

Dynamic and Static Data For:

Again this program indicates that the dynamic execu-

tion of conditional branches 1is greater than the static

appearance and that the calls and pushes and pulls are less. A

new data point here is the highe

g

percentage of compares and

tests in the dynamic data.
Monitor
Below is the

dynamic and static data for

[
i
=4

te]
[$]

classes for the monitor program.

85

Class dynamic % static %
{by ct.) {(by ct.)
load 22.51 13.95
call 19.66 14,09
shifts 9.50 2.37
cond br 9.24 12.27
cmp tst 8.32 5.30
psh _pul 8.18 753
store 4,78 g.51
cntrl xfr 3.97 6.56
addr 3.72 7.11
logical 2.51 1.53
inc dec 1.56 1.39
arith 1.41 2.23
total 84.27 82.84

Table 7-3: Dynamic and Static Data For: Monitor

The dynamic loads are much higher in this c¢ase than
the static. The calls and control transfers are lower. The
shifts are much higher in execution freguency than in appear-
ance. Strangely, the conditional branches are actually less in
dynamic execution for this program. This is counter to all the
other programs, Both the store and address manipulation
instructions were higher in static appearance than in dynamic

execution.

7.1.4. Mopet

Below is the dynamic and static data for large

classes for the mopet program,

Class

cond br
cmp_tst
load
addr
store
call
cntrl xfr
psh_pul
inc dec
arith
logical
shifts

total

dynamic %
(by ct.)

24.76
22.14
15.49
18.95
6.46
5,54
4.98
2.23
2.76
.48
g.46
.45

94.59

static %
{by ct.

12.72
9.81
19.52
8.82
7.43
15,51
8.68
7.43
.56

86

Table 7-4: Dynamic and Static Data For: Mopet

This program conforms to the trend of

compares/tests

control

7.1.5.

classes

transfers,

M6839

for the

being

and

is the

M&EE39

higher in

dynamic

push/pulls being

and

program.

dynamic percent;

lower.

branches

and

and calls,

for large

Class dynamic % static %
(by ct.} {by ct.)
shifts 23.33 7.62
cond_br 15.86 11.15
cmp_ tst 12.63 6.18
loead 18.81 19.28
cntrl =fr 6.45 6.86
store £.18 18.21
inc dec 5.89 3.82
call 2.97 16.18
addr 2.92 8.46
psh_pul 2.50 3.14
arith 1.86 2.24
logical 1.27 3.93
total 92.68 82.19

87

Table 7-5: Dynamic and Static Data For: M6839

This program also has more dynamic
branches, compare/tests, and shifts than static.
dynamic loads, stores, calls, pushes and pulls,

transfers in dynamic than static.

7.1.6. Short vs. Long Relative

Table 7«6 contains the comparison of the

conditional
It has fewer

and control

short and

long relative branches for both the dynamic and static data.

88

program short iong
dynamic static dynamic static
chess 95,38 84.89 4.62 5.11
ed 96.88 80.982 3.12 19.1¢9
mon 78.062 49.57 29.98 50.43
mopet 93.91 5.64 6.89 40,36
M6839 94.93 65.89 5.87 34.91

Table 7-6: Short vs Long Branches

The percentage of short branches increases when the
program is executed. The percentage of 1long branches
decreases when the program is executed. I feel this occurs

because the short branches are in the loops and the long

branches are not.

T7.1.7, Instruction Set Comparison Conclusions

None of the program statistics for dynamic loocked
greatly different than those for static. 1In both cases, the
large classes selected account for about 90% of all instruc-
tions. However, the following characteristics seemed to run

through most of the programs:

o

1. Conditional branches, compares, and tests have a
higher dynamic percentage of execution than static
percentage of appearances in the source program.
This 1is intuitive since the branches, compares and

tests are likely to be controlling the lcops.

89
In programs that have a lot of shifts statically, the
number of shifts executed when the program is simu-
lated is even higher. This conclusion isn't as easy

to understand; possibly, shifts are done in loops

n

¢

which means they are probably multi-precision or

multi-bit shifts.

Subroutine calls, control transfers, and pushes and
pulls appear more often in a source than they are
actually executed. Apparently subroutine calls are
generally not found in the tight loops because of
their inefficiency (in-line code 1is used instead).
In structured programs, it ‘would be expected that
control transfers would not be in loops.The pushes
and pulls are usually setup and cleanup code and,

therefore, do not appear in loops.

In most cases, but not all, the number of 1loads and
stores that appear in the source are a greater per-
centage than the percentage executed. Apparently
this occurs because of the large number of loads that

are used in the initialization of loops.

Short relative is also executed more often while long
relative 1is executed less often. I suspect this
indicates that the short relative branches are wused

in loops, and the long relative branches are used to

get from one part of the program to another.

Knowing these basic facts, it should be possible to
do a static analysis on some program and predict, fairly accu-

on set characteristics will

f

rately, what the dynamic instruct

7.2. ADDRESSING MODE COMPARISOCHN

Table 7-7 contains the percentage difference between
the static and dynamic data for the addressing modes. A plus
number indicates that the dynamic data had a higher percentage
of that particular addressing mode than did the static data. A
minus indicates that the particular addressing mode appeared
more frequently in the source than it was executed. The number

in the table is the amount the two percentages differed.

Addr. Mode chess ed mon mopet M683% all
indexed +11.82 + 7.35 + 7.17 + 5,15 - 1.97 +
short rel. + 1.86 +11.25 - 4.99 + §.44 + 5.53 +
immediate - 3.1 - 3.47 - .58 - 3.33 - 2.32 -
direct - 1.93 - 65.41 - .56 +18.25 g ?
inherent + .27 - 4,78 + 2.83 - B8.15 - §.34 ?
extended - 5,89 - .18 + .58 - .51 + .24 -
accum. & - .41 - .68 + 6.98 - .18 + 5.85 ?
accum. b - .54 - .13 - .97 - .43 + 2.32 ?
long rel. - .86 - 2.95 -11.28 -12.24 - B.52 -

+ = more dynamic

- = more static

value = % dynamic - % static

Table 7-7: Comparison of Addressing Modes

In most cases indexed addressing

actual execution than its

Short relative is also executed more often

while long relative is not. Immediate and

7.2.1. Indexed Addressing Comparison

Now we will make & similar type of

addressing:

addr mode chess ed mon
+ . 38 +27.37 +13.77
++ + .44 + .14 - 1.23
- - .24 - .24 - 3.65
- + 1.16 g %
g offset + 1.71 - 4.89 ~17.84
5 offset + 5.26 -19.38 - 1.68
8 offset - 4,14 - .78 - 1.85
16 offset - 6,28 - 1.5 - 3.78
pc8 off. g - .47 - 3.19
pcl6 off. & - .24 - 4,32
a offset + 2.83 - .16 +18.44
b offset - 17 i @
d offset + .16 - .36 + 9.99
+ = more dynamic
- = more static
value = % dynamic - %

is

than

used

more

91

in

static appearance would suggest.

anticipated

extended were exe-—

other

table for

mopet

3.54
1.67
3.19

.46

b4 4+

+25,83
-10.28
- 3.71
-12.55%

- 4.63

S

.25
1.71

static

address

i
i1

[te)

indexed
M6839 all
+ 1.85 +
- .15 ?
+ @5 7
+ .38 ?
- .73 7
+ 5.05 -
~14,29 -
g -

- .71 -
- 2.82 -
- 28 +
+11.55 <
4+ .87 +

Table 7-8: Comparison of Indexed Addressing Modes

(te)
(9]

There is a wider variation here than for either the

instructions or the addressing modes in general. The particu-

lar indexed addressing mode used in loops seems to be either
application or programmer dependent.
Auto increment by one is used more in execution than

the static data would indicate. For the other increments and

decrements the data is inconclusive,.

[
W
o
(]
[
&3]
ﬁmm.é
ot
e
n
kv
i

H

eaking, the constant offset

8K
[
ot
[44]
(a4
)

e

indexed instructions had a slightly lower dynamic than stati

9}

frequency. I'm not quite sure I know why.

The register offset indexing had a higher dynamic

execution frequency than static appearance.

7.2.2. Addressing Modes Conclusions

The following conclusions can be gathered from the

comparison of the addressing modes in static and dynamic

modes.

1. Indexed addressing occurs more freguently in the
dynamic cases,.

2. Immediate and extended were executed less frequently

in the dynamic case.

93

3. Auto increment and the register offset indexed are

executed more frequently in the dynamic case.

4, The constant offset indexed are executed less fre-

C.)..)

guently in the dynamic case.

It is not clear whether it would be safe to use
static data to predict the dynamic characteristics of address-—
ing modes. The data was more variable than the instruction

set data and seemed more application dependent.

CONCLUSIONS

The following sections contain a summary of the con-

clusions for each section of the paper.

o0
&

ot
@

o
-3
s
-3
o]
[

DATA CONCLUSIONS

The average instruction size for the M68¢9 is approx-—

imately 2.3 bytes.

As is the case with most Von Neuman architectures, a
very few single opcodes make up a large percentage of all the
instructions that appear. For the M6809 the top 28 opcodes
accounted for over 58% of all the instructions. Three new
M6809 instructions headed up the list of the most frequently
appearing single opcodes. They were: lbsr, leax and pshs. The
rest of the top 20 was composed of loads, stores, branches,

compares, subroutine calls, and subrcutine returns.

By larger «classes of instructions, the following

statistics were the approximate values for the top 5 classes:

locads and stores = 36 %
zubroutine calls = 12 %
conditional branches = 1¢ %
pushes and pulls = 8 %
Load effective address = 6 %

The arithmetic and logical instructions had low fre-
gquencies of occurence. The long conditional branches, except

94

95

for lbne and lbeg, had very low static frequencies.

When analyzing the percentage of bytes taken for page
1 opcodes wversus 2 and 3, we find that over 98 % of all the

bytes were for page 1 instructions.

When the data was analyzed by groups to see what
instructions were present most often, the following conclu-

sions were drawn:

1. There are three times more loads than stores.

2. There are more l1l6-bit loads, stores, adds and sub-

racts than 8-bit ones.

3. Programmers are using relative and 1long relative
addressing ; and, therefore, are writing position

independent code,

The multi-register push/pull statistics indicate that
2.25 registers are pushed or pulled per push/pull instruction.
I would have been happier if this ratio had been higher; but,

at least, it is greater than the 2.8 break even point.

The direct page register statistics, on the other
hand, are & big disappointment. Clearly, it was a mistake to
include the direct page register in the M6809 and to expand
the read-modify-write instructions to include direct address-

ing.

96

The static addressing mode data indicates that the

most - common addressing mode is indexed (30%), followed by
relative (24%), and immediate (2¢%). The number of direct and

xtended instructions combined was only 1¢%. Indirect was the

in

big loser with practically zero occurences.

In the static indexed addressing data we find that
5-bit and no offset indexed account for 66% of all indexed
instructions. Including the 8-bit, 16-bit, 8-bit program
counter relative, and 16-bit program counter relative modes we
find 86% are constant offset or have no offset. The average

:

number of bytes added for each indexed instruction is 1.17

bytes.

8.2. PAIRS AND TRIPLES CONCLUSIONS

In general, not much showed up to indicate that there
are any easy new instructions that could be included in future

MEEZI ' s,

The pairs data did indicate that a memory to memory
move instruction would be useful. I don't think this should
be a surprise to anyone. Unfortunately, there 1iIs no way to
implement a memory to memory move on the M68U9 except to use a

two byte opcode which would defeat most of the benefit.

Both the pairs and the triple data indicate that an

M68008 type move multiple instruction would be useful. This

97

may be feasible on future M68£9's.

The triple data did not show a great need for the bit
manipulation operations. There was some evidence that 16-bit
memory to memory adds and subtracts would be useful., Lastly,
there 1is some inconclusive wevidence that a multi-blit or

multi-precision shift would be useful.

8.3. M68P9 STATIC VS. M6820 STATIC DATA CONCLUSIONS

The instruction set usage has not changed much
between the two processors except for the greater number of
pushes and pulls and address manipulation instructions on the
M6809., Also, the relative forms of the subroutine calls and
control transfers have replaced the absclute versions found on

the M6802.

The addressing mode usage varies a great deal. The
data indicates that the M6809 programs use more indexed and
relative addressing and less absolute addressing than do com-
parable M6800 programs. This implies that the M684¢ was basi-
cally an absolute address machine without much modularity. The
M682S is a relative, position independent, modular machine.
The new addressing modes on the M6889 have substantiall
changed the 'feel' of the M6809 to the programmer as compared

to the other 8-bit Motorola microcomputers.

g8

8.4. DYNAMIC DATA CONCLUSIONS

There was a larger variation in the dynamic data. I
feel there are two reasons. One is that I had less dynamic
data points. The other 1s that dynamic data seems to be more

dependent on the application and programmer stvle.

The average number of cycles for an M&889 instruction
is approximately 4.75. This gives a throughput of .423 MIPS

with a 2 Mhz. M68£9.

There was a larger variety of single opcodes executed
in the five ©programs analyzed for the dynamic data than for
the static data. The top runners were: load indexed, store

indexed, compare immediate, and branches.

By class the data was: locad and store, compare, beqg,
bne, lea, rts, bra and the pushes and pulls. Further, there

were a lot of conditional branches, but they were varied.

By larger classes the conditional branches all com-
bined to form the second most executed group, second only to
the locads and stores. The other large classes were compare and

test, the calls, and the shifts.

If the dynamic data is calculated to determine which
opcodes spend the largest time actually being executed, we

find that the percentage of time taken by the conditional

59
branches 1is 1less than the dynamic data taken by percent of
instructions executed would indicate. On the other hand, the
16-bit operations, the subroutine calls and returns, and the
pushes and pulls take more time than their frequency by count

would indicate,.

In dynamic execution the indexed addressing mecde
accounts for approximately 35% of all addressing modes. Short

relative is about 25%, and immediate is 15%. ong relative

i

addressing wusage is fairly 1low. Indirect is the big loser

again.

In indexed addressing, the offset varieties accounted
for 72%. This 1is down from the static data, but is still
impressive. Auto increment and the accumulator offsets make up

most of the rest of the indexed data.

83

g.6.

(84

. POSSIBLE PERFCORMANCE IMPROVEMENTS CONCLUSIONS

The table from chapter 7 is repeated here:

Remove 1 cycle from:

A1l long branches (including lbra and lbsr) = 2.73 %
All subroutine calls {including lbsr) = 1.99 %
A1l load effective addresses = 1.47 %
211 pushes and pulls = Bf %
A1l direct addresses = 1.69 %
211 extended addresses = .78 %
211 indexed = 7.70 %
5-bit indexed and auto inc/dec by 2 = 4,05 %
total throughput improvement =20.31 %

Table 8-1: Possible Performance Improvements

COMPARISON COF DYNAMIC VS. STATIC - CONCLUSIONS

The following instruction set ceonclusions seem to

hold for all the data:

Conditional branches, compares and tests have a

higher dynamic frequency than static frequency.

Calls, control transfers, address manipulation, and

the pushes and pulls have a lower dynamic fregquency

than static fregquency.

In preograms that have a lot of shifts in the source

code, there will be an even greater number actually

