

- · -----

6809
Assembly Language

Programming

Lance A. Leventhal

OSBORNE/McGraw-Hill

Berkeley, California

·-
· · --- · --------

Published by

Osborne/McGraw-Hill

2600 Tenth Street

Berkeley, California 94710

For information on translations and book distributors outside of the U. S. A. .

please write OSBORNE/McGraw-Hill at the above address.

6809 Assembly Language Programming

Copyright © 1981 McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system. or transmitted in any form or
by any means. electronic. mechanical. photocopying, recording or otherwise without the prior written

permission of the publishers.

4567890 DODO 89876543

ISBN 0-931988-35-7

Cover design by Tim Sullivan.

-----·--· · --···· ---- ··-· -- --�-

Acknowledgments

Mr. Irvin Stafford of Burroughs Corporation constructed the 6809-based com­
puter, tried all the examples, and suggested numerous corrections and improvements.
Mr. Curt Ingraham, Ms. Susanna Jacobson, Ms. Denise Penrose, and Ms. Janice Enger
of Osborne/McGraw-Hill contributed greatly to this project; Susanna Jacobson and Curt
Ingraham insisted on a high level of clarity and accuracy. Mr. Lothar Stern and Mr.
Marshall Roth en of Motorola's Technical Information Center (Phoenix) were very
generous in providing materials. Others who helped include Ms. Marielle Carter, Mr.
Romeo Favreau, and Mr. Gary Hankins of Sorrento Valley Associates; Mr. Michael
Lehman and Mr. Winthrop Saville of MT MicroSystems; and my wife Donna, who has
been both patient and understanding.

Special thanks go to Mr. Terry Ritter of Motorola (Austin, Texas), the original
architect of the 6809 microprocessor, who was kind enough to review the manuscript.
Also Dr. Jack Lipovski of the University of Texas at Austin provided me with a
preliminary version of his 6809-based book Microcomputer Interfacing: Principles and

Practices (Lexington Books, Lexington, Mass., 1980); it is an excellent book and I have
borrowed heavily from the ideas in it.

Mr. Allan Robbins, P.E., of SDS Technical Services, Ltd., Winnepeg, Canada,
contributed material for Chapter 3, Chapter 22, and the appendices.

I would like to take this opportunity to thank those who have reviewed previous
books in this series. In particular, I should mention Mark Bernstein, Jim Butterfield, Art
Childs, James Demas, and Philip Hooper. Of course, my initial reaction to their negative
comments was defensive. However, after some complaining and some prodding from
my editors, I have responded to their criticism in this book. I have revised several chap­
ters considerably and I have stressed clear, concise explanations and interesting exam­
ples. Reviewing is a thankless job, so I want these people to know that I have learned
from their efforts.

This book is dedicated to the friends I made along South Highway 101 in Solana
Beach, California: Don and Hazel Cahoon, Lou and Marge DiCarlo, and Bob and June
Vallery.

- Lance A. Leventhal

This book's assembler listings were generated on a 6809-based EXORciser system
loaned to the publisher by Motorola Microsystems, Mesa, Arizona.

The publisher also wishes to thank Mr. Bernard Lohr for assembling and testing
the programs in this book.

About the Author

Lance A. Leventhal is a partner in Emulative Systems Company, Inc., a San Diego­

based consulting firm specializing in microprocessors and microprogramming. He is a

national lecturer on microprocessors for the IEEE, the author of ten books and over

sixty articles on microprocessors, and a regular contributor to such publications as

Simulation and Microcomputing. He also serves as technical editor for the Society for

Computer Simulation and as contributing editor for Digital Design magazine.

Dr. Leventhal has authored four previous books in this series and has just begun work

on a new series, Some Common Assembly Language Programs. He received a B.A.

degree from Washington University in St. Louis, and M.S. and Ph.D. degrees from the

University of California at San Diego. He is a member of SCS, ACM, IEEE, and the

IEEE Computer Society.

. .

- - ----··---

Section I. Fundamental Concepts

1. Introduction Assembly Language Programming

A Computer Program 1-2

High-Level Languages 1-8

2. Assemblers

Features of Assem biers 2-1

Types of Assemblers 2-15

Errors 2-16

Loaders 2-17

3. 6809 Machine Structure and Assembly Language

6809 Registers and Flags 3-3

6809 Addressing Modes 3-6

Modes Which Do Not Specify Memory Locations 3-8

Memory Addressing Modes 3-9

Indexed Memory Addressing Modes 3-16

Program Relative Addressing for Branches 3-36

6809 Instruction Set 3-38

6800/6809 Compatibility 3-38

6801/6809 Compatibility 3-44

6502/6809 Compatibility 3-45

Motorola 6809 Assembler Conventions 3-45

Contents

vi

Section II. Introductory Problems

4. Beginning Programs

Program Examples 4-1

Problems 4-11

5. Simple Program Loops

Program Examples 5-4

Problems 5-15

6. Character-Coded Data

Handling Data in ASCII 6-1

Program Examples 6-3

Problems 6-13

7. Code Conversion

Program Examples 7-2

Problems 7-10

8. Arithmetic Problems

Program Examples 8-2

Problems 8-16

9. Tables and Lists

Program Examples 9-1

Problems 9-14

Section Ill. Advanced Topics

1 0. Subroutines

Program Examples 10-3

Position-Independent Code 10-15

Nested Subroutines 10-16

Problems 10-16

11. Parameter Passing Techniques

The PSH and PUL Instructions 11-1

General Parameter Passing Techniques 11-3

Types of Parameters 11-14

12. Input/Output Considerations

110 Device Categories 12-2

Time Intervals 12-9

Logical and Physical Devices 12-13

Standard Interfaces 12-14

6809 Input/Output Chips 12-14

13. Using the 6820 Peripheral Interface Adapter (PIA)

Initializing a PIA 13-6

Using the PIA to Transfer Data 13-10

Program Examples 13-1

More Complex I/0 Devices 13-29

Problems 13-52

14. Using the 6850 Asynchronous Communications Interface Adapter (ACIA)

Program Examples 14-5

15. Interrupts

Characteristics of Interrupt Systems 15-1

6809 Interrupt System 15-3

6820 PIA Interrupts 15-8

6850 ACIA Interrupts 15-8

6809 Polling Interrupt Systems 15-9

6809 Vectored Interrupt Systems 15-10

Communications Between Main Program and Service Routines 15-10

Enabling and Disabling Interrupts 15-11

Changing Values in the Stack 15-13

Interrupt Overhead 15-15

Program Examples 15-15

More General Service Routines 15-30

Problems 15-31

Section IV. Software Development

16. Problem Definition

Inputs 16-1

Outputs 16-2

Processing Section 16-2

Error Handling 16-3

Human Factors/Operator Interaction 16-3

Examples 16-4

Review 16-14

1 7. Program Design

Basic Principles 17-1

Flowcharting 17-2

Modular Programming 17-11

Structured Programming 17-15

Top-Down Design 17-26

Designing Data Structures 17-31

Review of Problem Definition and Program Design 17-32

18. Documentation

Self-Documenting Programs 18-1

Comments 18-2

Flowcharts as Documentation 18-7

Structured Programs as Documentation 18-7

Memory Maps 18-7

Parameter and Definition Lists 18-8

Library Routines 18-9

Total Documentation 18-12

vii

viii

19. Debugging

Simple Debugging Tools 19-2

Advanced Debugging Tools 19-8

Debugging With Checklists 19-10

Looking for Errors 19-11

Examples 19-17

20. Testing

Selecting Test Data 20-2

Examples 20-3

Rules for Testing 20-4

Conclusions 20-4

21. Maintenance and Redesign

Saving Memory 21-2

Saving Execution Time 21-4

Major Reorganization 21-4

Section V. 6809 Instruction Set

22. The Instruction Set

(For page number reference, see the list of 6809 instructions at

the back of the book.)

Appendices

Index

A. Summary of the 6809 Instruction Set

B. Summary of 6809 Indexed and Indirect Addressing Modes

C. 6809 Instruction Codes, Memory Requirements, and Execution Times

D. 6809 Instruction Object Codes in Numerical Order

E. 6809 Post Bytes in Numerical Order

· --·- ------

4-1. 8-Bit Data Transfer 4-1

4-2. 8-Bit Addition 4-2

4-3. Shift Left One Bit 4-2

Program Examples

4-4. Mask Off Most Significant Four Bits 4-3
4-5. Clear a Memory Location 4-4

4-6. Byte Disassembly 4-4

4-7. Find Larger of Two Numbers 4-5

4-8. 16-Bit Addition 4-7

4-9. Table of Squares 4-8

4-10. 16-Bit Ones Complement 4-11

5-1. Sum of Data 5-4

5-2. 16-Bit Sum of Data 5-6

5-3. Number of Negative Elements 5-9

5-4. Maximum Value 5-10

5-5. Justify a Binary Fraction 5-12

6-1. Length of a String of Characters 6-3

6-2. Find First N-Biank Character 6-5

6-3. Replace Leading Zeros with Blanks 6-7

6-4. Add Even Parity to ASCII Characters 6-8

6-5. Pattern Match 6-11

7-1. Hexadecimal to ASCII 7-2

7-2. Decimal to Seven-Segment 7-3

7-3. ASCII to Decimal 7-6

7-4. BCD to Binary 7-8

7-5. Binary Number to ASCII String 7-8

X

8-l. Multiple-Precision Binary Addition 8-2
8-2. Decimal Addition 8-4
8-3. 8-Bit by 16-Bit Binary Multiplication 8-17

8-4. Binary Division 8-8
8-5. Self-Checking Numbers Double Add Double Mod 10 8-12

9-1. Add Entry to List 9-1
9-2. Check an Ordered List 9-3

9-3. Remove Element from Queue 9-5
9-4. 8-Bit Sort 9-9
9-5. Using an Ordered Jump Table 9-12

10-1. Converting Hexadecimal to ASCII 10-3
10-2. Length of a String of Characters 10-7
10-3. Maximum Value 10-9
10-4. Pattern Match 10-11
10-5. Multiple-Precision Addition 10-13

13-1. A Pushbutton 13-12
13-2. A Multi-Position (Rotary, Selector, or Thumbwheel) Switch 13-16

13-3. A Single LED 13-20
13-4. Seven-Segment LED Display 13-22

13-5. An Unencoded Keyboard 13-32
13-6. An Encoded Keyboard 13-38
13-7. Digital-to-Analog Converter 13-40
13-8. Analog-to-Digital Converter 13-43
13-9. A Teletypewriter (TTY) 13-47

14-1. Receive Data from TTY 14-5
14-2. Send Data to TTY 14-6

15-1. A Startup Interrupt 15-15
15-2. A Keyboard Interrupt 15-17
15-3. A Printer Interrupt 15-20
15-4. A Real-Time Clock Interrupt 15-23
15-5. A Teletypewriter Interrupt 15-28

18-1. Commenting a Multiple-Precision Addition Routine 18-4

18-2. Commenting a Teletypewriter Output Routine 18-5

18-3. Sum of Data/Library Routine 18-10

18-4. Decimal to Seven-Segment Conversion/Library Routine 18-11
18-5. Decimal Sum/Library Routine 18-11

19-l. Debugging a Code Conversion Program 19-17
19-2. Debugging a Sort Program 19-22

20-1. Testing a Sort Program 20-3
20-2. Testing an Arithmetic Program 20-4

I
Fundamental Concepts

This book describes assembly language programming. It assumes that you are
familiar with An Introduction to Microcomputers: Volume 1 - Basic Concepts
(Berkeley: Osborne/McGraw-Hill, 1980). Chapters 6 and 7 of that book are
especially relevant. This book does not discuss the general features of computers,
microcomputers, addressing methods, or instruction sets; you should refer to An
Introduction to Microcomputers: Volume 1 for that information.

The chapters in this section provide basic information on assembly language in
general and the 6809 in particular. Chapter 1 discusses the purpose of assembly

language and compares it with higher-level computer languages. Chapter 2 discusses as­

semblers and, briefly, loaders. Chapter 3 describes the architecture of the 6809
microprocessor, compares it with similar processors, and discusses important features of

Motorola's 6809 assemblers.

HOW THIS BOOK HAS BEEN PRINTED

This book contains both boldface and lightface type. The material in lightface

type only expands on information presented in the previous boldface type. Thus you

can skip subject areas with which you are familiar by skipping the material in lightface

type. When you reach an unfamiliar subject, read both the material in boldface type and

the material in lightface type.

1
Introduction to

Assembly Language Programming

A computer program is ultimately a series of numbers and therefore has very little

meaning to a human being. In this chapter we will discuss the levels of human-like

language in which a computer program may be expressed. We will further discuss the

reasons for and uses of assembly language, which is the subject of this book.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs that produce

defined actions during an instruction cycle. An instruction set is to a microprocessor

what a function table is to a logic device such as a gate, adder, or shift register. Of

course, the actions that the microprocessor performs in response to its instruction

inputs are far more complex than the actions that logic devices perform in response to

their inputs.

Binary Instructions

An instruction is a binary digit pattern - it must be available at the data

inputs to the microprocessor at the proper time in order to be interpreted as an

instruction. For example, when the 6809 microprocessor receives the 8-bit binary pat­

tern 01001111 as the input during an instruction fetch operation, the pattern means:

"Clear (put zero in) Accumulator A"

Similarly, the pattern 10000110 means:

1-2 6809 Assembly Language Programming

The microprocessor (like any other computer) only recognizes binary patterns as

instructions or data; it does not recognize words or octal, decimal, or hexadecimal num­

bers.

A COMPUTER PROGRAM

A program is a series of instructions that causes a computer to perform a partie·

ular task.
Actually, a computer program includes more than instructions; it also contains

the data and memory addresses that the microprocessor needs to accomplish the tasks

defined by the instructions. Clearly, if the microprocessor is to perform an addition, it

must have two numbers to add and a place to put the result. The computer program

must determine the sources of the data and the destination of the result as well as the

operation to be performed.

All microprocessors execute instructions sequentially unless an instruction

changes the order of execution or halts the processor. That is, the processor gets its next

instruction from the next higher memory address unless the current instruction

specifically directs it to do otherwise.

Ultimately, every program is a set of binary numbers. For example, this is a

6809 program that adds the contents of memory locations 006016 and 006116 and

places the result in memory location 006216:

10110110

00000000

01100000

10111011

00000000

01100001
10110111

00000000
01100010

This is a machine language, or object, program. If this program were entered into the

memory of a 6809-based microcomputer, the microcomputer would be able to execute it

directly.

THE BINARY PROGRAMMING PROBLEM

There are many difficulties associated with creating programs as object, or bin·

ary machine language, programs. These are some of the problems:

1. The programs are difficult to understand or debug. (Binary numbers all look

the same, particularly after you have looked at them for a few hours.)

2. The programs are slow to enter since you must set a front panel switch for

each bit and load memory one byte at a time.

3. The programs do not describe the task which you want the computer to per­

form in anything resembling a human-readable format.

4. The programs are long and tiresome to write.

Introduction to Assembly Language Programming 1-3

5. The programmer often makes careless errors that are very difficult to locate

and correct.

For example, the following version of the addition object program contains a
single bit error. Try to find it:

10110110
00000000
01100000
10111011
00000000
01110001
10110111
00000000
01100010

Although the computer handles binary numbers with ease, people do not. People

find binary programs long, tiresome, confusing, and meaningless. Eventually, a pro­

grammer may start remembering some of the binary codes, but such effort should be

spent more productively.

USING OCTAL OR HEXADECIMAL

We can improve the situation somewhat by writing instructions using octal or
hexadecimal numbers, rather than binary. We will use hexadecimal numbers in this

book because they are shorter, and because they are the standard for the microprocessor

industry. Table 1-1 defines the hexadecimal digits and their binary equivalents. The
6809 program to add two numbers now becomes:

B6
00
60
BB
00
61
B7
00
62

At the very least, the hexadecimal version is shorter to write and not quite so tiring to

examine.

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
c 1100 12
D 1101 13
E 1110 14
F 11 1 1 15

1-4 6809 Assembly Language Programming

Errors are somewhat easier to find in a sequence of hexadecimal digits. The

erroneous version of the addition program, in hexadecimal form, becomes:

The mistake is far more obvious.

B6
00
60
BB
00
71
87
00
62

What do we do with this hexadecimal program? The microprocessor under­

stands only binary instruction codes. If your front panel has a hexadecimal keyboard

instead of bit switches, you can key the hexadecimal program directly into memory -

the keyboard logic translates the hexadecimal digits into binary numbers. But what if

your front panel has only bit switches? You can con vert the hexadecimal digits to binary

by yourself, but this is a repetitive, tiresome task. People who attempt it make all sorts of

petty mistakes, such as looking at the wrong line, dropping a bit, or transposing a bit or a

digit. Besides, once we have converted our hexadecimal program we must still place the

bits in memory through the switches on the front panel.

Hexadecimal Loader

These repetitive, grueling tasks are, however, perfect jobs for a computer. The

computer never gets tired or bored and never makes silly mistakes. The idea then is to

write a program that accepts hexadecimal numbers, converts them into binary num­

bers, and places them in memory. This is a standard program provided with many

microcomputers; it is called a hexadecimal loader.

The hexadecimal loader is a program like any other. It occupies memory space. In

some systems, it resides in memory just long enough to load another program; in

others, it occupies a reserved, read-only section of memory. Your microcomputer may

not have bit switches on its front panel; it may not even have a front panel. This reflects

the machine designer's decision that binary programming is not only impossibly tedious

but also wholly unnecessary. The hexadecimal loader in your system may be part of a

larger program called a monitor, which also provides a number of tools for program

debugging and analysis.

A hexadecimal loader certainly does not solve every programming problem. The

hexadecimal version of the program is still difficult to read or understand; for example,

it does not distinguish operations from data or addresses, nor does the program listing

provide any suggestion as to what the program does. What does B6 or 3F mean?

Memorizing a card full of codes is hardly an appetizing proposition. Furthermore, the

codes will be entirely different for a different microprocessor and the program will

require a large amount of documentation.

INSTRUCTION CODE MNEMONICS

An obvious programming improvement is to assign a name to each instruction

code. The instruction code name is called a "mnemonic" or memory jogger. The

Introduction to Assembly Language Programming 1-5

instruction mnemonic should describe, in a minimum number of characters, what the

instruction does.

Devising Mnemonics

In fact, all microprocessor manufacturers (they cannot remember hexadecimal

codes either) provide a set of mnemonics for the microprocessor instruction set. You do

not have to abide by the manufacturer's mnemonics; there is nothing sacred about
them. However, they are standard for a given microprocessor, and therefore under­

stood by all users. These are the instruction codes that you will find in manuals, cards,

books, articles, and programs. The problem with selecting instruction mnemonics is that

not all instructions have "obvious" names. Some instructions do (for example, ADD,

AND, OR), others have obvious contractions (such as SUB for subtraction, XOR for

exclusive-OR), while still others have neither. The result is such mnemonics as WMP,

PCHL, and even SOB. Most manufacturers come up with some reasonable names and

some hopeless ones. However, users who devise their own mnemonics rarely do much

better.
Along with the instruction mnemonics, the manufacturer will usually assign

names to the CPU registers. As with the instruction names, some register names are
obvious (such as A for Accumulator) while others may have only historical significance.

Again, we will use the manufacturer's suggestions simply to promote standardization.

Standard Mnemonics

There is a proposed standard set of assembly language mnemonics.• The

amount of use that it will receive is uncertain, but it should at least serve as a basis for

comparing instruction sets and for selecting mnemonics for future processors.

An Assembly Language Program

If we use standard 6809 instruction and register mnemonics, as defined by

Motorola, our 6809 addition program becomes:

LDA $0060
ADDA $0061
STA $0062

The program is still far from obvious, but at least some parts are comprehensible.

ADDA is a considerable improvement over BB. LDA and ST A suggest loading and

storing the contents of an accumulator. We now see that some lines are operations and

others are data or addresses. Such a program is an assembly language program.

THE ASSEMBLER PROGRAM

How do we get the assembly language program into the computer? We have to

translate it, either into hexadecimal or into binary numbers. You can translate an as­

sembly language program by hand, instruction by instruction. This is called hand as­
sembly.

1-6 6809 Assembly Language Programming

The following table illustrates the hand assembly of the addition program:

Instruction Mnemomic Addressing Method

LOA extended direct
ADDA extended direct

ST A extended direct

Hexadecimal Equivalent

86
88
87

As with hexadecimal-to-binary conversion, hand assembly is a rote task which is
uninteresting, repetitive, and subject to numerous minor errors. Picking the wrong line,
transposing digits, omitting instructions, and misreading the codes are only a few of the
mistakes that you may make. Most microprocessors complicate the task even further by
having instructions with different lengths. Some instructions are one byte long while
others may be two to five bytes long. Some instructions require data in the second and
third bytes; others require memory addresses, register numbers, or who knows what?

Assembly is another rote task that we can assign to the microcomputer. The

microcomputer never makes any mistakes when translating codes; it always knows

how many bytes and what format each instruction requires. The program that does

this job is an "assembler." The assembler program translates a user program, or

"source" program written with mnemonics, into a machine language program, or

"object" program, which the microcomputer can execute. The assembler's input is a

source program and its output is an object program.
An assembler is a program, just as the hexadecimal loader is. However, assem­

blers are more expensive, occupy more memory, and require more peripherals and
execution time than do hexadecimal loaders. While users may (and often do) write their
own loaders, few care to write their own assemblers.

Futhermore, assemblers have their own rules that you must learn. These
include the use of certain markers (such as spaces, commas, semicolons, or colons) in
appropriate places, correct spelling, the proper control of information, and perhaps even
the correct placement of names and numbers. These rules are usually simple and can be
learned quickly.

Additional Features of Assemblers

Early assemblers did little more than translate the mnemonic names of instruc­
tions and registers into their binary equivalents. However, most assemblers now pro­
vide such additional features as:

Allowing the user to assign names to memory locations, input and output
devices, and even sequences of instructions

Converting data or addresses from various number systems (for example,
decimal or hexadecimal) to binary and converting characters into their ASCII
or EBCDIC binary codes

Performing some arithmetic as part of the assembly process

Telling the loader program where in memory parts of the program or data
should be placed

Allowing the user to assign areas of memory as temporary data storage and to
place fixed data in areas of program memory

Introduction to Assembly Language Programming 1-7

Providing the information required to include standard programs from pro­

gram libraries, or programs written at some other time, in the current program

Allowing the user to control the format of the program listing and the input

and output devices employed

Choosing an Assembler

All of these features, of course, in valve additional cost and memory. Microcom­

puters generally have much simpler assemblers than do larger computers, but the ten­

dency is always for the size of assemblers to increase. You will often have a choice of as­

semblers. The important criterion is not how many off-beat features the assembler has,

but rather how convenient it is to use in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE

The assembler, like the hexadecimal loader, does not solve all the problems of

programming. One problem is the tremendous gap between the microcomputer

instruction set and the tasks which the microcomputer is to perform. Computer

instructions tend to do things like add the contents of two registers, shift the contents of

the Accumulator one bit, or place a new value in the Program Counter. On the other

hand, a user generally wants a microcomputer to do something like check if an analog

reading has exceeded a threshold, look for and react to a particular command from a

teletypewriter, or activate a relay at the proper time. An assembly language programmer

must translate such tasks into a sequence of simple computer instructions. The transla­

tion can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you must have

detailed knowledge of the particular microcomputer that you are using. You must

know what registers and instructions the microcomputers has, precisely how the instruc­

tions affect the various registers, what addressing methods the computer uses, and a

mass of other information. None of this information is relevant to the task which the

microcomputer must ultimately perform.

Lack of Portability

In addition, assembly language programs are not portable. Each microcomputer

has its own assembly language which reflects its own architecture. An assembly

language program written for the 6809 will not run on a 6502, Z80, 8080, or 3870

microprocessor. For example, the addition program written for the 8080 would be:

LOA 60H
MOV B,A
LOA 61 H
ADD B
STA 6 2H

The lack of portability not only means that you will not be able to use your assem­

bly language program on a different microcomputer, but also that you will not be able to

use any programs that were not specifically written for the microcomputer you are using.

This is a particular drawback for microcomputers, since these devices are new and few

assembly language programs exist for them. The result, too frequently, is that you are

1-8 6809 Assembly Language Programming

on your own. If you need a program to perform a particular task, you are not likely to
find it in the small program libraries that most manufacturers provide. Nor are you likely
to find it in an archive, journal article, or someone 's old program file. You will probably
have to write it yourself.

HIGH-LEVEL LANGUAGES

The solution to many of the difficulties associated with assembly language pro­
grams is to use, instead, "high-level" or "procedure-oriented" languages. Such
languages allow you to describe tasks in forms that are problem-oriented rather than
computer-oriented. Each statement in a high-level language performs a recognizable
function; it will generally correspond to many assembly language instructions. A
program called a compiler translates the high-level language source program into
object code or machine language instructions.

FORTRAN - A HIGH-LEVEL LANGUAGE

Many different high-level languages exist for different types of tasks. If, for
example, you can express what you want the computer to do in algebraic notation,
you can write your program in FORTRAN (Formula Translation Language), the
oldest and most widely used of the high-level languages. Now, if you want to add two
numbers, you just tell the computer:

I SUM = NUMBl + NUMB2

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro­

gram or the equivalent assembly language program. Other high-level languages include
COBOL (for business applications), PASCAL (a language designed for structured pro­

gramming), PL/1 (a combination of FORTRAN and COBOL), APL and BASIC (popu­
lar for time-sharing systems), and C (a systems-programming language developed at

Bell Telephone Laboratories).

ADVANTAGES OF HIGH-LEVEL LANGUAGES

Clearly, high-level languages make programs easier and faster to write. A com­
mon estimate is that a programmer can write a program about ten times as fast in a
high-level language as in assembly language.2-4 That is just writing the program; it
does not include problem definition, program design, debugging, testing, or documen­

tation, all of which become simpler and faster. The high-level language program is, for

instance, partly self-documenting. Even if you do not know FORTRAN, you probably
could tell what the statement illustrated above does.

Machine Independence

High-level languages solve many other problems associated with assembly
language programming. The high-level language has its own syntax (usually defined by
a national or international standard). The language does not mention the instruction

Introduction to Assembly Language Programming 1-9

set, registers, or other features of a particular computer. The compiler takes care of all

such details. Programmers can concentrate on their own tasks; they do not need a

detailed understanding of the underlying CPU architecture - for that matter, they do

not need to know anything about the computer they are programming.

Portability

Programs written in a high-level language are portable - at least, in theory.

They will run on any computer that has a standard compiler for that language.

At the same time, all previous programs written in a high-level language for prior

computers are available to you when programming a new computer. This can mean

thousands of programs in the case of a common language like FORTRAN or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES

If all the good things we have said about high-level languages are true - if you

can write programs faster and make them portable besides - why bother with as­

sembly languages? Who wants to worry about registers, instruction codes,

mnemonics, and all that garbage! As usual, there are disadvantages that balance the

advantages.

Syntax

One obvious problem is that, as with assembly language, you have to learn the

"rules" or "syntax" of any high-level language you want to use. A high-level

language has a fairly complicated set of rules. You will find that it takes a lot of time just

to get a program that is syntactically correct (and even then it probably will not do what

you want). A high-level computer language is like a foreign language. lf you have talent,

you will get used to the rules and be able to turn out programs that the compiler will

accept. Still, learning the rules and trying to get the program accepted by the compiler

does not contribute directly to doing your job.

Here, for example, are some FORTRAN rules:

Labels must be numbers placed in the first five card columns

Statements must start in column 7

Integer variables must start with the letters I, J, K, L, M, or N

Cost of Compilers

Another obvious problem is that you need a compiler to translate programs writ­

ten in a high-level language into machine language. Compilers are expensive and use a

large amount of memory. While most assemblers occupy 2K to 16K bytes of memory

(lK = 1024), compilers occupy 4K to 64K bytes. So the amount of overhead involved

in using the compiler is rather large.

1-10 6809 Assembly Language Programming

Adapting Tasks to a Language

Furthermore, only some compilers will make the implementation of your task

simpler. FORTRAN, for example, is well-suited to problems that can be expressed as
algebraic formulas. If, however, your problem is controlling a printer, editing a string of
characters, or monitoring an alarm system, your problem cannot be easily expressed in
algebraic notation. In fact, formulating the solution in algebraic notation may be more
awkward and more difficult than formulating it in assembly language. The answer is, of
course, to use a more suitable high-level language. Languages specifically designed for
tasks such as those mentioned above do exist - they are called system implementation
languages. However, these languages are less widely used and standardized than
FORTRAN.

Inefficiency

High-level languages do not produce very efficient machine language programs.

The basic reason for this is that compilation is an automatic process which is riddled with
compromises to allow for many ranges of possibilities. The compiler works much like a
computerized language translator - sometimes the words are right but the sounds and
sentence structures are awkward. A simple compiler cannot know when a variable is no
longer being used and can be discarded, when a register should be used rather than a
memory location, or when variables have simple relationships. The experienced pro­
grammer can take advantage of shortcuts to shorten execution time or reduce memory
usage. A few compilers (known as optimizing compilers) can also do this, but such com­
pilers are much larger than regular compilers.

SUMMARY OF ADVANTAGES AND DISADVANTAGES

Advantages of High-Level Languages:

Easier to learn (and teach to others)

More convenient descriptions of tasks

Less time spent writing programs

Easier documentation

Standard syntax

Independence of the structure of a particular computer

Portability

Availability of library and other programs

Disadvantages of High-Level Languages:

Special rules

Extensive hardware and software support required

Orientation of common languages to algebraic or business problems

lnefficien t programs

Difficulty of optimizing code to meet time and memory requirements

Inability to use special features of a computer conveniently

Introduction to Assembly Language Programming 1-11

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS

Microprocessor users will encounter several special difficulties when using

high-level languages. Among these are:

Few high-level languages exist for microprocessors. This is particularly true
for processors that are new, relatively unpopular, or intended for simple con­
trol applications.

Few standard languages are widely available.

Compilers usually require a large amount of memory or even a completely

different computer.

Most microprocessor applications are not well-suited to high-level

languages.

Many microprocessor languages produce no object program. That is, they
translate the program and run it line by line - this is referred to as interpreting
rather than compiling - or they produce an output that requires special

systems software (a run-time package) to execute. Either approach may result
in programs that execute slowly and use a large amount of memory. BASIC
and PASCAL, the most commonly available high-level languages, generally
use one of these approaches.

Memory costs are often critical in microprocessor applications.

The relatively small number of high-level languages for microcomputers is a
result of the short history of microprocessors and their origin in the semiconductor
industry, rather than in the computer industry. Among the high-level languages that are
most often available are BASICS, PASCAL6. 7, FORTRAN, 0, and the PL/1-type
languages such as PL/M9.

Many of the high-level languages that exist do not conform to recognized stan­
dards, so the microprocessor user cannot expect to gain much program portability,
access to program libraries, or use of previous experience or programs. The main advan­
tages remaining are the reduction in programming effort, easier documentation, and the
smaller amount of detailed understanding of the computer architecture that is necess­
ary.

Overhead for High-Level Languages

The overhead involved in using a high-level language with microprocessors is
considerable. Until very recently, microprocessors have been better suited to control
and slow interactive applications than to the character manipulation and language
analysis involved in compilation. Therefore, compilers for some microprocessors will
not run on a microprocessor-based system. Instead, they require a much larger com­
puter; that is, they are cross-compilers rather than self-compilers. A user must not only
bear the expense of the larger computer, but must also transfer the program from the
larger computer to the micro.

Some self-compilers are available. These compilers run on the microcomputer for
which they produce object code. Unfortunately, they usually require large amounts of
memory (16K or more), plus special supporting hardware and software.

1-12 6809 Assembly Language Programming

Unsuitability of High-Level Languages

High-level languages also are not generally well-suited to microprocessor applica­

tions. Most of the common languages were devised either to help solve scientific prob­

lems or to handle large-scale business data processing. Few microprocessor applications

fall in either of these areas. Most microprocessor applications involve sending data and

control information to output devices and receiving data and status information from

input devices. Often the control and status information consists of a few binary digits

with very precise hardware-related meanings. If you try to write a typical control pro­

gram in a high-level language, you may feel like someone who is trying to eat soup with

chopsticks. For tasks in such areas as test equipment, terminals, navigation systems,

signal processing, and business equipment, the high-level languages work much better

than they do in instrumentation, communications, peripherals, and automotive applica­

tions.

Application Areas for Language Levels

Applications better suited to high-level languages are those which require large

memories. If, as in a valve controller, electronic game, appliance controller, or small

instrument, the cost of a single memory chip is important, then the inefficient memory

use of high-level languages is intolerable. If, on the other hand, as in a terminal or test

equipment, the system has many thousands of bytes of memory anyway, this ineffi­

ciency is not as important. Clearly the size and volume of the product are important fac­

tors as well. A large program will greatly increase the advantages of high-level

languages. On the other hand, a high-volume application will mean that fixed software

development costs are not as important as memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?

Which language level you use depends on your particular application. Let us

briefly note some of the factors which may favor particular levels:

Applications for Machine Language:

Virtually no one programs in machine language because it wastes human time

and is difficult to document. An assembler costs very little and greatly reduces

programming time.

Applications for Assembly Language:

Short to moderate-sized programs

Applications where memory cost is a factor

Real-time control applications

Limited data processing

High-volume applications

Applications involving more input/output or control than computation

Applications for High-Level Language:

Long programs

Low-volume applications

Introduction to Assembly Language Programming 1-13

Applications where the amount of memory required is already very large

Applications involving more computation than input/output or control

Compatibility with similar applications using larger computers

Availability of specific programs in a high-level language which can be used in

the application

Other Considerations

Many other factors are also important, such as the availability of a large computer
for use in development, experience with particular languages, and compatibility with

other applications.
If hardware will ultimately be the largest cost in your application, or if speed is crit­

ical, you should favor assembly language. But be prepared to spend much extra time in
software development in exchange for lower memory costs and higher execution

speeds. If software will be the largest cost in your application, you should favor a high­
level language. But be prepared to spend the extra money required for the supporting
hardware and software.

Of course, no one except some theorists will object if you use both assembly and

high-level languages. You can write the program originally in a high-level language and

then patch some sections in assembly language.1o. " However, most users prefer not to
do this because it can create havoc in debugging, testing, and documentation.

FUTURE TRENDS IN LANGUAGE LEVELS

We expect the future will favor high-level languages for the following reasons:

Programs always add extra features and grow larger

Hardware and memory are becoming less expensive

Software and programmers are becoming more expensive

Memory chips are becoming available in larger sizes, at lower "per bit" cost,

so actual savings in chips are less likely

More suitable and more efficient high-level languages are being developed

More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any

more than it is for large computers. But longer programs, cheaper memory, and more
expensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level languages.

WHY THIS BOOK?

If the future favors high-level languages, why have a book on assembly language

programming? The reasons are:

l. Most industrial microcomputer users program in assembly language (almost
two thirds, according to a recent survey).

1-14 6809 Assembly Language Programming

2. Many microcomputer users will continue to program in assembly language

since they need the detailed control that it provides.

3. No suitable high-level language has yet become widely available or standard­

ized.

4. Many applications require the efficiency of assembly language.

5. An understanding of assembly language can help in evaluating high-level

languages.

6. Almost all microcomputer programmers ultimately find that they need

some knowledge of assembly language, most often to debug programs, write

110 routines, speed up or shorten critical sections of programs written in high­

level languages, utilize or modify operating system functions, and understand

other people's programs.

The rest of this book will deal exclusively with assemblers and assembly language

programming. However, we do want readers to know that assembly language is not the

only alternative. You should watch for new developments that may significantly reduce

programming costs if such costs are a major factor in your application.

REFERENCES

1. W. P. Fischer, "Microprocessor Assembly Language Draft Standard," Computer,

December 1979, pp. 96-109.

2. M. H. Halstead, Elements of Software Science, American Elsevier, New York, 1977.

3. L. H. Putnam and A. Fitzsimmons, "Estimating Software Costs," Datamation, Sep­

tember 1979, pp. 189-98.

4. M. Phister, Jr., Data Processing Technology and Economics, Santa Monica Publishing

Co., Santa Monica, Calif., 1976. Also available from Digital Press, Educational Ser­

vices, Digital Equipment Corp., Bedford, Mass.

5. Albrecht, Finkel, and Brown, BAS/C for Home Computers, Wiley, New York, 1978.

6. G. M. Schneider et al., An Introduction to Programming and Problem Solving with

PASCAL, Wiley, New York, 1978.

7. K. L. Bowles, Microcomputer Problem Solving Using PASCAL, Springer-Verlag, New

York, 1977.

8. B. W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall,

Englewood Cliffs, N. J., 1978.

9. D. D. McCracken, A Guide to PL/M Programming for Microcomputer Applications,

Addison-Wesley, Reading, Mass., 1978.

10. P. Caudill, "Using Assembly Coding to Optimize High-Level Language Pro­

grams," Electronics, February 1, 1979, pp. 121-24.

11. D. B. Wecker et al., "High Level Design Language Develops Low Level

Microprocessor-Independent Software," Computer Design, June 1979, pp. 140-49.

2
Assemblers

This chapter discusses the functions performed by assemblers, beginning with

features common to most assemblers and proceeding through more elaborate

capabilities such as macros and conditional assembly. You may wish to skim this chapter

for the present and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today's assemblers do much more than translate
assembly language mnemonics into binary codes. But we will describe how an assem­
bler handles the translation of mnemonics before describing additional assembler
features. Finally we will explain how assemblers are used.

ASSEMBLY LANGUAGE FIELDS

Assembly language instructions (or "statements") are divided into a number
of "fields," as shown in Table 2-1.

The operation code field is the only field which can never be empty; it always
contains either an instruction mnemonic or a directive to the assembler, sometimes
called a "pseudo- instruction," "pseudo-operation," or "pseudo-op."

The operand or address field may contain an address or data, or it may be
blank.

2-2 6809 Assembly Language Programming

Label
Field

START

NEXT

VAL1
VAL2
SUM

Table 2-1. The Fields of an Assembly Language Instruction

Operation Code
or Mnemonic

Field

LOA
ADDA
STA
?

RMB
RMB
RMB

Operand or
Address Comment Field

Field

VAL1 LOAD FIRST NUMBER INTO A
VAL2 ADD SECOND NUMBER TO A
SUM STORE SUM
? NEXT INSTRUCTION

The comment and label fields are optional. A programmer will assign a label to

a statement or add a comment as a personal convenience: namely, to make the pro­

gram easier to read and use.

Of course, the assembler must have some way of telling where one field ends

and another begins. Assemblers that use punched card input often require that each

field start in a specific card column. This is a "fixed format." However, fixed formats are

inconvenient when the input medium is paper tape; fixed formats are also a nuisance to

programmers. The alternative is a "free format" where the fields may appear anywhere

on the line.

Delimiters

If the assembler cannot use the position on the line to tell the fields apart, it must

use something else. Most assemblers use a special symbol or "delimiter" at the

beginning or end of each field. The most common delimiter is the space character.

Commas, periods, semicolons, colons, slashes, question marks, and other characters

which would not otherwise be used in assembly language programs also may serve as

delimiters. Table 2-2 lists standard 6809 assembler delimiters.

You will have to exercise a little care with delimiters. Some assemblers are

fussy about extra spaces or the appearance of delimiters in comments or labels. A

well-written assembler will handle these minor problems, but many assemblers are

not well-written. Our recommendation is simple: avoid potential problems if you can.

The following rules will help:

Do not use extra spaces, particularly after commas that separate operands.

Do not use delimiter characters in names or labels.

Include standard delimiters even if your assembler does not require them.

Then it will be more likely that your programs are in correct form for another

assembler.

labels

Table 2-2. Standard 6809 Assembler Delimiters

'space' Between label and operation code, between
operation code and address. and before
an entry in the comment field

Between operands in the address field
Before an entire line of comment

Assemblers 2-3

The label field is the first field in an assembly language instruction; it may be

blank. If a label is present, the assembler defines the label as equivalent to the address

into which the first byte of the object code resulting from that instruction will be loaded.

You may subsequently use the label as an address or as data in another instruction's

address field. The assembler will replace the label with the assigned value when creating

an object program.

Labels are most frequently used in Jump, Call, or Branch instructions. These
instructions place a new value in the Program Counter and so alter the normal sequen­

tial execution of instructions. JUMP 15016 means "place the value 15016 in the Program

Counter." The next instruction to be executed will be the one in memory location 15016.
The instruction JUMP START means "place the value assigned to the label START in

the Program Counter." The next instruction to be executed will be the one at the

address corresponding to the label START. Table 2-3 contains an example.

Why use a label? Here are some reasons:

A label makes a program location easier to find and remember.

The label can easily be moved, if required, to change or correct a program. The

assembler will automatically change all instructions that use the label when the

program is reassembled.

The assembler or loader can relocate the whole program by adding a constant

(a "relocation constant") to each address in which a label was used. Thus we
can move the program to allow for the insertion of other programs or simply to

rearrange memory.

The program is easier to use as a library program; that is, it is easier for some­
one else to take your program and add it to some totally different program.

You do not have to figure out memory addresses. Figuring out memory

addresses is particularly difficult with microprocessors which have instructions

that vary in length.

You should assign a label to any instruction that you might want to refer to later.

The next question is how to choose a label. The assembler often places some

restrictions on the number of characters (usually 5 or 6), the leading character (often

must be a letter), and the trailing characters (often must be letters, numbers, or one of a

few special characters). Beyond these restrictions, the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e., mnemonic

labels. Typical examples are ADDW in a routine that adds one word into a sum, SRETX

in a routine that searches for the ASCII character ETX, or NKEYS for a location in data

memory that contains the number of key entries. Meaningful labels are easier to

2-4 6809 Assembly Language Programming

Table 2-3. Assigning and Using a Label

Assembly language Program

START LOAD ACCUMULATOR

• (MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed, the instruction JUMP
START causes the address of the instruction labeled START to be placed in the program
counter. That instruction will then be executed.

remember and contribute to program documentation. Some programmers use a stan­
dard format for labels, such as starting with LOOOO. These labels are self-sequencing
(you can skip a few numbers to permit insertions), but they do not help document the
program.

Some label selection rules will keep you out of trouble. We recommend the

following:

Do not use labels that are the same as operation codes or other mnemonics.

Most assemblers will not allow this usage; others will, but it is confusing.

Do not use labels that are longer than the assembler permits. Assemblers have
various truncation rules.

Avoid special characters (non-alphabetic and non-numeric) and lower-case
letters. Some assemblers will not permit them; others allow only certain ones.
The simplest practice is to stick to capital letters and numbers.

Start each label with a letter. Such labels are always acceptable.

Do not use labels that could be confused with each other. A void the letters I,
0, and Z and the numbers 0, 1, and 2. Also avoid things like XXXX and
XXXXX. There's no sense in tempting fate and Murphy's Law.

When you are not sure if a label is legal, do not use it. You will not get any real
benefit from discovering exactly what the assembler will accept.

These are recommendations, not rules. You do not have to follow them but don't blame
us if you waste time on unnecessary problems.

ASSEMBLER OPERATION CODES (MNEMONICS)

The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents. The assembler performs this task using a fixed table much
as you would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It
must also somehow determine how many operands the instruction requires and what

type they are. This may be rather complex - some instructions (like a Halt) have no

Assemblers 2-5

operands, others (like an Addition or a Jump instruction) have one, while still others
(like a transfer between registers or a multiple-bit shift) require two. Some instructions

may even allow alternatives; for example, some computers have instructions (like Shift
or Clear) which can either apply to the Accumulator or to a memory location. We will
not discuss how the assembler makes these distinctions; we will just note that it must do
so.

ASSEMBLER DIRECTIVES

Some assembly language instructions are not directly translated into machine

language instructions. These instructions are directives to the assembler; they assign
the program to certain areas in memory, define sym bois, designate areas of RAM for
temporary data storage, place tables or other fixed data in memory, allow references to
other programs, and perform minor housekeeping functions.

To use these assembler directives or pseudo-operations a programmer places the
directive's mnemonic in the operation code field, and, if the specified directive requires
it, an address or data in the address field.

The most common directives are:

DATA
EQUATE(=) or DEFINE
ORIGIN
RESERVE

Linking directives (used to connect separate programs) are:

ENTRY
EXTERNAL

Different assemblers use different names for those operations but their functions
are the same. Housekeeping directives include:

END
LIST
NAME
PAGE
SPACE
TITLE
PUNCH

We will discuss these pseudo-operations briefly, although their functions are
usually obvious.

2-6 6809 Assembly Language Programming

The DATA Directive

The DATA directive allows the programmer to enter fixed data into program

memory. This data may include:

Lookup tables

Code conversion tables

Messages

Synchronization patterns

Thresholds

Names

Coefficients for equations

Commands

Conversion factors

Weighting factors

Characteristic times or frequencies

Subroutine addresses

Key identifications

Test patterns

Character generation patterns

Identification patterns

Tax tables

Standard forms

Masking patterns

State transition tables

The OAT A directive treats the data as a permanent part of the program.

The format of a DATA directive is usually quite simple. An instruction like:

DZCON DATI\ 12

will place the number 12 in the next available memory location and assign that loca­

tion the name DZCON. Every OAT A directive usually has a label, unless it is one of a

series. The data and label may take any form that the assembler permits.

Most assemblers allow more elaborate OAT A directives that handle a large

amount of data at one time, for example:

EMESS DATA 'ERROR'

SQRS DATA 1,4,9,16,25

A single directive may fill many bytes of program memory, limited perhaps by the

length of a line or by the restrictions of a particular assembler. Of course, you can always

overcome any restrictions by following one OAT A directive with another:

ME SSG DATA 'NOW IS THE I

DATA 'TIME FOR ALL I

DATA 'GOOD MEN I

DATA 'TO COME TO THE '

DATA 'AID OF THEIR '

DATA I COUNTRY I

Assemblers 2-7

Microprocessor assemblers typically have some variations of standard DATA direc­
tives. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers; DEFINE

WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses. Other
special directives may handle character-coded data.

The EQUATE (or DEFINE) Directive

The EQUATE directive allows the programmer to equate names with addresses
or data. This pseudo-operation is almost always given the mnemonic EQU or =. The
names may refer to device addresses, numeric data, starting addresses, fixed addresses,
etc.

The EQUATE directive assigns the numeric value in its operand field to the
label in its label field. Here are two examples:

TTY EQU 5
LAST EQU 5000

Most assemblers will allow you to define one label in terms of another, for example:

LAST EQU FINAL
STl EQU START+l

The label in the operand field must, of course, have been previously defined. Often, the
operand field may contain more complex expressions, as we shall see later. Double

name assignments (two names for the same data or address) may be useful in patching
together programs that use different names for the same variable (or different spellings

of what was supposed to be the same name).

Note that an EQU directive does not cause the assembler to place anything in
memory. The assembler simply enters an additional name into a table (called a
"symbol table") which the assembler maintains. This table, unlike the mnemonic
table, must be in RAM since it varies with each program. The assembler always needs
some RAM to hold the symbol table; the more RAM it has, the more symbols it can
accept. This RAM is in addition to any that the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a parameter that
you might want to change or that has some meaning besides its ordinary numeric value.
We typically assign names to time constants, device addresses, masking patterns, con­
version factors, and the like. A name like DELAY, TTY, KBD, KROW, or OPEN not
only makes the parameter easier to change, but it also adds to program documentation.
We also assign names to memory locations that have special purposes; they may hold
data, mark the start of the program, or be available for intermediate storage.

What name do you use? The best rules are much the same as in the case of
labels, except that here meaningful names really count. Why not call the teletypewriter
TTY instead of X 15, a bit time delay BTIME or BTDL Y rather than WW, the number of
the "GO" key on a keyboard GOKEY rather than HORSE? This advice seems
straightforward, but a surprising number of programmers do not follow it.

Where do you place the EQUATE directives? The best place is at the start of
the program, under appropriate comment headings such as 110 ADDRESSES, TEM­

PORARY STORAGE, TIME CONSTANTS, or PROGRAM LOCATIONS. This
makes the definitions easy to find if you want to change them. Furthermore, another
user will be able to look up all the definitions in one centralized place. Clearly this prac­
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the
subroutine.

2-8 6809 Assembly Language Programming

The ORIGIN Directive

The ORIGIN directive (almost always abbreviated ORG) allows the pro­

grammer to specify the memory locations where programs, subroutines, or data will

reside. Programs and data may be located in different areas of memory depending on

the memory configuration. Startup routines, interrupt service routines, and other
required programs may be scattered around memory at fixed or convenient addresses.

The assembler maintains a Location Counter (comparable to the computer's

Program Counter) which contains the location in memory of the next instruction or

data item being processed. An ORG directive causes the Assembler to place a new
value in the Location Counter, much as a Jump instruction causes the CPU to place a
new value in the Program Counter. The output from the Assembler must not only con­
tain instructions and data, but must also indicate to the loader program where in

memory it should place the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the

following purposes:

Reset (startup) address

Interrupt service addresses

Trap (software interrupt) addresses

RAM storage

Memory stack

Main program

Subroutines

Memory addresses used for input/output devices or special functions

Still other ORIGIN statements may allow room for later insertions, place tables or data
in memory, or assign vacant RAM space for data buffers. Program and data memory in

microcomputers may occupy widely scattered addresses to simplify the hardware.

Typical ORIGIN statements are:

ORG RESET

ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG

statement at the start of the program. The convenience is slight; we recommend the

inclusion of an ORG statement to avoid confusion.

The RESERVE Directive

The RESERVE directive allows the programmer to allocate RAM for various

purposes such as data tables, temporary storage, indirect addresses, a Stack, etc.

Using the RESERVE directive, you assign a name to the memory area and de­
clare the number of locations to be assigned. Here are some examples:

NO KEY

TEMP

VOLTG

BUF'R

RESERVE l
RESERVE 50
RESERVE 80
RESERVE 100

You can use the RESERVE directive to reserve memory locations in program memory
or in data memory; however, the RESERVE directive is more meaningful when applied
to data memory.

Assemblers 2-9

In reality, all the RESERVE directive does is increase the assembler's Location
Counter by the amount declared in the operand field. The assem bier does not actually
produce any object code.

Note the following features of RESERVE:

1. The label of the RESERVE directive is assigned the value of the first

address reserved. For example, the pseudo-operation:

TEMP RESERVE 20

reserves 20 bytes of RAM and assigns the name TEMP to the address of the

first byte.

2. You must specify the number of locations to be reserved. There is no

default case.

3. No data is placed in the reserved locations. Any data that, by chance, may be
in these locations will be left there.

Some assemblers allow the programmer to specify initial values for the

RESERVE area in RAM. We strongly recommend that you do not use this feature; it
assumes that the program (along with the initial values) will be loaded from an external
device (e.g., paper tape or floppy disk) each time it is run. Microprocessor programs, on
the other hand, often reside in non-volatile ROM and start when power comes on. The

RAM in such situations does not retain its contents, nor is it reloaded. Therefore,
always include instruction sequences to initialize RAM in your program; this will insure

that initialization occurs every time the program is executed and not just during load

time.

Linking Directives

We often want statements in one program or subroutine to use names that are

defined in a different assembly. Such uses are called "external references"; a special
linking program is necessary to actually fill in the values and determine if any names are

undefined or doubly defined.

The directive EXTERNAL, usually abbreviated EXT, signifies that the name

is defined elsewhere.

The directive ENTRY, usually abbreviated ENT, signifies that the name is

available for use elsewhere; that is, it is defined in this program.
The precise way in which linking directives are implemented varies greatly from

assembler to assembler. We will not refer to such directives again, but they are very

useful in actual applications.

Output Control Directives

There are various assembler directives that affect the operation of the assem­

bler and its program listing rather than the output program itself. Common house­

keeping directives include:

END, which marks the end of the assembly language source program.

LIST, which tells the Assembler to print the source program. Some assemblers

2-10 6809 Assembly Language Programming

allow such variations as NO LIST or LIST SYMBOL TABLE to avoid long,
repetitive listings.

NAME or TITLE, which prints a name at the top of each page of the listing.

PAGE or SPACE, which skips to the next page or next line, respectively, and
improves the appearance of the listing, making it easier to read.

PUNCH, which transfers subsequent object code to the paper tape punch. This
pseudo-operation may in some cases be the default option and therefore
unnecessary.

When to Use Labels

Users often wonder if or when they can assign a label to an assembler directive.

These are our recommendations:

All EQUATE directives must have labels; they are useless otherwise, since
the purpose of an EQUATE is to define its label.

DATA and RESERVE directives usually have labels. The label identifies the
first memory location used or assigned.

Other directives should not have labels. Some assemblers allow such labels,
but we recommend against their use because there is no standard way to
interpret them.

OPERANDS AND ADDRESSES

Most assemblers allow the programmer a lot of freedom in describing the con­

tents of the Operand or Address field. But remember that the assembler has built-in

names for registers and instructions and may have other built-in names. We will now

describe some common options for the operand field.

Decimal Numbers

Most assemblers assume all numbers to be decimal unless they are marked

otherwise. So:
ADD 100

means "add the contents of memory location 10010 to the contents of the Accumula­
tor."

Other Number Systems

Most assemblers will also accept binary, octal, or hexadecimal entries. But you

must identify these number systems in some way: for example, by preceding or
following the number with an identifying character or letter. Here are some common
iden lifters:

B or % for binary

0,@, Q, or C for octal (the letter 0 should be avoided because of the confusion
with zero)

Assemblers 2-11

H or$ for hexadecimal (or standard BCD)

D for decimal. D may be omitted; it is the default case.

Assemblers generally require hexadecimal numbers to start with a digit (for example,
OA36 instead of A36) in order to distinguish between numbers and names or labels. It is
good practice to enter numbers in the base in which their meaning is the clearest: that is,
decimal constants in decimal; addresses and BCD numbers in hexadecimal; masking
patterns or bit outputs in binary if they are short, and in hexadecimal if they are long.

Names

Names can appear in the operand field; they will be treated as the data that

they represent. Remember, however, that there is a difference between operands and

addresses. In a 6809 assembly language program the sequence:

FIVE EQU 5
ADDA FIVE

will add the contents of memory location 5 (not necessarily the number 5) to the con­
tents of the accumulator. A sequence which adds in the number 5 itself would be

FIVE EQU 5
ADDA. #FIVE

The symbol# tells the assembler that the number represented by the name FIVE is the
value of the operand instead of its memory location.

The Location Counter

You can use the current value of the location counter, which is usually referred

to as * or $. This is useful mainly in Jump instructions; for example:

JUMP *+6

causes a Jump to the memory location 6 bytes beyond the byte that contains the first
byte of the JUMP instruction.

} JUMP • + 6 code stored here

6 locations

- Jump here

One reason to use this technique is to reduce the number of symbols in an assem­
bly language program. This may be necessary if the assembler can handle only a limited
number of symbols. Reducing the number of symbols may also decrease assembly time.
Such benefits are almost negligible, however, unless your program is extremely large or
your assembler rather primitive.

Most microprocessors have many two and three-byte instructions. Thus you will
have difficulty determining exactly how far apart two assembly language statements are.

2-12 6809 Assembly Language Programming

Using offsets from the location counter therefore frequently results in errors that you

can avoid if you use labels.

Character Codes

Most assemblers allow text to be entered as ASCII strings. Such strings may be

surrounded either with single or double quotation marks; strings may also use a begin­

ning or ending symbol such as A or C. A few assemblers also permit EBCDIC strings.

We recommend that you use character strings for all text. It improves the clarity

and readability of the program.

Arithmetic and Logical Expressions

Assemblers permit combinations of the data forms described above, connected

by arithmetic, logical, or special operators. These combinations are called expres­

sions. Almost all assemblers allow simple arithmetic expressions such as START + l.

Some assemblers also permit multiplication, division, logical functions, shifts, etc. Note

that the assembler evaluates expressions at assembly time. Even though an expression

in the operand field may involve division, you may not be able to use division in the

logic of your own program - unless you write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them.

Complex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them

and add others here. In general, the user should strive for clarity and simplicity.

There is no payoff for being an expert in the intricacies of an assembler or in having the

most complex expression on the block. We suggest the following approach:

Use the clearest number system or character code for data.

Masks and BCD numbers in decimal, ASCII characters in octal, or ordinary

numerical constants in hexadecimal serve no purpose and therefore should

not be used.

Remember to distinguish data from addresses.

Don't use offsets from the Location Counter.

Keep expressions simple and obvious. Don't rely on obscure features of the

assembler.

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program,

depending on conditions existing at assembly time. This is called conditional assem­

bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer

assemblers have limited capabilities for conditional assembly. A typical form is:

IF COND

(CONDITIONAL PROGRAM)

END IF

Assemblers 2-13

If the expression COND is true at assembly time, the instructions between IF and
ENDIF (two pseudo-operations) are included in the program.

Typical uses of conditional assembly are:

To include or exclude extra variables

To place diagnostics or special conditions in test runs

To allow data of various bit lengths

Unfortunately, conditional assembly tends to clutter programs and make them difficult
to read. Use conditional assembly only if it is necessary.

MACROS

You will often find that particular sequences of instructions occur many times in a
source program. Repeated instruction sequences may reflect the needs of your program
logic, or they may be compensating for deficiencies in your microprocessor's instruction
set. You can avoid repeatedly writing out the same instruction sequence by using a
"macro."

Macros allow you to assign a name to an instruction sequence. You then use

the macro name in your source program instead of the repeated instruction sequence.

The assembler will replace the macro name with the appropriate sequence of instruc­

tions. The shaded parts of Figure 2-1 illustrate the assembler's treatment of a macro in
an example program. Do not bother trying to figure out what the program or the instruc­

tions do; just observe that the assembler expands the macro MAC! into the defined
sequence.

A macro resembles a subroutine because it is a shorthand reference to a fre­
quently used instruction sequence. However, macros are not the same as subroutines.
The code for a subroutine occurs once in a program, and program execution branches to
the subroutine. In contrast, the assembler replaces each occurrence of a macro name
with the specified sequence of instructions; therefore program execution does not
branch to a macro as it does to a subroutine. A macro name is a user-defined assembler
directive; it directs assembly rather than program execution.

Advantages of Macros:

Shorter source programs

Better program documentation

Use of debugged instruction sequences. Once the macro has been debugged,
you are sure of an error-free instruction sequence every time you use the
macro.

Easier changes. Change the macro definition and the assembler makes the
change for you every time the macro is used.

Inclusion of commands, keywords, or other computer instructions in the basic
instruction set. You can use macros to extend or clarify the instruction set.

2-14 6809 Assembly Language Programming

MACl

- ·

-

Assembler Input Assembler Output

Source Program Object Code Corresponding Mnemonics

MACR (Macro definition)
CLRA
SUBA ,Y+

ASLA
ENDM (End of macro definition)

E6 9F 2025 LDB

(Beginning of main program) 3A ABX

En 84 LDB

LOB [OFFSET]
-� i:L. MACl

ABX 4F CLRA

LOB ,X AO AO SUBA

MACl - -
48

- 1-
ASLA

MUL 3D MUL

STO RESLOC FD 2027 STD

ROLB 59 ROLB

AOOB u CB 01 ADOB

MACl MACl
·- -

4F CLRA ADOO RESLOC

STO RESLOC AO .a.o SUBA

MACl
-

l
48 ASLA

-

STA BYTE F3 2027 ADDO

BCC ALTER FD 2027 STD

.. IY\ACl

4F CLRA

AO AO SUBA

48 ASLA
-

STA B7 2029

24 OS BCC

Figure 2-1. Expansion of a Macro by the Assembler
t

[OFFSETl

,X

,Y+

-�

RESLOC

n
•t;.t:;::,

,Y+

--

RESLOC

RESLOC

,Y+

-· -

BYTE
ALTER

Disadvantages of Macros:

Since the macro is expanded every time it is used, memory space may be
wasted by the repetition of instruction sequences.

A single macro may create a lot of instructions.

Lack of standardization makes programs difficult to read and understand.

Possible effects on registers and flags may not be clearly described.

One problem is that variables used in a macro are only known within it (i.e., they are

local rather than global). This can often create a great deal of confusion without any gain
in return. You should be aware of this problem when using macros.'

COMMENTS

All assemblers allow you to place comments in a source program. Comments

have no effect on the object code, but they help you to read, understand, and document

the program. Good commenting is an essential part of writing computer programs;

programs without comments are very difficult to understand.

We will discuss commenting along with documentation in a later chapter, but

here are some guidelines:

Use comments to tell what application task the program is performing, not
how the microcomputer executes the instructions.

Assem biers 2-15

Comments should say things like "IS TEMPERATURE ABOVE LIMIT?,"

"LINE FEED TO TTY," or "EXAMINE LOAD SWITCH."

Comments should not say things like "ADD 1 TO ACCUMULATOR,"

"JUMP TO START," or "LOOK AT CARRY." You should describe how

the program is affecting the system; internal effects on the CPU are seldom of

any interest.

Keep comments brief and to the point. Details should be available elsewhere

in the documentation.

Comment all key points.

Do not comment standard instructions or sequences that change counters or

pointers; pay special attention to instructions that may not have an obvious

meaning.

Do not use obscure abbreviations.

Make the comments neat and readable.

Comment all definitions, describing their purposes. Also mark all tables and

data storage areas.

Comment sections of the program as well as individual instructions.

Be consistent in your terminology. You can (should) be repetitive; you need

not consult a thesaurus.

Leave yourself notes at points that you find confusing: for example,

"REMEMBER CARRY WAS SET BY LAST INSTRUCTION." If such

points get cleared up later in program development, you may drop these com­
ments in the final documentation.

A well-commented program is easy to use. You will recover the time spent in comment­

ing many times over. We will try to show good commenting style in the programming

examples, although we often over-comment for instructional purposes.

TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary

greatly. We will not try to describe all the existing types of assemblers; we will merely

define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer other than the one

for which it assembles object programs.

The computer on which the cross-assembler runs is typically a large computer

with extensive software support and fast peripherals - such as an IBM 360 or 370, a

Univac 1108, or a Burroughs 6700. The computer for which the cross-assembler assem­

bles programs is typically a micro like the 6809 or 8080. Most cross-assemblers are writ­

ten in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that runs on the com­

puter for which it assembles programs. The self-assembler will require some memory

and peripherals, and it may run quite slowly compared to a cross-assembler.

2-16 6809 Assembly Language Programming

A macroassembler is an assembler that allows you to define sequences of

instructions as macros.

A microassembler is an assembler used to write the microprograms which

define the instruction set of a computer. Microprogramming has nothing specifically

to do with programming microcomputers.z. 3

A meta-assembler is an assembler that can handle many different instruction

sets. The user must define the particular instruction set being used.

A one-pass assembler is an assembler that goes through the assembly language

program only once. Such an assembler must have some way of resolving forward

references, for example, Jump instructions which use labels that have not yet been

defined.

A two-pass assembler is an assembler that goes through the assembly language

source program twice. The first time the assembler simply collects and defines all the

symbols; the second time it replaces the references with the actual definitions. A two­

pass assembler has no problems with forward references but may be quite slow if no

backup storage (like a floppy disk) is available; then the assembler must physically read

the program twice from a slow input medium (like a teletypewriter paper tape reader).

Most microprocessor-based assemblers require two passes.

ERRORS

Assemblers normally provide error messages, often consisting of a single coded

letter. Some typical errors are:

Undefined name (often a misspelling or an omitted definition)

Illegal character (such as a 2 in a binary number)

Illegal format (wrong delimiter or incorrect operands)

Invalid expression (for example, two operators in a row)

Illegal value (usually too large)

Missing operand

Double definition (two different values assigned to one name)

Illegal label (such as a label on a pseudo-operation that cannot have one)

Missing label

Undefined operation code.

In interpreting assembler errors, you must remember that the assembler may get on the

wrong track if it finds a stray letter, an extra space, or incorrect punctuation. Many as­

semblers will then proceed to misinterpret the succeeding instructions and produce

meaningless error messages. Always look at the first error very carefully; subsequent

ones may depend on it. Caution and consistent adherence to standard formats will elimi­

nate many annoying mistakes.

Assemblers 2-17

LOADERS

The loader is the program which actually takes the output (object code) from
the assembler and places it in memory. Loaders range from the very simple to the very

complex. We will describe a few different types.

A "bootstrap loader" is a program that uses its own first few instructions to
load the rest of itself or another loader program into memory. The bootstrap loader

may be in ROM, or you may have to enter it into the computer memory using front

panel switches. The assembler may place a bootstrap loader at the start of the object pro­

gram that it produces.

A "relocating loader" can load programs anywhere in memory. It typically loads

each program into the memory space immediately following that used by the previous

program. The programs, however, must themselves be capable of being moved around

in this way; that is, they must be relocatable. An "absolute loader," in contrast, will

always place the programs in the same area of memory.
A "linking loader" loads programs and subroutines that have been assembled

separately; it resolves cross-references - that is, instructions in one program that

refer to a label in another program. Object programs loaded by a linking loader must be

created by an assembler that allows external references. An alternative approach is to

separate the linking and loading functions and have the linking performed by a program

called a "link editor."

REFERENCES

1. A complete monograph on macros is M. Campbell-Kelly, An Introduction to Macros,

American Elsevier, New York, 1973.

2. A. Osborne, An Introduction to Microcomputers: Volume 1 -Basic Concepts,

Osborne/McGraw-Hill, Berkeley, Calif., 1980.

3. A. K. Agrawala and T. G. Rauscher, Foundations of Microprogramming, Academic

Press, New York, 1976.

4. D. W. Barron, Assemblers and Loaders, American Elsevier, New York, 1972.

5. C. W. Gear, Computer Organization and Programming, McGraw-Hill, New York,

1974.

3
6809 Machine Structure
and Assembly Language

This chapter outlines the 6809 processor's architecture and describes the syn­
tax rules of the Motorola assembler. Chapter 9 of An Introduction to Microcomputers:

Volume 2 - Some Real Microprocessors' describes the hardware aspects of the 6809

microprocessor, including its output signals and interfaces. This book considers the
6809 from the point of view of the assembly language programmer, to whom pins and

signals are irrelevant and microcomputers and minicomputers are essentially identical.

Later chapters of this book describe the 6809's stack and interrupt system in more
detail.

Tables 3-1 through 3-3 divide the 6809 instruction set into instructions that are
frequently used (Table 3-1), occasionally used (Table 3-2), and seldom used (Table
3-3). If you are an experienced assembly language programmer, you will probably not
find this division important; you may even disagree with it. However, if you are a
novice, we recommend that you write your first programs using only the frequently
used instructions (Table 3-1). This restriction will help you overcome the obstacle of

learning both the entire 6809 instruction set and the basic methods of assembly

language programming at the same time. Once you have mastered the concepts of as­

sembly language programming, you should start using other instructions (Tables 3-2

and 3-3).

3-2 6809 Assembly Language Programming

Table 3-1. Frequently Used Instructions of the 6809

Operation Code Meaning

ADC Add with Carry

ADD Add

AND Logical AND
ASL or LSL Arithmetic (Logical) Shift Left
BCC or BHS Branch if Carry Clear ("Higher or Same")
BCS or BLO Branch if Carry Set ("Lower")
BEQ Branch if Zero Set ("Equal")

BMI Branch if Sign (Negative) Set ("Minus")

BNE Branch if Zero Clear ("Not Equal")
BPL Branch if Sign (Negative) Clear ("Plus")

BRA Branch Always
BSR Branch to Subroutine

CLR Clear

CMP Compare
DEC Decrement by 1

INC Increment by 1

JSR Jump to Subroutine
LD Load
LSR Logical Shift Right
PSH Push Data onto Stack
PUL Pull Data from Stack

ROL Rotate Left

ROR Rotate Right
RTS Return from Subroutine
ST Store
SUB Subtract

Table 3-2. Occasionally Used Instructions of the 6809

Operation Code Meaning

AN DCC Logical AND Mask with Status Register (Clear Flags)

ASR Arithmetic Shift Right

BGE Branch if Greater Than or Equal

BGT Branch if Greater Than

BHI Branch if Higher

BIT Bit Test (Logical AND)

BLE Branch if Less Than or Equal

BLS Branch if Lower or Same

BLT Branch if Less Than

COM Ones Complement

DAA Decimal Adjust Accumulator A

EOR Ex elusive OR
EXG Exchange Registers

JMP Jump

LEA Load Effective Address

MUL Multiply

NEG Twos Complement ("Negate")

NOP No Operation

OR Logical (Inclusive) OR

ORCC Logical OR Mask with Status Register (Set Flags)
RTI Return from Interrupt
SWI Softw are Interrupt
TFR Transfer Register to Register
TST Test for Zero or Minus

6809 Machine Structure and Assembly Language 3-3

Table 3-3. Seldom Used Instructions of the 6809

Operation Code Meaning

ABX Add Accumulator B to Index Register X
BRN Branch Never (No Operation)
BV C Branch if Overflow Clear
BVS Branch if Overflow Set
CWAI Clear Condition Code Register Bits and Wait

for Interrupt
SBC Subtract with Carry (Borrow)
SEX Sign Extend
SYNC Synchronize with Interrupt Line

6809 REGISTERS AND FLAGS

The 6809 microprocessor has two accumulators, a status (or "condition code")
register, two index registers, two stack pointers, a program counter, and a direct page
register. The following diagram summarizes the 6809 registers. Note that the index
registers, stack pointers, and program counter are 16 bits long, whereas the accumula­
tors, direct page register, and condition code register are eight bits long.

8 bits

8 bits

16 bits

16 bits

16 bits

16 bits

16 bits

8 bits

8 bits

Accumulator A }
Double Accumulator D

Accumulator B

Index Register X

Index Register Y

User Stack Pointer U

Hardware Stack PointerS (or SP)

Program Counter PC

Direct Page Register DP

Condition Code Register CC

The 6809's Condition Code register contains five status flags, two interrupt
control bits (one for the regular IRQ interrupt and one for the fast FIRQ interrupt), and

one bit used to differentiate between the regular and fast interrupts. The five status
flags are:

Carry/Borrow (C)

Overflow (0 or Vl
Zero (Z)

Sign IS or N for Negative)

Half-Carry (H)

The flags occupy the following bit positions in the Condition Code register:

7 6 5 4 3 2 0 4 Bit No.

I E I F I H I I I N I z I v I cl .. 4e---6809 Condition Code Register

E is the entire flag used to differentiate between regular and fast interrupts, F is the fast
interrupt mask bit, and I is the regular interrupt mask bit.

3-4 6809 Assembly Language Programming

6809 REGISTERS

The two accumulators, A and B, are both primary accumulators. The only
instructions that treat the accumulators differently are ABX (Add Accumulator B to
Index Register X), DAA (Decimal Adjust Accumulator A), and SEX (Sign Extend
Accumulator B into Accumulator A).

The two 8-bit Accumulators A and B can be referred to as a single 16-bit Double
Accumulator D. Within D, A contains the most significant bits and B the least signifi­
cant bits. The 6809 has special instructions for loading (LDD), storing {STD), adding
(ADDD), comparing (CMPD), and subtracting (SUBD) the Double Accumulator D.

Index Registers X and Y are typical microcomputer index registers, as de­
scribed in An Introduction to Microcomputers: Volume I.2 The X register is preferred over
theY register only because a few operation codes (such as CMP, LD, and ST) execute
more slowly when applied to Y than when applied to X.

Stack Pointer U is a cross between the typical microcomputer index register
and the typical microcomputer stack pointer as described in An Introduction to

Microcomputers: Volume I. Registers may be pushed onto or pulled from the User Stack
{indexed by the User Stack Pointer). However, the processor does not employ the User
Stack to store subroutine return addresses or the status of interrupted tasks� the pro­
cessor uses only the Hardware Stack for those purposes.

The 6809 has a Stack implemented in memory and indexed by the Hardware
Stack Pointer S as described in Volume 1 of An Introduction to Microcomputers. The
instruction set allows S, as well as U, to be used as a data counter or index register.

Memory reference instructions make it easy to store the contents of either
stack pointer or either index register in read/write memory. By assigning some
memory locations on the base (direct) page as storage for these four address registers,
you can put them all to multiple use. Another easy storage method is pushing the
registers onto a stack.

The program counter is a typical program counter, as described in Volume 1 of
An Introduction to Microcomputers.

The Direct Page Register DP generalizes the concept of a base page as described
in An Introduction to Microcomputers: Volume I. This register provides the eight most
significant bits of a 16-bit address in the direct (base page) addressing mode. In most
microprocessors (including the 6800), the base page is always page zero. The 6809
maintains compatibility with this concept by clearing the Direct Page register on hard­
ware Reset. The Direct Page register allows the programmer to move the base page any­
where in memory and thus take advantage of short paged addresses without being
limited to the first 256 bytes of memory. Different programs can have different base
pages, thus both making it unnecessary to apportion page zero and reducing the chance
of interference.

6809 FLAGS

The Carry flag holds the carry from the most significant bit produced by
arithmetic operations or shifts. Like most microprocessors, the 6809 inverts the actual
carry after subtraction so that the Carry flag also acts as a Borrow. The 6809 multiplica­
tion instruction, MUL, affects the Carry flag in yet another way: Carry represents bit 7

of the 16-bit result. This makes rounding to an 8-bit result very simple.

6809 Machine Structure and Assembly Language 3-5

The Zero flag is standard. It is set to 1 when any operation produces a zero
result. It is set to 0 when any operation produces a non-zero result.

The Sign (Negative) flag is standard. It takes on the value of the most signifi­
cant bit of any result. Thus, a Sign flag value of 1 identifies a negative result and a

Sign flag value of 0 identifies a positive result if the standard twos complement nota­
tion is being used. The Sign flag will be set or reset on the assumption that you are using

signed binary arithmetic. If you are not using signed binary arithmetic, you can ignore

the Sign flag or you can use it to identify the value of the most significant bit of the

result.

The Half-Carry flag holds any carry from bit 3 to 4 resulting from the execution
of an 8-bit addition instruction (ADC or ADD). The purpose of this flag is to simplify

Binary-Coded-Decimal (BCD) operations. This is the standard use of a Half-Carry flag

as described in An Introduction to Microcomputers: Volume I, Chapter 4 (the flag is re­

ferred to there as an "intermediate carry").

The Overflow flag represents standard arithmetic overflow as described in

Volume 1 of An Introduction to Microcomputers; that is, the flag is set when an
arithmetic result is greater in magnitude than can be represented in the register. A

processor implements this function by setting the overflow flag when the carry out of the

most significant bit is different from the carry out of the next most significant bit; that is,

an overflow is the exclusive-OR of the carries into and out of the sign bit. In the 6809,

logical operations clear the Overflow flag, as do loads and stores.

The I and F flags are standard interrupt disable or interrupt mask flags. When I or
F is 1, interrupts are disabled from the corresponding source (IRQ or FIRQ). When I

or F is 0, the corresponding interrupt is enabled.

The E (or Entire) flag differentiates between regular interrupts and fast inter­

rupts. E is set to 1 when any interrupt occurs that stacks the entire set of registers; E is

set to 0 when an FIRQ occurs, stacking only the program counter and Condition Code

register. The E flag thus allows proper unstacking of the registers by the RTI (return

from interrupt) instruction.

The flags do not change until the processor executes an instruction that
modifies them. Logical instructions, for example, do not affect the Carry or Half-Carry,

but they do affect the Sign, Zero, and Overflow flags. Any of the flags can be specifically ·";
set or cleared by means of an ORCC or AN DCC instruction with the appropriate mask. ;_. ·
You must use the bit positions shown earlier to create the mask; executing an ORCC

with a I in a particular bit position will set a flag, while executing an AN DCC with a 0 in a

particular bit position will clear a flag.

6809 literature refers to the Sign flag as a Negative flag and uses the symbol N for

it. We will follow this convention to be compatible with the literature and to avoid con­

fusion with the Hardware Stack Pointer (or S register). We will also follow the 6809

literature in referring to the Overflow flag by the symbol V (0 leads to continual confu­

sion) and the Half-Carry flag (sometimes called an Auxiliary or Intermediate Carry) by

the symbol H. The 6809's flags are set and reset as described for the hypothetical

microcomputer in An Introduction to Microcomputers: Volume 1.

3-6 6809 Assembly Language Programming

6809 ADDRESSING MODES

Assembly language instructions tell the processor what operation to perform

and what addresses to use in performing the operation - that is, where to find the

data to be operated upon. The part of an instruction that tells the processor what opera­

tion to perform is the "operation code." Appendix C lists the 6809 microprocessor's

mnemonic operation codes and their numerical equivalents. The part of an instruction

that tells the processor what addresses to use is the "operand" or "address field." The

processor may use this part of an instruction to determine where to obtain the operands

or where to store the result.

GENERAL DESCRIPTION OF ADDRESSING MODES

There are many different ways to specify what addresses the processor is to

use. These ways are called "addressing modes." We will describe them generally

before discussing how the 6809 processor implements them. The following two modes

do not involve memory at all:

1. Inherent addressing means that the operation code alone tells the processor

what to do. Typical inherent addressing instructions are Halt, No Operation,

and instructions that use specific registers.

2. Register addressing means that only registers are involved in the operation.

Typical of such operations are moving data from one register to another and

exchanging registers.

Common addressing modes that involve memory are as follows:

3. Immediate addressing means that the operand is located immediately after

the operation code in program memory.

4. Direct addressing means that the address to be used follows the operation

code in program memory.

5. Indexed addressing means that the address to be used is the sum of a base

address and an index or offset.

6. Indirect addressing means that the address to be used is either in a register or

in memory. That is, the instruction tells the processor where the address is,

not where the data is.

7. Relative addressing means that the operand is located a certain distance from

the current position in the program.

Chapter 6 of Volume 1 of An Introduction to Microcomputers describes all these

addressing modes plus their common combinations.

6809 Addressing Modes

6809 Machine Structure and Assembly Language 3-7

The 6809 microprocessor has a powerful and versatile set of addressing modes.

The available modes are the following, listed in the order in which we will describe

them:

1. Inherent operand (instructions that require no addresses)

2. Registers as operands (instructions that use only register contents as

operands)

The other modes specify memory addresses; they are:

3. Immediate

4. Base page direct

5. Extended direct

6. Extended indirect

7. Constant offset from base register

8. Indirect with constant offset from base register

9. Accumulator offset from base register

10. Indirect with accumulator offset from base register

II. Autoincrement or autodecrement

12. Indirect with autoincrement or autodecrement

13. Program relative for branches

EFFECTIVE ADDRESS

In describing how the processor executes these modes and how the programmer

uses them, we must often refer to the actual address that the processor ultimately

uses to perform the specified operation. We call that address the "effective address":

it is the place from which the processor obtains an operand or in which the processor

stores the result. In some modes (for example, immediate) the effective address is

simply the location immediately following the operation code. In other modes, deter­

mining the effective address may be complicated. The address may be part of the

instruction, the contents of a base register, or the contents of a pair of memory loca­

tions. Determining the effective address may involve computations, such as adding an

offset to a base register. Some of the addressing modes are difficult to understand, since

they involve sequences of operations that finally culminate in an effective address. We

will explain why these sequences are useful and we will describe typical cases from real

applications. You should try to trace each sequence, since the various addressing modes

are the keys to writing programs that are both general and powerful. Remember, the

processor always determines the effective address correctly, no matter how complex the

required operations are.

In the following discussion, we will describe each addressing mode, explain at

least one of its common uses, present a diagram of how it is executed, and discuss a

specific example. All of these together should give you a picture of the power of the

6809 microprocessor.

3-8 6809 Assembly Language Programming

MODES WHICH DO NOT SPECIFY

MEMORY LOCATIONS

INHERENT ADDRESSING

In this mode, the processor knows from the operation code alone which
addresses to use. For example, the instruction ABX (Add Accumulator B to Index
Register X) tells the processor where to get both operands for the addition. Similarly,

the instructions DAA (Decimal Adjust Accumulator A), MUL (Multiply), and SEX

(Sign Extend) also tell the processor which registers to use. NOP (No Operation) and

SYNC (Synchronize to External Event) require no operands, whereas RTI (Return

from Interrupt), RTS (Return from Subroutine), and SWI (Software Interrupt) all force

the processor to use the Hardware Stack Pointer to move data to or from memory. In all

these instructions, the operation codes are complete by themselves; no further address­

ing information is necessary.

REGISTER ADDRESSING

Single-operand instructions can be applied to either Accumulator A or

Accumulator B; the accumulator to be used is specified in the operation mnemonic.
Typical examples are CLRB (Clear Accumulator B) and INCA (Increment Accumula­

tor A). One bit in the actual operation code selects the accumulator. The following

instructions fall in this category: ASL or LSL (Logical Shift Left), ASR (Arithmetic

Shift Right), CLR (Clear: Set to Zero), COM (Ones Complement), DEC (Decrement:

Subtract l), INC (Increment: Add I), LSR (Logical Shift Right), NEG (Negate: Twos

Complement), ROL (Rotate Left), ROR (Rotate Right), and TST (Test for Zero or
Minus).

The instructions TFR (Transfer Registers) and EXG (Exchange Registers)
must have two registers of the same size as operands. For example, EXG X, U causes

the processor to exchange the contents of Index Register X and the User Stack Pointer.
The byte following the operation code designates On coded form) which registers
EXG or TFR is to use. We can illustrate these instructions as follows:

Memory

Operation Code mmmm

Register)Register
mmmm + 1

1 I 2

For details on how the registers are coded, see the descriptions of EXG and TFR
in Chapter 22.

The instructions PSH (Store Data in Stack) and PUL (Load Data from Stack)
also require a second byte that designates which registers are to be stored or loaded.
These instructions, however, may load or store any number of user registers. Each bit
of the second byte represents a register; if the bit is set, the processor will store the cor­

responding register in the stack or load it from the stack. For details on how the register
addressing byte is organized, see the descriptions of the PSH and PUL instructions in

Chapters 11 and 22.

6809 Machine Structure and Assembly Language 3-9

MEMORY ADDRESSING MODES

IMMEDIATE ADDRESSING

In immediate addressing, the data follows immediately after the operation
code. That is, the effective address is simply the contents of the program counter after
the processor has fetched the operation code. We can illustrate this mode as follows:

Effective Address =

mmmm + 1---i�

Memory

Operation Code mmmm

Data mmmm + 1

In standard 6809 assembly language, we specify immediate addressing by pre­
ceding the operand with the #symbol. Instructions may require either 8-bit or 16-bit
immediate operands; 16-bit operands are stored with the most significant bits in the first
byte. For example, the 6809 assembler converts the statement

ADDll � S 3 0

(#means "immediate addressing" and $ means "hexadecimal") into an ADD instruc­
tion that adds the value 3016 to Accumulator A. The following diagram illustrates the
execution of the instruction.

E F H N Z V C

ccR (.._...___,_l_x .._I _l.._x l_x...._l_x .._I _x I

X

y

u

s

PC mm

D{:
XX

mm

DP

� .. _(XX + 30)

.....-

_
-:t. mmmm + 2

Immediate Addressing

ADDA #$30

One-byte Operand

Program

Memory

8B mmmm

30 mmmm + 1

mmmm + 2

mmmm + 3

As a specific example, assume that Accumulator A contains B716 initially. After the pro­
cessor executes ADDA #$30, the contents of Accumulator A will be B716 + 3016 =

E716• The processor increments its program counter twice, once after fetching the opera­
tion code and once after fetching the immediate data, 3016 in this example.

3-10 6809 Assembly Language Programming

16-Bit Operations

Instructions that handle 16 bits at a time require a double-byte immediate

operand. For example, the instruction

ADDD K$1057

causes the processor to add the 16-bit value 105716 to the Double Accumulator D.
Remember, D consists of Accumulators A and B with A holding the high-order byte.
The following diagram shows how the processor executes the instruction.

E F H N Z V C

ccR ._I____._l_x l_x ..._l_x .._I x__,J

jA XX

D � B yy

X

y

u

s

PC mm mm

DP

Program
Memory

C3 mmmm

{
10 mmmm + 1

57 m;Tlmm + 2

mmmm + 3

Immediate Addressing
ADDD :lf$1057

Two-byte Operand

As a specific example, assume that the initial contents of the Double Accumulator
are 3A4816• After the processor executes the instruction ADDD ::#:$1057, the contents
of the Double Accumulator will be 3A4816 + 105716 = 4A9F16• The processor incre­
ments its program counter three times while executing the instruction, once after fetch­
ing the operation code and once after fetching each byte of the immediate operand.

Two-Byte Operation Codes

Some instructions require a two-byte operation code. Typical· examples are
CMPD, CMPY, LDS, and LOY. Since these instructions also require a 16-bit

immediate operand, the immediate versions are four bytes long. For example, the
instruction

LDS KS3F2A

has a two-byte operation code (IO CE) , followed by a 16-bit (two-byte) immediate
operand. We can illustrate the execution of this instruction as follows .

E F H N Z V C

6809 Machine Structure and Assembly Language 3-11

ccR ._I_-'--...&.-_..l_x..�..l_x ..�..1 _o I �

X

y

u

s

PC

o{:

mm

DP

mm

�

� mmmm + 4

I mmedtate Addressmg
LOS #$3F2A

Two-byte Operation Code

{

Program
Memory

10

CE

3F

2A

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Instructions that Lack an Immediate Mode

Some instructions do not make sense with immediate addressing.

1. You cannot store the contents of a register in a number, so Store instructions
cannot use immediate addressing.

2. You cannot transfer control to a number, so Jump and Jump-to-Subroutine
instructions cannot use immediate addressing.

3. You cannot clear or shift a specific number, so single-operand instructions
cannot use immediate addressing.

You should refer to Appendix Cor to your instruction set summary card if you are

not sure whether an instruction allows immediate addressing.

BASE PAGE DIRECT ADDRESSING

In this mode, the effective address is on the base or direct page as defined by the
contents of the direct page register. The low-order half of the address (that is, the
address on the direct page) follows the operation code in memory. We can illustrate

base page direct addressing as follows:

DP

Effective Address =p� qq

Memory

Operation Code mmmm

qq mmmm + 1

You should note that 6809 manufacturers usually refer to this mode as "direct,"

whereas Volume 1 of An Introduction to Microcomputers refers to it as "base page."

3-12 6809 Assembly Language Programming

This mode provides a short, quick way to use temporary storage on the direct

page. It is short and quick because the page number is in the direct page register on the
processor chip, thus saving a byte of program memory and a read cycle. Obviously, there
is an overall savings of time and memory only if the programmer rarely changes the con­
tents of the direct page register. Otherwise the instructions that load the direct page
register more than offset the savings from using it.

The standard 6809 assembler uses direct addressing whenever the mode is

available, no other mode is specified, and the address is on the direct page. The as­

sembler assumes that the direct page is page zero (thus maintaining compatibility with
the earlier 6800 microprocessor, which has no direct page register) unless told other­

wise; the programmer may specify a different direct page with a SETDP assembler
directive. The programmer may also force the assembler to use direct addressing by pre­
ceding an address with the symbol "<", but this is rarely necessary.

For example, the assembler converts the statement

ADDA #S30

into an ADD instruction that adds the contents of memory location pp3016 to
Accumulator A, where pp is the contents of the Direct Page register as shown in the
following diagram: Data

X

y

u

s

PC

E F H

o{:

mm

DP

N Z V C

XX

mm

pp

Direct Addressing
ADDA $30

Memory

yy pp30

Program
Memory

98

30

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

As a specific example, let us assume the initial contents of Accumulator A are
4716, the contents of the Direct Page register are 2B16, and the contents of memory
address 283016 are 6A16• After the processor executes the instruction, the sum in
Accumulator A will be 4716 + (pp3016) = 4716 + (2B3016) = 4716 + 6A16 = 8116. The
processor increments its program counter twice, once after fetching the operation code
and once after fetching the direct address.

6809 Machine Structure and Assembly Language 3-13

The direct address occupies only one byte even if the instruction (such as

ADDD, LOS, or STX) handles 16-bit operands. In that case, the processor uses the

addresses ppqq and ppqq + 1 to fetch or store the high-order and low-order bytes of the

data, respectively. Instructions such as LDY and STS require a two-byte operation code,

in which case the base page direct form occupies three bytes of program memory.

EXTENDED DIRECT ADDRESSING

In this mode, the effective address occupies the two bytes of program memory

immediately following the operation code. The high-order half of the address is in the

first byte; this is standard 6809 format. We can illustrate extended direct addressing as

follows:

Memory

Operation Code mmmm

pp mmmm + 1

qq mmmm + 2

You should note that 6809 manufacturers usually refer to this mode as "extended,"

whereas Volume 1 of An Introduction to Microcomputers refers to it as "direct" or

"extended direct."

This mode allows the processor to access any specific memory location. Of course,

you need not use extended addressing for memory locations that are on the direct page,

since the base page direct mode is shorter and faster. However, extended addressing is

the usual approach for handling a fixed address that is not on the direct page. This

mode is often used in performing input and output, since the memory addresses

assigned to 1/0 devices are rarely on the direct page.

The standard 6809 assembler uses extended addressing whenever the mode is

available, no other mode is specified, and the address is not on the direct page. Thus

extended addressing is the general default mode. The programmer may force the assem­

bler to use extended addressing by .
preceding the address with the symbol "> " , but this

is rarely needed.

For example, the assembler converts the statement

ADDA $1C48

into an ADD instruction that adds the contents of memory location 1C4810 to

Accumulator A as shown in the following diagram.

3-14 6809 Assembly Language Programming

E F H N Z V C

CCR I I X I I X I X I X I X I

o{:
XX

X

y

u

s

PC mm mm

DP

Extended Addressing
ADDA $1C48

Data
Memory

yy 1C48

Program
Memory

BB mmmm

1C mmmm + 1

48 mmmm + 2

mmmm + 3

As a specific example, assume the initial contents of Accumulator A are F416 and
the contents of memory address 1C4816 are 3A16. After the processor executes the
instruction ADDA $1C48, the sum in Accumulator A will be F416 + 3A16 = 2E16. The
processor increments its program counter three times, once after fetching the operation
code and once after fetching each byte of the direct address.

If the instruction (for instance, CMPX or SUBD) handles 16-bit operands, the
addresses used are ppqq and ppqq + 1. If the instruction (for example, CMPY) requires
a two-byte operation code, the extended direct form requires four bytes of program
memory.

EXTENDED INDIRECT ADDRESSING

In this mode, the effective address is located at the address in the two bytes of

program memory immediately following the operation code. That is, the instruction

tells the processor where to find the address, not what its value is. You may compare
indirect addressing to a treasure hunt in which one clue tells you where to look for the
next clue, not where to find the actual treasure. If, as shown in the next illustration, the
two bytes following the operation code contain pp (first byte) and qq (second byte), the
effective address is located in addresses ppqq (first byte) and ppqq + 1 (second byte). So
the effective address in the illustration is rrss.

Effective Address = rr ss

6809 Machine Structure and Assembly Language 3-15

Memory

Operation Code mmmm

pp mmmm + 1

�----�-:----�1 :��
55 ppqq + 1

The important point here is to see what this added complication does for us,
besides provide some confusion. Indirection allows a program to use different effec­

tive addresses without being changed, since all the program contains is the location of

the effective address, not its value. Why is that useful? Assume, for example, that our
application involves printing some results, as most applications do. We write a single
routine that takes the results from memory and sends them to an output device. (The
6809 uses memory-mapped input/output, so an output device is addressed using
memory addresses.) However, sometimes those results must be sent to a printer (for
permanent records), while at other times the results are merely displayed (to the opera­
tor) or reported via a remote line (to a central computer). If our routine sends the
results using extended indirect addressing, it can send them to any output device. All
the main program must do is place the address of the output device in the specified
memory locations. The approach is the same as that of television commercials which tell
you to call the telephone number that will appear on your screen. The same commercial
can be used nationwide; all the local station does is display the correct local number.

In the standard 6809 assembler format, you specify extended indirect address­

ing by placing the address in square brackets: for example, [D58A]. The address is

always interpreted as a 16-bit value and always occupies two bytes of program

memory. Instructions that use extended indirect addressing require a post byte after

the operation code, and this post byte must contain 9F w We will discuss post bytes in
more detail as part of the description of the indexed addressing modes.

For example, the assembler converts the statement

ADDA [$D58A]

into an ADD instruction that adds the contents of memory location rrss to Accumulator
A, where rr is the contents of address D58A16 and ss is the contents of address 058816.
The following diagram illustrates the execution of the instruction.

3-16 6809 Assembly Language Programming

E F H N z v c
CCR I I X I I X I X I X I X I

o{: XX

X

y

u
s

PC mm mm

DP

Indirect Addressing
AOOA [$058AI

Data
Memory

yy rrss

rr 058A

ss 0588

Program
Memory

AB mmmm

9F mmmm + 1

05 mmmm + 2

SA mmmm + 3

As a specific example, let us assume the initial contents of Accumulator A are
1F16 and the contents of memory addresses 058A16, 058B16, and 06E416 are 0616, E416,
and 3516 respectively. After the processor executes the instruction ADDA [$D58A], the
sum in Accumulator A will be 1F16 + ((D58A16):(058B16)) = 1F16 + (06E416)

= IF16 + 3516 = 5416• The processor increments its program counter four times, once
after fetching the operation code, once after fetching the post byte, and once after fetch­
ing each byte of the indirect address. Clearly this instruction takes extra time to execute
(see Appendix B), since the processor must go through a complex sequence to obtain
the actual data.

INDEXED MEMORY ADDRESSING MODES

In all the indexed addressing modes, the processor uses a base register. This

register may be one of the two index registers, one of the two stack pointers, or the

program counter. The instruction tells the processor which base register to use,

whether to add an offset to the contents of the base register, where to obtain the offset

if one is necessary, whether to change the contents of the base register, and whether

to use the indexed address directly or indirectly. Volume 1 of An Introduction to

Microcomputers describes the use of base registers in detail; their use allows program-

6809 Machine Structure and Assembly Language 3-17

mers to handle data structures that are defined by a base address and to write position­

independent code in which the location of the program itself is defined only by a base
address.

OBJECT CODE POST BYTE

The 6809's indexed and indirect addressing modes require that the operation

code be followed by a byte that differentiates among the various modes. We refer to

this extra byte as a "post byte." Figure 3-1 shows the placement of the post byte in the
object code. Table 3-4 describes the meanings of the bit positions within the post byte. If
you wish more details, Appendix B contains a summary of the indexed modes and

Appendix E describes the meanings of all possible post bytes in numerical order.

Information in the Post Byte

Let us summarize the information contained in the post byte:

1. Which base register to use: Index Register X, Index Register Y, Stack
Pointer U, Stack Pointer S, or the program counter. Of course, extended

indirect addressing uses no base register at all.

2. Whether to add an offset to the base register.

3. Where to find the offset if it is necessary. The choices here are: within the
post byte itself, in the next one or two bytes of program memory, in

Accumulator A, in Accumulator B, or in Double Accumulator D.

4. Whether to change the base register's contents. The choices here are to add
1 or 2 to the base register after using it (sometimes called "postincrement")
or to subtract 1 or 2 from the base register before using it (sometimes called

"predecrement ").

5. Whether to use the address obtained so far directly or indirectly. That is,
whether to use the address to obtain the data or the address of the data. Using

an indexed address indirectly is often referred to as "preindexing" or

"indirect indexed addressing."

Unimplemented and Illegal Indexed Modes

Not all combinations are implemented. For example, there is no mode that both
changes the base register and adds an offset. Nor are there modes that use the program
counter as a base register and also change the base register or obtain the offset from

within the post byte or from an accumulator. Furthermore, adding 1 to a base register
that is used indirectly or subtracting 1 from it is illegal. This is because the base register
must point to a 2-byte address, and adding 1 to it or subtracing 1 from it would therefore

cause it to point to the middle of an address. We will describe the valid forms and their

uses as we proceed.

3-18 6809 Assembly Language Programming

Memory

Operation Code 7 6 5 4

Post Byte --J I I I
Offset 1 '_.-'

•
•

Offset 2

3 2 1 0 ..___

l 1 1 1 J
�

t

Bit No.

Addressing Mode Field

Indirect Field

(Sign bit when bit 7 = 0)

Register Field

Figure 3-1. 6809 Post Byte for Indexed and Indirect Addressing

Table 3-4. 6809 Post Byte Bit Assignments for Indexed and Indirect Addressing

Bit Number
Addressing Mode

7 6 5 4 3 2 1 0

0 R R X X X X X 5-Bit Offset
1 R R 0 0 0 0 0 Autoincrement by One
1 R R I 0 0 0 1 Autoincrement by Two
1 R R 0 0 0 1 0 Autodecrement by One
1 R R I 0 0 1 1 Auto Decrement by Two
1 R R I 0 1 0 0 Zero Offset
1 R R I 0 1 0 1 Accumulator B Offset
1 R R I 0 1 1 0 Accumulator A Offset
1 R R I 1 0 0 0 8-Bit Offset
1 R R I 1 0 0 1 16-B it Offset
1 R R I 1 0 1 1 Accumulator D Offset
1 X X I 1 1 0 0 Program Counter 8-Bit Offset
1 X X I 1 1 0 1 Program Counter 16-Bit Offset
1 X X 1 1 1 1 1 Extended Indirect

� "'- "v"' r"' I

t
t Addressing M ode Field

Indirect Field I = 1 for indirect. I = 0 for
direct (Sign bit when bit 7 = 0)

Register Field

00 R=X
0 1 R=Y
10 R=U
11 R = S

6809 Machine Structure and Assembly Language 3-19

NOTATION FOR INDEXED ADDRESSING MODES

The standard 6809 ass em bier uses the following special notation in referring to
indexed addressing modes:

,R means that the 16-bit register R (X, Y, U, S, or PC) is to be used as the

base register.

OFFSET,R means that the number OFFSET is to be added to the contents
of base register R. A zero offset can be omitted unless the base register is the

program counter.

LABEL,PCR means that the program counter is to be used as the base

register and the offset is to be the distance from the location of the instruction

to the address LABEL. That is, the address LABEL is specified "program

counter relative."

,R + means that the 16-bit base register R (X, Y, U, or S) is to be incre­
mented (once for one plus sign, twice for two plus signs) after its contents are

used in determining the effective address.

, - R means that the 16-bit base register R (X, Y, U, or S) is to be decre­
mented (once for one minus sign, twice for two minus signs) before its con­

tents are used in determining the effective address.

Square brackets - I 1- around an indexed address indicate that it is to be
used indirectly.

CONSTANT OFFSET FROM BASE REGISTER

In this mode, the effective address is the sum of a fixed offset and the contents
of a base register. The base register can be any of the following: Index Register X,
Index Register Y, Stack Pointer U, Stack PointerS, or the program counter. Since

the purpose of the method is different when the base register is the program counter, we

will discuss that option separately. The procedure for obtaining the effective address,

however, is always as shown in this diagram:

Base Register
Memory

Operation Code mmmm

� �{r--
-

rr
-

-f mmmm + 1

t
ss mmmm + 2

Effective Address = ppqq + rrss

The offset follows the operation code, which includes the post byte, in program
memory. It is a constant since program memory generally does not change during
program execution. The contents of the base register may vary; the program can deter­
mine the values in the index registers and stack pointers, whereas the program counter

contents depend on the placement of the program.

3-20 6809 Assembly Language Programming

When used with an index register or stack pointer, this addressing mode allows
us to refer to a particular element in an array or list. For example, we may have a set

of ten temperature readings taken at different points in a tank; to change or display a

particular one, we must know where the set of readings starts (base address) and which

reading we want (index or offset). If, as is usual, we store the readings in successive

memory locations, we can find one by using a constant offset from the base.

Similarly, we may store a record in memory consisting of a person's name,

address, identification number, age, and job classification. If we want to send notices of
change of wage rate to all people in a particular job classification, we can find the job

classification by specifying how far it is from the start of the record (for example, 97
bytes further). This is much like telling all the students who are taking an examination

to put their names on the top line, their class levels on the fifth line, and their dates of

birth on the tenth line. Each student locates the required lines relative to the top of his

or her form. So, in our records, the name might occupy the first 16 bytes, the address

the next 70, the identification number the next 9, and the age the next 2. We can locate
a particular field in a particular record (for example, employee ::jj: 4's identification

number) by specifying the base address On this case, where employee #4's record
starts) and how far beyond that we must go for the desired field (in our example, 86

bytes to the identification number).

Short Constant Offset Modes

Although we have described situations in which the offset could be large, offsets

are usually small. We are more likely to want something that is a few locations away than

something that is thousands of locations away. So the 6809 microprocessor provides

special short modes to handle the cases where:

1. The offset is zero. We want to use the base register as an implied memory

address, as described extensively in An Introduction to Microcomputers:

Volume 1.

2. The offset is small enough to fit in the post byte. Since we need one bit to

indicate whether this case holds, and two bits to designate which index

register or stack pointer is the base register, the offset must fit in five bits. The

6809 microprocessor interprets these five bits (the least significant bits of the

post byte) as a sign (bit 4) and a 4-bit twos complement number (bits 0
through 3). Thus the range is -1610 (100002) <offset::;;+ 1510 (011112).

The advantages of these short modes are obvious: they save time and memory,
since no additional bytes are needed for the offset. Furthermore, if the offset is zero, the

processor does not have to go through the motions of adding it to the base.

Zero Offset (No Offset)

6809 Machine Structure and Assembly Language 3-21

As an example of the zero offset mode, the assembler converts the statement

ADDA , X

into an ADD instruction that adds the contents of the address in Index Register X to

Accumulator A. The following diagram illustrates the execution of the instruction.

E F H
CCR I I X I

)(pp
y

u

s

PC mm

DP

N z v c

I x I x [x I x I

mm

Indexed Addressing

ADDA .X
Zero Offset

Data

Memory

yy

Program

Memory

AB

84

ppqq

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

The effective address here is simply the contents of Index Register X. If, for example,

Accumulator A contains B716, Index Register X contains 01El16, and memory address

01E116 contains 1516, then after the processor executes ADDA ,X Accumulator A will

contain B716 + ((X)) = 8716 + (01El16) = B716 + 1516 = CC16. The processor incre­

ments its program counter twice, once after fetching the operation code and once after

fetching the post byte.

Five-Bit Offset

As an example of the short offset mode, the assembler converts the statement

ADDA -1, Y

into an ADD instruction that adds the contents of the address one less than that

specified by Index Register Y to Accumulator A. That is, the effective address is the

contents of Index Register Y minus 1. The following diagram illustrates the execution of

the instruction.

3-22 6809 Assembly Language Programming

CCR

X

y
u

s

PC

E

I I
F H I

I X I

o{:

pp

mm

DP

N z v c

I xI x I x j·x I

Jl//lf'" XX

qq

mm
-

XX + yy

-I mmmm + 2

Indexed Addressing
ADDA -l.Y
Short Offset

-
(
+

l
_,,.__

Data
Memory

yy

Program
Memory

AB
3F

ppqq-1

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

As a specific example, assume that Accumulator A contains 9416, Index Register
Y contains A04816, and memory address A04716 contains 3216• After the processor
executes the instruction ADDA -l,Y , Accumulator A will contain 9416 + ((Y)- l) =

9416 + (A04816- l) = 9410 + (A04716) = 9416 + 3216 = C616.
This mode takes longer for the processor to execute than the zero offset does

because of the address addition. That is, the processor must add the offset (-1 in this
case) to the contents of the base register (Index Register Y). What if the offset is zero?
The processor adds it in anyway, thus wasting some time. In 6809 assembler notation
the difference is between

ADDA ,X

which tells the processor to use the zero offset mode, and

ADDA 0, X

which tells the processor to use the 5-bit offset mode with a value of zero. Obviously,
you should always use the first notation instead of the second because the first executes
faster: Both are legal, but the second has no advantage. Motorola's 6809 assemblers

automatically optimize to the zero offset mode; thus, a Motorola assembler would

produce the same object code - AB 84- for both ADDA ,X and ADDA O,X. Not all

6809 assemblers have this desirable feature, however; you will save yourself poten­

tial trouble by using the special zero offset notation exclusively.

larger Constant Offset Modes

If the offset is not zero or small enough to fit in the post byte, one or two extra

bytes of program memory beyond the post byte must be used to hold it. An 8-bit mode

and a 16-bit mode allow offsets of any length: Of course, the frequency of use goes

down as the length of the offset increases. Furthermore, the longer the offset, the

6809 Machine Structure and Assembly Language 3-23

more extra time and memory the instruction requires (see Appendix B). So we use the
longer modes as seldom as possible.

As an example of the 8-bit offset mode, the assembler converts the statement
ADDA $20,U

into an ADD instruction that adds the contents of the address 2016 beyond the address
in Stack Pointer U to Accumulator A. The 8-bit offset (2016) is located immediately after
the post byte in program memory. The following diagram illustrates the execution of the
instruction.

E F H N z v c

CCR I I X I lxlxlxlxl

o{:
XX

X

y

u pp qq

s

PC mm mm

DP

Indexed Addressing
ADDA $20,U

One-byte Offset

+

Data
Memory

,yy

Program
Memory

AB

CB

20

ppqq + 20

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

The effective address here is the contents of Stack Pointer U plus 2016. The processor
interprets bit 7 of the offset as a sign and the remaining seven bits as a twos complement
number. Thus the range of the offset is -128 = 1000 00002 < offset < + 127 =

Olll 11112. As a specific example, assume that Accumulator A contains 4D16, Stack
Pointer U contains 054E16, and memory address 056E16 contains 2A16• After the pro­
cessor executes ADDA $20,U Accumulator A will contain 4D16 + ((U) + 2016) =

4D16 + (054E16 + 2016) = 4D16 + (056E16) = 4D16 + 2A16 = 7716.
The extension of this mode to a 16-bit offset occupying two bytes is obvious; we

will not discuss it further.

Constant Offset from the Program Counter

The modes that use a constant offset from the program counter help us write

position-independent code: that is, programs that work regardless of where they are
placed in memory. Such programs can be moved, without changes, to any available
memory locations and used with any combination of other programs. The easiest way to
make a program position-independent is for it to specify any addresses it uses relative to
its own position. How does a program know its own position? By looking at the contents
of the program counter. The idea here is the same as a repair manual that first orients

3-24 6809 Assembly Language Programming

the user properly (for example, by telling the person to face the equipment as shown in a
particular picture) and then refers to things as being "in back," "in the top left-hand
corner," or "fourth from the left in the bottom row." These descriptions are all relative
to the user's position.

We can move an entire program along with its data if we refer to addresses relative
to the program counter. The idea here is to refer to data as being "20 locations from
where we are," rather than at a particular address. If we then move everything, the rela­
tive positions of instructions and data remain the same, even though their absolute
addresses change. This is like telling someone that the dining car on a train is two cars
ahead; the relative positions of the cars remain the same, even though the entire train is
moving.

The 6809 microprocessor allows either an 8-bit or a 16-bit offset from the pro­

gram counter. No special zero or 5-bit modes are provided, as with the index registers
and stack pointers. In fact, offsets from the program counter are likely to be large,

since data areas are usually separated from program areas. In the 8-bit offset, bit 7 is
the sign and bits 0 through 6 are a twos complement number. As an example of this
mode, let us discuss the execution of the instruction

ADDA $10,PC

which adds the contents of the address 1316 beyond the initial value of the program
counter to Accumulator A. Why is the offset 1316, not 1016? The reason is that the pro­
cessor fetches the entire 3-byte instruction (operation code, post byte, and 8-bit offset)
before calculating the effective address. Thus it has already added 3 to the program
counter by the time it uses that register for addressing. In the 16-bit offset mode, the
extra factor is 4 since the instruction occupies four bytes (operation code, post byte, and
16-bit offset). The following diagram illustrates the execution of the instruction ADDA
$10,PC.

E F H N Z V C

ccR I_ """"'--�l_x_l--'-l_x "-1 _x ..._I x....�l�....x_,l

o{: XX

X

y

u

s

PC mm mm

DP
Indexed Addressing

ADDA $10,PC
One-byte offset from Program Counter

Memory

AB mmmm

SC mmmm + 1

10 mmmm + 2

mmmm + 3

The effective address here is the final contents of the program counter plus 1016. As a
specific example, assume that Accumulator A contains CA16, the program counter con­
tains 780916, and memory address 781C16 contains 0516• After the processor executes
ADDA $10,PC Accumulator A will contain CA16 + ((PC) + 3 + 1016) =

CA16 + (780916 + 3 + 1016) = CA16 + (781C16) = CA16 + 0516 = CF16• The diagram

6809 Machine Structure and Assembly Language 3-25

and this example show clearly that the result does not depend on where the instruction

is located in program memory, as long as the instruction and the data are moved as a

unit. Here again, the extension to a 16-bit offset is obvious and we will not discuss it

further.

Program Counter Relative (PCR) Notation

The extra three or four bytes involved in calculating an offset from the program
counter are a nuisance, particularly if the offset is negative. Furthermore, if the opera­

tion code is two bytes long, the numbers become four or five since the instructions then
occupy an extra byte of program memory. We would like to have the assembler handle
this for us, since the procedure is simple to explain but difficult to perform correctly.

The standard 6809 assembler will calculate the program counter offset for you if you

designate the address as "program counter relative," or PCR. For example, if you
write

ADDA LOCUS,PCH

the assembler will figure out the distance from the instruction to address LOCUS
(including the proper factor of three or four) and make that distance into an 8-bit or 16-
bit offset. This is the standard approach to writing position-independent 6809 code

efficiently.

INDIRECT WITH CONSTANT OFFSET FROM BASE REGISTER

We can add indirection to the constant-offset modes. The only change is that

there is no special 5-bit mode with indirection - because the 5-bit offset occupies the
bit used to differentiate between non-indirect and indirect modes - so we must use the
8-bit mode instead. The process of determining the effective address becomes complex
here, since it involves an addition followed by two memory accesses. We can illustrate it
as follows:

Memory

Operation Code mmmm

.---- {1----rr----1 mmmm + 1

� ss mmmm + 2
+

tt

uu

The indirection allows us to handle items in arrays, lists, or records which are

addresses rather than data. For example, a microcomputer might be monitoring data
from several remote stations. To each station, we assign a block of memory locations
that contain:

l. Station number

2. Interval between readings

3-26 6809 Assembly Language Programming

3. Address in which next reading will be stored

4. Minimum valid reading

5. Maximum valid reading

6. Starting address of routine that handles invalid readings

7. Number of readings taken since last report

8. Number of readings per report

9. Address of output device on which report is printed

l 0. Starting address of routine that processes readings for a report

Some items in the block are data, whereas others (#3, #6, #9, and #10) are

addresses. The use of this block allows the operator to change any of the parameters

without affecting the overall program. The operator can vary the time interval between

readings (item #2), the data area used for temporary storage (item #3), the procedure

for handling invalid readings (item #6), or the output device on which the occasional re­

ports are printed (item #9). We can handle the data with non-indirect indexed address­

ing, whereas we must handle the addresses with indirect indexed addressing. For exam­

ple, if the next reading is in Accumulator A and the address in which that reading is to

be stored (item #3) occupies bytes 4 and 5 of the block, we can store the reading with

the sequence
LDX #BLOCK GET STARTING ADDRESS OF BLOCK
STA [4,X] STORE READING IN MEMORY

If later we want to take that reading (its address is item #3) and send it to the output

device (its address is item #9), we can use the sequence

LOX
LDA
STA

#BLOCK
[4 I X]
[OUT,X]

GET STARTING ADDRESS OF BLOCK
GET MOST RECENT READING
REPORT MOST RECENT READING

Here OUT is the offset for item #9, the address of the output device.

As an example of the indirect indexed mode with constant offset, let us examine

the execution of the instruction

ADDA [5,X]

which adds to Accumulator A the contents of the address stored five bytes beyond the

address in Index Register X. That is, Index Register X is the base; the instruction adds 5

(the offset) to the base and uses the sum as an indirect address. This mode obviously

requires extra execution time (see Appendix B) because of the addition and the subse­

quent memory accesses. The following diagram illustrates the execution of the instruc­

tion.

E H N

CCR I I X I I X I

o{:
X

y

u

s

PC mm

DP

z v c

X I X I X I

6809 Machine Structure and Assembly Language 3-27

{r

Data
Memory

yy rrss

rr ppqq + 5

ss ppqq + 6

r-----------------� .. +

mm

Indirect Indexed Addressing
ADDA [5.X]

Constant Offset from Index Register

Program
Memory

AB mmmm

98 mmmm + 1

05 mmmm + 2

mmmm + 3

As a specific example, let us assume that Accumulator A contains 1816, Index
Register X contains OC3316, memory address OC3816 contains A016, memory address
OC3916 contains 0216, and memory address AOD216 contains 4716• After the processor
e x e c u t e s t h e i n s t r u c t i o n ADDA [5,X], A c c u m u l a t o r A w i l l c o n t a i n
1816 + (((X)+5):((X)+6)) = 1 816 + ((O C 33 16+5) : (0 C 3316+6))
1816 + ((OC3816):(0C3916)) = 1816 + (AOD211,) = 1816 + 4716 = 6216.

The other indirect modes with a constant offset are:

Zero offset from an index register or stack pointer

16-bit offset from an index register or stack pointer

8-bit offset from the program counter

16-bit offset from the program counter

The processor executes all these similarly to the 8-bit offset mode described ear­
lier. Note that there is no special zero offset mode using the program counter. We can
use the PCR (program counter relative) notation to simplify the specification of rela­
tive addresses as we discussed previously.

3-28 6809 Assembly Language Programming

ACCUMULATOR OFFSET FROM BASE REGISTER

This mode allows the offset, as well as the base register contents, to vary. The

offset may be in either accumulator or in the double accumulator; the base register

may be either index register or either stack pointer. Note, however, that the base
register cannot be the program counter. As shown in the following illustration, the
instruction does not contain any address at all.

Memory

Operation Code mmmm

Accumulator mmmm + 1

�+
,

Effective Address = ppqq + rr

A common use of this mode is to access lookup tables. Let us assume, for exam­
ple, that we have a lookup table in memory that converts 8-bit ASCII character codes to
8-bit EBCDIC character codes. The table consists of EBCDIC codes, organized accord­
ing to the ASCII codes to which they correspond. For instance, the Oth entry is the
EBCDIC code corresponding to the ASCII code 0, the 15th entry is the EBCDIC code
corresponding to the ASCII code 15 (OF16), and the 43rd entry is the EBCDIC code cor­
responding to the ASCII code 43 (2B16). To convert an ASCII code to EBCDIC, we
need to know where the table starts (let's call it address EBCDIC) and the value of the
ASCII code (let's assume it is stored temporarily in address CHAR). Then we can use
the accumulator offset mode to fetch the EBCDIC code from the table. A typical pro­
gram is:

LOX #EBCDIC GET BASE ADDRESS OF EBCDIC CODE TABLE
LOB CHAR GET ASCII CODE (ELEMENT NUMBER)
LOA B,X GET CORRESPONDING EBCDIC CODE FROM TABLE

For more details on character codes, see Chapter 6 of this book and Chapter 3 of
Volume 1 of An Introduction to Microcomputers. For further discussions of lookup tables,
see Chapters 4, 7, and 8 of this book.

Note the difference between this mode and the constant offset modes. In this

mode, the offset is a variable. In the example, the ASCII code could have any value;
typically the microprocessor would be receiving a string of ASCII data from an input
device and converting it into a string of EBCDIC data for an output device. In the cons­

tant offset modes, the offset does not change. In our example of an employee record, a
person's identification number or job classification is always located a specific number of
bytes from the start of the record.

As an example of the accumulator offset mode, let us consider the instruction

LDJ\ B,X

which loads Accumulator A from the address obtained by adding Accumulator B and
Index Register X. The mode using Accumulator A for the offset clearly works the same
way; the double accumulator offset mode is similar except for the offset's length. Note,
however, that the processor interprets the contents of a single accumulator as an 8-bit

6809 Machine Structure and Assembly Language 3-29

signed twos complement number. Thus the accumulator offset mode has a slightly
different effect than the ABX instruction, which interprets the contents of
Accumulator Bas an 8-bit unsigned number. Accumulator offset addressing requires
extra time because the processor must add the offset and the base; it does not require
any extra memory since the offset is in an accumulator or double accumulator. The
double accumulator version is necessary when the table occupies more than 256 bytes.
The following diagram illustrates the execution of the LOA B,X instruction.

E F H N z v c
CCR I I X I X I 0 I

D {: t----

yy
---;_ ______

X
pp qq y

u
�-----+-----�

s

PC mm mm

DP

Indexed Addressing
LDA B.X

Accumulator Offset

Data
Memory

XX

Program
Memory

A6

85

ppqq
+

yy

mmmrn

mmmm + 1

m;nmm + 2

mmmm + 3

As a specific example, let us assume Accumulator B contains 2B16 (the ASCII
code for +), Index Register X contains C30016 (starting address of an ASCII-to­
EBCDIC conversion table), and memory address C32B16 contains 4E16 (the EBCDIC
code for +).Then after the processor executes LOA B,X Accumulator A will contain
((X)+ (B)) = (C30016 + 2B16) = (C32B16) = 4E16• We have converted an ASCII code
in Accumulator B into the corresponding EBCDIC code in Accumulator A. If you wish
to test this approach on other characters, use the character code tables in Appendix A of
An Introduction to Microcomputers: Volume 1.

INDIRECT WITH ACCUMULATOR OFFSET FROM BASE

REGISTER

We can add indirection to the accumulator offset mode to handle the case in
which the table contains addresses rather than data. For example, the table might
contain the actual addresses

'
corresponding to numbered input and output devices.

The operator of the microcomputer-based system will ask the system to "read data
from device *4" or "print results on device =#=6." The microcomputer will use the
table to determine which addresses correspond to devices 4 and 6. This approach (see
Chapter 12 for further discussion) allows the operator to change 1/0 devices by

3-30 6809 Assembly Language Programming

changing the table. For example, the operator could let device :t1=6 be a CRT display for

a test run (thus showing test results without wasting paper), a printer for a run with local

output (thus providing a permanent record), and a modem for a run that must be re­

ported to central headquarters (thus sending the data over a communications link).

The procedure for reading data from a numbered input device is:

1. Load the starting address of the device table into an index register or stack

pointer.

2. Load the device number (a variable) into an accumulator.

3. Read the data from the address obtained from the device table using indirect

addressing with accumulator offset.

For example, if the starting address is IOTBL and the device number (assumed to

be even) is in memory address IODEV, a typical program is:

LOX

LOB

LOA

#IOTBL

IODEV

[B,Xl

GET BASE ADDRESS OF DEVICE TABLE

GET I/0 DEVICE NUMBER

GET DATA FROM J/0 DEVICE VIA TABLE

Remember, the elements in the table are 2-byte addresses and we want to transfer

data to or from those addresses, not to or from the table itself. The entries in the table
tell us where to send data or obtain data, not the value of the data as in the code con­

version example shown in the non-indirect case. Here again, the offset is a variable,

since the same program must be able to convert various device numbers into actual 1/0
addresses.

As an example of the indirect accumulator offset mode, we will discuss the

instruction
LOA [B, X)

which loads Accumulator A from the address starting at the address obtained by adding

Accumulator Band Index Register X. The next diagram illustrates the execution of the

instruction. The Accumulator A and double accumulator offsets are handled similarly,

so we will not describe them in detail. The double accumulator offset is used for tables

that exceed 256 bytes in length, a relatively infrequent situation. Clearly this mode

takes extra time (see Appendix 8) because of the indirection. The processor must
calculate where the indirect address is and fetch the indirect address from memory
before it can actually execute the instruction. As with the non-indirect version, no
additional program memory is necessary since the offset is in an accumulator or double

accumulator.

E F H N z v

CCR I I X I X I 0 I

o{:
yy

X pp qq

y

u

s

PC mm mm

DP

c

6809 Machine Structure and Assembly Language 3-31

Indirect Indexed Addressing

LDA [B.X]
Accumulator Offset

Data

Memory

x x rrss

rr ppqq + yy

ss ppqq + yy + 1

Program

Memory

A6 mmmm

95 mmmm + 1

mmmm + 2

mmmm + 3

As a specific example, let us assume that Index Register X contains 03C616 (the
starting address of the l/0 device table), Accumulator B contains 04 (device #4), and
memory addresses 03CA 16 and 03CB16 (which hold the address corresponding to device
#4) contain 8016 and 1216 respectively. Let us further assume that the data currently at
address 801216 (the input device port) is 4316 (an ASCII C). Then after the processor
exe c u t e s t h e i n s t r u c t i o n LOA [B,X] A c c u m u l a t o r A w i l l c o n t a i n
(((X) + (B)):((X) + (B) + 1)) = ((03C616 + 0416):(03C616 + 051(,)) =

((03CA16):(03CB16)) = (801216) = 4316 (ASCII C, the data from the input port). The
idea here is to use the table to determine where to find the data. The end result is that
Accumulator A contains the data read from input device #4, which is accessed through
memory address 801216, the corresponding entry in the device table.

AUTOINCREMENT AND AUTODECREMENT

In processing arrays, strings, or lists, we frequently want to process one byte
and then proceed to the next byte which is located at the next higher address (if we

are moving forward) or at the next lower address (if we are moving backwards). For
example, if we are printing a string of characters (a message such as WATCH OUT -
BOILER #6 IS REACHING CRITICAL TEMPERATURE), we must send the charac­
ters one by one to the printer (that is, first W, then A, then T, etc.). Similarly, if we are

3-32 6809 Assembly Language Programming

averaging a set of ten readings, we must add them together one by one (for instance,

start with zero, add the first reading, add the second reading, add the third reading, etc.)
and finally divide by 10.

Thus to handle one byte and move forward, we must:

Reach the byte using the address in an index register or stack pointer.

Add 1 to the index register or stack pointer to make it point to the next byte.

The effect is like the action of a typewriter, which both prints the character for the key
you press and moves the carriage along to the next position. Subtracting 1 from the
index register or stack pointer would correspond to backspacing the typewriter's car­
riage. Unlike the typewriter, the computer does not prefer forward over backwards.
Autoincrementing and autodecrementing are the modes most like the indexed address­

ing described in Volume 1 of An Introduction to Microcomputers.

Variations of Autoincrement and Autodecrement

The 6809 offers different step sizes for autoincrementing and autodecrement-

ing. The base address may be:

Incremented by 1 after it is used.

Incremented by 2 after it is used.

Decremented by 1 before it is used.

Decremented by 2 before it is used.

The increment or decrement by 2 approach is useful when the array consists of 16-bit

data or addresses. The processor thus moves on to the next element automatically,
even though that element is located two bytes away from the current element. Applying

the increment after using the base but applying the decrement before using the base

maintains compatibility with the automatic use of the stack pointers (in JSR, PSH,
PUL, RTI, RTS, and SWI instructions and in interrupt responses). Any access/change­
pointer sequence could be implemented, but this is the most popular approach. All the
user must remember is to load the base register with the starting address of the array or
string for autoincrementing, but with the ending address plus 1 or 2 for autodecrement­
ing (because the first autodecrement will reduce the base register before using it).

This form of indexed addressing is really a variety of implied memory addressing,
since no offset is involved. Instructions using this mode take extra time (see Appendix
B), since the processor must update the pointer register as well as execute the instruc­

tion. Autoincrementing or autodecrementing is the simplest way to process arrays or

strings since it provides automatic updating of the implied memory address (or data
pointer) as part of instruction execution. See Chapters 5 and 6 for further discussion of
autoincrementing and autodecrementing.

Autoincrement with a Step of One

As one example, consider the instruction

ADDll ,X+

This instruction adds to Accumulator A the contents of the address in Index Register X.

It also adds 1 to Index Register X, thus updating that address for the next operation in a

summation or averaging program. The following diagram shows how the processor
executes the instruction.

E F H N Z V C
CCR _I_....._l_x l -'�x l_x...._j _x l __.x I

0 {: t-
--

x
_

x __ -f

X PP qq
y

6809 Machine Structure and Assembly Language 3-33

Indexed Addressing
ADDA .X+

Autoincrement by One

Data
Memory

yy ppqq

Program
Memory

AB

80

ppqq + 1

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

As a specific example, assume that Accumulator A contains 0316, Index Register

X contains 07E416, and memory location 07E416 contains 0516. Then, after the processor

executes ADDA ,X+ Accumulator A will contain 0316 + ((X)) = 0316 + (07E416) =
0316 + 0516 = 0816• Furthermore, Index Register X will contain 07E416 + 1 = 07E516.
Thus the instruction both adds an element to Accumulator A and updates Index

Register X so it points to the next element.

Autodecrement with a Step of Two

As an example of both autodecrementing and a step of2, let us show how the pro­

cessor executes the instruction

ADDD ,--Y

This instruction adds to the double accumulator the contents of the address obtained by

subtracting 2 from Index Register Y. It also places the result of the subtraction back in

Index Register Y. Here the elements are 16 bits long, so a subtraction of 2 is necessary

to reach the next element in the array. The step of 2 takes a little extra time (see Appen­

dix B). The processor, of course, has no preference between autoincrementing and

autodecrementing, since it lacks human or cultural preferences such as positive over

negative, forward over backwards, left-to-right over right-to-left, or top-to-bottom over

bottom-to-top. The following diagram illustrates the execution of the instruction.

3-34 6809 Assembly Language Programming

E F H N Z V C

ccR l_�.....__,__....._l_ x ...,l_x ..�..I _x .._I x__,· I

X

y pp qq

u

s

PC mm mm

DP

Indexed Addressing

ADDD .--Y
Autodecrement by Two

{

Data
Memory

ww

zz

Program

Memory

E3

A3

ppqq- 2

ppqq - 1

ppqq

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

As a specific example, let us assume that the double accumulator contains 10E816, Index
Register Y contains 042016, and memory locations 042B16 and 042C16 contain 0916 and
5C16 respectively. Then, after the processor executes ADDD,--Y the double
accumulator will contain 10E816 + ((Y)-2):((Y)- l) = 10E816 + (042B16):(042C16)

= 10E816 + 095C16 = 1A4416• Furthermore, Index Register Y will contain 042D16- 2
= 042B16. Thus the instruction first updates Index Register Y and then adds the current
element to the double accumulator. The update by 2 is essential: decrement by 1 would
point Index Register Y to the least significant half of the current element.

INDIRECT WITH AUTOINCREMENT OR AUTODECREMENT

This addressing mode allows us to handle arrays of addresses. For example, we
have already described a table of 1/0 device addresses in which an entry is the actual
address corresponding to a particular 1/0 device number. That is, entry 2 is the address
corresponding to 110 device :#=2; by changing entry 2 (for instance, from a port that con­
trols a machine to a port that is connected to a video display) , we can change 1/0 devices
and thus test the system, use the system as a remote terminal, or choose temporary or
hard-copy output without making any changes in the underlying program. Let us
assume that we want to fetch data from one device after another or test input devices
until we find one that has new data available. We can fetch data from the first input
device in a table INDEV with the sequence of instructions.

LOU ijiNDEV GET BASE ADDRESS OF INPUT DEVICE TABLE

LOA [,U++] GET DATA FROM DEVICE #0

After the processor executes these instructions, Accumulator A contains the data from
device :#=0 and Stack Pointer U points to the address corresponding to device #2. Thus
we can continue through the table of 110 devices, incrementing the pointer by 2 after

6809 Machine Structure and Assembly Language 3-35

fetching data from a particular device. Obviously, we could equally well start two beyond
the end of the table and use autodecrementing by 2 to move through the table back­
wards.

Since an address always occupies two bytes of memory, incrementing or decre­
menting by 1 makes no sense; it would result in the processor picking up half of one
address and half of another. This mode is therefore not aJiowed with indirection, and the
assembler will give you an error message if you try to use it. The only valid options are:

1. Increment the base register by 2 after using it.

2. Decrement the base register by 2 before using it.

As an example, let us show how the processor executes the instruction

LOA r,u++l

This instruction loads Accumulator A from the address starting at the address in Stack
Pointer U. It also adds 2 to Stack Pointer U. Here Stack Pointer U points to an address;
that is, it tells the processor where the address is, not where the data is. The following
diagram illustrates the execution of the instruction:

E F H N Z V C

ccR I._ _...._.....,&..__....__l x_l x_...._l o_...._l _

X

y

u pp

s

PC mm

o{:

DP

qq

mm

Indirect Indexed Addressing
LDA [,U++]

Autoincrement Re gister U

Data
Memory

x x r r ss

rr ppqq

ss ppqq + 1

ppqq + 2

Program
Memory

A6 mmmm

01 mmmm + 1

mmmm + 2

mmmm + 3

As a specific example, assume that Stack Pointer U contains 27EE16, memory
address 27EE16 contains C016, memory address 27EF 16 contains 0716, and memory
address C00716 (the actual 1/0 port) contains 8016. After the processor executes LDA
[,U + +] Accumulator A will contain (((U)): ((U) + 1)) = ((27EE16): (27EF 16))

=

(C00716) = 8016• Furthermore, Stack Pointer U wiJI contain 27EE16 + 2 = 27F016• Thus

3-36 6809 Assembly Language Programming

the instruction loads Accumulator A from an indirect address obtained from the table
and updates Stack Pointer U so it points to the next indirect address. Of course, this pro­

cess of picking up an indirect address from the table, loading the data from that

address, and updating the pointer takes many extra clock cycles (see Appendix B).

Note, however, that no extra bytes of program memory are needed, since no offset is

involved.

PROGRAM RELATIVE ADDRESSING FOR BRANCHES

Branch, Branch-on-Condition, and Branch-to-Subroutine instructions use only

program relative addressing in which the address value is the offset from the current

value of the program counter. Thus branches are specified by "how far from where we

are," rather than by an actual destination address. This mode allows us to relocate an
entire program, since such a move does not change any relative addresses. Relative

branches are a key element in producing relocatable or position-independent code.

Furthermore, since most branches in programs are short, relative addressing allows

shorter addresses (usually eight bits), thus reducing memory usage.
The following illustration shows how the 6809 microprocessor executes relative

branch instructions. The value ppqq is the contents of the program counter after the
processor has fetched the entire branch instruction from memory. That instruction
includes an operation code (one or two bytes long) and an offset (one or two bytes
long).

Memory

Updated contents
of Program Counter = ppqq

\�{ +

l

Operation Code 1 } Operat
Operation Code 2

a a }offset
bb

Next
instruction -

ion Code: One or two bytes long

(One or two bytes)

Destination if branch is not taken

ppqq + aabb----.. � t-- Destination if branch is taken

The 6809 microprocessor has two forms of relative addressing: 8-bit offset and 16-bit

offset. In both forms, the value following the operation code specifies how many
memory locations to skip over from the end of the instruction. The offset is a twos com­

plement number, so the range for the 8-bit form is

- 128 (= 1000 00002 or 8016) �offset�+ 127 (=0111 11112 or 7F16)

6809 Machine Structure and Assembly Language 3-37

Since the short relative branches themselves occupy two bytes of program
memory, the range from the start of the instruction is

-126 < offset < + 129

We do not have to be concerned with this extra factor of 2 if we specify the actual

destination in the operand field. If, for example, we use the statement

BRA CHCNT

the assembler will figure how far away label CHCNT is (including the factor of 2) and

place that number in the offset. We will discuss calculating relative offsets in more detail
in Chapter 4.

As an example of how the processor executes relative branch instructions, con­

sider the instruction
BRA PLACE

where PLACE is a nearby address. If the program counter contains mmmm originally,

the offset is the 8-bit twos complement form of PLACE - (mmmm + 2) = PLACE -
mmmm - 2. The next diagram illustrates the execution of the instruction. The 16-bit

offset form is similar, except that the offset occupies two bytes and the instructions

therefore occupy either three bytes (LBRA and LBSR) or four bytes (all long condi­

tional branches). The extra factor in the address calculation is then either 3 or 4, making
hand calculations even more awkward. As we mentioned above, the assembler will

perform the calculation for you if you specify the destination address as a label; you

will seldom need to calculate offsets by hand. The 16-bit offset provides access to any

location in memory, but is not commonly needed since few branches are long enough to

require its use. Another approach to providing relative addressing with branches is to

use the Jump or Jump-to-Subroutine instructions with the indexed addressing mode

that involves an offset from the program counter. The non-indirect versions of these

instructions, however, take more time and memory than ordinary relative branches

and so are not used.

X

y

u

s

PC

E F H

o{:

mm

DP

N Z V C

mm
� -:I

mmmm+/:
+ offset

PLACE

Program Relative Addressing
BRA PLACE

Short Branch (Unconditional)

Program
Memory

20

Offset

I
I

mmmm

mmmm + 1

mmmm + 2

mmmm + 2
+ offset

3-38 6809 Assembly Language Programming

As a specific example, assume that mmmm = CSA 116 and PLACE = C5BE16•
The offset is C5BE16- C5A116- 2 = 1016 - 2 = 1B16. After the processor executes
the instruction BRA PLACE, the contents of the program counter will be (initial PC) +

2 + offset = CSA 116 + 2 + 1 B16 = C5A316 + lB16 = C5BE16 = PLACE. Note that if
we move the entire program forward or backwards by a distance REL, the new offset is
(C5BE16 + REL) - (CSA 116 + REL) - 2 = C5BE16 - CSA 116 - 2, the same as
before since the RELs cancel out.

6809 INSTRUCTION SET

Table 3-5 lists the 6809's instruction mnemonics, differentiating between those

that are also 6800 mnemonics and those that are new or have been modified. We will
discuss compatibility between the 6809 microprocessor and the 6800 microprocessor, as
well as compatibility between the 6809 and the 6801 microprocessors, in the next part of
this chapter. For a detailed description of the 6809 instruction set, see the last section

of this book. In Chapter 22, we discuss each instruction's operation; refer to that
chapter when you need to understand how a particular instruction works. Appendix A
summarizes the available 6809 instructions, grouping them by function. This provides a
survey of the 6809's capabilities, and will also be useful when you need a certain kind of
operation but are either unsure of the specific mnemonic or not yet familiar with what
instructions are available. The rest of the appendices serve as reference tables for
calculating program execution time and memory requirements, and for hand assembly
and disassembly; Appendix C also displays available addressing modes for each instruc­
tion.

Instructions often frighten microcomputer users who are new to programming.

Yet taken in isolation, the operations involved in the execution of a single instruction

are usually easy to follow. The purpose of the last section of this book is to isolate and

explain those operations. Furthermore, you need not attempt to understand all the

instructions at once. As you study each of the programs in this book you will learn

about the specific instructions involved.

Why are a microprocessor's instructions referred to as an instruction "set?"
Because the microprocessor designer selects the instruction complement with great
care; it must be easy to execute complex operations as a sequence of simple events, each
of which is represented by one instruction from a well-designed instruction "set."

6800/6809 COMPATIBILITY

The 6809 microprocessor is an advanced version of the 6800 microprocessor,

produced by the same manufacturers. All assembly language programs written for

the 6800 microprocessor can also be assembled for the 6809 microprocessor. In fact,
object code produced for the 6800 microprocessor is very similar to that produced for
the 6809 microprocessor; in many cases, the processors have direct object code com­
patibility. The external support devices designed for use with the 6800 microprocessor

can all be used with the 6809 as well. Chapter 9 of An Introduction to Microcomputers:

Volume 2 discusses the hardware compatibility in more detail.

6809 Machine Structure and Assembly Language 3-39

Table 3-5. 6809 Operation Code Mnemonics

Instruction
Source Instruction Source Instruction Source Instruction Source
Forms Forms Forms Forms

ABX BLS BLS DEC DECA OR ORA
ADC ADCA LBLS DECB ORB

ADCB BLT BLT DEC ORCC
ADD ADDA LBLT EOR EORA PSH PSHS11

ADDB BMI BMI EORB PSHU
AOOD LBMI EXG R1 R22 PUL PULS12

AND ANDA BNE BNE INC INCA PULU
ANDB LBNE I NCB ROL ROLA

ANOCC BPL BPL INC ROLB
ASL3 ASLA LBPL JMP ROL

ASLB BRA BRA JSR ROR6 RORA
ASL LBRA LD LDA10 RORB

ASR3. 6 ASRA BAN BAN LDB10 ROR
ASRB LBRN LDD RITB

ASR BSR BSR LOS RTS
BCC BCC LBSR LOU SBC3 SBCA

LBCC BVC BVC LOX SBCB
BCS BCS LBVC LOY SEX

LBCS BVS BVS LEA LEAS ST STA10
BEQ BEQ LBVS LEAU STB10

LBEQ CLR CLRA LEAX STO
BGE BGE CLRB LEAY STS

LBGE CLR LSL3 LSLA STU
BGT BGT CMP3 CMPA LSLS STX

LBGT CMPB LSL STY
BHI BHI CMPO LSR6 LSRA SUB3 SUBA

LBHI CMPS LSRB SUBB
BHS BHS CMPU LSR SUBD

LBHS CMPX7 MUL4 SWig SWI
BIT BIT A CMPY NEG3 NEGA SWI2

BITB COM COMA NEGB SWI3
BLE BLE COMB NEG SYNC

LBLE COM NOP TFR.R1,Rl2
BLO BLO CWAI TST5 TSTA

LBLO DAA TSTB
TST

Notes:

1. Shading identifies additions or modifications to the 6800 instruction set. The unshaded instruc-
tions are also 6800 instructions with the same operation codes except as noted below.

2. R 1 and R2 may be any pair of 8-bit or 1 6-bit registers. The 8-bit registers are A. B. CC, and DP.
The 1 6-bit registers are D. X. Y. U, S. and PC.

3. The Half-Carry flag H is undefined after these instructions are executed.

4. This M UL affects the Zero flag, whereas 6801 M UL does not.

5. This instruction does not affect the Carry flag. On the 6800/6801/6802 it clears the C flag.

6. These do not affect the Overflow flag (V). On the 6800/6801 /6802 they may.

7. This instruction correctly sets all flags. On the 6800/6802 it does not.

8. On the 6809, the Entire flag (E) is checked during RTI to determine how much to unstack - the
entire register complement or just the Condition Code Register and Return Address.

9. SWI sets the F and I flags; SWI2 and SW13 have no effect on F and I.

10. These instructions are implemented on the 6800 with slightly different mnemonics.

11. This instruction is implemented on the 6800 as PSH.

12. This instruction is implemented on 6800 as PUL.

3-40 6809 Assembly Language Programming

We will briefly describe and compare the 6809 and 6800 microprocessors with

regard to their registers, flags, addressing modes, and instruction sets. The processors

are similar, and the manufacturers clearly will encourage migration from the 6800 to the

6809. This description will help you see what problems you would encounter in going

from one CPU to the other.

REGISTERS

The 6800 register set is a subset of the 6809 register set. In addition to the 6800
registers - Condition Code, Accumulators A and B, Index Register X, and the Hard­

ware Stack Pointer - the 6809 has another index register (Y), another stack pointer
(User Stack Pointer or U register), and a direct page register. Also, the 6809 allows

references to the Double Accumulator D, which consists of Accumulator A and

Accumulator B, whereas the 6800 does not.

FLAGS

The 6800 and 6809 microprocessors have identical Sign, Zero, Overflow, Carry,

Half (or Auxiliary) Carry, and Interrupt Mask flags. The 6809 also has a Fast Inter­

rupt Mask flag (F) and an Entire flag (E) which are not implemented on the 6800,
since the 6800 has no Fast Interrupt Request input and always saves all of its registers in

response to an interrupt. Bit positions 6 and 7 in the 6800's condition code register

always contain ones.

ADDRESSING MODES

The 6809 microprocessor has many more addressing modes than does the 6800.

The only indexed addressing mode that is implemented on the 6800 is the non­
indirect mode with an 8-bit unsigned offset from Index Register X. All other indexed
and indirect addressing modes are unique to the 6809. You should note that 6809

indexed instructions all require an extra (or post) byte that determines the addressing

mode. Thus an indexed instruction that required two bytes of code on a 6800

microprocessor will generally require three bytes on a 6809 microprocessor. However,

indexed addressing on the 6800 is most often used with an offset that is either zero or

less than 16; instructions with such small offsets can be implemented on the 6809

microprocessor using the special forms for zero offset or 5-bit signed offset, thus making

them again two bytes in length. You should also note that indexed offsets are signed in
the 6809 microprocessor (allowing them to be either positive or negative), whereas they

are unsigned in the 6800 microprocessor.

The direct addressing mode on the 6809 microprocessor differs from the direct

mode on the 6800 because the 6809 has a Direct Page register which provides the high­
order byte of the address. The 6800 microprocessor always sets the high-order byte of

the address to zero. Thus 6800 and 6809 direct addressing are the same only when the

6809's Direct Page register contains zero. Compatibility is simplified by the fact that

hardware Reset clears the 6809 Direct Page register, so that it contains zero unless the

program explicitly changes it. Obviously, the 6809 direct mode is more powerful and

more general.

INSTRUCTIONS

6809 Machine Structure and Assembly Language 3-41

The 6800 instruction set is a subset of the 6809 instruction set. Many 6800 and
6809 instructions are identical (see Table 3-6). Some new 6809 instructions (see Table

3-7) are obvious additions to the 6800 set, required to handle the new 6809 registers.

Still other 6809 instructions are generalizations of 6800 instructions (see Table 3-8) or

entirely new (see Table 3-9).

Table 3-10 describes the implementation of 6800 instructions that no longer
exist on the 6809 microprocessor. Note that the 6809 assembler automatically trans­
lates these 6800 instructions i�to their 6809 equivalents. All these one-byte 6800

instructions require at least two bytes (and sometimes as many as four bytes) on the

6809. However, most of them are rarely used in 6800 programs. The only common 6800

instructions in Table 3-10 are PSH and PUL, which have been greatly generalized on the

6809 to handle its larger set of registers, and DEX and INX, which have become far less

important on the 6809 with the addition of autoincrementing and autodecrementing.

6800/6809 DIFFERENCES

You should note the following minor differences between the 6800 and 6809
instruction sets:

1. The 6809 regards Accumulators A and Bas a Double Accumulator D, with A

as the high-order half. It therefore stacks and unstacks the accumulators
with B stacked first and removed last; this is the opposite order from that

implemented on the 6800 microprocessor.

2. The 6809's hardware stack pointer contains the address of the last memory
location occupied by the stack, not the address of the next empty location as

in the 6800. Thus 6809 instructions that use the hardware stack pointer

always decrement it before storing data and increment it after loading data.

6800 instructions that use the stack pointer always decrement it after storing

data and increment it before loading data. Thus the hardware stack pointer on

the 6809 should be initialized to a value one larger than that used in a com­

parable 6800 program.

3. The 6800 instructions TSX <Transfer Stack Pointer to Index Register) and
TXS (Transfer Index Register to Stack Pointer) took account of the fact

that the 6800's stack pointer contained the address one beyond the end of the

stack. This accounting involved an addition of 1 during TSX and a subtrac­
tion of 1 during TXS, thus moving to or from the last occupied address. The

6809 microprocessor does not require this awkward adjustment and
therefore does not implement it in instructions.

4. The 6809 TST instruction does not affect the Carry flag, whereas the 6800
TST instruction clears that flag.

5. The 6809 right shifts (ASR, LSR, ROR) do not affect the Overflow flag,
whereas the 6800 right shifts do.

6. The 6809 Half-Carry flag is undefined after subtraction, comparison, and
related instructions (NEG), whereas the 6800 Half-Carry flag is cleared after

such instructions.

3-42 6809 Assembly Language Programming

Table 3-6. Identical 6800/6809 Instructions

6800 Mnemonic 6809 Mnemonic

ADCA/ADCB ADCA/ADCB
ADDA/ADDB ADDA/ADDB
ANDA/ANDB ANDA/ANDB
ASL ASL (also LSL)
ASR ASR
BCC BCC (also BHS)
BCS BCS (also BLO)
BEG BEG
BGE BGE
BGT BGT
BHI BHI
BIT BIT
BLE BLE
BLS BLS
BLT BLT
BMI BMI
BNE BNE
BPL BPL
BRA BRA
BSR BSR
BVC BVC
BVS BVS
CLR CLR
CMPA/CMPB CMPA/CMPB
COM COM
CPX CMPX
DAA DAA
DEC DEC
EOR EOR
INC INC
JMP JMP
JSR JSR
LOAA/LDAB LOA/LOB
LOS LOS
LOX LOX
LSR LSR
NEG NEG
NOP NOP
ORAA/ORAB ORA/ORB
PSH PSHS
PUL PULS
ROL ROL
ROR ROR
RTI RTI
RTS RTS
SBC SBC
STAA/STAB STA/STAB
STS STS
STX STX
SUBA/SUBB SUBA/SUBB
SWI SWI
TST TST

Notes

1
1

1

1
3

1

1
1

2
2
1, 3
1
2

2. 4
2, 4
1
1. 3

2
2

1. 3

Note the minor differences in some of the mnemonics - namely, an extra A in LOAA, LDAB, ORAA.
ORAB. STAA. and STAB on the 6800, an extra S in PSHS and PULS on the 6809. and a slightly
different version of Compare Index Register X (CM PX on 6809, CPX on 6800).

Notes:

1. Direct addressing is available with this instruction on the 6809 only.

2. 6809 instruction has a different object code.

3. 6809 version has slightly different effects on flags.

4. 6809 Stack Pointer manipulation differs from that of the 6800. See the text for further information.

6809 Machine Structure and Assembly Language 3-43

7. The 6809 sets all flags properly after executing CMPX and similar instruc­

tions, whereas the 6800 sets only the Z flag properly after executing its CPX

instruction.

Clearly these differences will not affect most programs, unless they perform many

stack manipulations. There are slight differences in operations involving the Condition

Code register, since the 6800 always has ones in the two most significant bits of that

register, whereas the 6809 uses those bits for the Entire flag and the Fast Interrupt Mask

bit.

Table 3-7. 6809 Instruction Set Extensions to Handle Additional Registers

6809 Operation Comparable 6800 Operation

CMPY CPX

LDU LDS

LDY LDX

PSHU PSH

PULU PUL

STU STS

STY STX

Table 3-8. 6809 Generalizations of 6800 Instructions

6809 Operation Comparable 6800 Operations

ADDD ADDA. ADDB

AN DCC CLC. Cll. CL V
CMPD CMPA. CMPB

CMPS CPX

CMPU CPX

CWAI WAI
EXG TAB. TAP. TBA. TPA. TSX. TXS

LBCC (also LBHS, BCC

LBCS (also LBLO) BCS
LBEQ BEQ

LBGE BGE

LBGT BGT
LBHI BHI
LBLE BLE

LBLS BLS
LBLT BLT

LBMI BMI

LBNE BNE

LBPL BPL
LBRA BRA

LBSR BSR

LBVC BVC

LBVS BVS
LDD LDAA. LDAB

ORCC SEC. SEI. SEV

STD STAA. STAB

SUBD SUBA. SUBS

SWI2 SWI

SWI3 SWI

TFR TAB. TAP. TBA. TPA. TSX. TXS

3-44 6809 Assembly Language Programming

Table 3-9. New 6809 Instructions (Without 6800 Equivalents)

Instruction Mnemonic

ABX
BRN
LBRN
LEA
SEX
SYNC

(Also implemented on 6801 microprocessor)

(but similar to 6800 WAI)

Table 3-10. 6809 Implementations of Missing 6800 Instructions

6800 Instruction 6809 Equivalent

ABA PSHS B; ADDA ,S+
CBA PSHS B; CMPA .S+
CLC AN DCC #% 11111110
CLI ANDCC "#% 11101111
CLV ANDCC "#%11111101
DES LEAS -1,S
DEX LEAX -1.X
INS LEAS 1,S
INX LEAX 1.X
PSHA PSHS A'
PSHB PSHS B'
PULA PULS A'
PULB PULS B'
SBA PSHS B; SUBA ,S+
SEC ORCC #%00000001
SEI ORCC "#%00010000
SEV ORCC #%00000010
TAB TFR A,B; TSTA
TAP TFR A.CC
TBA TFR B,A; TSTA
TPA TFR CC.A
TSX TFR S,X
TXS TFR X.S
WAI CWAI "#$FF or CWAI "#$EF to enable

regular interrupt (replaces CLI. WAll

• 6809 Stack Pointer manipulation differs from that of the 6800. See the text for further information.

6801/6809 COMPATIBILITY

The 6801 microprocessor is a slightly improved version of the 6800

microprocessor that is manufactured by some of the same companies. The 6801
instruction set is almost the same as the 6800's except that the 6801 has a multiplication
instruction and a ABX instruction (as on the 6809), as well as 16-bit shifts for the dou­
ble accumulator that are not implemented on either the 6800 or the 6809. The 6801, like
the 6809, does set the flags properly after CMPX (CPX). The only added difference is
that the 6801 multiply instruction (MUL) does not affect the Zero flag, whereas the
6809 MUL instruction does.

6809 Machine Structure and Assembly Language 3-45

6502/6809 COMPATIBILITY

The 6809 microprocessor is also similar to the 6502 and related

microprocessors, which are produced by a different group of manufacturers. For more
details on 6502 compatibility, see the discussions in Chapters 9 and lO of An Introduction

to Microcomputers: Volume 2 and in Chapter 3 of 6502 Assembly Language Programming.-'

MOTOROLA 6809 ASSEMBLER CONVENTIONS

The standard 6809 assembler is available from 6809 manufacturers and on many
major time-sharing networks; it is also included in most development systems. Cross­
assembler versions are available for most large computers and many minicomputers.

ASSEMBLER FIELD DELIMITERS

The assembly language instructions have the standard field structure (see
Table 2-1). The required delimiters are:

1. A space after a label. All labels must start in column 1 and all statements that
are not labeled must start with at least one space.

2. A space after the operation code. The accumulator, double accumulator, or
index register/stack pointer designation can be added to the operation code
without a space; for instance, ADDA for" Add to Accumulator A," STD for

"Store Double Accumulator," and PSHU for "Push Registers onto User
Stack."

3. A comma between operands in the address field - that is, between an offset
value or register and a base register (X, Y, U, S, or PC). For example, ADDA
$35,X means that an indexed instruction is to be generated with an offset of
3516 from the value in Index Register X. A zero offset can be omitted unless
the base register is the program counter.

4. A comma in front of the symbols for autoincrementing or autodecrement­

ing. For example, LOA ,X+ tells the assembler to generate an indexed LOA

instruction which autoincrements Index Register X by 1. Similarly, ADDB
, --U tells the assembler to generate an indexed ADDB instruction which
autodecrements Stack Pointer U by 2. This comma is similar to the one be­
tween operands (item 3 above), although no offset is allowed with autoincre­
menting or autodecrementing.

5. Square brackets - I I - around addresses to be used indirectly.

6. A space before a comment that appears on the same line as an instruction,

and an asterisk before an entire line of comments.

Typical 6809 assembly language instructions are:

START LOA [lOOO,Xl GET LENGTH
LOX TEMPR
WAI

3-46 6809 Assembly Language Programming

LABELS

Most versions of the assembler allow only six characters in labels and truncate
longer labels. The first character must be a letter or the special character period (.).
The assembler reserves certain names to refer to CPU registers; these names are A,
B, CC, D, DP, PC, PCR (program counter relative), S, U, X, andY. The use of opera­

tion mnemonics as labels is often not allowed and is not good programming practice
anyway, because of the obvious confusion.

ASSEMBLER DIRECTIVES

The assembler has the following explicit pseudo-operations:

END
EQU
FCB
FCC
FOB
ORG
RMB
SETDP

End of Source Program
Equate or Define Symbolic Name
Form Constant Byte or Enter Byte-Length Data
Form Constant Character String or Enter Character Data
Form Double Byte Constant or Enter Word-Length Data
Set (Location Counter to) Origin
Reserve Memory Bytes or Allocate Storage
Set Direct Page Pseudo-Register

FCB, FCC, and FOB

FCB, FCC, and FDB are the data directives used to place constant data in pro­
gram memory -data such as tables, messages, and numerical factors- that is necess­
ary for the execution of the program but does not consist of instructions. FCB is used
for byte-length (8-bit) data, FCC for 7-bit ASCII characters (MSB of each byte is
zero), and FDB for word-length 06-bit) data or addresses. Note that FOB stores
word-length data in the standard 6800-6809 format with the high-order bits in the first
byte and the low-order bits in the following byte.

Examples:

ADDR FOB $31�5

places the numbers 3116 and 6516 in the next two bytes of program memory and assigns
the name ADDR to the address of the first byte� thus (ADDR) = 3116 and (ADDR +

1) =6516•
TCONV FCB 3/.

places the number 32 (2016) in the next byte of program memory and assigns the name
TCONV to the address of that byte.

ERROR FCC /ERROR/

places the 7-bit ASCII character representations of E, R, R, 0, and R (hexadecimal 45,
52, 52, 4F, and 52) in the next five bytes of program memory and assigns the name
ERROR to the address of the first byte.

Any single character (not just /) may be used to surround the ASCII text. An
alternative is to specify the number of characters in the operand field. For example:

E�ROR FCC �,ERROR

6809 Machine Structure and Assembly Language 3-47

We will always use the first form shown (with the I character) for consistency.

OPERS FDB FAOD, FSUB, FMUL, FDIV

places the addresses F ADD, FSUB, FMUL, and FDJV in the next eight bytes of
memory and assigns the name OPERS to the address of the first byte. All addresses (and
16-bit data items) are stored with their high-order bits first.

RMB

RMB is the Reserve directive used to assign locations in memory for specific pur­
poses; it allocates a specified number of bytes.

EQU

EQU is the Equate or Define directive used to define names.

ORG

ORG is the standard Origin directive. 6809 assembly language programs usually
have several origins, which are used for the following purposes:

1. To specify the Reset, interrupt service, and software interrupt addresses.
These addresses must be placed in the highest memory addresses in the
system (FFF216 through FFFF16).

2. To specify the starting addresses of the actual Reset, interrupt service, and
software interrupt routines. The routines themselves may be placed anywhere
in memory.

3. To specify the starting address of the main program.

4. To specify the starting address of subroutines.

5. To define areas of memory for data storage.

6. To define areas of memory for the Hardware and User Stacks.

7. To specify addresses used for 1/0 ports and special functions.

Examples:
RESET EQU S3ROO

ORG RESET

ORG SFFFE

FOB RESET

Note: $means 'hexadecimal'.

This sequence places the Reset (or startup) instruction sequence in memory beginning
at address 380016, and places that address in the memory locations (addresses FFFE16
and FFFF16) from which the 6809 CPU retrieves the Reset address.

MAIN EQU SCOOG

ORG MAIN

This sequence specifies that the instructions following it are to be placed in memory
beginning at address C00011,.

3-48 6809 Assembly Language Programming

END

END simply marks the end of the assembly language program.

SETDP

SETDP specifies which page of memory is to be treated as the direct page for
subsequent assembly. After a SETDP directive, the assembler will generate instruc­
tions using the direct addressing mode whenever an address is located on the specified
page. If the programmer does not specify a direct page with a SETDP directive, the direct

page is assumed to be page 0 (the high-order byte of every address is zero) for 6800

compatibility. Note that SETDP does not generate the object code required to load the
Direct Page register; the programmer must place the required instructions (such as
LOA =#:DPAGE; TFR A,DP) in the source program.

labels with Assembler Directives

The rules and recommendations for labels with 6809 pseudo-operations are as

follows:

I. Simple equates, such as MAIN EQU $COOO, require labels since their purpose
is to define the meaning of those labels.

2. FCB, FCC, FDB, and RMB pseudo-operations usually have labels.

3. ORG, END, SETDP, and other housekeeping pseudo-operations should not

have labels, since the meanings of such labels are unclear.

ADDRESSES

The Motorola 6809 Assembler allows entries in the address field in any of the
following forms:

1. Decimal (the default case)

Example:
1247

A & symbol in front of the number is optional.

2. Hexadecimal (must start with $ or end with H)

Example:
SCEOO or r:JCP.OOI-1

Note that you must place a zero in front of hexadecimal numbers that begin

with a letter (A through F), so that the assembler can distinguish them from

names, if you are using the format with a terminating H. We will use the"$"

symbol to maintain compatibility with the 6800 assembler.

3. Octal (must start with @ or end with the letter 0 or Q)

Example:
1<11:<47 or 12470

We will use the"@" format to maintain compatibility with the 6800 assem­

bler.

6809 Machine Structure and Assembly Language 3-49

4. Binary (must start with % or end with B)

Example: %00101 or OO!OlB

We will use the"%" symbol to maintain compatibility with the 6800 assem­

bler.

5. ASCII (single character preceded by an apostrophe)

Example: 'fl

6. As an offset from the current value of the location counter (*).

Example: *+7

7. Relative to the current value of the location counter (OEST, PCR)

Example: LOll TABLE, PCH

The assembler will generate an indexed LOA instruction using the mode

based on a constant offset from the program counter. The value of the offset

will be the relative distance between TABLE and the current value of the

location counter. Note the difference between LOA T ABLE,PCR and LOA

TABLE,PC: the latter generates an indexed LOA instruction with TABLE as

the value of the offset to be added to the program counter. The assembler au­
tomatically calculates the relative distance to the destination when the pro­

grammer uses the PCR notation.

Distinguishing Addressing Modes

The various 6809 addressing modes are distinguished as follows:

1. Direct and Extended are the default modes. The assembler chooses direct
addressing if the address is on the page specified as the direct page. Remem­

ber that the direct page is page 0 unless a SETOP directive specifies otherwise.

You can force the asssembler to use direct addressing by preceding the

address with the "<" character and to use extended addressing by preceding

the address with the ">" character.

2. The symbol =*1: precedes the data for immediate mode.

3. OFFSET,R specifies indexed non-indirect modes with offsets. R must be

one of the registers PC, S, U, X, or Y. You can force an 8-bit offset mode by

preceding the operand with the "<" character and a 16-bit offset mode by

preceding the operand with the ">"character. The assembler will automat­

ically choose the zero offset, 5-bit offset, or 8-bit offset mode if the mode is

available and the offset is the correct size.

4. The form DEST,PCR specifies the indexed mode that adds a constant
offset to the program counter, and furthermore directs the assembler to
calculate the offset as the relative distance to the address labeled OEST.

5. Square brackets enclose addresses to be used indirectly.

6. The symbol + or + + after the register name (S, U, X, or Y) specifies

autoincrementing, and - or -- before the register name (S, U, X, or Y)

specifies autodecrementing.

3-50 6809 Assembly Language Programming

Assembler Arithmetic and Logical Expressions

The assembler also allows expressions in the address field. These expressions
consist of numbers and names separated by the arithmetic operators +, - , *

(multiplication), or I <integer division), or the following special two-character opera-
tors:

! h exponentiation !< shift left
!. logical AND !> shift right
!+ logical (inclusive) OR !L rotate left
!X - logical Exclusive OR !R - rotate right

The precedence of the various operators is as follows:

1. Expressions within parentheses are evaluated first.

2. Multiplication, division, and the two-character operators have precedence

over addition and subtraction.

3. Operators with the same precedence are evaluated from left to right.

All intermediate results are truncated to 16-bit integers and all fractional

results are dropped.

We recommend that you avoid expressions within address fields whenever
possible, since there are no standards for calculating such addresses. If you must com­

pute an address, comment any unclear expressions and be sure that the evaluation of

the expressions never produces a result which is too large for its ultimate use.

OTHER ASSEMBLER FEATURES

Most 6809 assemblers have additional features, including both macro and condi­

tional assembly capabilities. You should consult your particular assembler's manual for

a description of how these features are implemented. We will not use any of these

features or refer to them again, although they can be quite convenient in many applica­

tions.

REFERENCES

Terry Ritter and Joel Boney, the co-architects of the Motorola 6809, have de­

scribed its architecture and instruction set in a series of three very interesting articles

entitled "A Microprocessor for the Revolution: The 6809" in BYTE magazine. These

articles describe the philosophy that resulted in the 6809 microprocessor and answer

many questions about approaches to problems, design decisions, and tradeoffs. The

specific articles in the series are:

T. Ritter and J. Boney, "A Microprocessor for the Revolution: The 6809. Part 1:

Design Philosophy," BYTE, January 1979, pp. 14-42.

T. Ritter and J. Boney, "A Microprocessor for the Revolution: The 6809. Part 2:

Instruction Set Dead Ends, Old Trails and Apologies,": BYTE, February 1979, pp.

32-42.

T. Ritter and J. Boney, "A Microprocessor for the Revolution: The 6809. Part 3:

Final Thoughts," BYTE, March 1979, pp. 46-52.

6809 Machine Structure and Assembly Language 3-51

1. A. Osborne and J. Kane, An Introduction to Microcomputers: Volume 2-Some

Real Microprocessors. Berkeley: Osborne/McGraw-Hill, 1979.

2. A. Osborne, An Introduction to Microcomputers, Volume 1 -Basic Concepts,

2nd ed. Berkeley: Osborne/McGraw-Hill, 1980.

3. L. Leventhal, 6502 Assembly Language Programming. Berkeley: Osborne/

McGraw-Hill, 1979.

II
Introductory Problems

The only way to learn assembly language programming is through experience.

The next six chapters of this book contain examples of simple programs that perform

actual microprocessor tasks. You should read each example carefully and try to

execute the program on a 6809-based microcomputer. Finally, you should work the

problems at the end of each chapter and run the resulting programs on your

microcomputer to ensure that you understand the material.

GENERAL FORMAT OF EXAMPLES

Each program example contains the following parts:

A title that describes the problem

A statement of purpose that describes the specific tasks the program performs

and the memory locations it uses

A sample problem with data and results

A flowchart if the program logic is complex

The source program or assembly language listing

The object program or hexadecimal machine language listing

Explanatory notes that discuss the instructions and methods used in the pro­

gram

You should use the examples as guides for solving the problems at the end of each

chapter. Be sure to run your solutions on a 6809-based microcomputer to ensure that

they work correctly.

Program Listing Format

We reproduce Program 4-1 below to illustrate the format for program listings

which we will use in this book. This is a common format for assembler output; it

shows the object code as well as the source code.

Memory Object
Address Code
__..._.._ �

0000 911 40

0002 97 41

0004 3F

LDA

STA

SWI

Source Program

$40 GET DATA

$41 TRANSFER TO NEW LOCATION

The 4-digit number starting in the leftmost column of each line is the hexadecimal

address of the first byte of object code generated from the line of source code. For

example, in the second line 0002 is the address of the object code byte for ST A (base

page direct addressing form). The digits following the address are the hexadecimal

object code for the instruction. Thus, in the second line, 97 41 is the object code for ST A

$41, and the byte 97 is in location 0002. The byte 41 is in location 0003; we infer this

from the fact that it follows the byte in address 0002. The letters, numbers, and words

to the right of the object code are the assembly language fields which we described in

Chapter 2. These fields comprise the source program.

If you wish to assemble these examples on your microcomputer, key in the

source statements only; do not enter the addresses or object codes, since the assembler

program will generate them. You will also need to enter some assembler directives -

for example, to tell the assembler where to start program addresses. We may not show

all the necessary directives; the ones you use will be determined by your assembler and

the requirements of your microcomputer's operating system.

If you wish to execute the program examples without assembling source code,

you can key the object code into the specified addresses. Before you do this, however,

make sure that you will not be trying to load areas of memory reserved for the monitor

or operating system. To avoid such problems, you may need to change addresses before

you load the programs. As we will discuss in the seventh guideline below, you may also

need to change the instruction at the end of the program.

Guidelines for Examples

We have used the following guidelines in constructing the examples:

Standard 6809 assembler notation as summarized in Chapter 3

Use of the clearest possible forms for expressing data and addresses. We use

hexadecimal numbers for memory addresses, instruction codes, and binary­

coded decimal (BCD) data; decimal for numeric constants; binary for logical

masks; and ASCII (American Standard Code for Information Interchange) for

characters

Emphasis on frequently used instructions and common programming tech­

niques

Drawing of problems from actual microprocessor applications in com­

munications, instrumentation, computers and peripherals, business equip­

ment, industrial and process control, and military systems

Extensive commenting for instructional purposes, often more than we would
typically include in actual programs

Emphasis on simple, clear structure, while still making programs as efficient
as possible within this guideline. The notes often describe more efficient pro­
cedures

Use of a standard set of memory addresses. Each program starts in memory
location 000016, uses memory addresses starting at 0040111 for temporary data
storage, and ends with the SWJ (Software Interrupt) instruction. Jf your
microcomputer has no monitor and no interrupts, you may prefer to end pro­
grams with an endless loop instruction such as

HERE BRA HERE

Some 6809-based microcomputers require a JMP or JSR instruction with a
specific destination address to return control to the monitor. You should con­
sult the User's Manual for your microcomputer to determine the required
memory addresses and terminating instruction for your particular system.

Use of base page direct memory addressing. This makes the object code pro­
gram even shorter and therefore easier to key into memory for testing

Trying the Examples

To test an example program on your microcomputer system, first place the

object program in memory. Your ass em bier program may do this automatically, or it
may create an object code file which a separate loader program must then place in
memory. Many of the example programs are so short that you can bypass the assembler
and simply key the object code into memory using your monitor facility or front panel.
Be sure to make any changes your system requires before entering the code; as we men­
tioned earlier, you may have to change addresses in the program or the terminating
instruction.

Once the program is in memory, put the test data in the appropriate locations.

Then run the program. After the program terminates, examine the result locations.

To test different sets of data, simply change the appropriate data locations before run­
ning the program again.

GUIDELINES FOR SOLVING PROBLEMS

Use the following guidelines in solving the problems at the end of each chapter.

1. Comment each program so that others can understand it. The comments
may be brief and ungrammatical; they should explain the purpose of an
instruction or a section of the program. Comments should not describe the
operation of instructions; that description is available in manuals. You do not
have to comment each statement or explain the obvious. You may follow the
format of the examples but provide less detail.

2. Emphasize clarity, simplicity, and good structure in programs. While pro­
grams should be efficient, do not worry about saving a single byte of program
memory or a few microseconds.

3. Make programs reasonably general. Do not confuse parameters (such as the
number of elements in an array) with fixed constants (such as 1T or ASCII C).

4. Load initial values for parameters from the memory area assigned for tern-

porary storage. Remember that microprocessor applications programs will

often execute from ROM or from protected RAM, so you will not be able to

vary parameters that are assigned values in the program. The more

parameters you can vary, the more likely the program is to be useful in a wide

range of tasks.

5. Use assembler notation as shown in the examples and defined in Chapter 3.

6. Use hexadecimal notation for addresses. Use the clearest possible form for

data.

7. If your microcomputer allows it, start all programs in memory address
0000 and use memory addresses starting with 004016 for data and tempor­
ary storage. Otherwise, establish equivalent addresses for your microcom­
puter and use them consistently. Again, consult your user's manual.

8. Use meaningful names for labels and variables -for example, SUM or
CHECK rather than X, Y, or Z.

9. Execute each program on your microcomputer. This is ultimately the only

way to verify that the program functions correctly. We have provided sample
data with each problem, but be sure that the program works for all special
cases.

FURTHER PROGRAMMING TIPS

We will now summarize some useful information that will help you in writing your

first programs.

Accumulator Operations

Almost all processing instructions (for example, Add, Subtract, AND, OR) use
the contents of an accumulator as one operand and place the result back in the same
accumulator. In most cases, you will load the initial data into an accumulator with LOA
or LOB. You will then store the result (from the same accumulator) with STA or STB.

The Direct Page (Base Page)

You can place data and addresses that you plan to use frequently on the direct
(base) page -that is, the page that the processor can access using the Direct Page
register. You can then utilize the short direct addressing mode, using one-byte

addresses, to reach that data. We assume in our examples that the direct page is page

zero, although you can change it easily enough. Remember, however, that the processor

initializes the Direct Page register to zero on machine reset, and the assembler assumes

the direct page to be page zero unless a SETOP pseudo-operation changes this assump­

tion explicitly.

6809 direct page addressing is a powerful programming tool. Instruction forms
with this addressing mode have shorter object codes and execute faster than those using
other memory addressing modes, and you can place the direct page anywhere in

memory (along 256-byte boundaries). However, there are disadvantages to using the

direct page. Direct page addressing is a type of absolute addressing; thus programs
which use it are limited since the addresses are fixed in the object code. Furthermore,

changing the direct page register in a program introduces a new source of potential

errors. The more complex the program or system, the more likely it is that program
execution might unexpectedly branch or return to a sequence that assumes the wrong
direct page. The 6809 designers intended the direct page to be a tool for program
optimization and operating system organization, and discourage its casual use in applica­
tions programs. (See the References section of Chapter 3 for further information.)

Memory Operations

Some instructions- shifts, clear, increment (add 1), decrement (subtract 1),

and ones or twos complement - can act directly on data in memory. Such instructions
allow you to bypass the user registers, but each executes more slowly than the equiva­
lent instruction that acts on a register. A memory operation is slower because the CPU
must load the data into a temporary register, perform the operation, and then store the
result back into memory. Therefore a sequence of operations on one memory location
will execute more slowly than the sequence which operates on the same data in a
register, even though the latter sequence must be two instructions (a load register and a
store back to memory) longer. Of course, for a single operation the one instruction that
operates directly on memory executes faster than the three instructions (load, operate,
store) required to obtain the same result through a register operation. Thus, operating

directly on memory is slower than register operation unless the register load and

store overhead eliminates the time savings resulting from register use.

4
Beginning Programs

This chapter contains some very elementary programs. They will introduce
some fundamental features of the 6809. In addition, these programs demonstrate some
primitive tasks that are common to assembly language programs for many different
applications.

PROGRAM EXAMPLES

4-1. 8-BIT DATA TRANSFER

Purpose: Move the contents of memory location 0040 to memory location 0041.

Sample Problem:

Program 4-1 :

0000 96 40

0002 97 41

0004 3f

(0040) 6A

Result: (0041 l 6A

LDA

STA

SWI

$40

$41

GET DATA
TRANSFER TO NF.\,r T.OCIITION

LOA (Load Accumulator A) and ST A (Store Accumulator A) both need an
address to determine the memory location that the processor will use in loading or stor­
ing the data. In the example, we have used addresses on the direct page (or base page).
Remember that we are assuming the Direct Page register contains zero, so all addresses

4-.L 6809 Assembly Language Programming

with zeros in their eight most significant bits are on the direct page. Therefore, we can
use the direct (or base page) forms of LOA and STA in which the instructions need only
specify the eight least significant bits of the memory address in the byte following the

operation code. We can omit the leading zeros just as we do in everyday conversation
(e.g., we say "sixty cents" rather than "zero dollars and sixty cents"). However,

remember that the addresses are really 004016 and 004116•
Before you execute the example program, you will have to load the data into

memory location 004016. After you execute the program, you can see the result in
memory location 004116 (or in Accumulator A -why?).

We use SWI (Software Interrupt) to end all examples and return control to the
monitor. You may have to replace this instruction with whatever your microcomputer

requires.

4-2. 8-BIT ADDITION

Purpose: Add the contents of memory locations 0040 and 0041, and place the result in
memory location 0042.

Sample Problem:
(0040) 38
(0041) 28

Result: (0042) 63

Program 4-2:

0000 96 40 LOA 540 GET FIRST OPERAND

0002 98 41 .'IDDA $41 ADD SECOND OPERAND
0004 97 42 STA $42 STORE RESULT

0006 3F SWI

This program uses the direct (base page) forms of LOA, AODA, and STA, since
we have placed all the addresses on the direct page. We will use direct page addressing

throughout this book, in order to make the example programs shorter and thus easier to

key into memory by hand.
AOOA affects the Carry flag, but LOA and ST A do not. Only arithmetic and shift

instructions affect the Carry; logical and transfer instructions do not.

LOA and AOOA do not affect the contents of memory, but they do affect the

contents of Accumulator A. On the other hand, ST A changes the contents of the

addressed memory location, but does not affect the contents of Accumulator A.

Before you execute this example program, you will have to load the two operands

into memory locations 004016 and 004116• After you execute the program, you can see
the result in memory location 004216. In a real application, some previous section of the

program would store the data in memory and a subsequent section would use the result.

4-3. SHIFT LEFT 1 BIT

Purpose: Shift the contents of memory location 0040 left one bit and place the result in
memory location 0041. Clear bit position 0.

Sample Problem:
(0040)

Result: (0041)

6F=0110 11112

DE=1101 11102

Beginning Programs 4-3

Program 4-3:

0000 06 40 LOB $40 GET DATA
0002 58 ASLB SHIFT LEFT
0003 07 41 STB $41 STORE RESULT
0005 3F SWI

Unlike the two previous programs, this one uses Accumulator B. There is no com­
pelling reason for these preferences; we could use Accumulator A in this program, and

we could use Accumulator B in either of the previous programs. Accumulators A and B

are virtually interchangeable; most instructions can use either one. We will note a few
differences in later chapters.

ASLB shifts Accumulator B left one bit and clears the least significant bit position
(bit 0). The previous contents of bit position 7 go into the Carry flag. The result (includ­
ing the Carry flag) is twice the original data (why?).

We could also shift the contents of memory location 0040 left one bit with the
instruction ASL $40 and then move the result to memory location 0041. However, this
method would change the contents of memory location 0040 as well as the contents of
memory location 0041. How would you change the program to operate on a memory
location without changing the contents of location 0040?

Compare the bit patterns for instructions that use Accumulator A with those that
use Accumulator B. How do the bit patterns differ? 1 How does the processor know
whether to use Accumulator A or Accumulator B? Remember that two groups of
instructions use an accumulator: single-operand instructions such as shifts, clear, incre­
ment, and decrement; and double-operand instructions such as ADD, AND, and SUB.

4-4. MASK OFF MOST SIGNIFICANT FOUR BITS

Purpose: Place the least significant four bits of memory location 0040 in the least signifi­
cant four bits of memory location 0041. Clear the most significant four bits of
memory location 0041.

Sample Problem:

Program 4-4:

0000 96

0002 84

0004 97

0006 3F

40

OF

41

(0040)

Result (004 1)

LDA
ANDA
STA
SWI

30=0011 11012

OD = 0000 1 1 01 2

$40

#%000011ll

$41

GET DATA
MASK OUT FOUR MSB'S
STORE RESULT

The symbol* identifies an immediate operand, and % means binary constant in
standard 6809 assembler notation.

ANOA *%00001111 logically ANDs the contents of Accumulator A with the bi­
nary number 00001111 (OF 16), not the contents of memory location OOOF. Immediate
addressing (indicated by* in the operand field) means that the instruction contains the
actual data, not its address.

We have written the mask (00001111) in binary to make its purpose clearer to the
reader. Binary masks are easier to understand than hexadecimal ones since the

microprocessor performs logical operations bit-by-bit rather than on digits or bytes.
The result, of course, does not depend on the programming notation. You should use

hexadecimal notation for long masks whenever the binary versions become cumber­
some. The comments should then explain the purpose of the masking operation.

4-4 6809 Assembly Language Programming

A logical AND instruction may be used to clear bits that are not meaningful.

For example, the four least significant bits of the data could be an input from a ten-posi­

tion switch or an output to a numeric display. Remember that logically ANDing a bit

with '0' always produces a zero result, while logically ANDing a bit with '1' does not

change its value.

4-5. CLEAR A MEMORY LOCATION

Purpose: Clear memory location 0040; that is, reset all the bits in location 0040 to zeros.

Program 4-5:
0000 OF 40
0002 3F

CLR

SWI

$4 0 CLEAR MEMORY LOCATION 00�0

The CLR instruction can act directly on a memory location, without the need for a

user register. Of course, the processor does not really clear the memory location

directly; instead, it generates a zero internally (using a register that the programmer can­

not access) and writes it into the specified memory location.

CLR always affects the status flags in the same way: it resets the Carry, Sign

(Negative), and Overflow flags, and sets the Zero flag.

The 6809 instruction set treats zero as a special number; no other value can be

loaded into a memory location as easily.

4-6. BYTE DISASSEMBLY

Purpose: Divide the contents of memory location 0040 into two 4-bit sections (some­

times called "nibbles" or "nybbles") and place the sections in the low-order

four bits of memory locations 0041 and 0042. Place the four most significant

bits of 0040 in 0041 and the four least significant bits of 0040 in 0042. Clear
the four most significant bits of both 0041 and 0042.

Sample Problem:
(0040) 3F

Result: (0041) 03

Program 4-6:
:100 f) ')(;
() () r, 7 �l4
()()(}� <)")
fliJOG ')(,
nona �.�
!JODCJ 4-1
'100/\ A�
OOOLl 44

�()
()F

�?

'10

L f)/\
1\NDA

')T/\

Lf)/\

LSRA

LSRA

LSR/\

LSRA

none 97 �� ST/\

norn: lr swr

(0042) OF

$40
�%0000llll
$�2
S40

S4l

GET DATA

.MASK OFF MSB' S

STORE LSB'S

RELOAD 0/\TA

SHIFT MSB'S TO LEAST

SIGNIFICANT POSITIONS

AND CLEAR OTHER

POSITIONS

STORE MSB'S

Each execution of LSR shifts an accumulator or memory location right one posi­

tion, so four LSRs are required to shift four positions. LSR always clears the most sig­
nificant bit of the result (a so-called "logical shift"), so four LSRAs clear the four most

significant bits of Accumulator A.

Rewrite the program so that it saves a copy of the data in Accumulator 8 rather

than loading it twice. Use the instruction TFR A,8. This instruction moves the contents

of A to 8 without changing A. Which version do you prefer, and why?

Beginning Programs 4-5

The monitor program in your microcomputer must contain a routine similar to

this example if it prints or displays the contents of memory locations in hexadecimal.

The output device must receive the two hexadecimal digits separately in order to print

or display them separately.

4-7. FIND LARGER OF TWO NUMBERS

Purpose: Place the larger of the contents of memory locations 0040 and 0041 in memory

location 0042. Assume that memory locations 0040 and 0041 contain
unsigned binary numbers.

Sample Problems:
a. (0040) 3F

(0041) 2B

Result: (0042) = 3F

b. (0040) 75
(0041) AS

Result: (0042) AS

Program 4-7:
0000 <)lj �I) LD/\ S40 GET FIRST OPERAND

0002 ')] II 1 CMPA S-11 IS SECOND OPERAND LARGER?

000-1 74 02 BllS STRES

oooc; % -11 LDA $!) 1 YES,GET SECOND OPERAND

OOOR 97 4?. STRES ST/\ 547 STORE LARGER OPERAND

()00/\ JF SWI

The Compare Instruction and Status Flags

CMPA $41 subtracts the contents of memory location 0041 from the contents of

Accumulator A, but does not save the result anywhere. All the CMPA instruction does

is set the flags for branching; it leaves the value in Accumulator A unchanged, so that
value can be used for later comparisons or other operations.

CMPA affects the flags as follows:

l. The Carry flag (C) is set to 1 if the unsigned subtraction requires a borrow and

to 0 if it does not.

2. The Zero flag (Z) is set to 1 if the result of the subtraction is zero and to 0 if it
is not.

3. The Sign flag (N) takes the value of the most significant bit of the result of the

subtraction.

4. The Overflow flag (V) is set to 1 if the subtraction causes twos complement

overflow and to 0 if it does not.

The following cases are particularly important smce they are often used for

branching:

1. Z = 1 if the operands are equal� Z = 0 if the operands are not equal. Thus you

can use BEQ or BNE after a CMP instruction to check for equality.

2. C = 1 if the contents of the memory location are larger (in the unsigned

sense) than the contents of the accumulator; C = 0 if the contents of the

memory location are smaller than or equal to the contents of the accumulator.
Remember that CMPA calculates (A) - (M), where M is the selected

memory location. A borrow is necessary if (M) is larger.

4-6 6809 Assembly Language Programming

Thus you can use BLO, BHI, BLS, or BHS after a CMP instruction to compare

the magnitude of unsigned numbers. There are four branches so that you can put the
equality case on either side; that is, the options are:

a. (A) > (M) BHI, branch if (A) is higher (greater than (M)).

b. (A) L (M) BHS (BCC), branch if (A) is higher or same (greater than or equal
to (M)).

c. (A) � (M) BLS, branch if (A) is lower or same (less than or equal to (M)).
d. (A) < (M) BLO (BCS), branch if (A) is lower (less than (M)).

Calculating Relative Offsets

All 6809 conditional branch instructions use relative addressing; in this mode,

the destination is specified by how far it is from the current instruction. In the short
form, the second byte is an 8-bit twos complement number with a range of -128 (1000
00002) to + 127 (0 Ill 11112). The processor adds this number to the program counter
to calculate the destination; the result is

NEW PC = OLD PC + OFFSET + 2

where OLD PC is the original value of the program counter and the extra 2 comes from
the two bytes occupied by the branch instruction itself. Rearranging, we can calculate
the offset from the equation

OFFSET = NEW PC - OLD PC - 2

In our latest object program, for example, we have

OLD PC= 0004

NEW PC (destination) = 0008

So
OFFSET = 0008 - 0004 - 2 = 02

You can always get the same result by counting bytes. Start counting at 0 at the byte
immediately following the last byte of the branch instruction.

Calculating offsets is clearly a rather unpleasant task, unless you are very good at
binary or hexadecimal arithmetic or own a calculator (such as the Texas Instruments
Programmer) that performs arithmetic in different number systems. The calculations
are particularly troublesome if the branch is backwards - that is, the destination
address is smaller than the original program counter value plus two. Then you must deal
with negative binary or hexadecimal numbers: FF16 is -1, FE16 is -2, and so on.
Counting bytes is very tedious, especially for long offsets.

The way to avoid calculating offsets is to let the assembler do it. You can, for

example, simply specify how far you want the branch to go by using an expression

containing the symbol*, which refers the assembler to the current value of the location
counter. Thus

oHS *+-4

will produce a branch to the instruction four bytes further along. The assembler will take
care of the extra 2 automatically (that is, it will make the actual offset 2 instead of 4).
The problem with this approach is that 6809 instructions vary in length and thus it is
often difficult to determine the required numerical value. Furthermore, a much better
method of specifying offsets is available.

Beginning Programs 4-7

The better method is to assign a name (referred to as a "label") to the destina­
tion address. You can choose whatever name you want (see Chapter 2), but we will try
to choose names that have some mnemonic value. The assembler will determine the
actual address to which the label refers and will calculate offsets for any branches that
use the label. The use of labels not only makes the programmer's job easier, but it also
makes programs easier to read and understand.

Conditional Branches

Conditional branches work as follows:

1. If the condition is true, the processor branches. That is, it places the destina­
tion address in the program counter and starts executing instructions at that
point.

2. If the condition is false, the processor continues its normal sequence as if
the branch instruction did nothing at all except advance the program counter.

In our latest source program, the choices are:

1. If (A) 2 (0041). NEW PC= OLD PC+ OFFSET+ 2 = 0004 + 02 + 2
= 0008 (We have named this location

with the label STRES.)

2. If (A) < (0041), NEW PC =OLD PC + 2 = 0004 +2
= 0006 (The location immediately

following the branch
instruction.)

Executing a 2-byte instruction advances the program counter by 2 regardless
of whether a branch occurs.

BHS causes a branch if (A) � (M). In terms of the flags, the branch condition is
C = 0, meaning (A) � (M).

4-8. 16-BIT ADDITION

Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit num­
ber in memory locations 0042 and 0043. The most significant bytes are in
memory locations 0040 and 0042. Store the result in memory locations 0044
and 0045, with the most significant byte in 0044.

Sample Problem:

Program 4-8:

0000 DC 40
0002 [)) 112
0004 DD 44
OOO'i 3F

(0040) 67
(0041) 2A

(0042) 14
(0043) FS

Result: 672A + 14F8 = 7C22

(0044) 7C
(0045) = 22

LDD S40
ADDD $42
STD $44
SWI

GET FIRST lG-BIT NUMBER

ADD SECOND lG-BIT NUMBER

STORE lG-BIT RESULT

4-8 6809 Assembly Language Programming

The Double Accumulator D consists of Accumulator A, which comprises the
high-order byte, and Accumulator B, used as the low-order byte. Be careful - D is
not a separate register; it is physically the same as A and B.

The 16-bit operations LDD, ADDD, and STD all operate on two bytes of data.
For example, LDD $40 loads the contents of memory location 0040 into Accumulator A
and the contents of memory location 0041 into Accumulator B. ADDD $42 adds the
contents of memory location 0043 to Accumulator B and then adds the Carry from that
operation and the contents of memory location 0042 to Accumulator A. STD $44 stores
the contents of Accumulator A in memory location 0044 and the contents of Accumula­
tor B in memory location 0045.

The 6809 microprocessor actually performs most 16-bit operations eight bits (one
byte) at a time. The advantages of the 16-bit instructions are that they direct the pro­

cessor through two 8-bit operations instead of one, thus reducing the amount of time
spent fetching instructions as well as the amount of program memory that is required.

Remember that 16-bit data (and 16-bit addresses) always occupy two bytes of
memory, the one that is actually addressed and the next higher one. For example,
LDD $40 uses memory location 0041 as well as 0040.

The 6809 convention for storing 16-bit data (and 16-bit addresses) is to store the
eight most significant bits first (at the lower address). This convention seems natural,
but is the opposite of that used in most other microprocessors and minicomputers.

4-9. TABLE OF SQUARES

Purpose: Calculate the square of the contents of memory location 0041 from a table and
place the square in memory location 0042. Assume that memory location 0041
contains a number between 0 and 7 inclusive; that is, 0 < (0041) < 7. The

table occupies memory locations 0050 through 0057.

Hexadecimal Entry

Memory Address Hexadecimal Decimal

0050 00 0 (02)
0051 01 1 (1 2)
0052 04 4 (22)
0053 09 9 (32)
0054 10 16 (42)
0055 19 25 (52)
0056 24 36 (62)
0057 31 49 (72)

Sample Problems:

a. (0041) 03

Result: (0042) 09

b. (0041) 06

Result: (0042) 24

Remember that the answer is a hexadecimal number.

Beginning Programs 4-9

Program 4-9:

0000 D"i 4 l LDB $41 GET DATA
0002 8E OO'iO LOX #SSO GET BASE ADDRESS
000 �) AG <JS LOA B,X GET SQUARE OF DATA
0007 97 47 STA $47 STORE SQUARE
000') JF S\"I

00')0 ORG $SO TABLE 01." SQUARES
00 ')0 00 �;OTAB FCB 0,1,4,9; !G,75,3'i,49
0051 ()]

oor,:;> 04

DOS) 09

OOS4 lfl

!lOSS 19

OOSG ?4

i) 0 s 7 11

The assembler directive FCB places the table of squares in memory locations 0050

through 0057. This block of data is essential for the proper execution of the program,

even though it does not consist of instructions. The object program may thus include

fixed data as well as executable instructions.

LOX =#=$50 loads Index Register X from the two bytes of memory immediately

following the operation code (addresses 0003 and 0004 in the object program). The pro­

cessor loads the contents of the first byte into the eight most significant bits of Index

Register X, and the contents of the second byte into the eight least significant bits of

Index Register X. Always remember that Index Registers X andY, Stack Pointers S and

U, and the Double Accumulator D are all 16 bits long.

Indexed Addressing

The instruction LOA B,X loads Accumulator A from the address calculated by

adding the contents of Index Register X (the "base address" of the table) and the con­

tents of Accumulator B (the index of the element that we want). For example, if

memory location 0041 contains 03, then

(X) = 0050 (base address of the table of squares)
(B) = 03 (datal

The calculated or "effective" address is
EA = (X) + (B) = 0053

Address 0053 contains the square of 3. The result of this procedure (called a ''table

lookup") depends only on the organization of the table; it does not depend on the table

data value or on the function that the table represents.

As we discussed in Chapter 3, all indexed instructions require an extra object code

byte, called the "post byte," which selects from among the indexed addressing modes.

Our example uses the non-indirect mode with an offset in Accumulator B from the

indexable register R (referred to as accumulator indexed addressing). The binary form

is:
1 R R 0 0 1 0 1

We have chosen Index Register X, so RR = 00. See Table 3-4 and Appendix B for a

complete description of the indexed addressing modes and the assignment of bits in the

post bytes.

Indexing takes extra clock cycles whenever the processor must calculate the effec­

tive address. Adding Accumulator B to Index Register X takes one cycle beyond the

base amount required by any indexed instruction (four cycles for LOA). Appendix B

tells how many extra bytes of memory and extra clock cycles each of the indexed modes

requires.

4-10 6809 Assembly Language Programming

Operations on Registers X, Y, S, and U

The 6809 has a few special instructions that operate on the index registers and
stack pointers rather than on the accumulators. These are:

CMP(X/Y/S/U) - Compare Memory with Index Register or Stack

LD(X/Y/S/U)

LEA (X/Y /S/U)

ST(X/Y/S/U)

Pointer

Load Memory into Index Register or Stack
Pointer

Load Effective Address into Index Register or
Stack Pointer

Store Index Register or Stack Pointer in
Memory

The index registers and stack pointers are primarily intended to hold memory addresses,
so there are no logical or arithmetic instructions for those registers. As we will see,
however, you can occasionally use LEA to perform some arithmetic.

Use of the ORIGIN Directive

The assembler directive ORG simply determines where the loader program will
place the next section of code when it is finally entered into the microcomputer's
memory for execution. An ORG does not actually result in the generation of any object
code.

Arithmetic with Tables

The use of lookup tables is a simple but powerful approach to solving complex

arithmetic problems on microprocessors. The lookup table contains all the possible

answers to a problem, much as a table of sines or cosines contains all the possible
values of a particular function. This approach reduces an arithmetic problem to a prob­

lem of obtaining the correct answer from the table. To do that, we need two things: the
base (starting) address of the table and the position (called the "index") of the answer.
The address of the answer is the sum of the base address and the index.

The base address of a table is a fixed number. The index, however, is not, and we
need some way to determine it. In simple cases (such as our Table of Squares example),
we can organize the table so that the data itself is the index. In the example, the zeroth

entry in the table is zero squared, the first entry is one squared, and so on. In more com­
plex cases, where the input values are irregularly spaced or there are several data items
involved (for example, roots of a quadratic equation or number of permutations), we

must actually perform some computations (perhaps even involving another table) to
determine an index from the data.

The use of tables represents tradeoffs among programming time, execution

time, and memory usage. A table lookup executes faster than any but the simplest
calculations. For example, even the Table of Squares program executes faster than an
equivalent simple squaring program using the 6809 multiplication instruction MUL.
Tables can be faster and simpler to program than actual calculations since lookup pro­

cedures do not depend on the complexity of the function involved. Furthermore, since a
table lookup is fast-executing, it is unlikely to slow down a program intolerably, as a
complex calculation might, and thus is less likely than a calculation to require
reprogramming to save execution time. On the other hand, tables can occupy a large

Beginning Programs 4-11

amount of memory if there are many possible input values. We can often reduce the

required amount of memory by limiting the accuracy of the results, scaling the input

data, or organizing the table cleverly.

Common uses of tables include the computation of transcendental and trig­

onometric functions, the linearization of inputs from thermocouples and other non­

linear devices, and code conversions.

4-10. 16-BIT ONES COMPLEMENT

Purpose: Place the ones complement of the 16-bit number in memory locations 0040

and 0041 in memory locations 0042 and 0043. The most significant bytes are

in locations 0040 and 0042.

Sample Problem:
(0040)
(0041)

Result: (0042)
(0043)

67 }
E2 01 10 01 1 1 1110 00102

98 l1001 1000 0001 11012
1D f

The ones complement of a number is its logical inverse; that is, each 0 bit in the

number is replaced by a I and each 1 bit by a 0. The sum of a number and its ones com­

plement is therefore always a number in which all the bit positions contain Is.

Program 4-1 0:

0000 DC 40
0002 43
0003 53
0004 DD 42
0006 3F

LDD $40
COMA

COMB

STD $42
SWI

GET 1�-BIT NUMBER

ONES COMPLEMENT MSH'S

ONES COMPLEMENT LSB'S

STORE 16-BIT ONES CO�PLfME�T

Despite the 6809's 16-bit instructions, you must use the 8-bit instructions to per­

form many arithmetic and logical operations. The 6809 instruction set does include

some common 16-bit operations, such as loading, adding, comparing, subtracting, and

storing, but other operations must be performed eight bits at a time.

Manage the accumulators with care; they can hold only one result at a time. If you

need an accumulator's contents, be sure to save them before reloading the accumulator.

PROBLEMS

4-1. 16-BIT DATA TRANSFER

Purpose: Move the contents of memory location 0040 to memory location 0042 and the

contents of memory location 0041 to memory location 0043.

Sample Problem:

(0040) 3E
(0041) 87

Result: (0042) 3E
(0043) 87

4-12 6!109 Assembly Language Programming

4-2. 8-BIT SUBTRACTION

Purpose: Subtract the contents of memory location 0041 from the contents of memory

location 0040. Place the result in memory location 0042.

Sample Problem:

(0040) 77
(0041) 39

Result: (0042) 3E

4-3. SHIFT LEFT TWO BI"TS

Purpose: Shift the contents of memory location 0040 left two bits and place the result in

memory location 0041. Clear the two least significant bit positions.

Sample Problem:

(0040) 50=0101 11012

Result: (0041) = 74=0111 01002

4-4. MASK OFF LEAST SIGNIFICANT FOUR BITS

Purpose: Place the four most significant bits of memory location 0040 in memory loca­

tion 0041. Clear the four least significant bits of memory location 0041.

Sample Problem:

(0040) C4 = 1100 01002

Result: (0041 I CO= 1100 00002

4-5. SET A MEMORY LOCATION TO All ONES

Purpose: Set all the bits of memory location 0040 to ones (FF16).

4-6. BYTE ASSEMBLY

Purpose: Combine the four least significant bits of memory locations 0040 and 0041

into a byte and store the result in memory location 0042. Place the four least

significant bits of memory location 0040 in the four most significant bit posi­

tions of memory location 0042; place the four least significant bits of memory

location 0041 in the four least significant bit positions of memory location

0042.

Sample Problem:

(0040) 6A = 0110 10102
(004 1) 83 = 1 0 11 00 11 2

Result: (0042) A3 = 1010 00112

4-7. FIND SMALLER OF TWO NUMBERS

Beginning Programs 4-13

Purpose: Place the smaller of the contents of memory locations 0040 and 0041 in
memory location 0042. Assume that memory locations 0040 and 0041 con­
tain unsigned binary numbers.

Sample Problems:

a. (0040)
(0041)

Result: (0042)

3F
2B

2B

� �040) 75
(0041) AS

Result: (0042) 75

4-8. 24-BIT ADDITION

Purpose: Add the 24-bit number in memory locations 0040, 0041, and 0042 to the 24-
bit number in memory locations 0043, 0044, and 0045. The most significant
bytes are in memory locations 0040 and 0043, the least significant bytes in
memory locations 0042 and 0045. Store the result in memory locations 0046,
0047, and 0048 with the most significant byte in memory location 0046 and
the least significant byte in 0048.

Sample Problem:

(0040)
(0041)
(0042)
(0043)
(0044)
(0045)

Result: (0046)
(0047)
(0048)

35

} 67 35672A
2A
51

} A4 51A4F8
F8

87

} OC 870C22
22

4-9. SUM OF SQUARES

Purpose: Calculate the squares of the contents of memory locations 0040 and 0041 and
add them together. Place the result in memory location 0042. Assume that
memory locations 0040 and 0041 both contain numbers between 0 and 7
inclusive; that is, 0 � (0040) � 7 and 0 s (0041) s 7. Use the table of squares
from the example entitled Table of Squares.

Sample Problem:

(0040) 03
(0041) 06

Result: (0042) 20

that is, 32 + 62 = 9 + 3610 = 4510 = 2D1s

4-14 6809 Assembly Language Programming

4-10. 16-BIT TWOS COMPLEMENT

Purpose: Place the twos complement of the 16-bit number in memory locations 0040
and 0041 (most significant bits in 0040) in memory locations 0042 and 0043
(most significant bits in 0042). The twos complement of a number is the num­
ber that, when added to the original number, produces a result of zero; the
twos complement is also equal to the ones complement plus one, since the
sum of a number and its ones complement is all 1 bits.

Sample Problems:

a. (0040)
(0041)

Result: (0042)
(0043)

b. (0040)
(0041)

Result: (0042)
{0043)

00 } 0000
58

FF } 1 11 1
AB

72 } 01 1 1
00

BE} 1000
00

0000 0101 10002

1 1 1 1 1010 10002

0010 0000 00002

1 1 10 0000 00002

Since the sum of the original number and its twos complement is zero, we can
calculate the twos complement of x as 0 - x. Which approach (calculating the ones
complement and adding one, or subtracting from zero) results in a shorter and faster
program? Remember to use the SUBD instruction.

REFERENCES

1. L. A. Leventhal, "Microprogramming," Kilobaud. April 1977, pp. 120-23.

5
Simple Program Loops

The program loop is the basic structure that forces the CPU to repeat a
sequence of instructions. Loops have four sections:

1. The initialization section, which establishes the starting values of counters,

pointers, indexes, and other variables.

2. The processing section, where the actual data manipulation occurs. This is

the section that does the work.

3. The loop control section, which updates counters and pointers for the next

iteration.

4. The concluding section, which analyzes and stores the results.

The computer performs Sections I and 4 only once, while it may perform Sections

2 and 3 many times. Therefore, the execution time of the loop depends mainly on the

execution time of Sections 2 and 3. Those sections should execute as quickly as possible,

while the execution times of Sections 1 and 4 have little effect on overall program speed.

Figures 5-l and 5-2 contain two alternative flowcharts for a typical program
loop. Following the flowchart in Figure 5-l results in the computer always executing
the processing section at least once. On the other hand, the computer may not execute
the processing section in Figure 5-2 at all. The order of operations in Figure 5-l is

more natural, but the order in Figure 5-2 is often more efficient and eliminates the prob­

lem of the computer going through the processing sequence once even where there is no

data for it to handle.

The computer can use the loop structure to process large sets of data (usually
called "blocks" or "arrays"). The simplest way to use one sequence of instructions
to handle a block of data is to have the program add 1 to its address register (usually

5-2 6809 Assembly Language Programming

Initialization

Section

Processing

Section

Loop Control

Section

Concluding

Section

The computer always executes the processing section at least once.

Figure 5-1. Flowchart of a Program Loop

an index register or stack pointer) after each iteration. Then the address register will

contain the address of the next element in the block when the computer repeats the

sequence of instructions. The computer can then handle blocks of any length with a

single program.

Indexed addressing is the key to processing blocks of data with the 6809
microprocessor, since that mode allows you to vary the actual address of the data (the

"effective address") by changing the contents of an address register. In immediate and

extended addressing modes, the instruction completely determines the effective

address; that address is therefore fixed if program memory is read-only. The direct page

mode shares this fixed address limitation even though a register determines part of the

effective address.

The 6809's autoincrementing mode is particularly convenient for processing
arrays, since it automatically updates the address register for the next iteration. No

Initialization

Section

Loop Control

Section

Processing

Section

Yes

Concluding

Section

Simple Program Loops 5-3

The computer need not execute the processing section at all if it finds that there is nothing to be done.

Figure 5-2. An Alternative for a Program Loop

additional instruction is necessary. You can even have an automatic increment by 2 if

the array contains 16-bit data or addresses.

Although our examples show the processing of arrays with autoincrementing

(adding l or 2 after each iteration), the procedure is equally valid with autodecrement­

ing (subtracting l or 2 before each iteration). Most programmers find moving back­

wards through an array somewhat awkward and difficult to follow, but it is more effi­

cient in many situations. Clearly, the computer does not know backwards from forward.

The programmer, however, must remember that the 6809 increments an address

register after using it but decrements an address register before using it. This

difference affects initialization as follows:

1. When moving forward through an array (autoincrementing), start the address

register at the lowest address occupied by the array.

2. When moving backwards through an array (autodecrementing), start the

address register one step (1 or 2) beyond the highest address occupied by the

array.

You must also remember the difference between autoincrementing and

autodecrementing if you use a CMP instruction (CMPX, CMPY, CMPU, or CMPS) to

determine if an index register or stack pointer has reached a particular value.

5-4 6809 Assembly Language Programming

PROGRAM EXAMPLES

5-1. SUM OF DATA

Purpose: Calculate the sum of a series of numbers. The length of the series is in

memory location 0041 and the series begins in memory location 0042. Store

the sum in memory location 0040. Assume that the sum is an 8-bit number so

that you can ignore carries.

Sample Problem:

Flowchart:

(0041) 03

(0042) 28
(0043) 55
(0044) 26

Result: (0040) A3
2816 + 5516 + 2616

There are three entries in the sum, since (004 1) =03

SUM= 0
POINTER = 0042
COUNT = (004 1)

SUM=

SUM + (POINTER)

POINTER=
POINTER+ 1

COUNT=
COUNT- 1

(0040) =SUM

Simple Program Loops 5-5

(POINTER) refers to the contents of the memory location addressed by
POINTER. Remember that on the 6809 and similar microprocessors, POINTER is a 16-
bit address, while (POINTER) is an 8-bit byte of data.

This flowchart has the same form as that in Figure 5-1; that is, the processing sec­
tion will execute at least once. What does this form assume about the data, specifically

the length of the series (called COUNT above)?

Program 5-1a:

0000 4F CLRA SUM = ZERO

0001 06 41 LOB $41 COUNT = LENGTH OF ARRAY

0003 8E 0042 LOX #$42 POINT TO START OF ARRAY

0001) AB 80 SUMD ADDA ,X+ ADD NUMBER TO SUM
0008 'iA DECB

0009 26 FB BNE SUMD

0008 97 40 STA $40

OOOD 3F SWI

The initialization section of the program consists of the first three instructions,

which set the sum, counter, and data pointers to their starting values. LOX loads the

two bytes of memory into Index Register X: 00 and 42 from memory addresses 0004 and

0005 respectively.

The processing section of the program consists of the single instruction

ADDA ,X+ which adds the contents of the memory location addressed by Index

Register X to the contents of Accumulator A. This instruction does the real work of the

program. The effective address (that is, the address from which the CPU gets the data)

is given by the contents of Index Register X.

In the autoincrementing mode, the processor adds 1 to the contents of Index

Register X after using it to fetch the data. For example, in the first iteration, Index

Register X initially contains 0042. The execution of the instruction ADDA ,X+ results

in the contents of memory location 0042 being added to Accumulator A, and Index

Register X being incremented by 1 to 0043.

The loop control section of the program consists of the single instruction DECB,

since the instruction ADDA ,X+ updates the pointer automatically. DECB decrements

the counter that keeps track of how many iterations the computer has left to perform.

The instruction BNE causes a branch if the Zero flag is 0 (that is, if the result of

decrementing B was not zero). The offset is a twos complement number, determined by

the distance between the destination and the end of the instruction. In this case, the dis­

tance is from memory location OOOB (the address following the end of the BN E instruc­

tion) to memory location 0006 (the destination). So the offset is:

0006} { 0006
-0008 = +FFF5

FFFB -

The 8-bit offset mode (BNE rather than LBNE) requires only the two least significant
digits of the difference.

If the Zero flag is 1 (that is, if the result of decrementing B was zero), the processor
continues its normal sequence. Thus the result of executing BNE is:

{ SUMO if the result of decrementing B is not zero

(PC)=
(PC) + 2 if the result of decrementing B is zero

5-6 6809 Assembly Language Programming

The extra 2, as usual, comes from the two bytes occupied by the BNE instruction itself.

Most programmers make computer loops count down rather than up so that

they can use the setting of the Zero flag as an exit condition. Remember that the Zero

flag is 1 if the most recent result was zero and 0 if that result was not zero. Rewrite the

program so that it loads Accumulator B with zero initially and increments it after each

iteration. Which approach is more efficient?

The order in which the processor executes instructions is often very important.

DECB must come immediately before BNE SUMO� otherwise, the intervening instruc­

tion (s) would probably change the Zero flag. The order of operations within instructions

may also be important. In the current program, we must initialize Index Register X to

0042, the lowest address in the array, since the processor increments Index Register X

after using its contents in the instruction ADOA ,X+. What initial value would be

necessary if the processor incremented Index Register X before using its contents?

Using Register Y

We could easily use Index Register Y, User Stack Pointer U, or Hardware

Stack PointerS inst�ad of Index Register X. The only difference is that LOS and LOY

require two-byte operation codes, so a program using one of those registers would

occupy one additional byte of memory and would take one extra clock cycle to execute.

For example, the following program uses Index Register Y.

Program 5-1 b:

0000 4F CLR!\ SUM = ZERO
()()()] DG IJl LDB $1)1 COUNT = LENGTH OF ARRAY

0003 l 08 E 0042 LDY #$42 POINT TO START OF ARRAY

0007 Al:l AO SUMO ADDA ,Y+ J\[)0 NUMBER TO SUM

0009 SA DECB

OOOA 26 FB l:lNE SUMO

oooc 97 40 STA $40

0001:: 31" SWJ

In most applications, the slight differences in execution time and memory usage

between the two programs do not matter. However, you might as well use Index

Register X rather than Index Register Y when both are available, since programs that

use Index Register X will be a little shorter and faster. User Stack Pointer U can also be

utilized as an address register, but most programs leave Hardware Stack PointerS

permanently assigned for use with subroutines and interrupts.

You should verify the hexadecimal value of the relative offset in the last program

example. Of course, the final test of any calculation of an offset is whether the program

runs correctly. If you must perform hexadecimal calculations frequently, you should use

a calculator such as the Texas Instruments Programmer.

5-2. 16-BIT SUM OF DATA

Purpose: Calculate the sum of a series of 8-bit numbers. The length of the series is in

memory location 0042 and the series itself begins in memory location 0043.

Store the sum in memory locations 0040 and 0041 (eight most significant bits

in 0040).

Sample Problem:

Flowchart:

(0042) 03

(0043) CB

(0044) FA
(0045) 96

Result: (0040)
(0041)

SUMU = 0
SUML = 0
POINTER = 0043
COUNT = (0042)

SUML=

SUML +(POINTER)

SUMU=

SUMU+CARRY

POINTER=

POINTER+ 1
COUNT=

COUNT- 1

(0040) = SUMU

(0041) = SUML

Simple Program Loops 5-7

SUMU and SUML are, respectively, the high-order and low-order bytes ofthe 16-
bit sum, SUM.

Program 5-2:

0000 4F CLRA MSB'S OF SUM = ZERO

0001 SF CLRB LSB'S OF SUM = ZERO

0002 8E 0043 LOX #$43 POINT TO START OF ARRAY

0005 EB 80 SU.N!D ADDB ,X+ SUM SUM + DAT.l\

0007 89 00 ADCA #0 AND ADD IN CARRY

0009 OA 42 DEC $42
0008 2'i F8 BNE SUMO

OOOD DO 40 STD $40 SAVE SUM

OOOF 3F SWI

5-8 6809 Assembly Language Programming

This program has the same structure as the previous example. The only difference
is that this program must handle the high-order byte of the sum as well as the low-order
byte. The initialization section clears the full 16-bit sum and the processing section now
consists of two instructions: ADDB ,X+ adds the 8-bit data to the low-order byte of the
sum and ADCA #0 adds the carry to the high-order byte.

The only new aspect is that the 16-bit sum occupies both accumulators. Thus we
use a memory location on the direct (base) page to hold the counter. Such memory
locations are often used as if they were additional registers, since the processor can
access them with faster and shorter instructions than those it uses to access other
locations.

The instruction ADCA #0 adds the carry and 0 to Accumulator A:

(A) = (A) + 0 + Carry
= (A) + Carry

The result is to leave A unchanged if the Carry flag is 0 and to increment A by I if the
Carry flag is l.

The 6809 does not have a complete set of 16-bit instructions. For example, there
is no Clear Double Accumulator instruction. We can use either the two instructions
CLRA, CLRB (requiring two bytes of memory and four clock cycles) or the immediate
instruction LDD #0 (requiring three bytes of memory and three clock cycles).
However, when a 16-bit instruction is available (for instance, STD $40), it uses less
time and memory than the two equivalent 8-bit instructions (in this case, ST A $40, STB
$41).

A single instruction such as DEC $42 can decrement the contents of a memory
location by 1 without changing any registers. Such instructions do affect the flags,
however. Note that a memory location is not nearly as useful as an accumulator; there
are no instructions that perform general arithmetic or logical operations on data in a
memory location. For example, SUBA :#=3 subtracts 3 from Accumulator A; try to per­
form the same operation on the data in memory location 0042.

Long Conditional Branches

Short relative branches are limited to distances that can be specified in an 8-bit
signed offset. These limitations are 7F16 = 12710 forward and 8016 = 12810 backwards
from the end of the branch instruction. Since short branches are two-byte instructions,
the distance from the start of the instruction must be in the range

-12610s distances +12910

For longer distances, you must use the long form of the branches. A long condi­
tional branch uses the same mnemonic as its short equivalent, with an additional
"L" in front: for instance, LBCC instead of BCC. It requires a two-byte operation code
followed by a two-byte relative offset. However, the unconditional branch LBRA has a
one-byte operation code, although it still requires a two-byte offset. The long relative
branches provide access to any memory location in the normal 64K range. In actual
practice, most program branches are quite short and you will rarely need the long
forms.

Simple Program Loops 5-9

5-3. NUMBER OF NEGATIVE ELEMENTS

Purpose: Determine the number of negative elements (most significant bit contains 1)

in a block. The length of the block is in memory location 0041, and the block
itself starts in memory location 0042. Place the number of negative elements

in memory location 0040.

Sample Problem:

Flowchart:

(0041) 06

(0042) 68

(0043) F2

(0044) 87

(0045) 30

(0046) 59

(0047) 2A

Result (0040) 02, since 0043 and 0044 contain

numbers with an MSB of 1

NNEG = 0

POINTER = 0042

COUNT = (0041)

NNEG = NNEG + 1

POINTER =

POINTER+ 1
COUNT=

COUNT- 1

(0040) = NNEG

5-10 6809 Assembly Language Programming

Like the previous flowchart, this one takes the form shown in Figure 5-1; thus it

assumes that the input value of COUNT will always be 1 or greater.

Program 5-3:

0000 8E 0042 LOX �$42 POINT TO FIRST NU."'!BER
0003 SF CLRB NUMBER OF NEGATIVES = ZERO
0004 A6 30 CHKNEG LOA ,X+ IS NEXT ELEMENT NEGATIVF.;?
0006 2A 01 BPL CHCNT

0008 sc INCB YES, ADD 1 TO # OF NEGATIVES
0009 OA 41 CHCNT DEC $41
OOOB 26 F7 l:lNE CHKNEG
OOOD 07 !JO STB StlO SI\VE NUMBER OF NEGATIVES

OOOF 3F SWI

LDA affects the Sign (N) and Zero (Z) flags. We can therefore immediately

determine if a number that has been loaded into an accumulator is negative or zero.

We could use the Test instruction (TST) to set the Sign flag without using

Accumulator A. Accumulator A would then be available to hold a counter. Rewrite the

example program to use TST; this instruction is often useful for determining if bit 7 of a

memory location is set or if the memory location contains zero.

BPL, Branch if Plus, causes a branch if the Sign flag is 0. The offset for BPL is

the distance from the end of the instruction to the destination. Here the distance is a

single byte; the result is that the processor skips the INCB instruction if the Sign flag

is 0.
The Sign flag simply reflects the value of bit 7 of the most recent result. If you

are using signed numbers, bit 7 is, in fact, the sign (0 for positive, l for negative); the

mnemonics for Branch if Sign = l (BMI) and Branch if Sign = 0 (BPL) assume that

you are using signed numbers. However, you can equally well use bit 7 for other pur­

poses, such as the status of peripherals or other one-bit data. You can still test bit 7 with

BMI or BPL; the mnemonics may no longer make sense, but the operations work. The

computer performs its operations without considering whether the user thinks they are

sensible or meaningful. The interpretation of the results is the programmer's problem,

not the computer's.

Negative signed numbers all have a most significant bit of 1 and thus are

actually larger, in the unsigned sense, than positive numbers.

5-4. MAXIMUM VALUE

Purpose: Find the largest element in a block of unsigned binary numbers. The length of

the block is in memory location 0041 and the block itself begins in memory

location 0042. Store the maximum (largest unsigned element) in memory

location 0040.

Sample Problem:
(0041)

(0042)
(0043)
(0044)
(0045)
(0046)

Result: (0040)

05 Number of elements

67
79
15
E3
72

E3, since this is the largest of
the five unsigned numbers

Flowchart:

Program 5-4:

0000 06 41
0007 4F

0003 8F: 0042
OOO'i Al so MAXM

*

0008 74 02
OOOA A6 IF

*

oooc 5A NOCIIG

OOOD 26 F7

OOOF 97 40
DOll w

LDB

COUNT = (0041)

POINTER = 0042

MAX= 0

MAX = (POINTER)

POINTER=

POINTER+ 1

COUNT=

COUNT- 1

(0040) =MAX

$ � l COUNT
CLRA MAX =

LOX #S42 POINT

Simple Program Loops 5-11

= NUMBER OF ELEM ENTS

0 (MINIMUM POSSIBLE)

TO FIRST ENTRY

CMPA ,X+ 1S CURRENT ENTRY GREATER

THAN MAX?

BHS NOCHG

LOA -l,X YES, REPLACE .MAX WITH
CURRENT ENTRY

DECB

BNE MAXM

STA S40 SAVE MAXIMUM

swr

The first three instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest unsigned binary

number. If you make zero the initial estimate of the maximum, the program will set the

maximum to a larger value unless all the elements in the array are zeros.

5-12 6809 Assembly Language Programming

The instruction LOA -I ,X uses the indexed addressing mode with a constant

offset. The offset of -1 is necessary because the autoincrementing in CMPA ,X+ has

added 1 to Index Register X. The object code uses the special 5-bit offset form (signified

by a 0 in bit 7 of the post byte). In this form, the offset is a twos complement number in

the five least significant bits; bit 4 is thus the sign of the offset, and the processor auto­

matically extends (copies) that bit into the more significant positions before performing

the addition. The processor thus extends 111112 to 1111 11112, an 8-bit number. This

form requires no additional bytes of memory (since the post byte contains the offset)
and only one additional clock cycle. The range of the offset is

-1 610 = 1 00002 ;:; Offset .::;, + 1 5 10 = 01111 2

The relative offsets in the branch instructions are:

1. BHS NOCHG

Destination address

- Address at end of instruction

2. BNE MAXM

= oooc
= OOOA

02

Destination address
- Address at end of instruction

= 0006
=

0006
= OOOF + FFF1

F7

The program works correctly if the array has two elements, but not if it has only one ele­
ment or none at all. Why? How could you eliminate this problem?

The instruction CMPA ,X+ affects the Carry flag as follows (ELEMENT is the
contents of the effective address and MAX is the contents of Accumulator A):

Carry = 0 if MAX 2 ELEMENT ("Higher or Same")
Carry = 1 if MAX < ELEMENT ("Lower")

If Carry = 0, the program branches to address NOCHG and does not replace the current

maximum. If Carry = l , the program replaces the maximum with the current element

using the instruction LOA -1 ,X.

The program does not work properly if the numbers are signed, because negative

numbers all appear to be larger than positive numbers. You must then use the Sign
(Negative) flag instead of the Carry in the comparison. However, you must also con­

sider the fact that twos complement overflow can affect the sign; that is, the magnitude

of a signed result could overflow into the sign bit. The 6809 has special branch instruc­

tions- BGT, BGE, BLE, and BLT- which perform the branches indicated by their

mnemonics after signed comparisons and handle twos complement overflow auto­

matically.

5-5. JUSTIFY A BINARY FRACTION

Purpose: Shift the contents of memory location 0040 until the most significant bit of the

number is 1. Store the result in memory location 0041 and the number of left

shifts required in memory location 0042. If the contents of memory location

0040 are 0, clear both 0041 and 0042.

The process is just like converting a number to a scientific notation; for example:

o.oo57 = 5.7 x 1 o-3

Sample Problems:

Flowchart:

Program 5-5a:

0000 SF

000 1 96 40

0003 27 On

0005 2B 04

0007 sc
0008 1\fl

0009 20 FA

OOOB DD 41

OOOD 3F

a.

b.

c.

d.

Result:

Result:

Result:

Result:

NSHFT = 0

NUMB = (0040)

Shift NUMB

left one bit

NSHFT =

NSHFT + 1

CLRB

LOA 540

(0040)

(0041)

(0042)

(0040)

(0041)
(0042)

(0040)

(0041)
(0042)

(0040)

(0041)

(0042)

Yes

Yes

BEQ DONE

CHKMS BMI DONE

INCB
ASLA

BRA CHKMS

DONE STD 541
*

SWI

Simple Program Loops

22

88

02

01

80
07

CB

CB

00

00

00

00

(004 1) = NUMB

{0042) = NSHFT

NUMBER OF SHIFTS =

GET DATA
THROUGH IF DATA IS

ZERO

ZERO

THROUGH IF MSB OF DATA IS

ADD 1 TO NUMBER OF SHIFTS

SHIFT DATA LEFT ONE BIT

SAVE JUSTIFIED DATA AND

NUMBER OF SHIFTS

5-13

5-14 6809 Assembly Language Programming

The relative offsets are:

1. BEO DONE

Destination address

- Address at end of instruction

2. BMI DONE

Destination address

= 0008

= 0005

06

- Address at end of instruction

= 0008

= 0007

04

3. BRA CHKMS

Destination address

Address at end of instruction

= 0005 = 0005

= 0008 = +FFF5

FA

ASL (Arithmetic Shift Left) shifts the contents of the specified accumulator or

memory location left one bit and clears the least significant bit. The most significant bit
ends up in the Carry flag and the old Carry value is lost. ASLA is equivalent to adding
Accumulator A to itself; the result is, of course, twice the original number (try it!).

BMI DONE causes a branch to address DONE if the Sign flag is 1. This condition
may mean that the result was a negative number, or it may just mean that the most sig­
nificant bit of that result was 1. The computer only performs the operations; the pro­
grammer must provide the interpretation.

BRA is an unconditional branch; that is, it always adds the offset to the program
counter. The 6809 also has the unconditional jump instruction JMP, which can use
direct (base page), extended, or indexed addressing. BRA, like the conditional branch
instructions, always uses relative addressing.

Reorganizing the Program

We can often reorganize programs to eliminate unconditional branches. The
reorganization usually makes the initial conditions less obvious, but may save a little
memory and some execution time, particularly if the processor repeats a loop many
times. For example, we can reorganize the justification program as follows.

Program 5-5b:

0000 SF CLRB NUMBER OF SHIFTS = 0
0001 9fi 40 LOA $40 GET DATA

0003 27 Ofi BEQ DONE THROUGH IF DATA IS ZERO

0005 511 OECB NUMBER OF SHIFTS = -1
OOO'i sc CHKM'3 INCB ADD 1 TO NUMBER OF SHIFTS

0007 48 ASLA SHIFT DATA LEFT ONE BIT

0008 24 FC BCC CHKMS CONTINUE UNTIL CARRY BECOMES l
OOOA 4') ROR!I THEN SHIFT DATA BACK ONCE

0008 DO 4 l DONE: STD $41 SAVE JUSTIFIED DATA AND
* NUMBER OF SHIFTS

0000 3F SWI

This version initializes the number of shifts to - 1 and shifts the data until the
Carry becomes 1. Then it shifts the data back once since the last shift was not really
necessary. Show that this version is also correct. What are its advantages and disadvan­
tages as compared to the other version? You might wish to try some other organizations
to see how they compare in terms of execution time and memory usage.

Simple Program Loops 5-15

PROBLEMS

5-1. CHECKSUM OF DATA

Purpose: Calculate the checksum of a series of numbers. The length of the series is in

memory location 0041, and the series itself begins in memory location 0042.

Store the checksum in memory location 0040. The checksum is formed by

Exclusive-ORing all the numbers in the series together.

Such checksums are often used in paper tape and cassette systems to ensure that

the data has been read correctly. The calculated checksum is compared to the one stored

with the data - if the two checksums do not agree, the system will usually either indi­

cate an error to the operator or automatically read the data again.

Sample Problem:

(0041)

(0042)
(0043)
(0044)

Resuit: (0040)

03

28
55
26

(0042) ED (0043) ED (0044)
28 ED 55 ED 26
0010 1000
0101 0101

0111 1101
0010 0110

0101 1011
58

5-2. SUM OF 16-BIT DATA

Purpose: Calculate the sum of an array of 16-bit numbers. The length of the array is in

memory location 0042 and the array itself begins in memory location 0043.

Store the sum in memory locations 0040 and 0041 with the eight most signifi­

cant bits in 0040. Each 16-bit number occupies two bytes of memory, with the
eight most significant bits first (in the lower address). Assume that the sum­

mation does not result in any carries (i.e., the sum is a 16-bit number).

Sample Problem:

(0042)

(0043)
(0044)

(0045)
(0046)

(0047)
(0048)

Result: (0040)
(0041)

03 length of the Array

;�} 28F1. First Number in Array

��} 301 A, Second Number in Array

:� f 4889, Third Number in Array

::} A494 = 28F1 + 301A + 4889

Hint: Use the indexed addressing mode with autoincrementing by 2.

5-16 6809 Assembly Language Programming

5-3. NUMBER OF ZERO, POSITIVE, AND

NEGATIVE NUMBERS

Purpose: Determine the number of zero, positive (most significant bit = 0 but entire
number not zero), and negative (most significant bit = 1) elements in a
block. The length of the block is in memory location 0043, and the block itself
starts in memory location 0044. Place the number of negative elements in
memory location 0040, the number of zero elements in memory location
0041, and the number of positive elements in memory location 0042.

Sample Problem:

(0043) = 06

(0044)
(0045)
(0046)
(0047)
(0048)
(0049)

= 68
F2
87
00
59
2A

Result: 2 negative, 1 zero, and 3 positive, so

(0040) 02
(0041) 01
(0042) 03

5-4. FIND MINIMUM

Purpose: Find the smallest element in a block of data. The length of the block is in
memory location 0041, and the block itself begins in memory location 0042.
Store the minimum in memory location 0040. Assume that the numbers in
the block are 8-bit unsigned binary numbers.

Sample Problem:

(0041) 05

(0042) 67
(0043) 79
(0044) 15
(0045) E3
(0046) 72

Result: (0040)

5-5. COUNT 1 BITS

15. since this is the smallest of the

five unsigned numbers

Purpose: Determine how many bits in memory location 0040 are ones and place the
result in memory location 0041.

Sample Problem:

(0040)

Result: (0041)

38=0011 10112

05

6
Character-Coded Data

Microprocessors often handle data which represents printed characters rather

than numeric quantities. Not only do keyboards, teletypewriters, communications
devices, displays, and computer terminals expect or provide character-coded data, but
many instruments, test systems, and controllers also require data in this form. ASCII
(American Standard Code for Information Interchange) is the most commonly used

code; others include Baudot (telegraph) and EBCDIC (Extended Binary-Coded­
Decimal Interchange Code).

Throughout this book, we will assume all of our character coded data to be

seven-bit ASCII, as shown in Table 6-1; the character code occupies the low-order
seven bits of the byte, and the most significant bit of the byte holds a 0.

HANDLING DATA IN ASCII

Here are some principles to remember when handling ASCII data:

1. The codes for the numbers and letters form ordered subsequences. Since the
codes for the numbers 0 through 9 are 3016 through 3916, you can convert a
decimal digit to the equivalent ASCII character (and ASCII to decimal) by
means of a simple additive factor: 3016 = ASCII 0. Since the codes for the
upper-case letters (4116 through 5A 16) are ordered alphabetically, you can
alphabetize strings by sorting them according to their numerical values.

2. The computer does not distinguish between printing and non-printing

characters. Only 110 devices make that distinction.

6-2 6809 Assembly Language Programming

Table 6-1. Hexadecimal ASCII Character Codes

:s: 0 1 2 3 4 5 6 7 Control Characters

5

0
1
2
3
4
5
6
7
8
9
A
B
c

D
E
F

NUL OLE SP 0 (W p p NUL Null DC1 Device control 1

SOH DCl ! 1 A Q a q SOH Start of heading DC2 Device control 2

STX DC2
,,

2. B R b r STX Start of text DC3 Device control 3

ETX DC3 # 3 c s c s ETX End of text DC4 Device control 4

EOT DC4 $ 4 D T d t EOT End of transmission NAK Negative acknowledge

ENQ NAK Cu
il) 5 E u e u ENQ Enqu1ry SYN Synchronous idle

ACK SYN & 6 F v f v ACK Acknowledge ETB End of transmission block

BEL ETB 7 G w g w BEL Bell. or alarm CAN Cancel

BS CAN (8 H X h X BS Backspace EM End of medium

HT EM) 9 I y i y HT Horizontal tabulation SUB Substitute

LF SUB . j z j z LF Line feed ESC Escape

VT ESC K [k
I VT Vertical tabulation FS File separator

+ I

FF FS < L \ I I FF Form feed GS Group separator
I

CR GS - = M J m
I CR Carriage return RS Record separator I

so RS > N n --· so Shift out us Unit separator

Sl us I ? 0 - 0 DEL Sl Shift in SP Space

DLE Data link escape DEL Delete

3. An ASCII 1/0 device handles data only in ASCII. For example, if you want
an ASCII printer to print the digit 7, you must send it 3716 as the data� 0716 is
the "bell" character. Similarly, if an operator presses the "9" key on an
ASCII keyboard, the input data will be 3916� 0916 is the "horizontal tab"
character.

4. Many ASCII devices do not use the entire character set. For example,
devices may ignore meaningless control characters and may not print lower­
case letters.

5. ASCII control characters often have widely varying interpretations. Each
ASCII device typically uses control characters in a special way to provide
features such as cursor control on a CRT, and to allow software control of
characteristics such as rate of data transmission, print width, and line length.

6. Some widely used ASCII characters are:

OA16 line feed (LF)
OD16 carriage return (CR)
2016 space
3F1o question mark(?)
7F16 rubout or delete character (DEL)

7. Each ASCII character occupies eight bits. This allows a large character set
but is wasteful when only a few characters are actually being used. If, for
example, the data consists entirely of decimal numbers, the ASCII format

(allowing one digit per byte) requires twice as much storage, communications
capacity, and processing time as does the BCD format (allowing two digits per
byte).

Character-Coded Data 6-3

PROGRAM EXAMPLES

6-1. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a string of characters. The string starts in memory
location 0041; the end of the string is marked by an ASCII carriage return
character ('CR', OD Ill). Place the length of the string (excluding the carriage
return) into memory location 0040.

Sample Problems:
a. (0041)

Result: (0040)

b. (0041)

(0042)

(0043)

(0044)

(0045)

(0046)

(0047)

Result: (0040)

Flowchart:

Program 6-1a:

0000 5F
0001 8E 0041
0004 86 OD

*

0006 A1 80 CHKCR
*

0008 27 03
OOOA 5C

0008 20 F9
OOOD D7 40 DONE
OOOF 3F

OD

00 since the beginning character is a carriage return

52 'R'

41 'A'

54 ·r

48 'H'
45 'E'
52 'R'
OD CR

06

POINTER = 0041

LENGTH= 0

LENGTH=
LENGTH+ 1

POINTER=
POINTER+ 1

CLRB

LDX #$41
LDA li$0D

CMPA ,X+

BEQ DONE
INCB

BRA CHKCR
STB $40
SWI

Yes

(0040) = LENGTH

STRING LENGTH = ZERO
POINT TO START OF STRING
GET ASCII CARRIAGE RETURN

(STRING TERMINATOR)
IS NEXT CHARACTER

A CARRIAGE RETURN?
YES, END OF STRING
NO, ADD 1 TO STRING LENGTH

SAVE STRING LENGTH

6-4 6809 Assembly Language Programming

As far as the computer is concerned, the carriage return (CR) is just another
character (OD16). The fact that the carriage return causes the output device to per­
form a control function rather than print a symbol does not affect the computer.

The Compare instruction CMP performs a subtraction and sets the flags, but
does not change the contents of the accumulator. In Program 6-la, CMPA leaves the

carriage return character in Accumulator A for later use. In this program, the CMPA

instruction affects the Zero flag as follows:
Z = 1 if the character in the string is a carriage return
Z = 0 if it is not a carriage return

The instruction INCB adds 1 to the string length counter in Accumulator B.

CLRB initializes this counter to zero before the loop begins. You must remember to
initialize variables before using them in a loop; failure to do so is a common program­

mmg error.

This loop does not terminate by decrementing a counter to zero. In fact, the com­

puter will simply continue examining characters until it finds a carriage return.

Obviously, this creates problems if the string, because of an error or omission, does not

contain a carriage return. It is good programming practice to place a maximum count
in a loop like this, even though it does not appear to be necessary. What happens if you

use the example program on a string that does not contain a carriage return?

Rearranging the Program

By rearranging the logic and changing the initial conditions, you can decrease
the execution time of the program. If we rearrange the flowchart so that the program

increments the string length before it checks for the carriage return, only one branch

instruction is necessary instead of two.

Flowchart:

POINTER = 0041
LENGTH= -1

LENGTH=

LENGTH + 1

POINTER=
POINTER+ 1

Yes

(0040) = LENGTH

Character-Coded Data 6-5

Program 6-1 b:
0000 C6 FF LDB #$FF STRING LENGTH = -1
0002 BE 0041 LDX ll$41 POINT TO START OF STRING
0005 86 OD LDA li$0D GET ASCII CARRIAGE RETURN

* (STRING TERMINATOR)
0007 sc CHKCR INCB ADD 1 TO STRING LENGTH
0008 A1 80 CMPA ,X+ IS NEXT CHARACTER

* A CARRIAGE RETURN?

OOOA 26 FB BNE CHKCR NO, KEEP CHECKING
oooc D7 40 STB $40 YES, SAVE STRING LENGTH

OOOE 3F SWI

This program, like the previous one, has no provision for stopping if a maximum

string length is reached before a carriage return is found.

6-2. FIND FIRST NON-BLANK CHARACTER

Purpose: Search a string of ASCII characters for a non-blank character. The string starts

in memory location 0042. Place the address of the first non-blank character in

memory locations 0040 and 0041 (most significant bits in 0040).
A blank character is exactly the same as a space, and is referred to as' li 'or 'SP'; a

blank character in ASCII is 2016.

Sample Problem:

a. (0042)

Result: (0040)

(0041)

b. (0042)

(0043)
(0044)

(0045)
(0046)

Result: (0040)

(0041)

Flowchart:

37 '7'

��} since memory location 0042 contains a non-blank character

20 SP

20 SP

20 SP

46 T

20 SP

��} since the three previous memory locations all contain blanks

POINTER = 0042

POINTER=

POINTER+ 1

No

(0040): (0041) =

POINTER

6-6 6809 Assembly Language Programming

Program 6-2:

0000 8E 0042 LDX # $4 2
0003 86 20 LDA #I
0005 Al 80 CHBLK CMPA ,X+
0007 27 FC BEQ CHBLK
0009 30 lF LEAX -1, X

OOOB 9F 40 STX $40
*

OOOD 3F SWI

POINT TO START OF STRING
GET ASCII SPACE FOR COMPARISON
IS CHARACTER AN ASCII SPACE?

YES, KEEP EXAMINING CHARS
NO, MOVE POINTER BACK ONE

SAVE ADDRESS OF FIRST
NON-BLANK CHARACTER

Note the use of an apostrophe (') or single quotation mark before an ASCII

character.

Looking for spaces in strings is a common task in microprocessor applications.

Programs often reduce storage requirements by removing spaces that only serve to
increase readability or fit data into particular formats. Storing and transmitting extra

space characters obviously wastes memory, communications capacity, and processor
time. However, operators find it easier to enter data and programs when the computer

accepts extra spaces; the entry is then said to be in free, rather than fixed, format. One

of the most popular uses of microcomputers is to convert data and commands between

the forms that are easy for people to handle and the forms that are most efficient for

computers and communications systems.

The LEA instruction has many uses in 6809 programming. This instruction

calculates an effective address using one of the indexed addressing modes (see

Chapter 22 for a complete description), but then simply places that address in an

index register or stack pointer rather than using it to transfer data. The effective
address is available for later use and need not be recalculated. This can save execution

time. Remember that instructions using most of the indexed addressing modes, particu­

larly the more complicated modes, require many additional clock cycles to execute.
Furthermore, the programmer can later use the effective address in any of the indexed

modes, thus providing additional levels of indirection and more flexibility.

LEA can perform many simple functions. For example, you can (as in Program
6-2) subtract 1 from Index Register X with the instruction

LEAX -l,X

In this case, the processor first calculates the effective address by adding -1 to the con­

tents of Index Register X. It then places that result back in Index Register X. A more

complex example is one that adds 8 to User Stack Pointer U and places the result in

Index Register Y; the required instruction is

U;AY 8 ,ll

The earlier 6800 microprocessor had no autoincrementing or autodecrementing.

Instead, the instruction DEX subtracted 1 from Index Register X and INX added 1 to it.
The 6809 assembler will accept DEX and INX (as well as DEY, INY, DES, and INS)

and will generate the appropriate LEA instructions. The use of these operation codes
saves typing and makes programs somewhat clearer (and more familiar to 6800 pro­

grammers), but we will stick with the actual 6809 operation codes.
The autoincrement in CMPA ,X+ provides us with a fast and simple way to step

to the next character. However, it is a bit of a nuisance once we have found the first non­

blank character, since it has then added l to the address that we want to save. We must
explicitly subtract the extra 1 with the instruction LEAX -1 ,X. This instruction would

not be necessary if we were working backwards instead of forward, since the 6809
autodecrements before using the address. As we noted earlier, however, you must start
the index register one beyond the end of the array when autodecrementing.

Character-Coded Data 6-7

6-3. REPLACE LEADING ZEROS WITH BLANKS

Purpose: Edit a string of numeric characters by replacing all leading zeros with blanks.

The string starts in memory location 0041; assume that it consists entirely of

ASCII-coded decimal digits. Memory location 0040 contains the length of the

string in bytes.

Sample Problems:

a.

b

Flowchart:

{0040)

{004 1)
10042)

02 Length of the string in bytes

36 '6'
39 '9'

The program leaves the string unchanged. since the leading digit is not zero

{0040)

1004 1)
{0042)
{0043)

08 Length of the string in bytes

30 '0'
30 ·o·

38 '8'

Result: 1004 1) = 20 SP
(0042) = 20 SP

The program replaces the two leading zeros with ASCII spaces.

The printed result would be " 8 ... " instead of "008 "

COUNT = (0040)
POINTER = 0041

POINTER=
POINTER+ 1

{POINTER - 1) =
SP I= 2016)

COUNT=
COUi-.JT- 1

6-8 6809 Assembly Language Programming

Program 6-3:

0000 8 6
0002 C6
0004 8E
0007 A1
0009 26
OOOB E7
OOOD OA
OOOF 26
0011 3F

30
20
0041
8 0
06
lF
40
F6

LDA
LDB
LDX

CHKZ CMPA
BNE
STB
DEC
BNE

DONE SWI

t. 0
#.
t$41
,X+
DONE
-1,X
$40
CHKZ

GET ASCII ZERO FOR COMPARISON
GET ASCII SPACE FOR STORAGE
POINT TO START OF ARRAY
IS LEADING DIGIT ZERO?
NO, DONE
YES, REPLACE ZERO WITH SPACE

Editing strings of decimal digits to improve their appearance is a common task
in microprocessor programs. Typical procedures include the removal of leading zeros,
justification, the addition of signs (+ or -) and other delimiters or symbols for units
(such as$,¢%, or#), and rounding. The program should print numbers in the form
that the user wants and expects; results like "0006," "$27.34382," or "135000000"
are annoying and difficult to interpret.

This loop has two exits - one if the processor finds a non-zero digit and the other
if it works through the entire string. In an actual application, you would have to be care­
ful to leave one zero if all the digits in the string are zero. How would you modify the
program to do this?

We have assumed that the length of the string (the contents of location 0040) will
be greater than zero. What will happen if (0040) = 00 when the program starts execu­
tion?

The instruction STB -1, X places an ASCII space (2016) in a memory location that
previously contained ASCII zero. Here again we need the offset of -1 to make up for
the + 1 that was added to Index Register X by the instruction CMPA ,X+.

We have assumed that all the digits in the string are in the ASCII form� that is, the
digits used are 3016 through 3916 rather than the ordinary decimal 0 to 9. Converting a
digit from BCD to ASCII is simply a matter of adding 3016 (ASCII zero), while convert­
ing from ASCII to decimal involves subtracting the same number.

You can place a single ASCII character in a 6809 assembly language program
by preceding it with an apostrophe (').You can place a string of ASCII characters in
program memory by using the FCC (Form Constant Characters) directive on the 6809

assembler. There are two acceptable forms of this directive:

EMSG FCC S,ERROR

EMSG FCC /ERROR/

In the first form, the user must specify the number of characters, followed by a comma
and the character string. In the second form, the user may place any single character
delimiter (we will always use /) at both ends of the string.

Each ASCII digit requires eight bits of storage, as compared to four bits for a
BCD digit. Therefore, ASCII is a relatively expensive format in which to store or
transmit numerical data.

6-4. ADD EVEN PARITY TO ASCII CHARACTERS

Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string
is in memory location 0040 and the string itself begins in memory location
0041. Add even parity to each character by setting bit 7 if that makes the num­
ber of 1 bits in the byte even.

Sample Problem:

Flowchart:

(0040)

l0041)

(0042)

(0043)

(0044)

(0045)

(0046)

Result: (0041)

(0042)

(0043)

(0044)

(0045)

(0046)

POINTER = 0041

COUNT = (0040)

BIT COUNT= 0

OAT A = (POINTER)
POINTER=

POINTER+ 1

BIT COUNT=
BIT COUNT+ 1

Shift DATA left one
bit arithmetically
(LSB = 0)

06

31

32

33

34

35

36

B1

B2

33

B4

35

36

Character-Coded Data 6-9

Length of string

= 0011 0001

= 0011 0010

= 0011 0011

= 0011 0100

= 0011 0101

= 0011 0110

= 101 1 0001

= 101 1 0010

= 0011 0011

= 1011 0100

= 0011 0101

= 0011 0110

Set MSB of
(POINTER - 1) to 1

COUNT=

COUNT -1

6-10 6809 Assembly Language Programming

Program 6-4:

0000 8E 0041 LOX t$41 POINT TO START OF DATA BLOCK
0003 A6 80 GTBYTE LOA ,X+ GET A BYTE OF DATA
0005 SF CLRB BIT COUNT = ZERO INITIALLY
0006 48 CHBIT ASLA SHIFT A DATA BIT TO CARRY
0007 C9 00 ADCB to IF BIT IS 1, INCREMENT

* BIT COUNT
0009 40 TSTA KEEP COUNTING UNTIL

* DATA BECOMES ZERO
OQOA 26 FA BNE CHBIT
oooc 54 LSRB DID DATA HAVE EVEN NUMBER

* OF I 1 I BITS?
0000 24 06 BCC NEXTE
OOOF A6 1F LOA -1,X NO, SET EVEN PARITY BIT

* IN DATA
0011 8A 80 ORA 1%10000000
0013 A7 1F STA -1,X
0015 OA 40 NEXTE DEC $40
0017 26 EA BNE GTBYTE
0019 3F SWI

Parity provides a simple means of checking for errors on noisy communications
lines. If the transmitter sends parity along with the actual data, the receiver can then
compare that parity with the parity of the data that it receives. If the two parities do not
agree, the receiver can request retransmission of the data. If there is a single bit in error,
the two parities will never agree, since the number of 'l' bits in the data will clearly
change from even to odd or odd to even. However, two wrong bits will just as obviously
result in the same parity as the original data. Thus we say that parity detects single but
not double bit errors. Of course, single bit errors are usually more common than are
double bit errors, so this is not a major drawback.

A more serious problem with parity is that it provides no way to correct errors.
An error in any bit position will produce the same change in parity, so the receiver can­
not determine which bit is wrong. More advanced coding techniques provide for error
correction as well as error detection. Parity, however, is easy to calculate and ade­
quate in situations in which retransmission of data is tolerable.

The procedure for calculating parity is to count the number of '1' bits in each
byte of data. If that number is odd, the program sets the most significant bit {MSB)
of the data byte to 1 to make the parity even. An advantage of ASCII is that it leaves bit
7 of each byte for parity; EBCDIC does not, since it is an 8-bit code.

ASL clears the least significant bit of the accumulator or memory location that it is
shifting. Therefore, the result of a series of ASL instructions will eventually be zero,
regardless of the original data (try it!). The bit counting procedure in the example pro­
gram does not use a counter for termination since it stops as soon as all the remaining
data bits are zero. This procedure is simple and reduces execution time in most cases.

The program sets the MSB of the data byte to '1' by logically ORing it with a pat­
tern that has a '1' in its most significant bit and zeros elsewhere. Logically ORing a bit
with '1' always produces a result of '1', while logically ORing a bit with '0' leaves the
bit unchanged.

Character-Coded Data 6-11

6-5. PATTERN MATCH

Purpose: Compare two strings of ASCII characters to see if they are the same. The

length of the strings is in memory location 0041; one string starts in memory

location 0042 and the other in memory location 0052. If the two strings

match, clear memory location 0040; otherwise, set memory location 0040 to

all ones (FF 11,).

Sample Problems:
a. (0041) 03 Number of characters in each string

(0042) 43 'C'

(0043) 41 'A'

(0044) 54 T

(0052) 43 ·c·

(0053) 41 'A'

(0054) 54 'T'

Result: (0040) 00, since the two strings are the same

b. (0041) 03 Number of characters in each string

(0042) 52 'A'

(0043) 41 'A'

(0044) 54 T

(0052) 43 ·c·

(0053) 41 'A'

(0054) 54 ·r

Result: (0040) FF. since the first characters in the
strings differ

Note: The matching process ends as soon as the CPU finds a difference - the rest of the

strings need not be examined.

Program 6-5:

0000 86 FF LDA #SFF MARK = FF HEX FOR INEQl}ALITY
0002 97 40 STA $40
0004 8E 0042 LDX 11$42 POINTER1 = START OF STRING 1
0007 108E 0052 LDY #$52 POINTER2 = START OF STRING 2
0008 D6 41 LDB $41 COUNT = LENGTH OF STRINGS
OOOD A6 80 CHBYTE LDA ,X+ GET A CHAR ACTER FROM STRING 1
OOOF A1 AO CMPA ,Y+ DOES IT MATCH WITH STRING 2?
DOll 26 05 BNE DONE NO, DONE
0013 SA DECB
0014 26 F7 BNE CHBYTE CHECK NEXT PAIR IF ANY LEFT
0016 OF 40 CLR $40 IF NONE ARE LEFT, MARK = 0

* FOR EQUALITY
0018 3F DONE SWI

Matching strings of ASCII characters is an essential part of recognizing names

or commands, identifying variables or operation codes in assemblers and compilers,

accessing named files, and many other tasks.

Program 6-5 uses different index registers for the two strings, so they can be

located anywhere in memory. We could use a single index register if the two strings

were always located a constant distance apart. If that distance were DIST, the com­

parison procedure would be

CHBYTE LDA
CMPA

,X+
DIST-l,X

6-12 6809 Assembly Language Programming

Program 6-5 autoincrements both Index Register X and Index Register Y. Note
that LOY requires a 2-byte operation code, while LOX requires only a 1-byte code. In
fact, the operation code for LOY is the operation code for LOX preceded by the byte
1016. The prefix byte 1016 apparently tells the 6809 processor that this instruction falls in
a special group and the next byte will actually describe the operation to be performed.

We could replace CLR $40 with INC $40 or STB $40 (why?). Which of these
alternatives executes faster? Which do you think is clearer?

Flowchart:

POINTER1 = 0042

POINTER2 = 0052

COUNT = (0041)

MARK= FF16

POINTER1 =

POINTER1 + 1

POINTER2 =

POINTER2 + 1

COUNT=

COUNT - 1

MARK= 0

(0040) = MARK

Character-Coded Data 6-13

PROBLEMS

6-1. LENGTH OF A TELETYPEWRITER MESSAGE

Purpose: Determine the length of an ASCII message. All characters are 7-bit ASCII
with MSB = 0. The string of characters in which the message is em bedded
starts in memory location 0041. The message itself starts with an ASCII STX
character (02 16) and ends with ETX (03 16). Place the length of the message
(the number of characters between the STX and the ETX but including
neither) into memory location 0040.

Sample Problem:

(0041)
(0042)
(0043)
(0044)
(0045)

Result: (0040)

40
02 STX
47 'G'

4F '0'
03 ETX

02, since there are two characters between

the STX in location 0042 and ETX in

location 0045

6-2. FIND LAST NON-BLANK CHARACTER

Purpose: Search a string of ASCII characters for the last non-blank character. The string
starts in memory location 0042 and ends with a carriage return character
(ODit,). Place the address of the last non-blank character in memory locations
0040 and 0041 (most significant bits in 0040).

Sample Problems:

a. (0042) 37 '7'
(0043) OD CR

Result: (0040) 00} since the last (and only) non-blank

(0041) 42 character is in memory location 0042

b. (0042) 41 'A'
(0043) 20 SP
(0044) 48 'H'
(0045) 41 'A'
(0046) 54 'T'
(0047) 20 SP
(0048) 20 SP
(0049) OD CR

Result: (0040) 00
(0041) 46

6-14 6809 Assembly Language Programming

6-3. TRUNCATE DECIMAL STRING TO INTEGER FORM

Purpose: Edit a string of ASCII characters by replacing all digits to the right of the
decimal point with ASCII blanks (2016). The string starts in memory location
0041 and is assumed to consist entirely of ASCII decimal digits and a possible
decimal point (2E16). The length of the string is in memory location 0040. If
no decimal point appears in the string, assume that the decimal point is
implicitly at the far right.

Sample Problems:

a. (0040) 04 Length of string

(0041) 37 '7'

(0042) 2E . .

(0043) 38 '8'
(0044) 31 • 1.

Result: (0041) 37 '7'
(0042) 2E , ,

(0043) = 20 SP
(0044) 20 SP

b. (0040) 03 Length of string

(0041) 36 '6'
(0042) 37 '7'
(0043) 31 . 1.

Result: Unchanged, as number is assumed to be 671

6-4. CHECK EVEN PARITY IN ASCII CHARACTERS

Purpose: Check even parity in a string of ASCII characters. The length of the string is in
memory location 0041, and the string itself begins in memory location 0042. If
the parity of all the characters in the string is correct, clear memory location
0040; otherwise, place all ones (FF 16) into memory location 0040.

Sample Problems:

a. (0041) 03 Length of string

(0042) 81 = 1011 0001
(0043) 82 = 1011 0010
(0044) 33 = 0011 0011

Result: (0040) 00, since all the characters have even parity

b. (0041) 03 Length of string

(0042) 81 = 1011 0001
(0043) 86 = 1011 0110
(0044) 33 = 0011 0011

Result: (0040) FF. since the character in memory location

0043 does not have even parity

Character-Coded Data 6-15

6-5. STRING COMPARISON

Purpose: Compare two strings of ASCII characters to see which is larger (that is, which

follows the other in alphabetical ordering). The length of the strings is in

memory location 0041; one string starts in memory location 0042 and the

other in memory location 0052. If the string starting in memory location 0042

is greater than or equal to the other string, clear memory location 0040; other­

wise, set memory location 0040 to all ones (FF10).

Sample Problems:

a. (00411 03 Length of each string

(00421 43 · c ·

(00431 41 'A'
(00441 54 'T'

(00521 42 'B'

(00531 51 'A'

(00541 54 'T'

Result: (00401 00. since CAT is 'larger' than BAT

b. (00411 03 Length of each string

(00421 43 ·c ·

(00431 41 'A'

(00441 54 T

(00521 43 · c·

(00531 41 'A'

(00541 54 'T '

Result: (00401 00, since the two strings are equal

c. (00411 03 Length of each string

(00421 43 'C'

(00431 41 'A'

(00441 54 'T'

(00521 43 · c ·

(00531 55 · u ·

(00541 54 'T'

Result (00401 FF, since CUT is 'larger' than CAT

7
Code Conversion

Code conversion is a continual problem in microcomputer applications. Peri­

pherals provide data in ASCII, BCD, or various special codes. The microcomputer

must convert the data into some standard form for processing. Output devices may

require data in ASCII, BCD, seven-segment, or other codes. Therefore, the

microcomputer must convert the results to the proper form after it completes the pro­

cessing.

There are several ways to approach code conversion:

1. Some conversions can easily be handled by algorithms involving arithmetic

or logical functions. The program may, however, have to handle special cases
separately.

2. More complex conversions can be handled with lookup tables. The lookup
table method requires little programming and is easy to apply. However, the

table may occupy a large amount of memory if the range of input values is
large.

3. Hardware is readily available for some conversion tasks. Typical examples
are decoders for BCD to seven-seg ment conversion and Universal

Asynchronous Receiver/Transmitters (UARTs) for conversion between
parallel (ASCII) and serial (teletypewriter) formats.

In most applications, the program should do as much as possible of the code con­

version work. This approach reduces parts count and power dissipation, saves board
space, and increases reliability. Furthermore, most code conversions are easy to pro­

gram and require little execution time.

7-2 6809 Assembly Language Programming

PROGRAM EXAMPLES

7-1. HEXADECIMAL TO ASCII

Purpose: Convert the contents of memory location 0040 to an ASCII character.
Memory location 0040 contains a single hexadecimal digit (the four most sig­
nificant bits are zero). Store the ASCII character in memory location 0041.

Sample Problems:

Program 7-1 :

0000 96 40
0002 81 09
0004 23 02
0006 88 07
0008 8B 30
OOOA 97 41
oooc 3F

a. (0040)

b.

ASCZ

Result: (0041)

(0040)

Result: (0041)

LDA $40
CMPA J9
BLS ASCZ
ADDA t'A-'9-1
ADDA t'O
STA $41
SWI

oc

43 ·c·

06

36 '6'

GET DATA
IS DATA 9 OR LESS?

NO, ADD OFFSET FOR LETTERS
CONVERT DATA TO ASCII
STORE ASCII DATA

The basic idea of this program is to add ASCII 0 (3016) to all the hexadecimal

digits. This addition converts the digits 0 through 9 to ASCII correctly. However, the
letters A through F do not follow immediately after the digit 9 in the ASCII code;
instead, there is a break between the ASCII code for 9 (3916) and the ASCII code for A
(4116), so the conversion must add a further constant to the nondecimal digits (A, B,
C, D, E, and F) to account for the break. The first ADD instruction does this by adding
'A - '9 - l to Accumulator A. Can you explain why the extra factor for letter digits
has the value 'A- '9- 1?

We have used the ASCII forms for the addition factors in the source program; a
single quotation mark (apostrophe) before a character indicates the ASCII equivalent.
We have also left the offset for the letters as an arithmetic expression to make its mean­
ing as clear as possible. The extra assembly time is a small price to pay for the great
increase in clarity. A routine like this is necessary in many applications; for example,
monitor programs must convert hexadecimal digits to their ASCII equivalents in order
to display the contents of memory locations in hexadecimal on an ASCII printer or CRT
display.

The following program, described by Allisont, provides a less obvious conver­

sion method that requires no conditional branches.

0000 96 40 LDA $40 GET HEX DIGIT
0002 8B 90 ADDA t$90 DECIMAL ADD 90 BCD
0004 19 DAA
0005 89 40 ADCA t$40 DECIMAL ADD 40 BCD + CARRY
0007 19 DAA
0008 97 41 STA $41
OOOA 3F SWI

Try this program on some hexadecimal digits. Can you explain why it works?

Flowchart:

DATA = (0040)

DATA=
DATA+ ASCII A
- ASCII9- 1

RESULT=
DATA+ ASCII 0

(004 1) = RESULT

7-2. DECIMAL TO SEVEN-SEGMENT

Code Conversion 7-3

Purpose: Convert the contents of memory location 0041 to a seven-segment code in
memory location 0042. If memory location 0041 does not contain a single
decimal digit, clear memory location 0042.

Figure 7-1 illustrates the seven-segment display and our representation of it as a
binary code. The segments a·re usually assigned the letters a through g as shown in
Figure 7-l. We have organized the seven-segment code as shown: segment g is in bit

position 6, segment f in bit position 5, e in bit position 4, and so on. Bit position 7 is
always zero. The segment names are standard, but the assignment of segments to bit
positions is arbitrary; in actual applications, this assignment is a hardware function.

The table in Figure 7-l is a typical example of those used to convert decimal num­
bers to seven-segment code; it assumes positive logic, that is, l = on and 0 = off. Note
that the table uses 70 for 6 rather than the alternative 7C (top bar off) to avoid confu­
sion with lower-case b, and 6F for 9 rather than 67 (bottom bar off) for symmetry with
the 6.

7-4 6809 Assembly Language Programming

Sample Problems:

Program 7-2:

0000 SF

0001 96

0003 81

0005 22
0007 8E

41

09
05

0020

OOOA E6 86
oooc 07 42
OOOE 3F

0020

0020
0021

0022
0023

0024
0025
0026
0027
0028

0029

3F

06
5B
4F

66
60
70

07
7F

6F

a.

b.

*

*

Result:

Result:

CLRB

LOA

CMPA
BHI

LOX

LOB
DONE STB

SWI
*

ORG
*

SSEG FCB

FCB

(0041)

(0042)

(0041)

(0042)

$41

J9
DONE

ISSEG

A,X

$4 2

$20

03

4F

28

00

GET ERROR CODE

TO BLANK DISPLAY
GET DATA

IS DATA A DECIMAL DIGIT?
NO, KEEP ERROR CODE

YES, GET SEVEN-SEGMENT
CODE FROM TABLE

$3F,$06,$5B,$4F,$66

$6D,$7D,$07,$7F,$6F

The program calculates the memory address of the seven-segment code by

adding an index - the digit to be converted - to the base address of the seven-seg­

ment code table. This procedure is known as a "table lookup." The addition does not
require any explicit instructions, since the processor performs it automatically as part of
the calculation of the effective address in the indexed addressing mode. We have used
the accumulator indexed mode in which the effective address is the sum of Accumulator

A and Index Register X.

The assembler directive FCB (Form Constant Byte) places constant byte-length
data in program memory. Such data may include tables, headings, error messages, prim­
ing messages, format characters, thresholds, and mathematical constants. The label
attached to an FCB pseudo-operation is assigned the value of the address in which the
assembler places the first byte of data.

The assembler assigns the data from the FCB directive to consecutive memory
addresses, with no changes other than numerical conversions. One FCB directive can fill
many bytes of memory; all the programmer must do is separate the entries with com­
mas.

We have left some memory space between the program and the table to allow for
later additions and to emphasize that they need not be located consecutively. In fact, we

could place the table anywhere in memory.

Tables are a simple, fast, and convenient approach to code conversion problems

that are more complex than our hexadecimal-to-ASCII example. The required lookup
tables simply contain all the possible results organized by input value; that is, the first
entry is the code for the number zero and so on.

Seven-segment displays provide recognizable forms of the decimal digits and a

few letters and other characters. They are relatively inexpensive and easy to handle

Code Conversion 7-5

with 8-bit microprocessors. However, many people find seven-segment coded digits

somewhat difficult to read, although their widespread use in calculators and watches

has made them more familiar.

Flowchart:

DATA= (004 1)

Yes

RESULT =

(SSEG + DATA) RESULT= 0

(0042) = RESULT

Note that the addition of base address (SSEG) and index (DATA) produces the

address that contains the answer.

Digit Code

0 3F
1 06
2 56
3 4F
4 66
5 60
6 70
7 07

8 7F
9 6F

7 6 5 4 3 2

a

. I

el_g_
d

0 �-- Bit Number

Figure 7-1. Seven-Segment Arrangement

b
c

7-6 6809 Assembly Language Programming

7-3. ASCII TO DECIMAL

Purpose: Convert the contents of memory location 0040 from an ASCII character to a

decimal digit and store the result in memory location 0041. If the contents of

memory location 0040 are not the ASCII representation of a decimal digit, set

the contents of memory location 0041 to FF16.

Sample Problems:

a.

Result:

b.

Result:

Flowchart:

(0040) 37. 7'

(0041) 07

(0040) 55 an invalid code. since it is not an
ASCII decimal digit

(0041) = FF

DATA = (0040)

RESULT=
DATA- ASCII 0

(004 1) = RESULT

Yes

Yes

RESULT= FF16

Code Conversion 7-7

Program 7-3:

0000 C6 FF LDB #$FF GET ERROR MARKER
0002 96 40 LDA $40 GET DATA
0004 80 30 SUBA 'I 0 IS DATA BELOW ASCII ZERO?
0006 25 06 BLO DONE YES, NOT A DIGIT
0008 81 09 CMPA #9 IS DATA ABOVE ASCII NINE?
OOOA 22 02 BHI DONE YES, NOT A DIGIT
oooc lF 89 TFR A,B SAVE VALID DECIMAL DIGIT
OOOE D7 41 DONE STB $41 SAVE DIGIT OR ERROR MARKER
0010 3 F SWI

This program handles ASCII characters just like ordinary numbers. Since ASCII

assigns an ordered sequence of codes to the decimal digits, we can identify an ASCII

character as a digit by determining if it falls within the proper range of numerical

values. We could use the ASCII ordering similarly to determine if a character is in a par­

ticular group of letters or symbols, such as A through F. This approach assumes

detailed knowledge of a particular code and would not necessarily be valid for other

codes.

Subtracting ASCII 0 (3016) from any ASCII decimal digit gives the decimal
value of that digit. An ASCII character is a decimal digit if its value lies between 3016
and 3916 (including the endpoints); how would you determine if an ASCII character is a

valid hexadecimal digit? ASCII-to-decimal conversion is necessary in applications in

which decimal data is entered from an ASCII device such as a teletypewriter or terminal.

The program performs one comparison - to the lower limit - with an actual

subtraction (SUBA =lf'O), since the subtraction is necessary for the ASCII-to-decimal

conversion. It performs the other comparison with an implied subtraction (CMPA =lf9)
to avoid destroying the possible decimal digit in Accumulator A. Implied subtractions

(CMP) are far more common than actual subtractions (SUB) in programs, since the

numerical value of the result is seldom of interest.

The instruction TFR can transfer the contents of any 8- or 16-bit register to any
other 8- or 16-bit register. TFR copies the source register into the destination register;

the source register is not changed. The only restriction is that the source and destina­

tion registers must be the same length (both eight bits long or both 16 bits long). TFR

instructions always require one byte besides the operation code; the high-order four bits

of that byte specify the source register and the low-order four bits specify the destination

register. See the description of TFR in Chapter 22 for more details.

One special use of TFR is to load the direct page register, since there is no LD
instruction for that register. A typical sequence that loads the direct page register with

the constant value PGNO is:

LDA tPGNO
TFR A,DP

DIRECT PAGE = PGNO

An alternative to TFR is EXG (Exchange Registers). This instruction swaps
the source and destination registers, thus preserving both values. For example, the

following sequence will load the direct page register with the constant PGNO and save

the old direct page register in memory location OLDPG.

LDA
EXG
STA

tPGNO
A,DP
OLDPG

DIRECT PAGE = PGNO

SAVE OLD DIRECT PAGE NUMBER

7-8 6809 Assembly Language Programming

7-4. BCD TO BINARY

Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary num­

ber in memory location 0042. The most significant BCD digit is in memory

location 0040.

Sample Problems:

a. (0040) 02
(0041) 09

Result: (0042) 1016

b. (0040) 07
(0041) 01

Result: (0042) 4716

Program 7-4:

0000 96 40 LOA $40 GET MOST SIGNIFICANT DIGIT
0002 C6 OA LOB 110 MULTIPLY BY 10
0004 30 MUL
0005 DB 41 ADDB $41 ADD LEAST SIGNIFICANT DIGIT
0007 07 42 STB $42 STORE BINARY EQUIVALENT
0009 3F SWI

The MUL instruction performs an unsigned 8-bit by 8-bit multiplication of the

contents of Accumulators A and B; the result occupies the double accumulator D,

with the high-order byte in A.

In this case, we know that the result is 9016 or less, so only the low-order eight bits
of the product (in Accumulator B) are relevant.

Converting BCD entries to binary saves storage and simplifies calculations.

BCD numbers require about 20% more memory space than do binary numbers; for
example, representing the numbers 0 to 999 requires three BCD digits - 12 bits - but

only 10 bits in binary since 210 = 1024:::::::1000.
Since MUL requires 11 clock cycles, it is sometimes faster to multiply by small

decimal numbers using repeated additions.2 The instruction ASLA multiplies the con­
tents of Accumulator A by 2, so multiplications by powers of 2 can be implemented as

arithmetic shifts.

7-5. BINARY NUMBER TO ASCII STRING

Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII

characters (each either ASCII 0 or ASCII 1) in memory locations 0042
through 0049. (Place the most significant bit in location 0042.)

Sample Problem:
(0041) 02 = 1101 0010

Result: (0042) 31 "1'

(0043) 31 '1'

(0044) 30 '0'

(0045) 31 0,'

(0046) 30 '0'

(0047) 30 '0'

(0048) 31 '1"

(0049) 30 '0'

Flowchart:

Program 7-5:

0000 C6 30
*

0002 96 41
0004 8E 0042
0007 E7 80 CONY
0009 48
OOOA 24 02
oooc 6C 1F

*

OOOE 8C 004A COUNT
00 1 1 26 F4
0013 3F

LOB

LD�
LOX
STB

DATA: (0041)

POINTER : 0042

(POINTER): ASCII 0

Shift OAT A right

one bit

(POINTER) : ASCII 1

(: (POINTER) + 1)

POINTER=
POINTER+ 1

I I 0 GET ASCII ZERO

Code Conversion 7-9

TO STORE IN STRING
$4 1 GET DATA
t$42 POINT TO START OF ASCII STRING
'X+ STORE ASCII ZERO IN STRING

LSLA IS BIT ACTUALLY 1?
BCC COUNT
INC - 1,X YES, MAKE STRING ELEMENT

INTO ASCII ONE
CMPX 1$4A CHECK FOR END OF CONVERSION
BNE CONY
SWI

Since the decimal digits form a sequence in ASCII, ASCII 1 = ASCII 0 + 1.

The CMP(X/Y /U/8/D) instructions compare 16-bit quantities. The flags are

set according to the result of the entire 16-bit subtraction, even though the

microprocessor actually performs it eight bits at a time. CMPX takes two cycles longer

7-10 6809 Assembly Language Programming

than CMPA or CMPB, while CMPD, CMPY, CMPS, and CMPU all require two-byte
operation codes and take three cycles longer than CMPA or CMPB.

Single-operand instructions like INC, DEC, COM, or ASL can all use any of
the indexed addressing modes. Be careful of the fact that such instructions affect

memory locations (the effective address), not the specified index register or stack

pointer (except through autoincrementing or autodecrementing). For example, CLR
,X+ clears the byte of memory located at the address in Index Register X (and
autoincrements X)� it does not clear Index Register X.

Assembly-time arithmetic often comes in handy for performing address com­
parisons. If, for example, we established that the ASCII binary string started in the loca­
tion named BINSTR, the required comparison instruction would be:

COUNT CMPX IBINSTR+8

This form is clearer and easier to change than is an explicit address. Furthermore, the
programmer does not have to perform any hexadecimal arithmetic.

Binary-to-ASCII conversion is necessary if numbers are to be printed in binary
on an ASCII device. Binary outputs are helpful in debugging and testing when each
bit has a separate meaning; typical examples are inputs from a set of panel switches or
outputs to a set of LEOs. If the programmer can only obtain the value in some other
number system (such as octal or hexadecimal), he or she must perform an error-prone
hand conversion to check the bits.

PROBLEMS

7-1. ASCII TO HEXADECIMAL

Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and
store the result in memory location 0041. Assume that memory location 0040
contains the ASCII representation of a hexadecimal digit (7 bits with MSB 0).

Sample Problems:

a. (0040)

Result: (0041)

b. �o4rn

Result: (004 1)

7-2. SEVEN-SEGMENT TO DECIMAL

43 ·c·

oc

36 '6'

06

Purpose: Convert the contents of memory location 0040 from a seven-segment code to
a decimal number in memory location 0041. If memory location 0040 does not
contain a valid seven-segment code, set memory location 0041 to FF16• Use
the seven-segment table given in Figure 7-1 and try to match codes.

Sample Problems:

a. (0040) 4F

Result: (0041) 03

b. (0040) 28

Result: (004 1) FF

7-3. DECIMAL TO ASCII

Code Conversion 7-11

Purpose: Con vert the contents of memory location 0040 from a decimal digit to an
ASCII character and store the result in memory location 0041. If the number
in memory location 0040 is not a decimal digit, set the contents of memory
location 0041 to an ASCII space (2016).

Sample Problems:

a. Wo4m

Result: (004 1)

b. (0040)

Result: (0041)

7-4. BINARY TO BCD

07

37 '7'

55

20 SP

Purpose: Convert the contents of memory location 0040 to two BCD digits in memory
locations 0041 and 0042 (most significant digit in 0041). The number in
memory location 0040 is unsigned and less than 100.

Sample Problems:

a. {0040) 1D

Result: (0041) 02

(0042) 09

b. (0040) 47

Result: (0041) 07

(0042) 01

7-5. ASCII STRING TO BINARY NUMBER

Purpose: Convert the eight ASCII characters in memory locations 0042 through 0049 to
an 8-bit binary number in memory location 0041 (the most significant bit is in
0042). Clear memory location 0040 if all the ASCII characters are either
ASCII 1 or ASCII 0 and set it to FF16 otherwise.

7-12 6809 Assembly Language Programming

Sample Problems:

a. (0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)

Result: (0041)
(0040)

31
31
30
31
30
30
31
30

D2
00

b. Same as above except:
(0045) 37

Result: (0040) = FF

'1'
'1.
·o·
'1'
·o·
·o·
'1'
·o·

= 1101 0010

'7'

REFERENCES

1. D. R. Allison, "A Design Philosophy for Microcomputer Architectures," Com­

purer, February 1977, pp. 35-41. This is an excellent article which we highly recom­

mend.

2. Other BCD-to-binary conversion methods are discussed in J. A. Tabb and M. L.

Roginsky, "Microprocessor Algorithms Make BCD-Binary Conversions Super­

fast," EDN, January 5, 1977, pp. 46-50, and in J. B. Peatman, Microcomputer-Based

Design, (New York: McGraw-Hill, 1977), pp. 400-406.

8
Arithmetic Problems

Most arithmetic in microprocessor applications consists of multi-byte binary or
decimal manipulations. A decimal correction (decimal adjust) or some other means
for performing decimal arithmetic is frequently the only arithmetic instruction pro­
vided beyond binary addition and subtraction. The 6809 microprocessor represents a
significant advance over earlier devices in that, besides the operations mentioned, it
has instructions for 16-bit addition and subtraction, 8-bit unsigned multiplication,
and sign extension.

Multiple-precision binary arithmetic requires simple repetitions of the basic
single-byte instructions. The Carry flag transfers information between bytes. Add
with Carry and Subtract with Carry (Borrow) are the instructions that use the informa­

tion from the previous arithmetic operations. You must be careful to clear the Carry

before operating on the least significant bytes, since there is obviously never any carry

into them or borrow from them.

Decimal arithmetic is a common enough task for microprocessors that most
have special instructions for this purpose. These instructions may either perform
decimal operations directly or correct the results of binary operations to the proper
decimal forms. Decimal arithmetic is essential in such applications as point-of-sale ter­

minals, calculators, check processors, order entry systems, and banking terminals. It is

necessary in other applications as well (such as instrumentation, test equipment, pro­

cess control, and industrial control) to allow input and output of data in the form

familiar to human operators.

The 6809 microprocessor has a multiplication instruction MUL that can easily
be extended to handle data that is more than 8 bits in length. You can implement
division as a series of subtractions and shifts much as you ordinarily perform long
division by hand. Double-byte operations are essential since division reduces the bit

length of the result. Of course, multiplying or dividing by a power of 2 is simple since
such operations can be implemented with an appropriate number of left or right
arithmetic shifts.

8-2 6809 Assembly Language Programming

PROGRAM EXAMPLES

8-1. MULTIPLE-PRECISION BINARY ADDITION

Purpose: Add two multi-byte binary numbers. The length of the numbers (in bytes) is
in memory location 0040, the numbers themselves start (least significant bits
first) in memory locations 0041 and 0051 respectively, and the sum replaces
the number starting in memory location 0041.

Sample Problem:

Result:

Flowchart:

(0040)

(0041)
(0042)
(0043)
(0044)

(0051)
(0052)
(0053)
(0054)

(0041)
(0042)
(0043)
(0044)

04

C3)
A7 I
58 (
2F J
BB
35
OF
14

78)
DO I
3A (
44 '

Number of bytes in each number

2F5BA 7C316 is first number

14DF35B816 is second number

443ADD7B16 is sum

COUNT = (0040)
POINTER 1 = 0041
POINTER2 = 0051
CARRY= 0

(POINTER1) =
(POINTER 1) +
IPOINTER2l +
(CARRY) (This step also produces new carry)

POINTER1 =

POINTER1 + 1
POINTER2 =

POINTER2 + 1
COUNT=COUNT-1

Program 8-1 :

0000 D!i

0002 BE

0005 lOBE

0009 lC

0008 A6

0000 A9

OOOF A7

0011 SA

0012 26
0014 3F

40

0041

00 51

FE

84
AO

80

F7

LDB

LDX

LDY

AN DCC

ADBYTE LDA
ADCA

STA

DECB

BNE

SWI

Clearing and Setting Flags

Arithmetic Problems 8-3

$40 COUNT=LENGTH OF NUMBER IN BYTES

*$41 POINT TO LSB'S OF FIRST NUMBER

�$51 POINT TO LSB'S OF SECOND NUMBER

#%11111110 CLEAR CARRY TO START

,X GET BYTE FROM FIRST NUMBER

,Y+ ADD BYTE FROM SECOND NUMBER

,X+ STORE RESULT IN FIRST NUMBER

ADBYTE CONTINUE UNTIL ALL BYTES ADDED

The instruction AN DCC logically ANDs the next byte of program memory with

the condition code register, clearing those flags that are ANDed with 'O's and leaving

unchanged those flags that are ANDed with '1 's. AN DCC=#=% 11111110 thus clears bit

0 of the condition code register (the Carry flag) and leaves the other bits unchanged.

The 6800 mnemonic for this operation is much clearer- CLC (CLEAR CARRY); of

course, the 6809 ANDCC is more general. The program must clear the carry since there

is never a carry into the least significant bytes.

The instruction ORCC is similar to ANDCC, except that it logically ORs the

next byte of program memory with the condition code register, setting those flags that

are ORed with '1 's and leaving unchanged those flags that are ORed with 'O's. ORCC
:#=%00000001 thus sets bit 0 of the condition code register (the Carry flag) and leaves the

other bits unchanged. As with ANDCC, the 6800 mnemonic is much clearer- SEC
(SET CARRY).

Add With Carry

The instruction ADC (ADD WITH CARRY) adds in the carry from the previous
byte. ADC is the only instruction in the loop that affects the Carry flag. Note, in particu­
lar, that instructions such as INC, DEC, and LEA perform counting and arithmetic

functions without affecting the Carry flag.

Positioning Data

This program uses two index registers so that the two numbers can be positioned

independently in memory. If we used a single index register, the numbers could be
located anywhere but would always have to be separated by a constant distance. We

could take advantage of the User Stack Pointer U to store the result in a third indepen­

dent set of memory locations. You might try modifying the program so that it stores the

sum starting in memory location 0061.

Decimal Accuracy in Binary Representation

This procedure can add binary numbers of any length. Ten bits correspond to

approximately three decimal digits since 210 = 1024�1000. So you can calculate the

number of bits required to give a certain accuracy in decimal digits from the formula:

Number of bits = (1 0 + 3) x Number of decimal digits

For example, twelve decimal digit accuracy requires:
1 2 x 1 0 + 3 = 40 bits

8-4 6809 Assembly Language Programming

One shortcoming of the 16-bit instruction ADDD is that it cannot be extended easily.

There is no 16-bit equivalent of the ADD WITH CARRY instruction.

8-2. DECIMAL ADDITION

Purpose: Add two multi-byte decimal (BCD) numbers. The length of the numbers (in
bytes) is in memory location 0040, the numbers themselves start (least sig­

nificant digits first) in memory locations 0041 and 0051 respectively, and the

sum replaces the number starting in memory location 0041.

Sample Problem:

Result:

Flowchart:

(0040)

(0041)
(0042)
(0043)
(0044)

(0051)
(0052)
(0053)
(0054)

(0041)
(0042)
(0043)
(0044)

that is.

= 04 Number of bytes in each number

= 85

l 19
36701985 is first number

70

J = 36

= 59

� 34
1 2663459 is second number

66
) = 12

= 44
l 54

49365444 is decimal sum
36

� = 49

36701985
+ 12663459

49365444

COUNT = (0040)
POINTER1 = 0041
POINTER2 = 0051
Carry= 0

(This step also
produces new carry)

POINTER1 =

POINTER1 + 1
POINTER2 =

POINTER2 + 1
COUNT=COUNT-1

Arithmetic Problems 8-5

Program 8-2:

0000 06 40 LOB $40 COUNT=LENGTH OF NUMBERS IN BYTES

0002 8E 0041 LOX 1$41 POINT TO LSB'S OF FIRST NUMBER

0005 lOSE 0051 LOY #$51 POINT TO LSB'S OF SECOND NUMBER

0009 lC FE AN DCC t%11111110 CLEAR CARRY TO START

0008 A6 84 ADDIGS LOA ,X GET TWO DIGITS OF FIRST NUMBER

0000 A9 AO ADCA ,Y+ ADD TWO DIGITS OF SECOND NUMBER

OOOF 19 DAA DECIMAL CORRECTION

0010 A7 80 STA ,X+ STORE RESULT IN FIRST NUMBER

0012 5A DECB

0013 26 F6 BNE ADDIGS CONTINUE UNTIL ALL DIGITS ADDED

0015 3F SWI

The Decimal Adjust Instruction

The Decimal Adjust (DAA) instruction uses the Carry (C) and Half-Carry (H)
flags to recognize and change the following situations in which binary and BCD addition
differ:

1. The sum of two digits is between 10 and 15 inclusive. In this case, six must
be added to the sum to give the right result, e.g.,

0101 (5)
+ 1000 (8)

1101 (D)
+ 0110

0001 0011 (BCD 13, which is correct)

2. The sum of two digits is 16 or more. In this case, the result is a proper BCD
digit but six less than it should be, e.g.,

1000 (8)
+ 1001 (9)

0001 0001 (BCD 11)
+ 0110

0001 01 11 (BCD 1 7, which is correct)

An extra factor of 6 is necessary in both cases. However, the processor can recog­
nize Case 1 by determining that the sum is not a BCD digit, i.e., it is between 10 and 15

(or A and F hexadecimal). On the other hand, the processor must check the digit carry
(H for the lower digit, C for the upper digit) to recognize Case 2, since the result is a
valid BCD number. DAA is the only instruction that actually needs the H (Half-Carry)

flag. Note that DAA only operates on Accumulator A and only works correctly after an
ADDA or ADCA instruction.

You cannot use DAA after such instructions as:

1. ADDD or SUBD, since neither affects the H flag. Correcting the result of
ADDD to decimal would obviously require three digit carry flags.

2. ASL, ASR, NEG, SBC, or SUBA(B), since all of these leave the H flag in
an undefined state. In particular, you can only perform decimal subtraction
in a rather roundabout way (see Problem 2 at the end of the chapter). This
approach involves transforming a subtraction operation into an addition

8-6 6809 Assembly Language Programming

operation; if, for example, X and Y are each two digits from a string of
decimal numbers, then

X - Y = X + 99 - Y + BORROW

where BORROW is the borrow from the previous (less significant) digits.

Calculating 99- Y is simple, since any decimal number can be subtracted
from 99 without producing a borrow from either digit. You can then use DAA
to add X in decimal form. Note, however, that this operation produces a carry
if the result is positive but not if the result is negative. Thus the Carry has the
opposite meaning from its usual significance as a borrow in subtraction opera­
tions.

3. INC or DEC, since neither affects the Half-Carry or the Carry. You can,
however, perform a decimal increment of Accumulator A with the sequence:

ADDA # 1
DAA

INCREMENT ACCUMULATOR
RETAINING DECIMAL FORM

or a decimal decrement by adding 99 (hex or BCD):

ADDA #$99
DAA

DECREMENT ACCUMULATOR
RETAINING DECIMAL FORM

The decimal increment produces a carry if the result is I 00, while the decimal
decrement produces a carry unless the result is 99. Thus you can recognize
either a carry or a borrow by examining the Carry flag.

4. LEA, since it produces a 16-bit result and does not affect either the Half­

Carry flag or the Carry flag.

Binary and BCD Accuracy

The decimal addition procedure works for decimal (BCD) numbers of any length.
Since each decimal digit requires four bits, twelve-digit accuracy requires

1 2 x 4 = 48 bits

as compared to 40 bits using binary addition. This is six bytes instead of five, a 20%

increase.

Arithmetic Problems 8-7

8-3. 8-BIT BY 16-BIT BINARY MULTIPLICATION

Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 16-bit

unsigned number in memory locations 0041 and 0042 (MSB's in 0041). Place

the result in memory locations 0043, 0044, and 0045, with the MSB's in 0043
and the LSB's in 0045.

Sample Problems:

a. (0040) 03 multiplier

(0041) 00

} 0005 is multiplicand
(0042) 05

Result: (0043) 00
(0044) 00 OOOOOF is product

(0045) OF

or in decimal: 3 X 5 = 15.

b. (0040) 64 multiplier

(0041) 75

} 7530 is multiplicand
(0042) 30

Result: (0043) 20
(0044) C6 2DC6CO is product

(0045) co

or in decimal: 1 00 x 30,000 = 3,000.000.

Program 8-3:

0000 96 40 LDA $40 GET MULTIPLIER

0002 06 42 LOB $42 GET LSB'S OF MULTIPLICAND

0004 3D MUL MULTIPLY LSB'S

0005 DD 44 STD $44 SAVE PARTIAL PRODUCT

0007 96 40 LDA $40 GET MULTIPLIER

0009 06 41 LOB $41 GET MSB'S OF MULTIPLICAND

0008 3D MUL MULTIPLY MSB'S

oooc DB 44 ADDS $44 ADD LSB'S TO MSB'S
* OF PREVIOUS PARTIAL PRODUCT

OOOE 89 00 ADCA 10 ADD CARRY TO MSB'S

0010 DO 43 STD $43 SAVE SUM OF PARTIAL PRODUCTS

0012 3F SWI

Extending the MUL instruction to handle longer operands works much like ordin­

ary long multiplication. You must be careful to align the partial products correctly before

adding them together. Each successive partial product is shifted 8 bits to the left from

the previous product. The ADCA =#:0 instruction provides a convenient way to handle

carries that may result from adding partial products.

Besides its obvious uses in calculators and point-of-sale terminals, multiplica­

tion is also a key part of almost all signal processing and control algorithms. The

speed at which a processor can perform multiplication determines its usefulness in

process control, adaptive control, signal detection, and signal analysis.

Multi-Dimensional Arrays

Another common use of multiplication is in locating elements in multi-dimen­

sional arrays. For example, if we have an array of sensor readings organized by remote

station number and sensor number, we generally refer to the reading from the 7th sen­

sor at station number 5 as R(5,7), where R is the name of the entire array. The usual

method of storing such an array is to start at address RBASE with R (0,0) and continue

8-8 6809 Assembly Language Programming

with R (0, 1), R (0, 2), etc. If there are 3 stations (0, 1, and 2) and 4 sensors at each sta­

tion (0, l , 2, and 3), we keep the readings in the following memory locations:

Memory Location Reading

ABASE A(O,O)
ABASE+ 1 A(0,1)
ABASE+ 2 A(0,2)
ABASE+ 3 A(0,3)
ABASE+ 4 A(1,0)
ABASE+ 5 R(1,1)
RBASE + 6 A(1.2)
RBASE + 7 R(1.3)
RBASE + 8 A(2.0)
RBASE + 9 A(2.1)
RBASE + 10 R(2,2)
RBASE + 11 R(2.3)

In general, if we know the station number I and the sensor number J, the reading

R(I,J) is located at address

RBASE + N X I + J

where N is the number of sensors at each station. Thus locating a particular reading in

order to update it, display it, or perform some mathematical operations on it requires a

multiplication. For example, the operator might want an instrument to print the current

reading of sensor =#:3 at station=#: 2. To find that reading, the processor must calculate the

address

RBASE + 4 x 2 + 3 = RBASE + 11

Even more multiplications are necessary if the array has more dimensions. For

example, we might organize the sensors by station number, position in the X direction,

and position in theY direction (each station thus has sensors at regular positions on a

two-dimensional surface). Now we can describe a reading R (2,3, 1), which refers to the

reading of the sensor at station =#:2, X position =#:3, andY position :l:Fl . We can add even

more dimensions, such as vertical position, type of sensor, or time of reading. Each

added dimension means that the processor must perform more multiplications to locate

elements in the essentially one-dimensional memory.

Execution Time

This algorithm takes 54 clock cycles (or 27 microseconds if the clock is 2 MHz) to

multiply on a 6809 microprocessor. Higher speed would require additional hardware,

such as one of the multiplier chips described in the References at the end of this chapter.

8-4. BINARY DIVISION

Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041 (most

significant bits in 0040) by the 8-bit unsigned number in memory location

0042. The numbers are normalized so that 1) the most signicant bits of both

the dividend and the divisor are zero and 2) the number in memory location

0042 is greater than the number in memory location 0040, i.e., the quotient is

an 8-bit number. Store the remainder in memory location 0043 and the quo­

tient in memory location 0044.

Arithmetic Problems 8-9

Sample Problems:

a. (0040) 00 }
004016 '= 64 is dividend (0041) 40

(0042) 08 divisor

Result: (0043) 00 remainder

(0044) 08 quotient

that is, 64 -o- 8 = 8

(0040) 32 }
326D16 = 12,909 is dividend (0041) 6D

b.

(0042) 47 711 o is divisor

Result: (0043) 3A 5810 is remainder

(0044) 65 1 8110 is quotient

that is, 12,909 + 71 = 181 with a remainder of 58

Division Algorithm

You can perform division on the computer just as you would perform division

with pen and paper, i.e., using trial subtractions. Since the numbers are binary, the

only question is whether the bit in the quotient is 0 or I, i.e., whether the divisor can be

subtracted from what is left of the dividend. Each step in a binary division can be

reduced to the following operation:

If the divisor can be subtracted from the eight most significant bits of the dividend

without a borrow, the corresponding bit in the quotient is 1; otherwise, it is 0.

The only remaining problem is to line up the dividend and quotient properly.

You can do this by shifting the dividend and quotient logically left one bit before each

trial subtraction. The dividend and quotient can share a 16-bit register, since the pro­

cedure clears one bit of the dividend at the same time as it determines one bit of the

quotient.

The complete process for binary division is

STEP 1 - Initialization

QUOTIENT'= 0
COUNT= 8

STEP 2- Shift DIVIDEND and QUOTIENT to align them properly

DIVIDEND '= 2 x DIVIDEND

QUOTIENT = 2 X QUOTIENT

STEP 3- Perform trial SUBTRACTION. If no BORROW, add l to QUOTIENT

If 8 MSBs of DIVIDEND :2. DIVISOR then

MSBs of DIVIDEND '= MSBs of DIVIDEND - DIVISOR

QUOTIENT = QUOTIENT + 1

STEP 4- Decrement counter and check for zero

COUNT = COUNT - 1
If COUNT � 0, GO TO STEP 2
REMAINDER = 8 MSBs of DIVIDEND

In the case of sample problem b, where the dividend is 326D16 and the divisor is
4716, the process works as follows.

8-10 6809 Assembly Language Programming

Initialization:

DIVIDEND
DIVISOR
QUOTIENT
COUNT

326D
47
00
00

After first iteration of STEPS 2-4. Note
that the dividend is shifted prior to the
trial subtraction):

DIVIDEND 1 DDA
DIVISOR 47
QUOTIENT 01
COUNT 07

After second iteration of STEPS 2-4:

DIVIDEND
DIVISOR
QUOTIENT
COUNT

After third iteration:

DIVIDEND
DIVISOR
QUOTIENT
COUNT

After fourth iteration:

3884
47
02
06

3068
47
05
05

DIVIDEND 19DO
DIVISOR 47
QUOTIENT 08
COUNT 04

After fifth iteration:

DIVIDEND
DIVISOR
QUOTIENT
COUNT

After sixth iteration:

DIVIDEND
DIVISOR
QUOTIENT
COUNT

After seventh iteration:

DIVIDEND
DIVISOR
QUOTIENT
COUNT

After eighth iteration:

DIVIDEND
DIVISOR
QUOTIENT
COUNT

So the quotient is B5 and the remainder is 3A.

33AO
47
16
03

2040
47
2D
02

4080
47
5A
01

3AOO
47
85
00

The MSBs of dividend and divisor are assumed to be zero to simplify calculations
(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in
the Carry). Problems that are not in this form must be simplified by removing parts of
the quotient that would overflow 8 bits. For example:

1024 40016 10016
-- =--=100 +--

3 3 16
3

The last problem is now in the proper form. An extra division may be necessary.

Flowchart:

Program 8-4:

0000 86 08
0002 97 43
0004 DC 40
0006 58 DIVIDE
0007 49
0008 91 42
OOOA 25 03
oooc 90 42

*

OOOE sc
OOOF OA 43 CHKCNT
0011 26 F3
0013 DD 43
0015 3F

DIVIDEND=
(0040): {0041)

DIVISOR = {0042)
COUNT= 8
QUOTIENT= 0

DIVIDEND = 2 X

DIVIDEND

QUOTIENT = 2 X

Arithmetic Problems 8-11

QUOTIENT {Shift both left 1 bit)

8 MSBs of
DIVIDEND= 8 MSBs

of DIVIDEND­
DIVISOR

QUOTIENT=
QU TIENT + 1

COUNT=

COUNT-

(0043) =

8 MSB's of
DIVIDEND=
REMAINDER

(0044) =QUOTIENT

LOA #8
STA $43
LDD $40
ASLB
ROLA
CMPA $4 2
BCS CHKCNT
SUBA $4 2

!NCB
DEC $4 3
BNE DIVIDE
STD $4 3
SWI

COUNT=8

GET DIVIDEND
SHIFT DIVIDEND, QUOTIENT

IS TRIAL SUBTRACTION SUCCESSFUL?

YES, SUBTRACT AND SET BIT IN
QUOTIENT

STORE REMAINDER, QUOTIENT

8-12 6809 Assembly Language Programming

Many applications, such as calculators, terminals, communications error

checking, and control algorithms, involve division, but it is not nearly as common as

multiplication. This is why the 6809 instruction set includes a multiplication

instruction, but no division instruction. In particular, locating elements in multi­

dimensional arrays requires multiplication but not division.

The algorithm takes between 170 and 230 clock cycles to divide. That corresponds

to between 85 and 115 microseconds at a 6809 clock frequency of 2 MHz. The precise

time depends on how many times the trial subtraction succeeds, resulting in an actual

subtraction and the setting of bit 0 of the quotient. Other algorithms can reduce the
execution time somewhat, but 200 clock cycles will still be typical for a software division.

Higher speed requires additional hardware as described in the References at the end of

this chapter.

The instructions ASLB and ROLA together produce a 16-bit arithmetic left shift

of the Double Accumulator D. ASLB shifts bit 7 of Accumulator B into the Carry, and
ROLA picks it up and places it in bit 0 of Accumulator A. The 6801 microprocessor has
instructions that shift the Double Accumulator left logically (LSLD) and right logically

(LSRD).

Accumulators A and B hold both the dividend and the quotient. The quotient

simply replaces the dividend in Accumulator Bas the dividend is shifted left logically.

8-5. SELF-CHECKING NUMBERS

Double Add Double Mod 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the

string (number of bytes) is in memory location 0041, and the string of digits

(2 in each byte) starts in memory location 0042. Calculate the checksum digit

by the Double Add Double Mod 10 technique' and store it in memory loca­

tion 0040.

The Double Add Double Mod 10 technique works as follows:

1. Clear the checksum to start.

2. Multiply the leading digit by two and add the result to the checksum.

3. Add the next digit to the checksum.

4. Continue the alternating process until you have used all the digits.

5. The least significant digit of the checksum is the self-checking digit.

Self-Checking Numbers

Self-checking digits are commonly added to identification numbers on credit

cards, inventory tags, luggage, parcels, etc. when they are handled by computerized

systems. They may also be used in routing messages, identifying files, and other

applications. The purpose of the digits is to minimize entry errors such as transpos­

ing digits (69 instead of 96), shifting digits (7260 instead of 3726), missing digits by

one (65 instead of 64), etc. You can check the self-checking number automatically for

correctness upon entry and can eliminate many errors immediately.

The analysis of self-checking methods is quite complex. For example, a plain

Arithmetic Problems 8-13

checksum will not find transposition errors (4 + 9 = 9 + 4). The Double Add Double

algorithm will find simple transposition errors (2 x 4 + 9 = 17 =f. 2 x 9 + 4), but will

miss some errors, such as transpositions across even numbers of digits (367 instead of

763). However, this method will find many common errors! The value of a method

depends on what errors it will detect and on the probability of particular errors in an

application.

For example, if the string of digits is:

549321

the result will be:

Checksum = 5 x 2 + 4 + 9 x 2 + 3 + 2 x 2 + 1 = 40

Self-checking digit = 0 Ueast significant digit of checksum)

Note that an erroneous entry like 543921 would produce a different self-checking digit

(4), but erroneous entries like 049321 or 945321 would not be detected.

Sample Problems:

a. (0041) 03 Number of bytes

(0042) 36

(0043) 68

(0044) 51

Result: Checksum= 3 X2+6+6 X 2 + 8 + 5 X 2 + 1 = 43

(0040) 03

b. (0041) 04 Number of bytes

(0042) 50

(0043) 29

(0044) 16

(0045) 83

Result: Checksum = 5 X 2 + 0 + 2 X 2 + 9 + 1 X 2 + 6 + 8 X 2 + 3 = 50

(0040) 00

Program 8-5:

0000 BE 0042 LOX t$4 2 POINT TO START OF STRING
0003 OF 40 CLR $40 CHECKSUM=ZERO
0005 A6 84 CHKDG LOA ,X GET NEXT 2 DIGITS OF DATA
0007 44 LSRA SHIFT OFF LEAST SIGNIFICANT

* DIGIT
0008 44 LSRA
0009 44 LSRA
OOOA 44 LSRA
0008 1F 89 TFR A,B COPY MOST SIGNIFICANT DIGIT
0000 98 40 ADDA $4 0 ADD MSD TO CHECKSUM
OOOF 19 DAA RETAINING DECIMAL FORM
0010 97 40 STA $4 0
0012 1F 98 TFR 8,A AND ADD MSD TO CHECKSUM AGAIN

0014 98 40 ADDA $4 0
0016 19 DAA RETAINING DECIMAL FORM
0017 A8 80 ADDA ,X+ ADD IN LEAST SIGNIFICANT DIGIT

0019 19 DAA RETAINING DECIMAL FORM
001A 97 40 STA $40
001C OA 41 DEC $41 CO�TINUE UNTIL ALL DIGITS ADDED
OOlE 26 E5 BNE CHKDG
0020 84 OF ANDA U000011ll SAVE LSD OF CHECKSUM
0022 97 40 STA $40
0024 3F SWI

8-14 6809 Assembly Language Programming

Flowchart:

CHECKSUM= 0
COUNT = (00411
POINTER = 0042

MSD=(POINTER)-+16
LSD= (POINTER)

AND 000011 1 1 2
CHECKSUM=

CHECKSUM+
2 X M +

POINTER =

POINTER+ 1
COUNT=

COUNT- 1

(0040) =
CHECKSUM AND
000011112

Four logical right shifts move the most significant digit to the least significant bit

positions. There is no reason to mask out the most significant digit before adding the

least significant digit, since we do not care what happens to the most significant digit of

the checksum anyway.

A decimal adjust (DAA) must follow each addition to produce the proper
decimal result. A single DAA after a series of additions will not work (try it!).
Remember that DAA only operates on Accumulator A.

There is no problem with carries from the various decimal sums, since the

algorithm only uses the least significant digit of the checksum anyway.

Doubling and Halving Decimal Numbers

You can double a decimal number in Accumulator A by adding it to itself and
then performing a decimal correction. The following sequence uses memory location

0040 for temporary storage:

STA $40
AODA $40
OAA
SWI

DOUBLE NUMBER (ADD IT TO ITSELF)

Arithmetic Problems 8-15

You cannot use ASLA, because it leaves the Half-Carry flag undefined. Only

ADCA, ADCB, ADDA, and ADDB set the Half-Carry f1ag correctly.

You can divide a decimal number by 2 simply by shifting it right logically and

then subtracting 3 from any digit that has a value of 8 or larger (since 10 BCD is 1610).
The following program divides a decimal number in memory location 0040 by 2 and

places the result in memory location 0041.

LDA $40 GET DECIMAL NUMBER
LSRA DIVIDE BY 2 IN BINARY
TFR A,B MOVE QUOTIENT TO B FOR TESTING
ANDB #SOF MASK OFF MSD
CMPB #8 IS LSD 8 OR MORE?
BLO DONE
SUBA #3 YES, SUBTRACT 3 FROM LSD FOR DECIMAL

DONE STA $41 STORE RESULT
SWI

Try this program (and the method) on the decimal numbers 28, 30, and 37. Do

you understand why it works?

Binary Rounding

Rounding numbers is simple, regardless of whether they are binary or decimal.

You can round a binary number as follows:

If the most significant bit to be dropped is 1, add 1 to the remaining bits. Other­

wise, do not change the remaining bits.

This rule works because 1 is halfway between 0 and 10 in binary, much as 5 is halfway in

decimal (0.5 decimal = 0.1 binary).

So the following program will round a 16-bit_number in memory locations 0040

and 0041 (MSB's in 0040) to an 8-bit number in memory location 0040:

TST $41
BPL DONE
INC $40

DONE SWI

IS MSB OF EXTRA BYTE 1?

YES, ROUND UP

The TST instruction sets the flags according to the contents of the specified

accumulator or memory location (by subtracting zero from those contents), thus allow­

ing you to change the flags without using any registers or changing any values.

If the number is longer than 16 bits, the rounding must ripple through the other

bytes as needed. Of course, the only time the rounding affects the more significant bytes

is when it causes a carry. Since incrementing a memory location with INC does not affect

the Carry f1ag, we can only recognize a carry by checking to see if the result of INC is

zero. The following program increments a 16-bit number in memory locations 0040 and

0041 (MSB's in 0040).

INC $41
BNE DONE
INC $4 0

DONE SWI

ADD l TO LSB'S

AND CARRY TO MSB'S IF NECESSARY

An alternative for 16-bit numbers is to use an index register as in:

LOX $40
LEAX l,X
STX $40

GET 16-BIT DATA
INCREMENT IT BY 1
STORE INCREMENTED DATA

This approach is more general, since the step size can have any value.

8-16 6809 Asscm bly Language Programming

Decimal Rounding

Decimal rounding is a bit more difficult, because the crossover point is now

BCD 50 and the rounding must produce a decimal result. The rule is:

If the most significant digit to be dropped is 5 or more, add 1 to the remaining

digits.

The following program will round a four-digit BCD number in memory locations

0040 and 0041 (MSD's in 0040) to a two-digit BCD number in memory location 0040.

LOA $41 IS BYTE TO BE DROPPED 50 OR MOR P?
CMPA #$50
BLO DONE
LOA $40 YES, ADD l TO MSD'S

ADDA #l KEEPING THEM IN DECIMAL FORM
DAA

STA $40
DONE SWI

Remember that you cannot use INC to add 1 because INC does not affect the

Half-Carry flag (which could have any value). As in the binary case, rounding longer

numbers requires that the carries ripple through the more significant digits as needed.

PROBLEMS

8-1. MULTIPLE-PRECISION BINARY SUBTRACTION

Purpose: Subtract one multi-byte binary number from another. The length of the num­

bers (in bytes) is in memory location 0040, the numbers themselves start

(least significant bits first) in memory locations 0041 and 0051 respectively,

and the difference replaces the number starting in memory location 0041.

Subtract the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) 04 Number of bytes

(0041) C3 l (0042) A7
(0043) 58 f (0044) 2F

2F5BA7C316 is minuend

(0051) 88 l (0052) 35
(0053) DF f (0054) 14

1 4DF3 58816 is subtrahend

Result: (0041) OB l (0042) 72
(0043) 7C �
(0044) 1A

1 A 7C720B16 is difference

8-2. DECIMAL SUBTRACTION

Purpose: Subtract one multi-byte decimal (BCD) number from another. The length of

the numbers (in bytes) is in memory location 0040, the numbers themselves

Arithmetic Problems 8-17

start (least significant digits first) in memory locations 0041 and 0051 respec­

tively, and the difference replaces the number starting in memory location

004l. Subtract the number starting in 0051 from the one starting in 004l.

Sample Problem:

(0040) 04 Number of bytes

(0041) 85

1 (0042) 19
36701985 is minuend

(0043) 70

� (0044) 36

(0051) 59

1 (0052) 34
12663459 is subtrahend

(0053) 66

J (0054) 12

Result: (0041) 26

l (0042) 85
24038526 is decimal difference

(0043) 03

l (0044) 24

Hint: Remember that X - Y = X + 99 - Y + BORROW

where X andY are each two digits from the decimal strings and BORROW is the borrow

from the less significant digits. The right-hand side of this equation has an extra factor of

100, but that factor has no effect on a two-digit number. Note, however, that the opera­

tions on the right-hand side produce an overall carry if X - Y + BORROW is positive

but not if it is negative or zero.

8-3. 16-BIT BY 16-BIT BINARY MULTIPLICATION

Purpose: Multiply the 16-bit unsigned number in memory locations 0040 and 0041

(MSB's in 0040) by the 16-bit unsigned number in memory locations 0042 and

0043 (MSB's in 0042). Store the result in memory locations 0044 through

0047, with the most significant bits in memory location 0044.

Sample Problems:

a. (0040) 00

} 0003 is multiplier
(0041) 03

(0042) 00

} 0005 is multiplicand
(0043) 05

Result: (0044) 00

1 (0045) 00
OOOOOOOF is product

(0046) 00

� (0047) OF

or in decimal: 3 x 5 = 15.

b. (0040) 27

} 2 71 0 is multiplier
(0041) 10

(0042) 75

} 7530 is multiplicand
(0043) 30

Result: (0044) 11

1 (0045) E1
1 1 E 1 A300 is product

(0046) A3

� (0047) 00

or in decimal: 10,000 x 30,000 = 300.000.000.

8-18 6809 Assembly Language Programming

8-4. SIGNED BINARY DIVISION

Purpose: Divide the 1 6-bit signed number in memory locations 0040 and 0041 (most
significant bits in 0040) by the 8-bit signed number in memory location 0042.
The numbers are normalized so that the magnitude of memory location 0042 is
greater than the magnitude of memory location 0040. Store the quotient
(signed) in memory location 0044 and the remainder (always positive) in
memory location 0043.

Sample Problems:

a. (0040)
(0041)

�O } dividend is -6410

b.

(0042)

Result: (0043)
(0044)

08 divisor

00 remainder

F8 quotient is -8

or in decimal: -64 + 8 = -8.

(0040)
(0041)

(0042)

EDt
93

f dividend is -4.71 710

4 7 divisor is 711 0

Result: (0043) 28 remainder is +4010
(0044) BD quotient is -6 7 1 0

That is. -4.71 7 + 71 = -6 7 with a remainder of +40.

Hint: Determine the sign of the result, perform an unsigned division, and finally
adjust the quotient and remainder to the proper forms.

8-5. SELF-CHECKING NUMBERS ALIGNED 1, 3, 7 MOD 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the string

of digits (number of bytes) is in memory location 0041, the string of digits (2
per byte) starts in memory location 0042. Calculate the checksum digit by the
Aligned 1 , 3, 7 Mod 1 0 method and store it in memory location 0040.

The Aligned 1, 3, 7 Mod 10 technique works as follows:

1. Clear the checksum to start.

2. Add the leading digit to the checksum.

3. Multiply the next digit by 3 and add the result to the checksum.

4. Multiply the next digit by 7 and add the result to the checksum.

5. Continue the process (Steps 2-4) until you have used all the digits.

6. The self-checking digit is the least significant digit of the checksum.

For example, if the string of digits is:

549321

the result will be:

Checksum == 5 + 3 x 4 + 7 x 9 + 3 + 3 x 2 + 7 x 1 = 96

Self-checking digit = 6

Arithmetic Problems 8-19

Sample Problems:

a.

b.

Result

(0041)

(0042)
(0043)
(0044)

(0040)

(0041)

(0042)
(0043)
(0044)
(0045)

03

36
68
51

Number of bytes

Checksum = 3 + 3 x 6 + 7 x 6 + 8 + 3 x 5 + 7 x 1 = 93
03

04

50
29
16
83

Number of bytes

EL4 Result Checksum = 5 + 3 X 0 + 7 X 2 + 9 + 3 X 1 + 7 X 6 + 8 + 3 X 3 = 90
00 (0045)

Hint: Note that 7 = 2 x 3 + 1 and 3 = 2 x 1 + 1, so the formula M; = 2 x M;_1 + 1 can be used to calculate

the next multiplying factor.

REFERENCES

l. J. R. Herr. "Self-Checking Number Systems," Computer Design, June 1974, pp.

85-91.

2. Other methods for implementing multiplication, division, and other arithmetic.

tasks are discussed in:

Ali, Z. "Know the LSI Hardware Tradeoffs of Digital Signal Processors," Electronic

Design, June 21, 1979, pp. 66-71.

Geist, D. J. "MOS Processor Picks up Speed with Bipolar Multipliers," Electronics,

July 7, 1977, pp. 113-115.

Kolodzinski, A. and D. Wainland. "Multiplying with a Microcomputer," Electronic

Design, January 18, 1978, pp. 78-83.

Mor, S. "An 8 x 8 Multiplier and 8-Bit Microprocessor Perform 16 x 16-Bit

Multiplication," EDN, November 5, 1979, pp. 147-152.

Tao, T. F. et al. "Applications of Microprocessors in Control Problems," Proceed­

ings of the 1977 Joint Automatic Control Conference, San Francisco, Ca., June 22-

24, 1977.

Waser, S. "State-of-the-Art in High-Speed Arithmetic Integrated Circuits,'' Com­

puter Design, July 1978, pp. 67-75.

Waser, S. "Dedicated Multiplier ICs Speed up Processing in Fast Computer

Systems," Electronic Design, September 13,1978, pp. 98-103.

Waser, S. and A. Peterson. "Medium-Speed Multipliers Trim Cost, Shrink Band­

width in Speech Transmission," Electronic Design, February 1, 1979, pp. 58-65.

Weissberger, A. J. and T. Toal. "Tough Mathematical Tasks are Child's Play for

Number Cruncher," Electronics, February 17, 1977, pp. 102-107.

9
Tables and Lists

Tables and lists are two of the basic data structures used with all computers.

We have already seen tables used to perform code conversions and arithmetic. Tables

may also be used to identify or respond to commands and instructions, linearize data,

provide access to files or records, define the meaning of keys or switches, and choose

among alternate programs. Lists are usually less structured than tables. Lists may

record tasks that the processor must perform, messages or data that the processor

must record, or conditions that have changed or should be monitored. Tables are a
simple way of making decisions or solving problems, since no computations or logical
functions are necessary. The task, then, reduces to organizing the table so that the
proper entry is easy to find. Lists allow the execution of sequences of tasks, the prepara­
tion of sets of results, and the construction of interrelated data (or data bases). Problems
include how to add elements to a list and remove elements from it.

PROGRAM EXAMPLES

9-1. ADD ENTRY TO LIST

Purpose: Add the contents of memory location 0040 to a list if it is not already present
in the list. The length of the list is in memory location 0041 and the list itself
begins in memory location 0042.

9-2 6809 Assembly Language Programming

Sample Problems:

a. (0040)

(0041)

(0042)
(0043)
(0044)
(0045)

Result: (0041)

(0046)

68

04

37
61
38
10

05

68

Entry to be added

Length of list

First element in list

New length

The entry 68 is added to the list, since it is not already there. The length of the list is

increased by 1.

b.

Flowchart:

(0040) 68 Entry to be added

(0041) 04 Length of list

(0042) 37 First element in list
(0043) 68
(0044) 38
(0045) 10

Result: No change, since the entry (68) is already in the list (in memory location 0043)

ENTRY = (0040)
COUNT = (0041)
POINTER = 0042

POINTER=
POINTER+ 1

COUNT=
COUNT- 1

(POINTER) = ENTRY
(004 1) = (0041)

+ 1

Program 9-1 :

0000 8E 0042
0003 D6 41
0005 96 40
0007 A1 80
0009 27 07
0008 SA
oooc 26 F9
OOOE A7 84
0010 oc 41
0012 3F

LDX f$42
LDB $41
LDA $40

SRLST CMPA ,X+
BEQ DONE
DECB
BNE SRLST
STA ,X
INC $41

DONE SWI

Tables and Lists 9-3

POINT TO START OF LIST
COUNT = LENGTH OF LIST
GET ENTRY
IS ENTRY = ELEMENT IN LIST?

YES, DONE
ALL ENTRIES EXAMINED?

NO, KEEP LOOKING
YES, ADD ENTRY TO LIST

ADD 1 TO LIST LENGTH

Clearly, this method of adding elements is very inefficient if the list is long. We
could improve the procedure by limiting the search to part of the list or by ordering the
list. We could limit the search by using the, entry to get a starting point in the list. This
method is called "hashing," and is much like selecting a starting page in a dictionary or
directory on the basis of the first letter in an entry.l We could order the list by numerical
value. The search could then end when the list values went beyond the entry (larger or
smaller, depending on the ordering technique used). A new entry would have to be
inserted properly, and all the other entries would have to be moved down in the list.

The program could be restructured to use two tables. One table could provide a

starting point in the other table; for example, the search point could be based on the

most or least significant 4-bit digit in the entry.

The program does not work if the length of the list could be zero (what happens?).
We could avoid this problem by checking the length initially. The initialization pro­
cedure would then be:

LDB $41
BEQ ADELM

ADELM STA 'X

COUNT = u:w;TH OF LIST
ADD ENTRY T0 LI�T IF LENGTH IS ZERO

YES, ADD LNTRY TO LIST

Unlike some other processors, the 6809's Zero flag is affected by simple data transfer
instructions such as LD (load) and ST (store).

If each entry were more than one byte in length, a pattern-matching program
would be necessary. The program would have to proceed to the next entry if a match
failed; that is, skip over the last part of the current entry once a mismatch was found.

9-2. CHECK AN ORDERED LIST

Purpose: Check the contents of memory location 0041 to see if it is in an ordered list.
The length of the list is in memory location 0042; the list itself begins in
memory location 0043 and consists of unsigned binary numbers in increasing
order. If the contents of location 0041 are in the list, clear memory location
0040; otherwise, set memory location 0040 to FF16.

Sample Problems:

a. (0041)

(0042)

(0043)
(0044)
(0045)
(0046)

Result: (0040)

68

04

37
55
7D
A1

Entry to be added

Length of list

First element in list

FF. since 68 is not in the list

9-4 6809 Assembly Language Programming

b. (0041) 6B

(0042) 04

(0043) 37
(0044) 55
(0045) 6B
(0046) A1

Entry to be added

Length of list

First element in list

Result: (0040) 00. since 6B is in the list

Flowchart:

ENTRY = (0041)
POINTER = 0043
COUNT = (0042)

MARK= 0

POINTER=
POINTER+ 1

COUNT=
COUNT- 1

MARK= FF16

(0040) =MARK

The searching process is a bit different here since the elements are ordered. Once
we find an element larger than the entry, the search is over, since subsequent elements
will be even larger. You may want to try an example to convince yourself that the pro­
cedure works. Note that an element larger than the entry is indicated by a comparison
that produces a borrow (that is, Carry = 1).

As in the previous problem, a table or other method that could choose a good

starting point would speed up the search. One method would be to start in the middle
and determine which half of the list the entry was in, then divide the half into halves,
etc. This method is called a binary search, since it divides the remaining part of the list in
half each time.2.3

Tables and Lists 9-5

Program 9-2:

0000 OF 40 CLR $40 MARK ELEMENT AS IN LIST
0002 BE 0043 LDX *$43 POINT TO START OF LIST
0005 D6 42 LDB $42 COUNT = LENGTH OF LIST
0007 96 41 LDA $41 GET ENTRY
0009 AI 80 SRLST CMPA , X+ IS ENTRY EQUAL TO ELEMENT?
OOOB 27 07 BEQ DONE YES, DONE
OOOD 25 03 BCS NOT IN ENTRY NOT IN LIST IF ELEMENT

• IS LARGER
OOOF 5A DECB ALL ELEMENTS EXAMINED?
0010 26 F7 BNE SRLST
0012 03 40 NOT IN COM $40 YES, MARK ELEMENT AS NOT IN
0014 3F DONE SWI LIST

This algorithm is a bit slower than the one in Program 9-1 because of the extra
conditional jump (BCS NOTIN). The average execution time for this simple search
technique increases linearly with the length of the list, while the average execution time
for a binary search increases logarithmically. For example, if the length of the list is
doubled, the simple technique takes twice as long on the average, while the binary
search method only requires one extra iteration.

9-3. REMOVE ELEMENT FROM QUEUE

Purpose: Memory locations 0042 and 0043 contain the address of the head of the queue
(MSBs in 0042). Place the address of the first element (head) of a queue into
memory locations 0040 and 0041 (MSBs in 0040) and update the queue to
remove the element. Each element in the queue is two bytes long and contains

the address of the next two-byte element in the queue. The last element in the
queue contains zero to indicate that there is no next element.

Queues are used to store data in the order in which it will be used, or tasks in

the order in which they will be executed. The queue is a first-in, first-out data struc­
ture; i.e., elements are removed from the queue in the same order in which they were
entered. Operating systems place tasks in queues so that they will be executed in the
proper order. 1/0 drivers transfer data to or from queues so that it will be transmitted or
handled in the proper order. Buffers may be queued so that the next available one can
easily be found and those that are released can easily be added to the available storage.
Queues may also be used to link requests for storage, timing, or 1/0 so that they can be
satisfied in the correct order.

In real applications, each element in the queue will typically contain a large

amount of information or storage space besides the address required to link the ele­

ment to the next one.

Sample Problems:

a. (0042)
(0043)

(0046)
(0047)

(0040)
(004E)

Result: (0040)
(0041)

(0042)
(0043)

��} Address of first element in queue

�g} Address of second element in queue

OOt
oof End of queue

��} Address of element removed from queue

�g} Address of new first element in queue

9-6 6809 Assembly Language Programming

Flowchart:

b. (0042)
(0043)

Result: (0040)
(0041)

Program 9-3:

0000 9E 42 LOX

0002 9F 40 STX

0004 27 04 BEQ

0006 AE 64 LOX

0008 9F 42 STX
*

OOOA 3F DONE SWI

OOt
00 f Empty queue

gg} No element available from queue

POINTER=

(0042): (0043)
(0040): (0041) =

POINTER

(0042) = (POINTER)
(0043) =

(POINTER + 1)

$42 GET ADDRESS OF HEAD OF QUEUE

$40 REMOVE HEAD OF QUEUE

DONE DONE IF QUEUE WAS EMPTY

,X GET ADDRESS FROM NEXT ELEMENT

$42 MOVE NEXT ELEMENT TO HEAD OF

QUEUE

The 16-bit instructions LDX, LDY, LDU, STX, STY, and STU are very useful

for moving addresses from one place to another. LOX, LOY, and LDU load the index

register or stack pointer with the contents of the effective address and the next sequen­

t!:!! address, thus allowing the loading of a 16-bit address with a single instruction. STX,

STY, and STU similarly store a 16-bit address in memory. The addresses that are loaded

or stored can later be used to fetch individual data items or addresses from a data struc­

ture.

Using Data Structures

The various indexed and indirect addressing modes allow us to use data struc­

tures in a very flexible way. If, for example, Index Register X contains the starting

address of a block of information, we can refer to elements in the block with constant

offsets. For example, the instruction

LOA S20,X

loads Accumulator A from the address that is 2016 bytes from the start of the block. The

elements in the block may themselves be addresses; for example, the instruction

LOB [$14,X]

Tables and Lists 9-7

loads Accumulator B from the address that is stored 1416 and 1516 bytes from the start of
the block.

How would we use such data structures? For example, we might want a piece of
test equipment to execute a series of tests as specified by the operator. Using entries
from a control panel, we will make up a queue of blocks of information, one for each test
that the operator will eventually want to run. Each block of information contains:

1. The starting address of the next block (or 0 if there is no next block).

2. The starting address of the test program.

3. The address of the input device (e.g., keyboard, card reader, or communica­
tions line) from which data will be read during the test.

4. The address of the output device (e.g., printer, CRT terminal, or communica-
tions line) to which the results will be sent as the test is run.

5. The number of times the test will be repeated.

6. The starting address of the data area to be used for storing temporary data.

7. A flag that indicates whether failing a test should preclude continuing to the
next test.

Clearly the block could contain even more information if there were more options
for the operator to specify while setting up the test sequence. Note that some elements
in the block contain data, others contain addresses, while still others may be 1-bit flags.

Note what we mean by flexibility in this example. Some of the procedures that the
operator can easily implement are:

1. Run the same test with different sets of 1/0 devices. A trial run might use data
from a local keyboard and send the results to the CRT, while a production run
might use data from a remote communications line and produce a permanent
record on a printer.

2. Execute tests in any order, just by changing the order in the queue.

3. Place temporary data in an area where it can easily be displayed or retrieved by
a debugging program.

4. Make alternative decisions as to whether tests should be continued, errors
should be reported, or procedures should be repeated. Here again, trial or
debugging runs may use one option, while production runs use another.

5. Delete or insert tests merely by changing the links which connect a test to its
successor. The operator can thus correct errors or make changes without
reentering the entire list of tests.

For example, assume that the operator enters the sequence TEST 1, TEST 2,
TEST 4, and TEST 5, accidentally omitting TEST 3. The blocks are linked as follows:

Block 1 (for TEST 1) contains the starting address for block 2 (for TEST 2).

Block 2 (for TEST 2) contains the starting address for block 3 (for TEST 4).

Block 3 (for TEST 4) contains the starting address for block 4 (for TEST 5).

Block 4 (for TEST 5) contains a link address of zero to indicate that it is the last
block.

To insert TEST 3 between TEST 2 and TEST 4 merely involves the following
changes.

9-8 6809 Assembly Language Programming

Block 2 (for TEST 2) must now contain the starting address for block 5 (for TEST

3).
Block 5 (for TEST 3) must contain the starting address for block 3 (for TEST 4).

No other changes are necessary and no blocks have to be moved. Note how much

simpler it is to insert or delete using linked lists, rather than lists that are stored in con­

secutive memory locations. There is no problem of moving elements up or down so as to

remove or create empty spaces.

In our example, the blocks are organized as follows:

Byte Number

0
1
2
3
4
5
6
7
8
9

10
11

Contents

MSBs of starting address of next block

LSBs of starting address of next block

MSBs of starting address of test program

LSBs of starting address of test program

MSBs of input device address

LSBs of input device address

MSBs of output device address

LSBs of output device address
Number of test repetitions

MSBs of starting address of data area

LSBs of starting address of data area

Flag for continuation

If Index Register X contains the starting address of the block, some typical pro­

cedures are:

1. Get a byte of data from the input device and place it in byte 6 of the data

area.
LDA

LDY

STA

[4, X]
9,X
6,Y

GET INPUT iJ/\TA

GET ADDRESG OF DATA AREA

PLACE INPUT OATA IN DATA AREA

We need indirect addressing here since the block contains the address of the

input device, not the actual input data.

2. Get a byte of data from byte 3 of the data area and send it to the output

device.

LOY

LDA

STA

9,X
J,Y

[fi,X]

GET ADDRE:3�.: l'F DATA AREA

GET A BYTE OF DI\TA

'SEND DATA TO PJTPUT DEVICE

The indirect addressing allows us to use the address of the output device from

the block. We could move that address to an index register or stack pointer if

we needed it repeatedly.

3. Decrement the number of test repetitions by 1.

DEC 8,X REDUCE NUM8!'!l OF HEPETITIONS BY 1

Queuing can handle lists that are not in sequential memory locations. Each ele­

ment in the queue must contain the address of the next element. Such lists allow the

programmer to handle data or tasks in the proper order, change variables or 1/0 devices,

or fill in definitions in a program. Queuing requires extra storage as compared to

sequential lists, but elements are far easier to add, delete, or insert.

Doubly linked Lists

Sometimes you may want to maintain links in both directions. Then each ele­

ment in the queue must contain the addresses of both the preceding and the following

Tables and Lists 9-9

elements.4,S Such doubly linked lists allow you to easily retrace your steps (e.g., repeat
the previous task if an error occurs in the current one) or access elements from either
end (e.g., allowing you to remove or change the last two elements without having to go

through the entire queue). The data structure may then be used in either a first-in,

first-out manner or in a last-in, first-out manner, depending on whether new ele­

ments are added to the head or to the tail. How would you change the example program
so that memory locations 0044 and 0045 contain the address of the last element (tail) of
the queue?

Empty Queue

If there are no elements in the queue, the program clears memory locations 0040

and 0041. A program that requests an element from the queue must check those
memory locations to see if its request has been satisfied (i.e., if there was anything in the
queue). Can you suggest other ways to indicate whether the queue is empty?

9-4. 8-BIT SORT

Purpose: Sort an array of unsigned 8-bit binary numbers into descending order. The

length of the array is in memory location 0041 and the array itself begins in
memory location 0042.

Sample Problem:

(0041} 06 Length of array

(0042} 2A First element of array

(0043) B5
(0044) 60
(0045} 3F
(0046) 01

(0047) 19

Result: (0042) 01 Largest element of array

(0043) B5
(0044) 60
(0045} 3F
(0046} 2A

(0047) 19 Smallest element of array

Simple Sorting Algorithm

A simple sorting technique works as follows:

Step 1. Set a flag INTER.

Step 2. Examine each consecutive pair of numbers in the array. If any are out

of order, exchange them and clear INTER.

Step 3. If INTER = 0 after the entire array has been examined, return to

Step 1.

INTER will be cleared if any consecutive pair of numbers is out of order.
Therefore, if INTER = 1 at the end of a pass through the entire array, the array is in
proper order.

This sorting method is referred to as a "bubble sort." It is an easy algorithm to

9-10 6809 Assembly Language Programming

implement. However, other sorting techniques should be considered when sorting

long lists where speed is important.6-8

The technique operates as follows in a simple case. Let us assume that we want to
sort an array into descending order; the array has four elements- 12, 03, 15, 08.

1st Iteration:

Step 1. INTER = 1

Step 2. Final order of the array is:
12
15
08
03

since the second pair (03, 15) is exchanged and so is the third pair (03,
08). INTER = 0.

2nd Iteration:

Step 1. INTER = 1

Step 2. Final order of the array is:
15
12
08
03

since the first pair (12, 15) is exchanged. INTER = 0.

3rd Iteration:

INTER= 1 Step 1.

Step 2. The elements are already in order, so no exchanges are necessary and
INTER remains 1.

This approach always requires one extra iteration to ensure that the elements are
in the proper order. No exchanges are performed in the last iteration, so it does not
really accomplish anything. Tracing through the examples shows that many of the

comparisons are wasted and even repetitive. Thus the method could be improved

greatly, particularly if the number of elements is in the thousands or millions, as it

commonly is in large data processing applications. New sorting techniques are an

important area of current research. 9

Program 9-4:

0000 86 01 SORT LDA #l INTERCHANGE FLAG = 1
0002 97 40 STA $40
0004 96 41 LDA $41 ADJUST ARRAY LENGTH TO NUMBER OF
0006 4A DEC: A PAIRS
0007 8E 0042 LDX ll$42 POINT TO START OF ARRAY
OOOA E6 80 PASS LDB ,X+ IS PAIR OF ELEMENTS IN ORDER?
oooc E1 84 CMPB ,X
OOOE 24 oc BCC COUNT YES, TRY NEXT PAIR
0010 OF 40 CLR $40 NO, CLEAR INTERCHANGE FLAG
0012 34 02 PSHS A SAVE ARRAY COUNTER
0014 A6 84 LDA ,X INTERCHANGE ELEMENTS IF OUT OF
0016 E7 84 STB ,X ORDER
0018 A7 1F STA -1, X
001A 35 02 PULS A RESTORE ARRAY COUNTER
001C 4A COUNT DECA

OOlD 26 EB
OOlF OD 40
0021 27 DD
0023 3F

BNE
TST
BEQ
SWI

PASS
$40
SORT

Tables and Lists 9-11

CHECK FOR COMPLETED PASS
WERE ALL ELEMENTS IN ORDER?

NO, GO THROUGH ARRAY AGAIN

The case where two elements in the array are equal is very important. The pro­

gram should not perform an interchange in that case since that interchange would be

performed in every pass. The result would be that every pass would set the interchange

flag, thus producing an endless loop. The program compares the elements in the

specified order so that the Carry flag is cleared if the elements are already arranged cor­

rectly. Remember that comparing two equal values always clears the Carry flag since the

Carry is a borrow after subtractions or comparisons.

Since the 6809 has a complete set of unsigned conditional branches (BHI, BHS,

BLO, BLS), we could perform the comparison in either direction. The sequence

LDB l,X

CMPB , X+
BLS COUNT

IS PAIR OF �:.E�E�TS IN ORDER?

is equivalent to the one in the example program. We must use BLS rather than BLO

(BCS) to force a branch if the elements are equal.

Before starting each sorting pass, we must be careful to reinitialize the index and

the interchange flag.

The program must reduce the counter by 1 initially since the number of consecu­

tive pairs is one less than the number of elements (the last element having no suc­

cessor).

This program does not work properly if there are fewer than two elements in the

array. How could you handle this degenerate case?

Flowchart:

INTER = 1
COUNT =

' (0041)-1

POINTER = 0042

TEMP = (POINTER)
(POINTER)=

(POINTER) + 1)
(POINTER + 1) =

INTER = 0
TEMP

POINTER=

POINTER+ 1

COUNT=

COUNT- 1

9-12 6809 Assembly Language Programming

Other Sorting Methods

There are many sorting algorithms that vary widely in efficiency. References 2, 7,

and 8 describe some of these.

We have chosen to use the Hardware Stack for temporary storage in this problem;

the advantage of this approach is that it does not tie up a specific memory address.

Chapter 10 discusses the 6809's Hardware Stuck in more detail. Of course, we could

easily substitute a fixed memory location, such as 003F. Note the use of the special

operation codes PSH for Store Registers in Stack and PUL for Load Registers from

Stack, as opposed to the standard ST and LD.

9-5. USING AN ORDERED JUMP TABLE

Purpose: Use the contents of memory location 0042 as an index to a jump table starting

in memory location 0043. Each entry in the jump table contains a 16-bit

address with the MSBs in the first byte. The program should transfer control

to the address with the appropriate index; that is, if the index is 6, the program

should jump to address entry =#=6 in the table. Assume that the table has fewer

than 128 entries.

Sample Problem:

Result:

Flowchart:

(0042)

(0043)

(0044) =

(0045)

(0046)

(0047)

(0048)

(0049)

(004A)

(PC)

02 Index for jump table

00 } z . .
4c

eroth element 1n Jump table

00}
F

. . .

50
1rst element 1n Jump table

OOl S . .
54

f econd element 1n Jump table

00 t T
.

d
. .

58 f h1r element 1n Jump table

0054 since that is entry '11'2 (starting from zero)
in the jump table. The next instruction to be
executed will be the one located at that address.

INDEX=

(0042) X 2

JELEM =

BASE+ INDEX

(PC)=
(JELEM):

(JELEM + 1)

The last box in the flowchart results in a transfer of control to the address obtained

Tables and Lists 9-13

from the table. No ending block is necessary. Such transfers do not bother the processor
at all, but you may want to add special notes to your flowchart and program documenta­
tion so that the sequence does not appear to be a "dead-end street" to the reader.

Program 9-5:

0000 96 42 LDA $4 2 GP.:T INDEX
0002 48 ASLA DOUBLE INDEX FOR 2-BYTE ENTRIES
0003 8E 0043 LDX *$4 3 GET BASE ADDRESS OF JUMP TABLE
0006 6E 96 JMP [A,X] TRANSFER CONTROL TO JUMP TABLE

* ENTRY

When you run this program, be sure to place some executable code (such as an
SWI instruction) at each address to which control could be transferred. Otherwise the
processor will never get back to the monitor program.

Jump Tables

Jump tables are very useful in situations where the processor must select one of
several routines for execution. Such situations arise in decoding commands (entered,
for example, from a control keyboard), selecting test programs, choosing alternative
methods or units, or selecting an 1/0 configuration. For example, a 4-position switch
on the front of an instrument or test system may select among the remote, self-test, au­
tomatic, or manual modes of operation. The processor reads the switch and selects the
appropriate routine from a jump table as follows:

LDA SWITCH

ASLA

LDX #MODES

JMP [A,X]

READ SWITCH PO;; IT ION

DOUBLE IND�X FOR 2-BYTE �NTRIES

GET BASE A�DRESS OF JUMP TABLE

The jump table is organized as follows:

Address

MODES

MODES+ 1

MODES+ 2

MODES+ 3

MODES+ 4

MODES+ 5

MODES+ 6

MODES+ 7

Contents

MSBs of starting address of REMOTE routine

LSBs of starting address of REMOTE routine

MSBs of starting address of SELF-TEST routine

LSBs of starting address of SELF-TEST routine

MSBs of starting address of AUTOMATIC routine

LSBs of starting address of AUTOMATIC routine

MSBs of starting address of MANUAL routine

LSBs of starting address of MANUAL routine

The jump table replaces a series of conditional jump operations. The program
that accesses the jump table could be used to access several different tables merely by
changing the starting address.

The data must be multiplied by 2 to give the correct index since each entry in the
jump table is a 16-bit address that occupies two bytes of memory. The instruction JMP

[A,X] uses an indirect mode in which the destination is the address stored at the
specified location rather than the location itself. The procedure is as follows:

l. Add the contents of Accumulator A and Index Register X.

2. Use that address to fetch the new value for the program counter.

JMP A,X would actually place the sum of Accumulator A and Index Register X in
the program counter. JMP is an unconditional jump that allows direct (including base­
page) or indexed addressing, as compared to BRA and LBRA which require relative
addressing.

9-14 6809 Assembly Language Programming

No terminating instruction such as SWI is necessary, since JMP A,X transfers
control to the address obtained from the jump table. References 10 and 11 contain addi­
tional examples of the use of jump tables.

The program assumes that the jump table contains fewer than 128 entries (why?).
How could you change the program to allow longer tables?

Jump and Branch Instructions

The terminology used in describing jump and branch instructions can be con­
fusing. A jump instruction using direct addressing loads the specified address into
the program counter; the result is more like the outcome of an LDX instruction using
immediate addressing than it is like one using direct addressing. A jump instruction
using one of the indirect modes works like other instructions (such as LOX or STX)
using the corresponding non-indirect mode. For example,

l. JMP $AOOO transfers control to address A00016. That is, (PC) = A00016•

On the other hand, LOX $AOOO loads Index Register X from addresses
A00016 and A0011t.· That is (X) = (A00016): (A00116).

2. JMP ,Y transfers control to the address in Index Register Y. That is, (PC) =

(Y).

On the other hand, LOX , Y loads Index Register X starting at the address in
Index Register Y. That is, (X) = ((Y)): ((Y) + 1).

However, the instruction JMP [, Y] transfers control to the address reached
indirectly through Index Register Y. That is, (PC) = ((Y)): ((Y) + 1).

PROBLEMS

9-1. REMOVE ENTRY FROM LIST

Purpose: Remove the byte in memory location 0040 from a list if it is present. The
length of the list is in memory location 0041 and the list itself begins in
memory location 0042. Move the entries below the one removed up one posi­
tion and reduce the length of the list by 1.

Sample Problems:

a. (00401 68 Entry to be removed from list

(00411 04 Length of list

(00421 37 First element in list

(00431 61
(00441 28
(00451 1D

Result: No change. since the entry is not in the list

b. (00401 68 Entry to be removed from list

(00411 04 Length of list

(00421 37 First element in list
(00431 68
(0044i 28
(00451 10

Result: (0041)

(0043)
(0044)

03

28
10

Tables and Lists 9-15

Length of list reduced by 1

Other elements in list moved up one position

The entry is removed from the list and the elements below it are moved up one
position. The length of the list is reduced by 1.

9-2. ADD ENTRY TO ORDERED LIST

Purpose: Place the byte in memory location 0041 in an ordered list if it is not already
there. The length of the list is in memory location 0042; the list itself begins in
memory location 0043 and consists of unsigned binary numbers in increasing
order. Place the new entry in the correct position in the list, adjust the ele­
ments below it down, and increase the length of the list by 1.

Sample Problems:

a.

b.

(0041)

(0042)

(0043)

(0044)

(0045)

(0046)

Result: (0042)

(0045)

(0046) =

(0047)

(0041)

(0042)

(0043)
(0044)

(0045)

(0046)

6B

04

37
55
70

A1

05

6B

70

A1

6B

04

37

55

6B
A1

Entry to be added to list

Length of list

First element in list

Length of list increased by 1

Entry placed in list

Other elements in the list moved down one position

Entry to be added to list

Length of list

First element in list

Result: No change. since the entry is already in the list

9-3. ADD ELEMENT TO QUEUE

Purpose: Add the address in memory locations 0040 and 0041 (MSBs in 0040) to a
queue. The address of the first element of the queue is in memory locations
0042 and 0043 (MSBs in 0042). Each element in the queue contains either the
address of the next element in the queue or zero if there is no next element;
all addresses are 16 bits long with the most significant bits in the first byte of
the element. The new element goes at the end (tail) of the queue; its address
will be in the element that was at the end of the queue and it will contain zero
to indicate that it is now the end of the queue.

Sample Problem:
(0040)

(0041)

(0042)

(0043)

(0046)

(0047)

�� f New element to be added to queue

�� } Pointer to head of queue

gg } Last element in queue

9-16 6809 Assembly Language Programming

Result: (0046)
(0047)

00 l Old last element points to new last element
4D f

���!�: gg} New last element in queue

How would you add an element to the queue if memory locations 0044 and 0045

contain the address of the tail of the queue (or last element)?

9-4. 16-BIT SORT

Purpose: Sort an array of unsigned 16-bit binary numbers into descending order. The

length of the array is in memory location 0040 and the array itself begins in

memory location 0041. Each 16-bit number is stored with the most significant

bits in the first byte.

Sample Problem:

(0040) 03 Length of list

(0041) 19}
1901 First element in list

(0042) 01

(0043) 3F }
3F60 Second element

(0044) 60

(0045) 85 }
852A Third element

(0046) 2A

Result: (0041) 85 }
Largest element

(0042) 2A

(0043) 3F
(0044) 60

(0045) 19}
Smallest element

(0046) 01

9-5. USING A JUMP TABLE WITH A KEY

Purpose: Use the contents of memory location 0042 as the key to a jump table starting

in memory location 0043. Each entry in the jump table contains an 8-bit key

value followed by a 16-bit address (MSBs in first byte) to which the program

should transfer control if the key is equal to that key value.

Sample Problem:

(0042)

(0043)
(0044)
(0045)

(0046)
(0047)
(0048)

(0049)
(004A)
(0048)

Result: (PC)

38 Key value for search

32 Key value for first entry

�g} 004C Jump address for first entry

35 Key value for second entry

�g} 0050 Jump address for second entry

38 Key value for third entry

��} 0054 Jump address for third entry

0054. since that address corresponds to key value 38

Note: Be sure to place some executable code (such as an SWI instruction) at each

address to which the program could transfer control, so that the processor will get back

to the monitor correctly.

Tables and Lists 9-17

REFERENCES

1. J. Hemenway and E. Teja. "EON Software Tutorial: Hash Coding," EDN, Septem­

ber 20, 1979, pp. 108-10.

2. D. Knuth. The Art of Computer Programming, Volume Ill: Searching and Sorting,

Addison-Wesley, Reading, Mass., 1978.

3. D. Knuth. "Algorithms," Scientific American, April 1977, pp. 63-80.

4. K. J. Thurber and P. C. Patton. Data Structures and Computer Architecture, Lex­

ington Books, Lexington, Mass., 1977.

5. J. Hemenway and E. Teja. "Data Structures- Part 1," EDN, March 5, 1979, pp.

89-92. "Data Structures- Part 2," EDN, May 5, 1979, pp. 113-16.

6. See Reference 2.

7. B. W. Kernighan and P. J. Plauger. The Elements of Programming Style, McGraw­

Hill, New York, 1978.

8. K. A. Schember and J. R. Rumsey "Minimal Storage Sorting and Searching Tech­

niques for RAM Applications," Computer, June 1977, pp. 92-100.

9. "Sorting 30 Times Faster with DPS," Datamation, February 1978, pp. 200-03.

10. L. A. Leventhal. "Cut Your Processor's Computation Time," Electronic Design,

August 16, 1977, pp. 82-89.

11. J. B. Peatman. Microcomputer-Based Design, McGraw-Hill, New York, 1977,

Chapter 7.

Ill
Advanced Topics

The following chapters will discuss more advanced areas of assembly language

programming. Chapters 10 and 11 deal with subroutines, an important aspect of all

levels of programming. Chapter 10 defines and gives examples of subroutines, while

Chapter 11 discusses 6809 implementations of important parameter passing techniques.

The following three chapters cover input and output, a microprocessor's contact with

the outside world. In Chapter 12 we discuss time delays and different types of periph­

erals. Chapter 13 deals with the 6820 Peripheral Interface Adapter, a popular parallel

1/0 device for Motorola processors, and gives examples of basic program tasks for that

device. Chapter 14 illustrates basic routines for a serial interface device, the 6850

Asynchronous Communications Interface Adapter. Chapter 15 treats the important and

often confusing topic of interrupts.

10
Subroutines

None of the examples that we have shown so far is typically a program all by

itself. Most real programs perform a series of tasks, many of which may be the same

or may be common to several different programs. We need a way to formulate these

tasks once and make the formulations conveniently available both in different parts

of the current program and in other programs.

Subroutine Library

The standard method is to write subroutines that perform particular tasks. The

resulting sequences of instructions can be written once, tested once, and then used

repeatedly. They can form a subroutine library that provides documented solutions to

common problems.

Subroutine Instructions

Most microprocessors have special instructions for transferring control to
subroutines and restoring control to the main program. We often refer to the special

instruction that transfers control to a subroutine as Call, Jump-to-Subroutine, Jump and

Mark Place, or Jump and Link. The special instruction that restores control to the main

program is usually called Return.

On the 6809 microprocessor, the Jump-to-Subroutine (JSR) or Branch-to­

Subroutine (BSR or LBSR) instructions save the old value of the Program Counter in

the hardware stack before placing the starting address of the subroutine in the Pro­
gram Counter; the Return from Subroutine (RTS) instruction gets the old value from

10-2 6809 Assembly Language Programming

the Stack and puts it back in the Program Counter. The effect is to transfer program

control, first to the subroutine and then back to the main program. Clearly the

subroutine may itself transfer control to a subroutine, and so on.

Parameters

In order to be really useful, a subroutine must be generaL A routine that can per­

form only a specialized task, such as looking for a particular letter in an input string of

fixed length, will not be very useful. If, on the other hand, the subroutine can look for

any letter in strings of any length, it will be far more helpfuL We call the data or

addresses that the subroutine allows to vary .. parameters." An important part of writ­

ing subroutines is deciding which variables should be parameters.

One problem is transferring the parameters to the subroutine; this process is

called passing parameters. The simplest method is for the main program to place the

parameters into registers. Then the subroutine can simply assume that the

parameters are there. Of course, this technique is limited by the number of registers

available. The parameters may, however, be addresses as well as data. For example, a

sorting routine could begin with Index Register X containing the starting address of the

array. Such 6809 features as indirect addressing, indexed addressing using the Stack

Pointers, the ability to push and pop entire sets of registers with one instruction, the

availability of both the user and the Hardware Stack Pointer, and the LEA instruction

provide far more powerful and more general ways of passing parameters. The main

program can place the parameters in the Stack and the subroutine can easily access

them, utilize the Stack for temporary storage, and place the results back in the Stack.

The only problems are keeping track of the return address (and not changing it) and

cleaning the Stack of unwanted data. The two stack pointers and the LEA instruction are

particularly helpful in stack management, as we shall show in Chapter 11. In that chapter

we will also describe more general approaches to passing parameters.

Types of Subroutines

Sometimes a subroutine must have special characteristics. A subroutine is

relocatable if it can be placed anywhere in memory. You can use such a subroutine
easily, regardless of other programs or the arrangement of the memory. A relocating

loader is necessary to place the program in memory properly; the loader will start the

program after other programs and will add the starting address or relocation constant

to all addresses in the program. Position-independent code does not require a relocat­

ing loader - all addresses are expressed relative to the program counter's current

value. We will discuss the writing of strictly relocatable or position-independent code

later in this chapter.

A subroutine is reentrant if it can be interrupted and called by the interrupting

program and still give the correct results for both the interrupting and interrupted

programs. Reentrancy is important for standard subroutines in an interrupt-based

system. Otherwise the interrupt service routines cannot use the standard subroutines

without causing errors. Microprocessor subroutines are easy to make reentrant since the

Call instruction uses the Stack and that procedure is automatically reentrant. The only

remaining requirement is that the subroutine use the registers and Stack rather than

fixed memory locations for temporary storage. This is a bit awkward, but usually can be

done if necessary.

Subroutines 10-3

A subroutine is recursive if it calls itself. Such a subroutine clearly must also be

reentrant. However, recursive subroutines are uncommon in microprocessor applica­

tions.

Subroutine Documentation

Most programs consist of a main program and several subroutines. This is

advantageous because you can use proven routines and debug and test the other

subroutines separately. You must, however, be careful to use the subroutines pro­

perly and remember their exact effects on registers and memory locations.

Subroutine listings must provide enough information so that users need not

examine the subroutine's internal structure. Among the necessary specifications are:

A description of the purpose of the subroutine

A list of input and output parameters

Registers and memory locations used

A sample case, perhaps including a sample calling sequence.

The subroutine will be easy to use if you follow these guidelines.

Hardware Stack

The following examples all reserve an area of memory for the hardware stack.

We have arbitrarily started the hardware stack at address OOFF by initializing the

Stack Pointer to 010016• If your microcomputer establishes a Stack area, you may use it

instead and you will not need an initial LOS instruction. If you wish to establish your

own stack area, remember to save and restore the monitor's Stack Pointer (in two

specified RAM locations) in order to produce a proper return at the end of your main

program.

PROGRAM EXAMPLES

10-1. CONVERTING HEXADECIMAL TO ASCII

Purpose: Convert the contents of Accumulator A from a hexadecimal digit to an ASCII

character. Assume that the original contents of Accumulator A are a valid

hexadecimal digit.

Sample Problems:

a. (A) oc

Result: (A) 43 'C'

b. (A) 06

Result: (A) 36 '6'

10-4 6809 Assembly Language Programming

Flowchart:

Program 1 0-1 :

(A)=(A)+ASCII A­

ASCII 9- 1

(A) = (A) + ASCII 0

The calling program starts the Stack at memory location OOFF, gets the data from

memory location 0040, calls the conversion subroutine, and stores the result in memory

location 0041.

0000 ORG $0000
0000 10CE 0100 LOS J$100 START STACK AT MEMORY LOCATION

* DOFF
0004 96 40 LOA $40 GET HEXADECIMAL DATA
0006 BD 0020 JSR AS DEC CONVERT DATA TO ASCII
0009 97 41 STA $41 STORE RESULT
OOOB 3F SWI

The subroutine converts the hexadecimal data to ASCII.

0020 ORG $0020
0020 81 09 AS DEC CMPA t9 IS DATA A DECIMAL DIGIT?

0022 23 02 BLS ASCZ

0024 BB 07 ADDA t'A-'9-1 NO, ADD EXTRA
* LETTERS

0026 88 30 ASCZ ADDA f'O CONVERT DATA TO

0028 39 RTS

Subroutine Documentation:
*
*SUBROUTINE ASDEC
*
*PURPOSE: ASDEC CONVERTS A HEXADECIM AL
* DIGIT IN ACCUMULATOR A TO AN
* ASCII DIGIT IN ACCUMULATOR A
*

ADDING ZERO

*INITIAL CONDITIONS: HEXADECIMAL DIGIT IN A
*
*FINAL CONDITIONS: ASCII CHARACTER IN A
*
*REGISTERS AFFECTED: A, FLAGS
*
*SAMPLE CASE
* INITIAL CONDITIONS: 6 IN ACCUMULATOR A
* FINAL CONDITIONS: ASCII 6 (HEX 3")
* IN ACCUMULATOR A

OFFSET FOR

ASCII BY

Subroutines 10-5

The 6809 Stack grows downward (toward lower addresses); the Stack Pointer

always contains the address of the last occupied location, rather than the next empty
one as on some other microprocessors (including the 6800 and 6502). This means you
must initialize the Stack Pointer to a value one higher than the largest address in the

Stack area (e.g., initializing the Stack Pointer to 010016 means that the largest address in

the Stack area will be OOFF 16).

JSR Instruction

The Jump to Subroutine instruction places the starting address of the
subroutine (0020) in the Program Counter and saves the current value of the program

counter (the address immediately following the JSR instruction) in the hardware
stack. The procedure is:

STEP 1

STEP 2

STEP 3

Decrement Stack Pointer, save LSB's of current

Program Counter in Stack.

Decrement Stack Pointer, save MSB's of current

Program Counter in Stack.

Place starting address of subroutine in Program

Counter.

The 6809 always decrements the Stack Pointer before storing a byte of data, so the

procedure is the same as in the autodecrement addressing mode. Although the pro­

cessor stores the LSB's of the current program counter first, the address ends up in the

usual 6809 form (MSB's at the lower address) since the Stack is growing down (toward

lower addresses).

The overall effect of JSR is:

IISI-11

IISI-21

lSI

(PC)

IPCL)

(PCH)

lSI- 2

EA

where PCH and PCL are the most and least significant bytes of the Program Counter,

respectively, S is the Hardware Stack Pointer, and EA is the effective address for the

JSR instruction. Since the processor has fetched the entire JSR instruction, the program

counter contains the address of the following byte.

In our example, the effect of JSR ASDEC is:

IOOFFI

(OOFE)

lSI

(PC)

09 } Return address
00

OOFE

0020

The only difference between JSR and JMP is that JSR ''remembers" where it
came from, thus providing for the resumption of the main program. The processor

keeps a record in the hardware stack, much as one might jot down a starting point on a

piece of paper. The advantages of using the stack are that it is ordered and expanda­

ble; subroutines can themselves call subroutines and so on without destroying any of
the return addresses or restoring them in the wrong order. The latest return address is

always at the top of the hardware stack, with the others under it in the order in which

they will be used.

10-6 6809 Assembly Language Programming

RTS Instruction

The Return from Subroutine (RTS) instruction retrieves the return address
from the Stack Ooading the top two bytes) and places that address back in the Pro­
gram Counter. The procedure is:

STEP I

STEP 2

Load top byte from the stack into the MSB's of
the Program Counter, increment Stack Pointer.

Load top byte from the stack into the LSB's
of the Program Counter, increment Stack Pointer.

The 6809 microprocessor always increments the Stack Pointer after loading a byte
of data, so the procedure is the same as in the autoincrement addressing mode. RTS bal­

ances JSR, much as a right parenthesis balances a left parenthesis. The actions of RTS,
however, are automatic; it simply takes the top two bytes in the hardware stack and
places them in the Program Counter. The programmer must ensure that those top two
bytes contain a legitimate return address; the processor does not examine them.

The overall effect of R TS is:

(PCH) ((S))

(PCU ((S) + 1)

(S) (S) + 2

In our example, RTS has the following effects:

(PC) (OOFE) • (OOFF) = 0009

(S) 0100

Parameters and Subroutine Characteristics

This subroutine has a single parameter and produces a single result. An accumula­
tor is the obvious place to put both the parameter and the result.

The calling program consists of three steps: placing the data in the Accumulator,
calling the subroutine, and storing the result. The overall initialization program must
also load the Hardware Stack Pointer with the appropriate address.

This subroutine is reentrant since it uses no data memory; it is relocatable since
the address ASCZ is relative. The use of BSR (Branch-to-Subroutine) rather than JSR
would make the calling program relocatable as well.

The Jump-to-Subroutine instruction results in the execution of four or five
instructions, taking 12 or 14 clock cycles. A subroutine call may take a long time even
though it appears to be a single instruction in the program. Calling a subroutine always
involves some overhead as well, since both the Jump-to-Subroutine and the Return­
from-Subroutine instructions take time. In fact, a JSR takes 4 clock cycles longer than
the corresponding JMP (with the same addressing mode) because JSR must save the
current Program Counter in the RAM stack; RTS always takes 5 clock cycles.

If you use the stack for passing parameters, remember that Jump or Branch to
Subroutine always saves the return address at the top of the stack. You can refer to the
parameters using indexed addressing with offsets of 2 or more from the Hardware Stack
Pointer (the return address occupies the addresses with offsets 0 and I).

Subroutines 10-7

10-2. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a siring of ASCII characters. The starting address of

the string is in Index Register X. The end of the string is marked by a carriage

return character ('CR', 0016). Place the length of the string (excluding the car­
riage return) in Accumulator B.

Sample Problems:

a.

Result:

b.

Result:

Flowchart:

Program 10-2:

(X) 0043 Starting address of string
(0043) 52 'R'

(0044) 41 ' A'

(0045) 54 'T'

(0046) 48 'H'

(0047) 45 'E'

(0048) 52 'R'

(0049) OD CR

(B) 06

(XI 0043 Starting address of string

(0043) OD

(B) 00

POINTER = (X)
COUNT= 0

CR

COUNT=

COUNT+ 1
POINTER=

POINTER+ 1

Yes

End

The calling program starts the Stack at memory location OOFF, gets the starting
address of the string from memory locations 0040 and 0041, calls the string length
subroutine, and stores the result in memory location 0042.

0000 ORG $0000
0000 10CE 0100 L D S #$100 START STACK AT MEMORY L OCATION

* OOFF
0004 9E 40 LDX $40 GET STARTING ADDRESS OF STRING
0006 BD 0020 JSR STLEN DETERMINE LENGTH OF STRING

0009 D7 42 STB $4 2 STORE STRING LENGTH

OOOB 3F SWI

10-8 6809 Assembly Language Programming

The subroutine determines the length of the string of ASCII characters and places

the length in Accumulator B.

0020 ORG $0020
0020 C6 FF STLEN LOB tSFF
0022 86 OD LOA 1$00

*

0024 5C CHKCR INCB
0025 A1 80 CMPA I X+

*

0027 26 FB BNE CHKCR

0029 39 RTS

Subroutine Documentation:

*SUBROUTINE STLEN

*

*PURPOSE: STLEN DETERMINES THE LENGTH

* OF A STRING (NUMBER OF CHARACTERS

* BEFORE � CARRIAGE RETURN)
*

*I NITIAL CONDITIONS: STARTING ADDRESS

* OF STRING IN INDEX REGISTER X

*

STRING LENGTH = -1
GET ASCII CARRIAGE RETURN TO

COMPARE
ADO 1 TO STRING LENGTH
IS NEXT CHARACTER A CARRIAGE

RETURN?
NO, KEEP LOOKING

*FINAL CONDITIONS: NUMBER OF CHARACTERS IN B
*

*REGISTERS AFFECTED: A,B,X,FLAGS

*

*SAMPLE CASE

* INITIAL CONDITIONS: (X) = 0042
* (0042) = 40, (0043i = 41, (0044)
* FINAL CONDITIONS: {B) = 03

4E, (0045) OD

This subroutine has a single parameter which is an address; Index Register X is

the obvious place to put it. The result is returned in Accumulator B.

The calling program consists of three steps: placing the starting address of the

string in Index Register X, calling the subroutine, and storing the result in memory. The

overall initialization must also load the Hardware Stack Pointer with the appropriate

value.

The subroutine is reentrant, since it does not use any fixed memory addresses for

storage.

The subroutine changes Accumulator A as well as Accumulator B and Index

Register X. The programmer must be aware that calling this subroutine destroys the

contents of Accumulator A, even though it does not contain a parameter. The

subroutine documentation must specify which registers are affected in order to avoid

unforeseen side effects.

An alternative approach would be for the subroutine to save and restore the

original contents of Accumulator A_ The instruction PSHS A would save those con­

tents initially and the instruction PULS A would restore them before the return. This

approach takes extra time and memory, but makes the subroutine easier to use since it

does not produce as many incidental changes. We could save and restore the condition

code register as well by using the instructions PSHS A,CC and PULS A,CC.

If the terminating character were not always an ASCII carriage return, we

could make that character into another parameter. Then the calling program would

have to place the terminating character in Accumulator A before calling the

subroutine.

Subroutines 10-9

10-3. MAXIMUM VALUE

Purpose: Find the largest element in an array of unsigned binary numbers. The length

of the array (number of bytes) is in Accumulator Band the starting address of
the array is in Index Register X. The maximum value is returned in
Accumulator A.

Sample Problem:

(B) 05 Length of array (number of bytes)

(X) 0043 Starting address of array

(0043)

(0044)

(0045)

(0046)

(0047)

67

79

15

E3

72

Result: (A) E3. since this is the largest of the five unsigned
numbers in the array

Flowchart:

COUNT= (B)

POINTER = (X)

MAX= 0

MAX = (POINTER)

POINTER=

POINTER+ 1

COUNT=
COUNT- 1

(Al =MAX

10-10 6809 Assembly Language Programming

Program 10-3:

The calling program starts the Stack at memory location OOFF, sets the starting
address of the array to 0043, gets the length of the array from memory location 0040,

calls the maximum subroutine, and stores the maximum value in memory location
0041.

0000 ORG $0000
0000 10CE 0100 LOS #$0100 START STACK AT MEMORY LOCATION

• OOFF
0004 BE 0043 LOX ll$43 GET STARTING ADDRESS OF ARRAY
0007 06 40 LOB $40 GET LENGTH OF ARRAY
0009 BD 0020 JSR MAXM FIND MAXIMUM VALUE
oooc 97 41 STA $41 SAVE MAXIMUM VALUE IN MEMORY
OOOE 3F SWI

The subroutine determines the maximum value in the array.

0020 ORG $0020
0020 4F MAXM CLRA MAXIMUM = ZERO (MINIMUM POSSIBLE

• VALUE)
0021 Al 80 CHKE CMPA I X+ IS CURRENT ENTRY GREATER THAN

• MAXIMUM?
0023 24 02 BCC NOCHG
0025 A6 lF LDA -l,X YES, REPLACE MAXIMUM

• CURRENT ENTRY
0027 SA NOCHG DECB
0028 26 F7 BNE CHKE
002A 39 RTS

Subroutine Documentation:

*SUBROUTINE MAXM
*

*PURPOSE: MAXM DETERMINES THE MAXIMUM VALUE IN AN ARRAY OF
* UNSIGNED BINARY NUMBERS
*

WITH

*INITIAL CONDITIONS: STARTING ADDRESS OF ARRAY IN INDEX REGISTER
* X, LENGTH OF ARRAY (NUMBER OF BYTES) IN A�CUMULATOR B

*

*FINAL CONDITIONS: MAXIMUM VALUE IN ACCUMULATOR A
*

*REGISTERS AFFECTED: A,B,X,FLAGS
*

*SAMPLE CASE:
* I NIT I A L C O N D I T I ONS: 0043 I N IN D E X R E G I STE R X, 03 IN

* ACCUMULATOR B, (0041) = 35, (0044) = 4t;, (00<\5) = OD
* RESULT: (A) = 4G

This subroutine has two parameters - an address and a number. Accumulator B

is used to pass the number and Index Register X to pass the address. The result is a
single number that is returned in Accumulator A.

The calling program must place the starting address of the array in Index Register
X and the length of the array in Accumulator B before transferring control to the

subroutine.

The subroutine is reentrant since it uses no fixed memory addresses and relocata­
ble since it uses only relative branches.

We could retain the original contents of the condition code register by using the

instructions PSHS CC and PULS CC.

This subroutine has some incidental effects: it changes the address in Index

Register X (the final value is one beyond the last address in the array because of the

autoincrementing) and it returns with zero in Accumulator B.

Subroutines 10-11

10-4. PATTERN MATCH

Purpose: Compare two strings of ASCII characters to see if they are the same. The

length of the strings is in Accumulator B. The starting address of one string is

in Index Register X and the starting address of the other string is in Index

Register Y. If the two strings match, clear Accumulator B; otherwise, set

Accumulator B to FF16•

Sample Problems:

a. (B) 03 Length of strings

(X) 0046 Starting address of string :¢1
(Y) 0050 Starting address of string #2

(0046) 43 ·c·

(0047) 41 'A'

(0048) 54 'T'

(0050) 43 ·c·

(0051) 41 'A'

(0052) 54 'T'

Result: (B) 00 since the strings are the same

b. (X) 0046 Starting address of #1
(Y) 0050 Starting address of string .ll:2

(0046) 52 'R'

(0047) 41 'A'

(0048) 54 'T'

(0050) 43 ·c·

(0051) 4 1 'A'

(0052) 54 'T'

Result: (8) FF since the first characters differ

Program 10-4:

The calling program starts the Stack at memory location OOFF, sets the two start­

ing addresses (Index Registers X and Y) to 0046 and 0050 respectively, gets the length

of the string from memory location 0041, calls the pattern match subroutine, and places

the result in memory location 0040.

0000 ORG $0000
0000 lOCE 0100 LOS t$0100 START STACK AT MEMORY LOCATION

* OOFF
0004 BE 0046 LOX t$46 GET STARTING ADDRESS OF STRING 1
0007 lOBE 0050 LOY f$50 GET STARTING ADDRESS OF STRING 2

0008 06 41 LOB $41 GET LENGTH OF STRINGS

0000 BD 0020 JSR PMTCH COMPARE STRINGS

0010 07 40 STB $40 SAVE MATCH INDICATOR

0012 3F SWI

The subroutine determines if the two strings are the same.

0020 ORG $0020
0020 A6 BO PMTCH LOA ,X+ GET A CHARACTER FROM STRING 1
0022 Al AO CMPA ,Y+ IS THERE A MATCH WITH STRING 2?
0024 26 04 BNE NOMCH NO, DONE
0026 SA DECB ALL CHARACTERS CHECKED?
0027 26 F7 BNE PMTCH NO, CONTINUE
0029 39 RTS YES, RETURN WITH INDICATOR

* ZERO
002A C6 FF NOMCH LOB ISFF NO MATCH, INDICATOR = FF HEX

RTS

10-12 6809 Assembly Language Programming

Flowchart:

POINTER 1 = (X)
POINTER2 = (Y)

COUNT= (8)

POINTER1 =

POINTER1 + 1
POINTER2 =

POINTER2 + 1
COUNT=COUNT -1

MARK 0

No

MARK= FF16

Subroutine Documentation:

*SllfFl'1!JTINE PMTCH

*PURPOSE: PMTCH DETERMINES IF TWO STRINGS ARE IDENTICAL
*
*INITIAL CONDITIONS: STARTING ADDRESSES OF STRINGS IN INDEX
* REGISTF.RS X AND Y, LENGTH OF STRINGS (IN BYTES) TN
* ACCUMULATOR f\

*

*FINAL CONDITIONS: ZERO IN ACCUMULATOR B IF STRINGS MATCH,
* FF IN ACCUMULATOR 8 OTHERWISE
*
*REGISTERS AFFECTED: A,B,X,Y,FLAGS
*

*SAMPLE CASF.:
* INITIAL CONDITIONS: (X) = 0046, (Y) = 0050, (B) = 02
* (OOtl')) = 3G, (0047) = 19
* (0050) = 3'), (0051) ·= 39
* RESULT: (fl) = 00 SINCE THE STRHTGS ARE IDENTICAL

This subroutine, like the preceding examples, changes all the flags. You should
generally assume that a subroutine call changes the flags unless it is specifically stated
otherwise. If the main program needs the old flag values (for later checking), it must
save them in the Stack (using PSHS CC) before calling the subroutine, and restore them

afterward (using PULS CC).

Subroutines 10-13

This subroutine has three parameters - two starting addresses and the length of

the strings. Two index registers (X and Y) are used for the starting addresses;

Accumulator B is used for both the length of the strings and for the result. The

subroutine changes Accumulator A incidentally.

The subroutine is reentrant, since it uses no fixed addresses.

Obviously, subroutines become far more complicated as soon as the number of

parameters exceeds the number of registers. Using the registers is convenient, but it

lacks generality; as soon as the number of parameters becomes large, you must use an

entirely different approach.

Note that the subroutine has two exit points (i.e., two RTS instructions). This cre­

ates no problems, since either R TS terminates the subroutine and transfers control back

to the main program.

10-5. MULTIPLE-PRECISION ADDITION

Purpose: Add two multi-byte binary numbers. The length of the numbers (in bytes) is

in Accumulator B, the starting addresses of the numbers are in Index

Registers X and Y, and the starting address of the result is in the User Stack

Pointer U. All the numbers begin with the least significant bits.

Sample Problem:

(B)
(X)
(Y)
(U)

(0048)
(0049)
(004A)
(0048)

(004C)
(0040)
(004El
(004F)

Result: (0050)

Program 1 0-5:

(0051)
(0052)
(0053)

04
0048
004C
0050

C3 }
A7
5B
2F

B8 }
35
DF
14

Length of numbers in bytes
Starting address of first number
Starting address of second number
Starting address of result

2F5BA 7C316 is first number

14DF35B816 is second number

78 }
�� 443ADD7B16is sum

44

The calling program starts the Stack at memory location OOFF, sets the starting

addresses of the various numbers to 0048, 004C, and 0050, respectively, gets the length

of the numbers (in bytes) from memory location 0040, and calls the multiple-precision

addition subroutine.

0000 ORG $0000
0000 1 OCE 0100 LDS #$0100 START STACK AT MEMORY LOCATION

• OOFF
0004 8E 0048 LDX #$48 GET STARTING ADDRESS OF FIRST

• NUMBER
0007 1 08E 004C LDY #$4C GET STARTING ADDRESS OF SECOND

• NUMBER
OOOB CE 0050 LDU #$50 GET STARTING ADDRESS OF SUM
OOOE D6 40 LDB $40 GET LENGTH OF NUMBERS (IN BYTES)
0010 B D 0020 JSR MPADD PERFORM MULTIPLE-PRECISION

• ADDITION

0013 3F SWI

10-14 6809 Assembly Language Programming

Flowchart:

This step also produces a new carry.

POINTER 1 = (X)
POINTER2 = (Y)
POINTER3 = (U)

COUNT= (8)
CARRY= 0

(POINTER3) =
(POINTER 1) +

(POINTER2) +

CARRY

POINTER1 =

POINTER1 + 1
POINTER2 =

POINTER2 + 1
POINTF:R3 =

POINTER3 + 1
COUNT = COUNT

- 1

The subroutine performs multiple-precision binary addition.

0020 ORG $0020
0020 1C FE MPADD AN DCC #%11111110 CLEAR CARRY TO START
0022 M 80 ADBYTE LDA ,X+ GET BYTE FROM FIRS� NUMBER
0024 A9 AO
0026 A7 co
0028 SA
0029 26 F7
002B 39

Subroutine Documentation:

*SUBROUTINE MPADD
*

ADCA ,Y+ ADD BYTE FROM SECOND
STA 'U+ STORE RESULT
DECB ALL BYTES ADDED?
BNE ADBYTE NO, ·CONTINUE
RTS

*PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS
*

*INITIAL CONDITIONS: STARTING ADDRESSES OF NUMBERS (LSB'S) IN

* IND E X REGISTERS X AND Y, STARTING ADDRESS OF SUM IN USER

NUMBER

* STACK POINTER U, LENGTH OF NUMBERS (IN BYTES) IN ACCUMULATOR B
*
*REGISTERS AFFECTED: A,B,X,Y,U,FLAGS
*

*SAMPLI': CASE:
* INITIAL CONDITIONS: (X) = 0048, (Y) 004C, (U) = 0050,
* (B) = 02, (0048) = C3, (0049) = A7, (004C) = 88, (OO�D) 35
* RESULT: (0050) = 78, (0051) = DD
*

This subroutine has four parameters - three addresses and the length of the

numbers. We use Index Register X, Index Register Y, User Stack Pointer U, and

Accumulator B to pass them; no results are returned. User Stack Pointer U is really just

Subroutines 10-15

an extra index register. It is, in fact, somewhat more useful than Index Register Y since

LOU and STU execute faster than LOY and STY. The reason for this difference is that

LOU and STU require 1-byte operation codes, while LOY and STY require 2-byte

operation codes. Note, however, that CMPU requires a 2-byte operation code, so U is

slightly inferior to X. A further advantage of U which we will discuss shortly is the

availability of the PSHU and PULU instructions, which can transfer an entire set of

registers to or from the User Stack.

POSITION-INDEPENDENT CODE

Position-independent routines can be placed anywhere in memory without

using a relocating loader and can be used with any combination of other programs.

The keys to writing position-independent code are:

1. Use relative branches (BSR, LBSR, BRA, LBRA), rather than JSR or JMP.

2. Refer to variables by means of the indexed addressing modes that use a

constant offset from the Program Counter. Remember that the assembler

will calculate a relative offset for you if you specify the address as OEST, PCR.

Thus the instruction
LDA RDATA, PCR

will load Accumulator A from the relative address ROATA. You can use the

indirect version to access data through addresses that are stored relatively.

3. Use the Hardware Stack for temporary storage. You can assign five Stack

locations for temporary storage by subtracting five from the Hardware Stack

Pointer with the instruction

LEAS -5,5

You can then refer to these locations with indexed offsets and finally discard

them with the instruction

LEAS 5,5

Note that such temporary storage locations are only allocated when the routine is

actually executed (referred to as dynamic allocation); they need not be permanently

assigned as fixed memory locations must be (referred to as static allocation). This use of

the Hardware Stack for temporary storage also promotes reentrancy, since Stack loca­
tions are saved automatically when routines are interrupted or suspended.

If necessary, you can always determine the current value of the Program Counter
by means of an instruction like

TFR PC, X

which saves its absolute value (the address of the byte following the TFR instruction) in

Index Register X. The program can thereby calculate its actual location in memory.

10-16 6809 Assembly Language Programming

NESTED SUBROUTINES

The BSR and JSR instructions allow the nesting of subroutines, since subse­
quent subroutine calls will place their return addresses on top of the previous return
addresses. No addresses are ever lost and an RTS instruction always returns control to
the instruction just after the most recent BSR or JSR.

Jump and Link

We can use other methods to call one level of subroutine. For example, the

instruction
EXG X, PC

loads the Program Counter with the previous contents of Index Register X and Index

Register X with the previous contents of the Program Counter. This is equivalent to
transferring control to the address in Index Register X, while saving the return address
in that index register. However, this approach does not allow nesting, since Index
Register X can only hold a single return address. Furthermore, it ties up Index Register
X and makes the program rather difficult to follow. If you use this approach, remember
that the instruction

EXG X,PC

at the end of the subroutine will transfer control back to the main program (as long as
you have not disturbed Index Register X) and will save the address immediately follow­

ing the EXG instruction in Index Register X. This approach is often referred to as

jump-and-link, since it uses Index Register X as the link back to the main program.

PROBLEMS

Note that you are to write both a calling program for the sample problem and a
properly documented subroutine.

10-1. CONVERT ASCII TO HEXADECIMAL

Purpose: Convert the contents of Accumulator A from the ASCII representation of a

hexadecimal digit to the actual digit. Place the result in Accumulator A.

Sample Problems:

a. (A) 43 ·c·

Result: (A) oc

b. (A) 36 '6'

Result: (A) 06

Subroutines 10-17

10-2. LENGTH OF A TELETYPEWRITER MESSAGE

Purpose: Determine the length of an ASCII-coded teletypewriter message. The starting
address of the string of characters in which the message is embedded is in
Index Register X. The message itself starts with an ASCII STX character
(02 1 6) and ends with ASCII ETX (0316). Place the length of the message (the
number of characters between the STX and the ETX) in Accumulator B.

Sample Problem:

(X)
(0044)
(0045)
(0046)
(0047)
(0048)

0044 Starting address of string
49
02 STX
47 'G'

4F '0'

03 ETX

Result (B) 02 since there are 2 characters between the ASCII
STX and the ASCII ETX.

10-3. MINIMUM VALUE

Pupose: Find the smallest element in an array of 8-bit unsigned binary numbers. The
length of the array (number of bytes) is in Accumulator B and the starting
address of the array is in Index Register X. The minimum value is returned in
Accumulator A.

Sample Problem:

Result:

IB) 05 Length of array (number of bytes)
(X) 0043 Starting address of array

(0043) 67
(0044) 79
(0045) 15
(0046) E3

(0047) 73

(A) 1 5 since this is the smallest of the five
unsigned numbers.

10-4. STRING COMPARISON

Purpose: Compare two strings of ASCII characters to see which is larger (i.e., which
follows the other in 'alphabetical' ordering). The length of the strings is in
Accumulator B. The starting address of string 1 is in Index Register X and the
starting address of string 2 is in Index Register Y. If string I is larger than or
equal to string 2, clear Accumulator B; otherwise, set Accumulator B to FF16.

Sample Problems:

a. (B) 03 Length of strings
(Xl 0046 Starting address of string '*f1

(Yl 004A Starting address of string '*f2

(0046) 43 'C'

(0047) 41 'A'

(0048) 54 'T'

(004A) 42 'B'

(004B) 41 'A'
(004C) 54 'T'

Result: (B) 00 since CAT is .. larger .. than BAT

10-18 6809 Assembly Language Programming

b. (B) 03 Length of strings

(X) 0046 Starting address of string =lf1

(Y) 004A Starting address of string =lf2

(0046) 44 ·c·
(0047) 41 'A'

(0048) 54 ·r

(004A) 44 'C'

(0048) 41 'A'

(004C) 54 ·r

Result: (B) 00 since the two strings are the same

c. (B) 03 Length of strings

(X) 0046 Starting address of string =lfl

(Y) 004A Starting address of string =lf2

(0046) 43 ·c·
(0047) 41 'A'

(0048) 54 T

(004A) 43 'C'

(004B) 55 ·u·

(004Cl 54 T

Result: (B) FF since CUT is "larger" than CAT

10-5. DECIMAL SUBTRACTION

Purpose: Subtract one multi-digit decimal (BCD) number from another. The length of

the numbers (in bytes) is in Accumulator Band the starting addresses of the numbers

are in Index Registers X and Y. Subtract the number with the starting address in Index

Register Y from the one with the starting address in Index Register X. The starting

address of the result is in the user Stack Pointer U. All the numbers begin with the least

significant digits. The sign of the result is returned in Accumulator B- zero if the result

is positive, FF if it is negative.

Sample Problem:

(B)

(Xl

(Y)

(U)

(0048)

(0049)

(004A)

(004B)

(004C)

(0040)

(004El

(004Fl

Result: (B)

(0050)

(0051)

(0052)

(0053)

04

0048

= 004C

0050

��} 70

3 6

Length o f numbers i n bytes

Starting address of minuend

Starting address of subtrahend

Starting address of difference

36701985 is minuend

;: } 12663459 is subtrahend
66

12

00 Positive result

26 }
85

24038526 is decimal difference
03

24

11
Parameter Passing Techniques

In Chapter 10 we defined and briefly discussed parameters and the problem of

transferring parameters to subroutines. The examples in Chapter 10 passed parameters

through the 6809 registers; however, in this chapter we will describe other, more

general methods for passing parameters. Since these parameter passing techniques

make use of the 6809 stacks and stack pointers, we will first discuss the important

stack manipulation instructions PSH and PUL.

THE PSH AND PUL INSTRUCTIONS

We have briefly mentioned the PSH and PUL instructions without fully explor­

ing them. These instructions allow the programmer to transfer sets of registers to and

from the User Stack or the Hardware Stack. Typical uses are to transfer parameters

to the Stack, transfer results from the Stack, and load or store a set of registers with

one instruction.

Each PSH or PUL instruction requires 2 bytes of program memory, one for the

operation code and one to specify the list of registers that will be transferred to or

from the Stack (either the User Stack or the Hardware Stack). The bits in the second

byte of data determine whether particular registers will (if the assigned bit is 1) or will

not (if the assigned bit is 0) be transferred to or from the Stack. Figure 11-1 shows how
the bits are assigned and the order in which registers are pushed (stored on the stack) or

pulled (loaded from the stack). Note that neither Stack Pointer can be stored in or

loaded from its own stack; saving a Stack Pointer in its own stack would be like saving

the key to a locked safe in the safe itself. The push order is, of course, the opposite of the

pull order.

11-2 6809 Assembly Language Programming

4 Pull Order

7 6 5 4 3 2 0 4

Push Order .-

Bit Number

Bit position 6 represents U for PULS and PSHS, S for PULU and PSHU.

Figure 11-1. Assignment of Bits and Orders for PSH and PUL Instructions

The Stack grows downward, so the first registers pushed will end up at the

highest addresses and the first registers pulled will come from the lowest addresses.

16-bit registers are pushed least significant byte first and pulled most significant

byte first, thus maintaining compatibility with the standard 6809 method for storing 16-

bit addresses or data. The 6809's Stack Pointers are decremented before each byte is

stored and incremented after each byte is loaded.

The result is that registers are pushed into either stack as follows:

Immediate data

bit position

7

6

5

4

3

2

0

Result if bit is 1

SP-SP-2
STACK-PC

SP-SP-2
STACK-U or S

SP-SP-2
STACK-Y

SP-SP-2
STACK-X

SP-SP- 1
STACK-DP

SP-SP- 1
STACK-S

SP-SP- 1
STACK-A

SP-SP- 1
STACK-CC

Stack with entire

register set pushed

Last byte pushed cc

A

B

DP

XH

XL

YH

YL

UH or SH

UL or SL

PCH

First byte pushed PCL

ppqq - 12 "'

final SP contents

ppqq =

initial SP contents

The description of PSH in Chapter 22 illustrates

the result of stacking just two registers.

SP represents either the Hardware Stack Pointer (PSHS) or the User Stack Pointer
(PSHU). Either PSH instruction can save any, all, any subset, or none of the user
registers except its own pointer. The assembly language programmer simply provides a
list of registers (in any order) in the operand field. The order in which registers are saved
is a function of the hardware, not of the order in which the programmer specifies them.

Parameter Passing Techniques 11-3

The PULS or PULU instruction pulls the registers from the stack in the following

order:

Immediate data
bit position

0

2

3

4

5

6

7

Result if bit is 1

CC-STACK

SP- SP + 1

A-STACK

SP-- SP + 1

8-STACK

SP-SP + 1

DP-STACK

SP-SP + 1

X-STACK

SP-SP + 2

Y-STACK

SP-SP + 2

U or S-STACK

SP-SP + 2

PC-STACK

SP-SP + 2

Stack with entire register
set to be pulled

First byte pulled cc

A

8

DP

XH

XL

YH

YL

UH or SH

UL or SL

PCH

Last byte pulled PCL

ppqq =

initial SP contents

ppqq + 12 =

final SP contents

The description of PUL in Chapter 22 illustrates

the result of unstacking just three registers.

PSH and PUL are particularly convenient when the entire state of a task must be

saved or restored because the task has been suspended, preempted, or newly activated.

GENERAL PARAMETER PASSING TECHNIQUES1'2

The registers often provide a fast, convenient way of passing parameters to

subroutines and returning results. The limitations of this method are that it cannot be

expanded beyond the number of registers, it often results in unforeseen side effects, and

it lacks generality_ The tradeoff here is between fast execution time and a more general

approach. Such a tradeoff is common in computer applications at all levels; general
approaches are easy to learn, consistent, and can be automated through the use of
compilers and other systems programs. On the other hand, approaches that take
advantage of the specific features of a particular task require less time and memory.
The choice of one approach or the other depends on your application, but you should

take the general approach (saving programming time and simplifying documentation

and maintenance) unless time or memory constraints force you to do otherwise.

There are two general approaches to passing parameters:

1. Place the parameters (or arguments) immediately after the subroutine call.

2. Transfer the parameters and results on the Hardware Stack.

The first approach is convenient when the parameters are constants for a par­
ticular subroutine call, while the second approach is more general and is usually the

choice made in writing interpreters, compilers, operating systems, and other systems

programs.

11-4 6809 Assembly Language Programming

USING ARGUMENT LISTS

In the first approach, the programmer follows each subroutine call with an

appropriate list of parameters. The list itself must consist of constants if the program is
to execute from ROM, although the constants may be the addresses of variable data or

arrays. The programmer must implement this approach as follows:

1. Use the OAT A directives to store the parameters in program memory. For
the 6809 assembler, the directives are FCB for byte-length data, FOB for 16-

bit data or addresses, and FCC for character data.

2. Access the data by means of the return address that the JSR or BSR instruc­
tion stores at the top of the Hardware Stack. The return address will actually

be the starting address of the list of parameters. You can access the first ele­

ment of the list indirectly with an instruction like

LDA [,S]

or you can load the starting address into an Index Register (U, for example)
with an instruction like

LEAU [,S]

3. Adjust the return address so that it points to the next executable instruc­

tion. That is, add the length of the parameter list to the actual return address
so that the processor does not accidentally try to execute the subroutine

parameters. If the return address is in the User Stack Pointer U and the

parameters occupy 5 bytes of program memory, the sequence

LEAU 5,U MOVE RETURN ADDRESS PAST PARAMETERS
SAVE ADJUSTED RETURN ADDRESS IN STACK STU , S

R'rS

will return control to the next executable instruction.

EXAMPLES

11-1a. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a string of ASCII characters. The terminating

character and the starting address of the string follow the subroutine call. The

length of the string (excluding the terminating character) is returned in

Accumulator B. No other registers are affected.

Sample Problems:

a. The subroutine call is followed by:

FCB $00 TERMINATING CHARACTER

FDB $43 STARTING ADDRESS OF STRING

(0043) 52 ' R '

(0044) 41 'A'

(0045) 54 T
(0046) 48 'H'

(0047) 45 'E'

(0048) 52 ' R '

(0049) OD CR

Result: (B) 06

Parameter Passing Techniques 11-5

b. The subroutine call is followed by:

FCB

FOB

$00

$4 3

(0043)

Result. (B)

TERMINATING CHARACTER

STARTING ADDRESS OF STRING

OD

00

CR

Program 11-1 a:

The calling program starts the Stack at memory location OOFF, calls the string
length subroutine (specifying the terminator and starting address in the next three

bytes), and stores the result in memory location 0042.

0000 ORG $0000
0000 l OCE 0100 LDS #$100 START STACK AT MEMORY LOCATION

* OOFF
0004 B D 0020 JSR STLEN DET�RMINE STRING LENGTH
0007 OD FCB $00 STRING TERMINATOR
0008 0043 FOB $43 STARTING ADDRESS OF STRING
OOOA D7 42 STB $4 2 SAVE STRING LENGTH
oooc 3F SWI

*

*

0020 ORG $0020

0020 34 53 STLEN PSHS U,X,A,CC SAVE REGISTERS

0022 EE 66 LOU 6,S ACCESS PARAMETER LIST

0024 37 1 2 PULU A,X GET STRING TERMINATOR,
0026 C6 FF LDB II$FF STARTING ADDRESS

0028 sc CHKTRM INCB ADD 1 TO STRING LENGTH

0029 A1 80 CMPA ,X+ IS NEXT CHARACTER A TERMINATOR?

002B 26 FB BNE CHKTRM NO, KEEP LOOKING

002D EF 66 STU 6,S MOVE RETURN ADDRESS PAST
* PARAMETER LIST

002F 35 03 PULS PC ,U,X,A,CC RESTORE REGISTERS AND
* RETURN

Subroutine Documentation:

*SUBROUTINE STLEN
*

*PURPOSE: STLEN DETERMINES THE LENGTH OF A STRING (NUMBER OF
* CHARACTERS PRECEDING A TERMINATOR)
*

*INITIAL CONDITIONS: TERMINATOR IN BYTE IMMEDIATELY FOLLOWING
* SUBROUTINE CALL, STARTING ADDRESS OF STRING IN NEXT TWO
* 8YTES (MSA'S IN FIRST BYTE)
*

*FINAL CONDITIONS: NUMBER OF CHARACTERS IN B
*

*REGISTERS AFFECTED: B
*

*SAMPLE CASE:
* INITIAL CONDITIONS: TERMINATOR � OD, STARTI NG ADDRESS
*

*

*

(0042) = 4D, (004ll 41, (ooa4) � 4E, (0 04 5) � oo
f'INAL CONDITIONS: (B) = 03

*TYPICAL CALL:
* .JSR STLEN
* FCB TERM
* FOB START
*

TERMINATOR

STARTING ADDRESS OF STRING

0042

The parameters follow the subroutine call in memory. We are mixing instructions

and assembler directives, a practice that is acceptable as long as the processor never acci­

dentally executes anything that is not an instruction. The result ofthe JSR instruction is:

11-6 6809 Assembly Language Programming

((5)-1) = (OOFF)-(PCL) = 07

((5)-2) = (OOFE)-(PCHl = 00

(8)-(8) - 2 = OOFE

The subroutine begins by storing all the incidental registers that it uses in the

Stack with PSHS. The result is:

((5) -1 l = (OOFD)-(UL)

((8)-2) = (OOFC)-(UHl

((8)-3) = (OOFBJ-(XL)

((5)-4) = (OOFAl-(XH)

((5)-5) = (00F9)-(Al

((5)-6) = (OOF8)-(CC)

(8)-(5) - 6 = OOFE - 6 = OOFB

Now the instruction LOU 6,S loads the return address from memory locations

OOFE and OOFF into the User Stack Pointer.

(U) -((5)+6):((8)+ 7) = (OOF8+6l (OOF8+ 7) = (OOFE)(OOFF) = 0007

The instruction PULU A,X loads the parameters into Accumulator A (the ter­

minating character) and Index Register X. Note that the order of the parameters is criti­

cal- it must be the same as the pulling order of PULU.

(A)- ((U)) = (0007) = OD

(XH)-((U) + 1) = (0008) = 00

(XL)-((U) + 2) = (0009) = 43

(U) -(U) + 3 = OOOA

Not only does PULU load all the parameters into the registers, but it also adjusts

the return address to the end of the parameter list.

After the length of the string has been determined in the same way as before, the

instruction STU 6,S saves the adjusted return address in the Hardware Stack.

((8) + 6) = (00F8 + 6) = (OOFE)-(UH) = 00

((8) + 7) = (OOFB + 7) = (OOFF)-(UL) = OA

Finally PULS PC,X,U,A,CC restores all the registers and transfers control back to

the main program. No RTS instruction is necessary.

(CC)-((5)) = (00F8)

(A)-((8)+1) = (00F9)

(XH)-((5)+2) = (OOFA)

(XL)-((5)+3) = (OOFB)

(UH)-((8)+4) = (OOFC)

(UL)-((5)+5) = (OOFD)

(PCH)-((5)+6) = (OOFE) = 00

(PCL) -((8) + 7) = (OOFF) = OA

(8)-(S) + 8 = OOFB + 8 = 0100

Obviously the programming here is a great deal more complex and harder to

understand than in the earlier version, Program J 0-2. However, this version is

reentrant, general, has no incidental side effects, and allows simple variation of the

starting address and terminating character in different calls. Other parameters that we

could add easily include a limiting number of characters (the maximum number that the

routine will examine), an error exit (in the event that the processor does not find a ter­

minating character), a starting character, and a memory address in which to store the

result. You might try to expand the routine in a general way to include some or all of

these parameters.

Parameter Passing Techniques 11-7

11-2a. MULTIPLE-PRECISION ADDITION

Purpose: Add two multi-byte binary numbers. The starting addresses of the numbers
and the result, as well as the length of the numbers in bytes, follow the
subroutine call. No registers or flags are affected.

Sample Problem:

Program 11-2a:

The subroutine call is followed by:

FCB
FOB
FOB
FOB

(0048)
(0049)
(004A)
(0048)

(004C)
(0040)
(004E)
(004Fl

Result: (0050)
(0051)
(0052)
(0053)

4
$48
$4C
50

C3
A7
58
2F

88
35
DF
14

78
DD
3A
44

LENGTH OF STRINGS (IN BYTES)
ADDRESS OF LSB'S OF 1ST NUMBER
ADDRESS OF LSB'S OF 2ND NUMBER
ADDRESS OF LSB'S OF SUM

2F5BA 7C316 is first number

14DF35BS16 is second number

443ADD7B16 is sum

The calling program starts the Stack at memory location OOFF and calls the multi­

ple-precision addition subroutine, specifying the length (in bytes) and the starting
addresses of the operands and sum in the next seven bytes.

0000
0000 lOCE 0100

0004 BD 0020

0007 04
0008 0048
OOOA 004C

oooc 0050
OOOE 3F

0020
0020 34
0022 EE
0024 37

0026 EE'
0028 lC
002A A6
002C A9
002E A7
0030 SA
0031 26
0033 EE
0035 33
0037 EF
0039 35

77
69
34

C4
FE
80
AO
co

F7
69
47
69
F7

*

*

*

*

*

ORG
LDS

JSR

FCB
FDB
FDB

FDB
SWI

ORG
MPADD PSHS

LDU
PULU

*

LDU
AN DCC

ADBYTE LDA
ADCA
STA
DECB
BNE
LDU
LEAU
STU
PULS

*

$0000
J$100

MPADD

4
$48
$4C

$50

$0020

START STACK AT MEMORY LOCATION
OOFF

PERFORM MULTIPLE-PRECISION
ADDITION

LENGTH OF STRINGS (IN BYTES)
ADDRESS OF LSB'S OF FIRST NUMBER
ADDRESS OF LSB'S OF SECOND

NUMBER
ADDRESS OF LSB'S OF SUM

X,Y,U,A,B,CC SAVE ALL REGISTERS
9,S ACCESS PARAMETER LIST
X,Y,B GET LENGTH, ADDRESSES OF

OPERANDS
,U GET ADDRESS OF SUM
#%11111110 CLEAR CARRY TO START
,X+ GET BYTE FROM FIRST NUMBER
,Y+ ADD BYTE FROM SECOND NUMBER
,U+ STORE RESULT

ADBYTE
9,S
7,U
9,S

ALL BYTES ADDED?
NO, CONTINUE

A�JUST RETURN ADDRESS PAST
ARGUMENT LIST

PC, U, Y, X, B, A, CC RESTORE REGISTERS AND
RETURN

11-8 6809 Assembly Language Programming

Subroutine Documentation:
*SUBROUTINE MPADD
*

*PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS
*
*INITIAL CONDITIONS: SUBROUTINE CALL IS FOLLOWED BY LENGTH OF
* STRINGS (IN BYTES), STARTING ADDRESSES OF LSB'S OF OPERANDS,
* AND STARTING ADDRESS OF LSB'S OF SUM
*

*REGISTERS AFFECTED: NONE
*
*SAMPLE CASE:
*
*

*

*
*
*

INITIAL CONDITlONS: LENGTH = 02, OPERAND ADDRESSES = 0048 AND
004C,

ADDRESS OF SUM = 0050

(0048) = C3, (0049) = A7, (004C) = B8, (004D) = 35
RESULT: (0050) = 7B, (0051) = DD (A7C3 + 35B8 = DD7B)

*TYPICAL CALL:
* JSR MPADD
* FCB LNGTH
* FOB OPERI
* FDB OPER�
* FDB SUM

LENGTH OF STRINGS (IN BYTES)
STARTING ADDRESS (LSB'S) OF OPERAND 1
STARTING ADDRESS (LSB'S) OF OPERAND 2
STARTING ADDRESS (LSB'S) OF SUM

The only new problem here is that we cannot pull U from its own stack and we are

very reluctant to changeS (since it is used automatically in interrupts as we shall see in
Chapter 15). So we must tiptoe around this limitation, retaining reentrancy as follows:

1. PULU X,Y,B loads the length of the numbers into Accumulator B and the

starting addresses of the operands into Index Registers X andY, respectively.

2. LDU , U loads the starting address of the result into the User Stack Pointer U.

3. The ending sequence
LDU 9,S

LEAU 7,U

STU 9,S

adds 7 to the return address stored in the Stack, so that it now points to the

address immediately following the list of arguments.

PASSING PARAMETERS ON THE STACK

In the second approach, all parameters and results are passed in the Hardware

Stack. Here the parameters can be variables, since they are placed in RAM, not in ROM.

The programmer must implement this approach as follows:

1. Use the LEAS instruction to decrement the Hardware Stack Pointer to

leave room for results on the Hardware Stack.

2. Use the PSHS instruction to save all the parameters on the Hardware
Stack.

3. Access the parameters by means of indexed offsets from the Hardware

Stack Pointer, remembering that JSR or BSR places the return address at the

top of the Stack. The User Stack Pointer can be used to remove many

parameters at once.

4. Access the results by means of indexed offsets from the Hardware Stack

Pointer. Again, the User Stack Pointer can be used to store many results at
one time.

5. Clean up the stack after returning from the subroutine, so that the
parameters are removed and the results are handled appropriately.

/

Parameter Passing Techniques 11-9

11-1 b. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a string of ASCII characters. The starting address of
the string and the terminating character are placed in the Hardware Stack. The
length of the string (excluding the terminating character) is returned at the
top of the Hardware Stack. No registers are affected.

Sample Problems:

a. The subroutine call occurs with the top of the Hardware Stack containing:

OD
00
43

empty byte

(0043) 52 'R'

(0044) 41 'A'

(0045) 54 T
(0046) 48 'H'

(0047) 45 ' E'

(0048) 52 'R'

(0049) OD CR

Result: The top of the Hardware Stack contains:

OD
00
43
06

String terminator
MSBs of starting address of string

LSBs of starting address of string
"Hole" for length of string

String terminator
MSBs of starting address of string
LSBs of starting address of string
Length of string (in bytes)

b. The subroutine call occurs with the top of the Hardware Stack containing:

OD
00
43

empty byte

(0043) = OD CR

Result: The top of the Hardware Stack contains:

00
00
43
00

String terminator
MSBs of starting address of string
LSBs of starting address of string
"Hole" for length of string

String terminator
MSBs of starting address of string
LSBs of starting address of string
Length of string (in bytes)

Program 11-1 b:

The calling program starts the stack at memory location OOFF, leaves an empty
byte on the stack for the string length, stores the terminator and starting address on the
stack, calls the string length subroutine, removes the parameters from the stack (by
incrementing the Hardware Stack Pointer), loads the string length from the stack, and
stores the string length in memory location 0042.

0000 ORG $0000
0000 lOCE 0100 LDS J$100 START STACK AT MEMORY LOCATION

* DOFF
0004 32 7F LEAS -1,S LEAVE ROOM FOR LENGTH OF STRING
0006 86 OD LDA I SOD GET TERMINATOR
0008 BE 0043 LDX f$43 GET STARTING ADDRESS OF STRING
OOOB 34 12 PSHS A,X SAVE PARAMETERS IN HARDWARE

* STACK

11-10 6809 Assembly Language Programming

0000 BD 0020 JSR STLEN DETERMINE STRING LENGTH
0010 32 63 LEAS 3,S REMOVE PARAMETERS FROM STACK
0012 35 0 2 PULS A GET STRING LENGTH FROM STACK
0014 97 42 STA $42 SAVE StRING LENGTH
0016 3F SWI

*

*

0020 ORG $0020
0020 34 57 STLEN PSHS U,X,B,A,CC SAVE REGISTERS
0022 33 69 LEAU 9,S ACCESS PARAMETER LIST IN STACK
0024 37 12 PULU A,X GET STRING TERMINATOR,

* STARTING ADDRESS
0026 C6 FF LOB #$FF STRING LENGTH = -1
0028 5C CHKTRM !NCB ADD 1 TO STRING LENGTH
0029 A1 80 CMPA ,X+ I S NEXT CHARACTER A TERMINATOR?
0028 26 FB BNE CHKTRM NO, KEEP LOOKING
0020 E7 C4 STB ,U SAVE STRING LENGTH IN STACK
002F 35 07 PULS PC,X,U,B,A,CC RESTORE REGISTERS AND

* RETURN

Subroutine Documentation:

*

*SUBROUTINE STLEN
*

*PURPOSE: STLEN DETERMINES THE LENGTH OF A STRING (NUMBER OF
* CHARACTERS PRECEDING A TERMINATOR)
*

*INITIAL CONDITION S: TERMINATOR ON TOP OF STACK, FOLLOWED BY
* STARTING ADDRE S S OF STRING AND AN E MPTY BYTE FOR THE S TRING
* LENGTH
*

*FINAL CONDITIONS: STRING LENGTH ON STACK UNDER PARAMETERS
*

*REGISTERS AFFECTED: NONE
*

*S AMPLE CASE:
* INITIAL CONDITIONS: TERMINATOR = OD, STARTING ADDRES S 0042
* (0042) = 4D, (0043) = 41, (0044) = 4E, (0045) = OD
* FINAL CONDITION S: STRING LENGTH = 03
*

*TYPICAL CALL:
*
* LEAS -l,S
* LOA #TERM
* LOX #ST!I.RT
* PSHS A,X
* JSR STLEN
*

LEAVE EMPTY BYTE FOR LENGTH
STR ING TERMINATOR

STARTING ADDRESS OF STRING

SAVE PAtlAMETERS IN STACK
DETERMINE STRING LENGTH

OF STRING

Here the idea is to leave space for the results on the stack, store the parameters on

top of that space, call the subroutine, save the registers, use the parameters to calculate

the results, save the results on the Stack, restore the registers, return to the main pro­

gram, clear the parameters from the stack by increasing the Stack Pointer, and remove

the results from the top of the stack.

is:

LEAS -1 ,S leaves one location in the Stack for the length of the string. The result

IS)�(S) - 1 = 0100 - 1 = OOFF

The processor does not store anything in the extra stack location.

PSHS A,X stores the parameters in the Hardware Stack. The result is:

((S)-1) = (OOFE)-(XL) = 43
((S)-2) = (OOFD)�(XH) = 00
((S)-3) = (OOFC)-(A) = OD
(S)�(Sl - 3 = OOFC

Parameter Passing Techniques 11-11

JSR STLEN transfers control to the subroutine and saves the return address

(0010) at the top of the Stack. The result is:

((S)-1)"' (OOFB)�(PCL)"' 10

((S)-2) = (OOFA)�(PCH) = 00

(S)-(S) - 2 = OOFC - 2 = OOFA

PSHS U,X,B,A,CC saves all the incidental registers in the Hardware Stack. The
result is:

((Sl-1) = (OOF9)�(UL)

((S)-2) = (00F8)�(UH)

((S)-3) = (00F7)-(XL)

((S)-4) = (00F6)�(XH)

((S)-5) = (OOF5)�(B)

((S)-6) = (00F4)�(A)

((S)-7) = (00F3)-(CC)

(S)�(S) - 7 = OOFA - 7 = OOF3

LEA U 9,S loads the User Stack Pointer with the starting address of the list of

parameters.
(U)�(S) + 9 = OOF3 + 9 = OOFC

PULU A,X loads the parameters into Accumulator A (the terminating character)
and Index Register X (the starting address of the string).

(A)-((U)) = (OOFC) = OD

(XH)�((U)+ 1) = (OOFD) = 00

(XL)-((U)+2) = (OOFE) = 43

(U) �(U) + 3 = OOFC + 3 = OOFF

STB , U stores the length of the string in the "hole" in the stack.

((U)) = (OOFF)-(B)

PULS PC,X,U,B,A,CC restores all the incidental registers and transfers control

back to the main program.

(CC)�((S) = (OOF3)

(A)�((S)+ 1) = (00F4)

(B)-((5)+2) = (00F5)

(XH)�((S)+3l = (00F6)

(XL)�((S)+4) = (00F7)

(UH)�((S)+5) = (OOF8)

(UL)-((5)+6) = (OOF9)

(PCH)�((S)+7) = (OOFA) = 00

(PCL)-((5)+8) = (OOFB) = 10

(S)�(Sl +9 = OOF3 + 9 = OOFC

Back in the main program, LEAS 3,S cleans the stack, essentially removing all the

parameters.

(Sl-15)+3 = OOFC + 3 = OOFF

Finally PULS A removes the result (the length of the string) from the Hardware
Stack.

(A)�((S)) = (OOFF)

(S)�(S)+ 1 = OOFF + 1 = 0100

Here again the programming is more complex and harder to understand than in

our initial simple version, but this version is also reentrant, general, has no incidental

side effects, and allows simple variation of parameters and generalization.

11-12 6809 Assembly Language Programming

11-2b. MULTIPLE-PRECISION ADDITION

Purpose: Add two multi-byte binary numbers. The starting addresses of the numbers

and the result, as well as the length of the numbers in bytes, are on the Hard­

ware Stack. The starting address of the result ends up at the top of the Hard­

ware Stack. No registers or flags are affected.

Sample Problem:

The subroutine call occurs with the top of the Hardware Stack containing:

Result:

Program 11-2b:

04

00 } 48

00 }
4C

00 }
50

(0048) C3 }
(0049) A7
(004A) 58
(0048) 2F

(004C) = 88 }
(0040) 35
(004E) OF
(004Fl 14

(0050) 78 }
(0051) DO
(0052) 3A
(0053) 44

Length of strings (in bytes)

Starting address of operand 1

Starting address of operand 2

Starting address of sum

2F5BA 7C316 is first number

1 4DF35B816 is second number

443ADD7E!,6 is sum

The Hardware Stack is unchanged.

The calling program starts the stack at memory location OOFF, stores the starting

addresses of the strings and the length in the stack, calls the multiple-precision addition

subroutine, removes the parameters from the stack (by increasing the Hardware Stack

Pointer), loads the starting address of the sum from the stack, and stores the starting

address in memory locations 0040 and 0041.

0000 ORG $0000
0000 lOCE 0100 LOS J$100 START STACK AT MEMORY LOCATION

* OOFF
0004 CE 0050 LOU t$50 GET STARTING ADDRESS OF RESULT
0007 8E 0048 LOX 1$48 GET STAR!ING ADDRESSES OF

* OPERANDS
OOOA 108E 004C LOY I$4C
OOOE 86 04 LOA 14 GET LENGTH OF STRINGS
0010 34 72 PSHS U,Y,X,A SAVE PARAMETERS IN HARDWARE

* STACK
0012 BD 0020 JSR MPADD PERFORM MULTIPLE-PRECISION

* ADDITION

Parameter Passing Techniques 11-13

0015 32 65 LEAS 5,S REMOVE PARAMETERS FROM STACK

0017 35 10 PULS X GET ADDRESS OF RESULT

0019 9F 40 STX $40 SAVE ADDRESS OF RESULT IN MEMORY

0018 3 F SWI
*

*

0020 ORG $0020

0020 34 77 MPADD PSHS U,Y,X,B,A,CC SAVE REGISTERS

0022 33 !)B LEAU 1l,S ACCESS PARAMETER LIST IN STACK

0024 37 34 PULU X,Y,B GET LENGTH, ADDRESSES OF
* OPERANDS

0026 EE C4 LOU , u GET STARTING ADDRESS OF RESULT

0028 1C FE AN DCC 1%11111110 CLEAR CARRY TO START

002A AI) 80 ADBYTE LOA ,X+ GET BYTE FROM FIRST NUMBER

002C A9 AO ADCA ,Y+ ADD BYTE FROM SECOND NUMBER

002E A7 co STA 'U+ STORE RESULT

0030 SA DECB ALL BYTES ADDED?

0031 26 F7 BNE ADBYTE NO, CONTINUE

0033 35 F7 PULS PC,U,Y,X,B,A,CC RESTORE REGISTERS AND
* RETURN

Subroutine Documentation:

*

•SUBROUTINE MPADD
*

*PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS
*

*INITIAL CONDITIONS: LENGTH OF STRINGS (IN BYTES) ON TOP OF
* STACK, FOLLOWED BY STARTING ADDRESSES OF LSB'S OF OPERANDS
* AND STARTING ADDRESS OF LSB'S OF SUM
*

*REGISTERS AFFECTED: NONE
*

*SAMPLE CASE:
* INITIAL CONDITIONS: LENGTH = 02, OPERAND ADDRESSES = 0048
* AND 004C,
* ADDRESS OF SUM = 0050
* (0048) = C3, (0049) = A7, (004C) = 88, (0040) = 35
* RESULT: (0050) = 78, (0051) = DD (A7C3 + l5B8 = DD7B)
*

*TYPICAL CALL:
* LDX #OPERl
* LDY #0PER2
* LDU #SUM
* LDA #LENGTH
* PSHS U,Y,X,A
* JSR MPADD
*

STARTING ADDRESS (LSB'S) OF OPERAND l

STARTING ADDRESS (LSB'S) OF OPERAND 2
STARTING ADDRESS (LSB'S) OF SUM

LENGTH OF STRINGS (IN BYTES)

SAVE PARAMETERS IN HARDWARE STACK

PERFORM MULTIPLE-PRECISION ADDITION

TYPES OF PARAMETERS

Regardless of our approach to passing parameters, we can specify the

parameters in a variety of ways. For example, we can:

1. Place the actual values in the parameter list. We can use immediate

addressing or OAT A directives and retrieve the data, if necessary, by using

indexed offsets. This method is sometimes referred to as call-by-value, since

only the values of the parameters are of concern.

2. Place the addresses of the parameters in the parameter list. We can use

address-length registers or retrieve the data by using the indexed indirect

modes. This method is sometimes referred to as call-by-name, since we are

concerned with the locations of the parameters as well as their values.

11-14 6809 Assembly Language Programming

REFERENCES

1. C. W. Gear. Computer Organization and Programming, 3rd ed., McGraw-Hill, New

York, 1980, Chapter 4.

2. S. Mazor and C. Pitchford. "Develop Cooperative Microprocessor Subroutines,"

Electronic Design, June 7, 1978, pp. 116- 118. Examples are for the 8080

microprocessor.

12
Input/Output

There are two problems in the design of input/output routines: one is how to

interface peripherals to the computer and transfer data, status, and control signals;

the other is how to address 1/0 devices so that the CPU can select a particular one for
a data transfer. Clearly, the first problem is both more complex and more interesting.

We will therefore discuss the interfacing of peripherals here and leave addressing to a

more hardware-oriented book.

1/0 AND MEMORY

In theory, the transfer of data to or from an 1/0 device is similar to the transfer
of data to or from memory. In fact, we can consider the memory as just another 1/0

device. The memory is, however, special for the following reasons:

1. It operates at almost the same speed as the processor.

2. It uses the same type of signals as the CPU. The only circuits usually needed

to interface the memory to the CPU are drivers, receivers, and level transla­

tors.

3. It requires no special formats or any control signals besides a Read/Write

pulse.

4. It automatically latches data sent to it.

5. lts word length is the same as the computer's.

Most 1/0 devices do not have such convenient features. They may operate at

speeds much slower than the processor; for example, a teletypewriter can transfer only

10 characters per second, while a slow processor can transfer 10,000 characters per sec-

12-2 6809 Assembly Language Programming

ond. The range of speeds is also very wide - sensors may provide one reading per
minute, while video displays or floppy disks may transfer 250,000 bits per second.
Furthermore, I/0 devices may require continuous signals (motors or thermometers),
currents rather than voltages (teletypewriters), or voltages at far different levels than

the signals used by the processor (gas-discharge displays). 1/0 devices may also require
special formats, protocols, or control signals. Their word lengths may be much shorter
or much longer than the word length of the computer. These variations make the

design of 1/0 routines difficult and mean that each peripheral presents its own

special interfacing problem.

1/0 DEVICE CATEGORIES

We may, however, provide a general description of devices and interfacing

methods. We may roughly separate devices into three categories, based on their data

rates:

l. Slow devices that change state no more than once per second. Changing
their states typically requires milliseconds or longer. Such devices include
lighted displays, switches, relays, and many mechanical sensors and actua­
tors.

2. Medium-speed devices that transfer data at rates of 1 to 10,000 bits per sec­

ond. Such devices include keyboards, printers, card readers, paper tape
readers and punches, cassettes, ordinary communications lines, and many
analog data acquisition systems.

3. High-speed devices that transfer data at rates of over 10,000 bits per sec­

ond. Such devices include magnetic tapes, magnetic disks, high-speed line
printers, high-speed communications lines, and video displays.

INTERFACING SLOW DEVICES

The interfacing of slow devices is simple. Few control signals are necessary

unless the devices are multiplexed, that is, several are handled from one port, as
shown in Figures 12-1 to 12-4. Input data from slow devices need not be latched, since it
remains stable for a long time interval. Output data must, of course, be latched. The
only problems with input are transitions that occur while the computer is reading the

data. One-shots, cross coupled latches, or software delay routines can smooth the transi­
tions.

A single port can handle several slow devices. Figure 12-1 shows a demultiplexer
that automatically directs the next output data to the next device by counting output
operations. Figure 12-2 shows a control port that provides select inputs to a demulti­
plexer. The data outputs here can come in any order, but an additional output instruc­
tion is necessary to change the state of the control port. Output demultiplexers are com­
monly used to drive several displays from the same output port. Figures 12-3 and 12-4

show the same alternatives for an input multiplexer.

Note the differences between input and output with slow devices.

l. Input data need not be latched since the input device holds the data for an
enormous length of time by computer standards. Output data must be latched
since the output device will not respond to data that is present for only a few

Data Bus

Port
Selection

Logic

� "\
...

� Output
Port / .,

Strobe

Clock

-.

Counter
-

Input/Output 12-3

Data Outputs 0

Data "

Inputs

Data Outputs
"

:)
Demultiplexer

Data Outputs 2
...

..

Select

Inputs
Data Outputs

-"

3

The Counter controls where the Demultiplexer sends the data.

Figure 12-1. An Output Demultiplexer Controlled by a Counter

Data Outputs 0
_A

?
Data ... Data

r

' Port Inputs

Data Outputs

,.

..

Data Bus Demultiplexer
Data Outputs 2

_Jo...

..

�
Control -- Select

...
Data Outputs

Port Inputs "

3

r

The CPU sends control information to the Control Port; that port then determines where the

Demultiplexer sends the data.

Figure 12-2. An Output Demultiplexer Controlled by a Port

12-4 6809 Assembly Language Programming

Data Bus

Port
Selection

Logic

A Input ..

Port ..

Enable

-
�
lr

Clock

Counter

Data
Outputs

Multiplexer

-- Select -

Inputs

The Counter controls which input the Multiplexer routes to the Input Port.

A
Data Inputs

�

_.
Data Inputs

"' �

A
Data Inputs

�
"

..._
Data Inputs

' \

Figure 12-3. An Input Multiplexer Controlled by a Counter

0

2

3

..
Data Inputs 0

Input
Data Bus

Output
Data Bus t

A_

...

...

Data
Port '

Control --

Port :

�
Data
Outputs

..
Data Inputs

�
..

Multiplexer

..._
Data Inputs

l
"

Select
Inputs A

Data Inputs

'- �

The control information which the CPU sends to the Control Port (with an output operation)
determines which input the Multiplexer routes to the Data Port.

Figure 12-4. An Input Multiplexer Controlled by a Port

2

3

Input/Output 12-5

CPU clock cycles. Remember that the CPU is constantly using its data bus to
perform ordinary memory transfers.

2. Input transitions cause problems because of their duration; brief output

transitions cause no problems because the output devices (or the observers)
react slowly.

3. The major constraints on input are reaction time and responsiveness; the

major constraints on output are response time and observability.

INTERFACING MEDIUM-SPEED DEVICES

Medium-speed devices must be synchronized in some way to the processor

clock. The CPU cannot simply treat these devices as if they held their data forever or

could receive data at any time. Instead, the CPU must be able to determine when a

device has new input data or is ready to receive output data. It must also have a way of

telling a device that new output data is available or that the previous input data has been

accepted. Note that the peripheral may be or contain another processor.

Handshake

The standard unclocked procedure is the handshake. Here the sender indicates

the availability of data to the receiver and transfers the data; the receiver completes
the handshake by acknowledging the receipt of the data. The receiver may control the

situation by initially requesting the data or by indicating its readiness to accept data� the

sender then sends the data and completes the handshake by indicating that data is

available. In either case, the sender knows that the transfer has been completed suc­

cessfully and the receiver knows when new data is available. The handshake procedure

can operate at any speed, since the sender and receiver (not the clock) control the

sequence of events.

Figures 12-5 and 12-6 show typical input and output operations using the

handshake method. The procedure whereby the CPU checks the readiness of the pe­

ripheral before transferring data is called "polling." Clearly, polling can occupy a large

amount of processor time if there are many 1/0 devices. There are several ways of pro­

viding the handshake signals. Among these are:

Strobe

Separate dedicated 1/0 lines. The processor may handle these as additional

1/0 ports or through special lines or interrupts. The 6809 microprocessor does

not have special serial I/0 lines, but the 6820 and 6821 Peripheral Interface

Adapters (or programmable parallel interface chips) do.

Special patterns on the 1/0 lines. These may be single start and stop bits or
entire characters or groups of characters. The patterns must be easy to dis­

tinguish from background noise or inactive states.

We often call a separate 1/0 line that indicates the availability of data or the

occurrence of a transfer a "strobe." A strobe may, for example, clock data into a latch
or fetch data from a buffer.

12-6 6809 Assembly Language Programming

Data Bus
1/0

CPU r-.. Section �

Input
Acknowledge

_...

Data
A

�

Data Ready

a. Peripheral provides data and Data Ready signal to computer 110 section.

Input
Acknowledge

Data Bus Data
1/0 A

CPU '('
""' Section "

Data Ready
...

Peripheral

Peripheral

b. CPU reads Data Ready signal from 1/0 section (this may be a hardware connection, e.g., interrupt).

A
Data Bus

CPU K

c. CPU reads data from 1/0 section.

Data Bus

CPU

1/0
Section

1/0
Section

Input
Acknowledge

-

Data
A

Peripheral

Data Ready
-

Input
Acknowled_?e

Data

r-..
Peripheral

..

Data Ready
...

d. CPU sends Input Acknowledge signal to 1/0 section which then provides Input Acknowledge
signal to Peripheral (this may be a hardware connection).

Figure 12-5. An Input Handshake

Output
Ready

_

Data Bus Data
1/0 ..

CPU
... Section

Peripheral
"'

Ready
-

a. Peripheral provides Peripheral Ready signal to computer 1/0 section.

Output
Ready

-

A
Data Bus Data

1/0
CPU Section / ... Peripheral

Ready
-

Input/Output 12-7

Peripheral

Peripheral

b. CPU reads Peripheral Ready signal from 1/0 section (this may be a hardware connection. e.g ..
interrupt).

Data Bus
"

CPU .

c. CPU sends data to Peripheral.

Data Bus

CPU

) ..

..

1/0
Section

1/0
Section

Output
Ready

Data
..
/ Peripheral

Peripherar
Ready

Output
Ready _

Data
A

Peripheral

Peripheral
.-Ready
-

d. CPU sends Output Ready signal to Peripheral (this may be a hardware connection).

Figure 12-6. An Output Handshake

12-8 6809 Assembly Language Programming

Many peripherals transfer data at regular intervals: i.e., synchronously. Here the
only problem is starting the process by lining up to the first input or marking the first
output. In some cases, the peripheral provides a clock input from which the processor
can obtain timing information. In synchronous 1/0, the clock controls the speed of the

transfers, rather than the sender and receiver.

Reducing Transmission Errors

Transmission errors are a problem with medium�speed devices. Several

methods can lessen the likelihood of such errors; they include:

Sampling input data at the center of the transmission interval in order to
avoid edge effects; that is, keep away from the edges where the data is chang­
ing.

Sampling each input several times and using majority logic. For example,
one could read each bit 5 times and choose the value that occurred most
often.'

Generating and checking parity; an extra bit is used that makes the number of

l bits in the correct data even or odd.

Using other error detecting and correcting codes such as checksums, LRC
(longitudinal redundancy check), and CRC (cyclic redundancy check) .2

INTERFACING HIGH-SPEED DEVICES

High�speed devices that transfer more than 10,000 bits per second require

special methods. The usual technique is to construct a special�purpose controller that

transfers data directly between the memory and the 1/0 device. This process is called

direct memory access (DMA). The DMA controller must force the CPU off the busses,
provide addresses and control signals to the memory, and transfer the data. Such a con­
troller will be fairly complex, typically consisting of 50 to 100 chips, although LSI
devices such as the 6844 DMA controller3 for 6809-based microcomputers are now
available. The CPU must initially load the Address and Data Counters in the controller
so the controller will know where to start and how much data to transfer.

Input/Output 12-9

TIME INTERVALS

A common problem in 1/0 programming is how to provide time intervals of

various lengths between operations. Such intervals are necessary to debounce

mechanical switches (i.e., to smooth their irregular transitions), to provide pulses with

specified lengths and frequencies for displays, and to time l/0 operations for devices

that transfer data regularly (e.g., a teletypewriter that sends or receives one bit every 9.1

ms).

METHODS FOR PRODUCING TIME INTERVALS

We can produce time intervals in several ways:

1. In hardware with one-shots or monostable multi vibrators. These devices

produce a single pulse of fixed duration in response to a pulse input.

However, one-shots create reliability problems and they should be avoided

whenever possible.

2. In a combination of hardware and software with a flexible device such as the

6840 Programmable Timer for 6809-based microcomputers.<� The 6840 device

can provide time intervals of various lengths with a variety of starting and

ending conditions.

3. In software with delay routines. A delay routine has no purpose other than

to waste time; it is the computer equivalent of counting on your fingers. We

can easily specify how much time the computer is to waste, since we know the

clock speed of our particular microcomputer (this is system-dependent) and

the number of clock cycles required to execute instructions (Appendices B

and C). The problem with pure delay routines is that the processor cannot do

other tasks while it is wasting time; however, delay routines require no hard­

ware and may use processor time that would be wasted anyway.

The choice among these three methods depends on your application. The soft­

ware method is inexpensive but may overburden the processor. The programmable

timers are relatively expensive but are easy to interface and may be able to handle

many complex timing tasks.

The timer in the 6846 Multifunction Support Device (ROM/10/Timer)' is availa­

ble at no extra cost if this part is being used. The part is somewhat more expensive than

simpler devices, but may be justifiable as a complete, one-chip package. 6846 devices

are used in many board-level microcomputers.

DELA V ROUTINES

A simple delay routine works as follows:

STEP 1
- Load a register with a specified value.

STEP 2 - Decrement the register.

STEP 3 - If the result is not zero, repeat STEP 2.

This routine does nothing except use time. The amount of time used depends on

the execution time of the various instructions. The maximum length of the delay is

12-10 6809 Assembly Language Programming

limited by the size of the register; however, the entire routine can be placed inside a

similar routine that uses another register, etc.

Be careful - the actual time used depends on the clock rate at which the pro­
cessor is running, the speed of memory accesses, and operating conditions such as
temperature, power supply voltage, and circuit loading which may affect the speed at
which the processor executes instructions.

The following example subroutine (starting in memory address 0030) uses the
two Accumulators to produce delays as long as 255 ms. The routine saves Accumula­

tor B and the Condition Code Register in the Hardware Stack so they are not changed.

We could use either of the general parameter passing techniques from Chapter 11 to

write a completely "transparent" subroutine that would not affect any registers or flags.

Of course, we would have to include the extra instructions that transfer parameters,

save and restore registers, and adjust the return address in the time budget.

Program Example: A Delay Subroutine

Purpose: The subroutine produces a delay of l ms times the contents of Accumulator

A.

Flowche.ri::

COUNT = MSCNT

COUNT=

COUNT - 1

(A)= (A)- 1

The value of MSCNT depends on the rate at which the CPU executes instruc-

tions.

Program a:
OOC3

0030 34 05
0032 C6 C3
0034 SA

0035 26 FD

0037 4A

0038 26 FB

003A 35 85

Time Budget:

MSCNT EQU
*

ORG

DELAY PSHS

DLYl LDB

DLY DECB

BNE

DECA

BNE

PULS
*

Instruction

PSHS B.CC
LDB #MSCNT
DECB
BNE DLY
DECA
BNE DLY1
PULS PC.B.CC

Input/Output 12-11

SC3

$0030
B,CC SAVE INCIDENTAL REGISTERS

#MSCNT GET COUNT FOR 1 MS DELAY

DLY COUNT WITH B FOR 1 MS

COUNT NUMBER OF MILLISECONDS

DLYl

PC, B,CC RESTORE INCIDENTAL

AND RETURN

Number of Times Executed

1
(A)

lA) X MSCNT
lA) x MSCNT

(A)
lA)

1

REGISTERS

The total time used should be (A) x 1 ms. If the memory is operating at full
speed, the instructions require the following numbers of clock cycles (according to
Appendix C).

Instruction

PSHS B.CC
LDB #MSCNT
DECA or DECB
BNE
PULS PC.B.CC

Number of Clock Cycles

7
2
2
3
9

Remember that PSHS and PULS require 5 clock cycles plus 1 clock cycle for each
byte pushed or pulled.

Ignoring the Jump or Branch-to-Subroutine instruction (its execution time
depends on the addressing mode used), the program takes

lA) X 17 + 5 X MSCNT) + 1 6 clock cycles

The 7 is the number of cycles required by LDB #MSCNT, DECA, and BNE DL Y L the
5 is the number of cycles required by DECB and BNE DL Y; the 16 is the number of
cycles required by PSHS B,CC and PULS PC,B,CC.

So, to make the delay 1 ms,

23 + 5 x MSCNT = Nc

where Nc is the number of clock cycles per millisecond. At a 1 MHz 6809 clock rate, Nc
= 1000 so

5 x MSCNT = 977

MSCNT = 195 IC316) at a 6809 clock

rate of 1 MHz

The next version is a subroutine using Index Register X to produce a delay of 1

millisecond without affecting any registers.

12-12 6809 Assembly Language Programming

Flowchart:

(X)= MSCNT

(X)= (X)- 1

The value of MSCNT depends on the execution time of the instructions in the

program.

Program b:

007A MSCNT EQU $007A
*

ORG $0030

0030 34 10 DELAY PSHS X

0032 BE 007A LDX fMSCNT

0035 30 1F DLY LEAX -1,X

0037 26 FC BNE DLY

0039 35 90 PULS PC,X

Remember that MSCNT is a 16-bit number.

Time Budget:

Instruction

PSHS X
LOX '*I=MSCNT
LEAX -1 .X
BNE DLY
PULS PC.X

Number of Times Executed

1
MSCNT
MSCNT

1

GET COUNT FOR 1 MS

COUNT X DOWN FOR 1

Number of Clock Cycles

7
3
5
3
9

Ignoring the JSR or BSR instruction, the program takes

1 9 + 8 x MSCNT clock cycles

DELAY

MS

For this program to take 1 ms to execute at a 1 MHz clock rate, we need

1 9 + 8 x MSCNT = 1 000
MSCNT = 1 22 (007 A16)

At a 2 MHz clock rate, we need

1 9 + 8 X MSCNT = 2000
MSCNT = 24 7 (OOF7 16)

Input/Output 12-13

LOGICAL AND PHYSICAL DEVICES6

An important goal in writing 1/0 routines is to make them independent of par­
ticular physical hardware. The routines can then transfer data to or from 1/0

devices, with the actual addresses being supplied as parameters. The 1/0 device that
can actually be accessed through a particular interface is referred to as a physical

device. The 1/0 device to which the program transfers data is referred to as a logical

device. The operating system or supervisor program must provide a mapping of logical
devices on to physical devices, that is, assign actual physical 1/0 addresses and
characteristics to be used by the 1/0 routines.

Note the advantages of this approach:
1. The operating system can vary the assignments under user control. Now

the user can easily substitute a test panel or a development system interface

for the actual 1/0 devices. This is useful in field maintenance as well as in
debugging and testing. Furthermore, the user can change the 1/0 devices for

different situations; typical examples are directing intermediate output to a
video display and final output to a printer or obtaining some input from a

remote communications line rather than from a local keyboard.

2. The same 1/0 routines can handle several identical or similar devices. The
operating system or user only has to supply the address of a particular

teletypewriter, RS-232 terminal, or printer, for example.

3. Changes, corrections, or additions to the 1/0 configuration are easy to
make since only the assignments (or mapping) must be changed. On the 6809

microprocessor, the 1/0 routines can use the indexed addressing modes to

provide independence of specific physical addresses. Indirect addressing

allows one to access a physical device through a table. You can also use the

LEA instruction to load the actual device address into an Index Register or
Stack Pointer.

1/0 DEVICE TABLE

If the system has a table of 1/0 addresses in memory (for example, starting at
address IODEV) all an 1/0 routine needs is an index into the table. It can then
access the 1/0 device using the indirect accumulator indexed mode. If, for example,

the device address is table entry DEY, the foliowing program calculates the index and
loads the base address of the table into Index Register X:

tions

or

LDA DEV GET DEVICE NUMBER

ASLA MULTIPLY DEVICE NUMBER BY 2 FOR 2-BYTE ADDRESS TABLE

LDX #IODEV GET 0ASE ADDRESS OF I/0 TABLE

The program can now transfer data to or from the 1/0 device using the instruc-

LDB DATA GET DATA

STB [A, X} SEND DATA TO LOGICAL I/0 DEVICE

LDB [A, X) GET DATA FROM LOGICAL I/0 DEVICE

STB DATA SAVE DATA IN MEMORY

12-14 6809 Assembly Language Programming

If the program uses an 1/0 device address repeatedly, it can load it into Index
Register X with the instruction LOX [A,X] or LEAX [A,X]. Later instructions can then
use the non-indirect indexed addressing mode with no offset.

Using this approach, a single 1/0 routine can transfer data to or from many
different l/0 devices. The main program simply supplies the 1/0 routine with the index
for the device table. Compare the flexibility of this approach with the inflexibility of 1/0
routines that use direct or extended addressing to transfer data to or from 1/0 devices
and are therefore tied to specific physical addresses.

STANDARD INTERFACES

You can use other standard interfaces besides the TTY current-loop and RS-

232 to connect peripherals to a microcomputer. Popular ones include ;7.8

1. The serial RS-449, RS-422, and RS-423 interfaces.9

2. The 8-bit parallel General Purpose Interface Bus, also known as IEEE 488 or
Hewlett-Packard Interface Bus (HPIB) .10

3. The S-100 or IEEE 696 bus. II This 8-bit bus can also be used as a 16-bit bus.

4. The Intel Multibus.12 This is another 8-bit bus that can be expanded to han­
dle 16 bits in parallel.

5. Limited busses such as the Mostek/Pro-Log STD bus1J and the Intel iSBX
bus.l4 These are 8-bit busses that are intended to handle small additions to
standard boards.

The S-100 and Multibus differ from the others listed in that they are "mother­
board" busses which connect circuit boards within a single chassis. Such a bus connects
peripheral interface control logic to the central processor and memory; a different inter­
face (either a custom job or one of the standards we have mentioned) connects the pe­
ripheral device itself to the interface card in the microcomputer chassis.

6809 INPUT/OUTPUT CHIPS

Most 6809 input/output routines are based on LSI interface chips. These

devices combine latches, buffers, flip-flops, and other logic circuits needed for

handshaking and other simple interfacing techniques. They contain many logic con­

nections, certain sets of which can be selected according to the contents of program­

mable registers. Thus the designer has the equivalent of a Circuit Designer's Casebook
under his or her control. The initialization phase of the program places the appropriate
values in registers to select the required logic connections. Input or output routines
based on programmable LSI interface chips can handle many different applications, and
changes or corrections can be made in software rather than by rewiring.

Input/Output 12-15

Designers often use the following LSI interface chips with the 6809

microprocessor:

1. The 6820 or 6821 Peripheral Interface Adapter. We will discuss this device

in the next chapter. It contains two 8-bit 1/0 ports and four serial control

lines. There are minor hardware differences between the 6820 and 6821
devices, but we will treat them as identical since they are the same from the

programmer's point of view.

2. The 6850 Asynchronous Communications Interface Adapter. This device
transforms data between the 8-bit parallel form and the serial form required in
most communications applications. We will discuss the 6850 ACIA in

Chapter 14.

3. The 6551 Asynchronous Communications Interface Adapter. This device is

similar to the 6850 ACIA but includes an on-chip baud rate generator.

4. The 6522 Versatile Interface Adapter,tS.t6 which includes two 8-bit 1/0

ports, four serial control lines, two 16-bit counter/timers, and an 8-bit shift

register.

REFERENCES

1. J. Barnes and V. Gregory. "Use Microprocessors to Enhance Performance with

Noisy Data," EDN, August 20, 1976, pp. 71-72.

2. S. V. Alekar. "M6800 Program Performs Cyclic Redundancy Checks," Electronics,

December 6, 1979, p. 167.

J. E. McNamara. Technical Aspects of Data Communications, Digital Equipment
Corporation, Maynard, Mass., 1977, Chapter 13.

R. Swanson. "Understanding Cyclic Redundancy Codes," Computer Design,

November 1975, pp. 93-99.

J. Wong et at. "Software Error Checking Procedures for Data Communications

Protocols," Computer Design, February 1979, pp. 122-125.

3. A. Osborne et at. An Introduction to Microcomputers: Volume 2 - Some Real

Microprocessors, Osborne/McGraw-Hill, 1978, pp. 9-106 through 9-123.

4. A. Osborne et at. An Introduction to Microcomputers: Volume 2- Some Real

Microprocessors, pp. 9-78 through 9-106.

5. A. Osborne et at. An Introduction to Microcomputers: Volume 2- Some Real

Microprocessors, pp. 9-124 through 9-130.

6. C. W. Gear. Computer Organization and Programming, 3rd ed., McGraw-Hill, New

York, 1980, Chapter 6.

7. J. Kane et al. An Introduction to Microcomputers: Volume 3- Some Real Support

Devices, Chapter J, Osborne/McGraw-Hill, Berkeley, Calif.

C. A. Ogdin. "Microcomputer Buses," Mini-Micro Systems, June 1978, pp. 97-

104 (Part 1); July 1978, pp. 76-80 (Part 2).

12-16 6809 Assembly Language Programming

8. E. Teja and R. Peterson. "Selecting the Proper Bus," EDN, December 15, 1979,
pp. 231-236.

9. D. Morris. "Revised Data Interface Standards," Electronic Design, September 1,

1977,pp.l38-14l.

10. Institute of Electrical and Electronic Engineers."IEEE Standard Digital Interface

for Programmable Instrumentation," IEEE Std488-1978, IEEE, 445 Hoes Lane,
Piscataway, N.J. 08854.

J. B. Peatman. Microcomputer-Based Design, McGraw-Hill, New York, 1977, pp.
299-311.

S.C. Baunach. "An Example of an M6800-Based GPIB Interface," EDN, Septem­
ber 20, 1977, pp. 125-128. A more detailed version of this article, complete with

program listing and schematics, is available from Tektronix, Inc., Box 500,
Beaverton, OR 97077.

S. M. Babb et al. "A General-Purpose IEEE-488 Bus Interface," Proceedings of
the 1979 Conference on Industrial Applications of Microprocessors, Philadelphia,

Pa., March 1979, pp. 121-125. This article also includes basic talker code for an
M6800.

ll. G. Morrow and H. Fullmer. "Proposed Standard for the S-100 Bus," Computer,

May 1978, pp. 84-89.

K. A. Elmquist et al. "Standard Specification for S-1 00 Bus Interface Devices,"
Computer, July 1979, pp. 28-51.

12. T. Rolander. "Intel Multi bus Interfacing," Intel Application Note AP-28, Intel
Corporation, Santa Clara, CA, 1977.

An Introduction to Microcomputers: Volume 3 - Some Real Support Devices, Section
J.

13. M. Biewer. "This Bus Handles Different Microprocessors," Electronic Design,

October 11, 1978, pp. 220-224.

14. G. Sawyer et al. "Special-Function Modules Ride on Computer Board,"
Electronics, April 10, 1980, pp. 135-140.

15. A. Osborne et al. An Introduction to Microcomputers: Volume 2- Some Real

Microprocessors, pp. 10-34 through 10-53.

16. L. A. Leventhal. 6502 Assembly Language Programming, Osborne/McGraw-Hill,
pp. 11-23 through 11-38.

13
Using the 6820 Peripheral

Interface Adapter (PIA)

The 6820 PIAU is a device which supports many modes of parallel 1/0. In this

chapter we will discuss the programming of this device in some detail, and give

several examples of fundamental 1/0 routines. The discussion in this chapter

applies to the 6821 PIA as well; it and the 6820 appear equivalent to the programmer.

REGISTERS AND CONTROL LINES

Figure 13-1 is the block diagram of a PIA. The device contains two nearly iden­

tical 8-bit ports - A, which is usually an input port, and B, which is usually an out­

put port. Each port contains:

A Data or Peripheral register that holds either input or output data. This
register is latched when used for output but unlatched when used for input.

A Data Direction register. The bits in this register determine whether the cor­
responding data register bits (and pins) are inputs (0) or outputs (1).

A Control register that holds the status signals required for handshaking, and
other bits that select logic connections within the PIA.

Two control lines that are configured by the control registers. These lines can
be used for the handshaking signals shown in Figures 12-5 and 12-6.

The meanings of the bits in the Data Direction and Control Registers are related
to the underlying hardware and are entirely arbitrary as far as the assembly language
programmer is concerned. You must either memorize them or look them up in the
appropriate tables (Tables 13-2 through 13-6).

13-2 6809 Assembly Language Programming

IRQB��--------------------------------�

Interrupt
Status

Control B

Figure 13-1. Block Diagram of the 6�20 Peripheral Interface Adapter

CBl

CB2

Using the 6820 Peripheral Interface Adapter (PI A) 13-3

Table 13-1. Addressing 6820 PIA Internal Registers

Address Control
lines Register Bit Offset Address

Register Selected (Index Register or Stack Pointer) =

RS1 RSO CRA-2 CRB-2 Address of Peripheral (Datal Register A

0 0 1 X Peripheral Register A 0
0 0 0 X Data Direction Register A 0
0 1 X X Control Register A 1
1 0 X 1 Peripheral Register B 2
1 0 X 0 Data Direction Register B 2
1 1 X X Control Register B 3

X = Either 0 or 1

Addresses

Each PIA occupies four memory addresses. The RS (register select) lines
choose one of the four registers, as described in Table 13-1. Since there are six
registers (two peripheral, two data direction, and two control) in each PIA, one further

bit is needed for addressing. Bit 2 of each Control Register determines whether the
other address on that side refers to the Data Direction Register (0) or to the Periph­
eral Register (1). This sharing of an external address means that

I. A program must change the bit in the Control Register in order to use the

register that is not currently being addressed.

2. The programmer must know the contents of the Control Register to deter­

mine which register is being addressed. RESET clears the Control Register

and thus addresses the Data Direction register.

Table 13- 1 also shows a convenient way to address the registers in a PIA. If, as is

usually the case, the register select lines are tied to the least significant address lines

(RSO to AO and RS 1 to A I), the programmer can load an Index Register or Stack

Pointer with the address of Data (Peripheral) Register A and refer to the other register

by means of the constant offsets in the last column of Table 13-1.

PIA Control Registers

fable 13-2 shows the organization of the PIA Control Registers. We may de­
scribe the general purpose of each bit as follows:

Bit 7: status bit set by transitions on control line 1 and cleared by reading the Pe-

ripheral (Data) register

Bit 6: same as bit 7 except set by transitions on control line 2

Bit 5: determines whether control line 2 is an input (0) or output (I)

Bit 4: Control line 2 input: determines whether bit 6 is set by high-to-low transi­

tions (0) or low-to-high transitions (1) on control line 2

Control line 2 output: determines whether control line 2 is a pulse (0) or a

level (l)

Bit 3: Control line 2 input: if 1, enables interrupt output from bit 6

13-4 6809 Assembly Language Programming

Control line 2 output: determines ending condition for pulse (0 =

handshake acknowledgment lasting until next transition on control line 1,

1 = brief strobe lasting one clock cycle) or value of level

Bit 2: selects Data Direction Register (0) or Data Register (1)

Bit 1: determines whether bit 7 is set by high-to-low transitions (0) or low-to­

high transitions (1) on control line 1

Bit 0: if 1, enables interrupt output from bit 7 of Control Register

Tables 13-3 through 13-6 describe the bits in more detail. Since E is normally

tied to the <1>2 clock, you can interpret "E" pulse as "clock pulse."

Table 13-2. Organization of the PIA Control Registers

7 6 5 I 4 I 3 2 1 I 0

CRA DDRA
IRQA1 IRQA2 CA2 Control

Access
CA 1 Control

7 6 5 1 4 I 3 2 1 I 0

CRB DDRB
IRQB1 IRQB2 CB2 Control Access

CB1 Control

Table 13-3. Control of 6820 PIA Interrupt Inputs CAl and CBI

CRA 1 CRA-0 Interrupt Input Interrupt Flag MPU Interrupt Request
(CRB-1) (CRB-0) CA1 (CB1)

0 0 J Active

0 1 J Active

1 0 1 Active

1 1 I Active

Notes:
1. I indicates positive transition (low to high)

2. j indicates negative transition (high to low)

CRA-7 (CRB-7)

Set high on J of CA1
(CB1)

Set high on J of CA1
(CB1)

Set high on 1 of CA1
(CB1)

Set high on 1 of CA1
(CB1)

IRQA (i'R'QB)

Disabled - IRQ remains high

Goes low when the
interrupt flag bit CRA- 7

(CAB-7) goes high

Disabled - IRQ remains high

Goes low when the
interrupt flag bit CRA- 7

(CAB- 7) goes high

3. The interrupt flag bit CRA-7 is cleared by an MPU Read of the A Data Register, and CRB-7 is cleared

4.

by an MPU Read of the B Data Register

If CRA-0 (CRB-0) is low when an interrupt occurs (interrupt disabled) and is later brought high, IRQA
(IRQB) occurs after CRA-0 (CRB-0) is written to a "one."

Using the 6820 Peripheral Interface Adapter (PIA) 13-5

Table 13-4. Control of 6820 PIA Interrupt Inputs CA2 and CB2 (CRAS (CR85) is Low)

CRA-5 CRA-4 CRA-3 Interrupt Input Interrupt Flag MPU Interrupt Request
(CRB-5) (CRB-41 (CRB-3) CA2 (CB2l CRA-6 (CRB-6) iiffiA (IRQB)

0 0 0 1 Active
Set high on 1 of CA2 Disabled - IRQ remains high

(CB2)

Set high on 1 of CA2
Goes low when the

0 0 1 1 Active interrupt flag bit CRA-6
(CB2)

(CRB-6) goes high

0 1 0 T Active
Set high on t of CA2 Disabled - IRQ remains high

(CB2)

Set high or t of CA2
Goes low when the

0 1 1 1 Active interrupt flag bit CRA-6
(CB2)

(CRB-6) goes high

Notes

1.

2.

3.

4.

CRB-
5

1

1

1

1

1 indicates positive transition (low to high)

1 indicates negative transition (high to low)

The Interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register and CRB-6 is cleared
by an MPU Read of the B Data Register

If CRA-3 (CRB-3) is low when an interrupt occurs (Interrupt disabled) and is later brought high. IRQA
(IRQB) occurs after CRA-3 (CRB-3) is written to a "one"

Table 13-5. Control of 6820 PIA CB2 Output Line (CRBS is High)

CB2
CRB- CRB- Mode

4 3 Cleared Set

Low on the positive transition of High when the interrupt flag bit Automatic Output

0 0
the first E pulse following an CRB- 7 is set by an active transi- Acknowledge
MPU Write "B" Data Register tion of the CB 1 signal.
operation.

Low on the positive transition of High on the positive edge of the Automatic Output

0
the first E pulse after an MPU first "E" pulse following an "E" (Write) Strobe

0 Write "B" Data Register opera- pulse which occurred while the
tion. part was deselected.

Low when CRB-3 goes low as a Always low as long as CRB-3 is Manual Output (Low)

0
result of an MPU Write in Con- low. Will go high on an MPU

1 trol Register "B". Write in Control Register "B"
that changes CRB-3 to "one".

Always high as long as CRB-3 is High when CRB-3 goes high as Manual Output (High)
high. Will be cleared when an a result of an MPU Write into

1 1 MPU Write Control Register Control Register "B".
"B" results in clearing CRB-3 to
" zero

..

13-6 6809 Assembly Language Programming

Table 13-6. Control of 6820 PIA CA2 Output Line (CRA5 is High)

CA2
CRA- CRA- CRA- Mode

5 4 3 Cleared Set

low on negative transition of E High when the interrupt flag bit Automatic Input

1 0 0
after an MPU Read "A" Data CRA-7 is set by an active transi- Acknowledge
operation. tion of the CA 1 signal.

low on negative transition of E High on the negative edge of the Automatic Input
after an MPU Read "A" Data first "E" pulse which occurs {Read) Strobe

1 0 1 operation. during a deselect

low when CRA-3 goes low as a Always low as long as CRA-3 is Manual Output (low)

1 1 0
result of an MPU Write to Con- low. Will go high on an MPU
trol Register "A". Write to Control Register "A"

that changes CRA-3 to "one".

Always high as long as CRA-3 High when CRA-3 goes high as Manual Output (High)
is high. Will be cleared on an a result of an MPU Write to

1 1 1 MPU Write to Control Register Control Register "A".
"A" that clears CRA-3 to a
"zero".

INITIALIZING A PIA

As part of the general system initialization, the program must determine how

each PIA will operate. Remember that a PIA contains a large number of logic connec­
tions, much as the processor itself does. The data stored in the control and data direction

registers activates certain connections within the PIA, much as the data loaded into the
instruction register of the CPU activates certain connections. The differences are that
the PIA contains far fewer connections than the CPU and the program rarely, if ever,
changes the active connections in a PIA.

The steps in determining how the PIA will operate are:

1. Address the Data Direction Registers by clearing bit 2 of each Control
Register. This allows the program to determine which 1/0 pins will be inputs
and which outputs. Since RESET clears the entire control register, this step is
unnecessary in the overall system startup routine.

2. Determine which I/0 pins will be inputs and which outputs by loading the
appropriate combinations of O's (for inputs) and l 's (for outputs) into the
Data Direction Registers.

3. Determine how the status and control lines will operate by loading the
appropriate values into bit positions 0, 1, 3, 4, and 5 of the Control Registers.
Address the Data Registers by setting bit 2 of each Control Register.

The program can address a Data Direction Register as follows:

or

CLR PIACR

LDA PIACR

CLEAR PIA CONTROL REGISTER

ANDA #%11111011 ADDRESS DATA DIRECTION REGISTER

STA PIACR

Using the 6820 Peripheral Interface Adapter (PIA) 13-7

The second version is more general, since it does not change any of the other bits in the
Control Register.

After the program has addressed the Data Direction Register, it can select the
appropriate combination of inputs and outputs by storing the corresponding pattern of
O's and 1 's in that register. Some simple examples are:

1. CLR PIADDR MAKE ALL DATA LINES INPUTS

2. LOA #SFF MAKF. ALL DATA LINES OUTPUTS

STA PIADDR

3. LOA #$FO MAKE DATA LINES 4-7 OUTPUTS, 0-3 INPUTS

STA PIADDR

The third step is clearly the most difficult, since it involves selecting the active logic con­
nections in the PIA and thus determining how the device will operate.

Some factors to rem em �er are:

1. You cannot change bits 6 and 7 of the Control Register by writing data into

them. Only transitions on the control lines set these bits and only the reading
of the corresponding Data Registers clears them.

2. You must set bit 2 of each Control Register to address the Data Register

and allow the transfer of data to or from the outside world. As long as bit 2 of
a Control Register is zero, the CPU can only access the corresponding Data
Direction Register; it cannot transfer data to or from the 1/0 pins through the
Data Register.

3. Bit 1 of the Control Register determines which edge of a pulse on control

line 1 will set bit 7. If bit 1 is 0, a high-to-low transition (rising edge) on con­
trol line 1 will set bit 7; if bit 1 is 1, a low-to-high transition (falling edge) on
control line 1 will perform that function. If control line 2 is an input, bit 4 pro­
vides the same choice for it.

4. Bit 0 of the Control Register is an interrupt enable for control line 1.
Remember that this bit must be set to enable interrupts, unlike the 6809
Interrupt Mask bit, which must be cleared to enable interrupts. Chapter 15 de­
scribes interrupts in more detail. If control line 2 is an input, bit 3 performs
the same function for it.

5. Bit 5 determines whether control line 2 is an output (1) or an input (0). Bits
3 and 4 determine how control line 2 will operate. In the pulse or automatic
strobe mode, ports A and B differ; port A produces a pulse on CA2 only after
the processor reads Data Register A, while port B produces a pulse on CB2

only after the processor writes into Data Register B.

6. You must determine the operating mode of each port of each PIA in your

system. Each port has a separate Control Register, Data Direction Register,
and pata Register.

PIA OPERATING MODES

We can refer to the operating modes in which CA2 or CB2 are output control

signals as follows:

The modes in which the PIA automatically produces a pulse on CA2 after an

13-8 6809 Assembly Language Programming

input operation or on CB2 after an output operation are called automatic modes, since

the PIA produces the entire pulse without any explicit CPU intervention. The pro­

grammer has no control over the length or polarity of the pulse.

The mode in which bit 3 of the PIA Control Register determines the level of

control line 2 is called a manual mode, since the CPU must produce changes by

explicitly setting or clearing control register bit 3. The PIA does nothing automatically.

This mode requires extra instructions, but gives the programmer complete control over

the length and polarity of pulses.

Control line 2 has the following functions in the two automatic modes:
In the mode in which the automatic pulse lasts until the next active transition on

control line I, control line 2 is an acknowledgment. The active part of the pulse (the low

period) signifies that the CPU has completed its part of the most recent 1/0 operation;

the I/0 device may start the next operation by sending data (input) or indicating its

readiness (output).

In the mode in which the automatic pulse lasts one clock cycle, control line 2 is

a strobe. The pulse indicates that the CPU has performed an 110 operation.

Examples of Selecting a PIA Operating Mode

1. A simple input port with no control lines (for example, as needed for a set of

switches):

CLR

CLR

LOA

STA

PTACR

PIADDR

J%00000100
PIACR

ADDRRSS DATA DIRECTION REGISTER

MAK� ALL DATA LINES INPUTS

AnDR�SS DATA REGISTER

The program first clears bit 2 of the Control Register to gain access to the

Data Direction Register. It then makes all the data lines inputs by storing O's

in all the bits of the Data Direction Register and sets bit 2 of the Control

Register to gain access to the Data Register (and the input port itself). The

same sequence of instructions will handle the case in which a high-to-low

transition (falling edge) on control line 1 indicates OAT A READY or PE­

RIPHERAL READY.

2. A simple output port with no control lines (for example, as needed for a set

of single LED displays):

CLR PIACR ADDRESS DATA DIRECTION REGISTER

LOA �$FF MAKE ALL DATA LINE OUTPUTS

STA PIADDR

LOA #%00000100 ADDRESS DATA REGISTER

STA PIACR

The only difference from the previous example is that the program makes all

the data lines outputs by storing l 's in all the bits of the Data Direction

Register.

3. An input port with a status input that indicates DATA READY with a low­

to-high transition (positive transition on control line 1).

CLR PIACR ADDRESS DATA DIRECTION REGISTER

CLR PIADDR MAKE ALL DATA LINES INPUTS

LOA �%00000110 MAKE DATA READY ACTIVE LOW-TO-HIGH

STA PIACR

The only difference from Example 1 is that the program sets bit 1 of the Con­

trol Register. The result is that low-to-high transitions on control line 1 will

Using the 6820 Peripheral Interface Adapter (PI A) 13-9

set bit 7 of the Control Register. This operating mode is suitable for most

encoded keyboards.

4. An output port that produces a brief strobe to indicate DATA READY or

OUTPUT READY. This strobe could be used to multiplex displays or to pro­

vide a DATA AVAILABLE signal to a printer.

CLR PIACR ADDRESS DATA DIRECTION REGISTER

LOA nSFF MAKE A L L DATA LINES O UTPUTS

STA PIADDR

LOA �%00101100 MAKF. CONTROL LINE 2 A BRIEF STROBE

STA PIACR

This program selects an operating mode for control line 2 as follows:

Bit 5 l to make control line 2 an output.

Bit 4 0 to make control line 2 a pulse, rather than a level.

Bit 3 1 to make the pulse one clock period long.

After each instruction that writes data into PIA Data Register B, control line 2

will go low for one clock cycle. For example, the instruction

STA PIADB

will both send data to the Data Register (and hence to the output port) and

cause a strobe on control line 2. However, the A port of a PIA will produce a

strobe only after a read operation. The sequence

STA

LOA

P IADA

PI ADA

WRITE DATA

PRODUCE AN OUTPUT STROBE

will both send the data to the output port and cause a strobe. The LOA

instruction is a "dummy read;" it has no effect except causing the strobe (and

wasting a few clock cycles). Other instructions besides LOA could serve the

same purpose� you should try to name some of them.

5. An input port with a handshake INPUT ACKNOWLEDGE strobe. The

strobe goes low when the CPU has read the data in the port and can accept

more.
CLR PIACR ADDRESS DATA DIRECTION REGISTER

C LR PIADDR MAKE ALL DATA LINES INPUTS

LOA n%00100100 CONTROL LINE 2 - HANDSHAKE ACKNOWLEDG�

STA PIACR

Control register bit 5 = l to make control line 2 an output, bit 4 = 0 to make

it a pulse, and bit 3 = 0 to make it an active-low acknowledgment that

remains low until the next active transition on control line I. The port oper­

ates as follows:

a. A high-to-low transition on control line 1 indicates that the input periph­
eral has sent the computer new data. Bit 7 of the PIA Control Register is

set and control line 2 goes high.

b. The CPU determines that new data is available by examining bit 7 of the

PIA Control Register. It therefore loads the data from the Data Register,

thus clearing bit 7 of the Control Register and sending control line 2 low.

c. The input peripheral can determine that the CPU has accepted the most

recent data by examining control line 2. It can then repeat step a with

complete assurance that no data will be lost.

13-10 6809 Assembly Language Programming

The acknowledgment automatically follows any instruction that reads PIA
Data Register A; for example, the instruction

LDA PIADl>.

will both read the data and cause the acknowledgment. However, the B port
will produce an acknowledgment only after an instruction that writes into the

Data Register. The sequence

LDA PIADB

STA PIADB

READ DATA

PRODUCE ACKNOWLEDGEMENT

will both read data and produce an acknowledgment. The ST A instruction is a

"dummy write;" it has no effect other than to cause an acknowledgment
(that is, to send control line 2 low) and use a few clock cycles. Note that the
instructions here are in the opposite order from those in Example 4. This
operating mode is suitable for many CRT terminals that require a complete
handshake.

6. An output port with a latched zero control bit (latched serial output or level
output with value 0). The serial output can be used to turn a peripheral on or
off or to determine its mode of operation.

CLR PIACR ADDRESS DATA DIRECTION REGISTER

LDA �$FF MAKE ALL DATA LINES OUTPUTS
STt, l'IADDR

�DA i%00110100 CONTROL LINE 2 - LATCHED OUTPUT, VALUE 0
)TA i'IACR

Bit 5 = 1 to make control line 2 an output, bit 4 = l to make it a level or
latched bit, and bit 3 = 0 to make the value of the level zero. Operations on
the Data Register do not affect control line 2 in this operating mode, so it will
not automatically change value. The only way to change its value is for the

program to change the value of bit 3 of the PIA control register; i.e.,

Lf1i\ PIACR

OHA '%00001000 MAKE SERIAL OUTPUT ONE

STI\ f'IACR

or

LDA ?IACR

ANDA �%11110111 MAKE SERIAL OUTPUT ZERO

STA PIACR

You can use this operating mode to produce active-high strobes or to provide

pulses with lengths determined by the program, rather than by the hardware.

USING THE PIA TO TRANSFER DATA

Once the program has determined the operating mode of the PIA, you may use its
data registers like any other memory locations. The most straightforward instructions

for transferring data from an input device or to an output device are as follows:

Load Accumulator transfers 8 bits of data from the specified input pins to an
Accumulator.

Store Accumulator transfers 8 bits of data from an Accumulator to the specified
output pins.

Using the 6820 Peripheral Interface Adapter (PIA) 13-11

You must be cautious in situations in which input and output ports do not
behave like memory locations. For example, it often makes no sense to write
data into input ports or read data from output ports. Be particularly careful if the
input port is not latched or if the output port is not buffered.

Other instructions that transfer data to or from memory can also serve as 1/0

instructions. Typical examples are:

Clear places zeros on a set of output pins.

Test sets the flags according to the values of a set of input pins.

Compare sets the flags as if the values of a set of input pins had been subtracted
from the contents of an Accumulator.

Here also you must be aware of the physical limitations of the 1/0 ports. Be particu­
larly careful of instructions like Test, Shift, Complement, Increment, and Decrement,
which involve both read and write cycles.

We cannot overemphasize the importance of careful documentation. Often, com­

plex 1/0 transfers can be concealed in instructions with no obvious functions. You
must describe the purposes of such instructions carefully. For example, one could
easily be tempted to remove the dummy read and write operations mentioned earlier
since they do not appear to accomplish anything.

PIA Status Bits

Bit 7 of the PIA Control Register often serves as a status bit, such as Data
Ready or Peripheral Ready. You can check its value with either of the following
sequences:

LDA PIACR IS READY FLAG 1?

B"1 [DEVRDY YES, DEVICE READY

TST PIACR IS READY FLAG 1?

B"ll DEVRDY YES, DEVICE READY

Note that you should not use the shift instructions, since they will change the contents
of the Control Register (why?). The following program will wait for the Ready flag to go
high:

>\'I\ ITR LDA PIACR

BPL vJI\ITR

IS READY FLAG 1?

NO, WAIT

How would you change these programs to examine bit 6 instead of bit 7?

The only way to clear bit 7 (or bit 6) is to read the Data Register. A dummy read
will be necessary if a read operation is not normally part of the response to the bit being
set. If the port is used for output, the sequence

ST.l\ FIADR

L[',\ ;'IADR

SEND DATA

CLEAR READY FLAG

will do the job. Note that here the dummy read is necessary on either port of the PIA.
The Test instruction can also clear the strobe without changing anything except the
flags. Be particularly careful of situations in which the CPU is not ready for input data or
has no output data to send.

13-12 6809 Assembly Language Programming

+5 v

I
-

0
Pushbutton -i

l

6820
PIA

Figure 13-2. A Pushbutton Circuit

EXAMPLES

13-1. A PUSHBUTTON

J\.
To CPU

v

We will interface a pushbutton to a 6809 microprocessor by means of a 6820 Pe­

ripheral Interface Adapter. The pushbutton is a mechanical switch; pressing the button

closes the switch and connects the input bit to ground (see Fig. 13-2).
The 6820 PIA acts as a buffer; no latch is needed since the pushbutton remains

closed for many CPU clock cycles. Pressing the button grounds one bit of the PIA. The

pullup resistor ensures that the input bit is one if the button is not being pressed.

We will perform two tasks with this circuit. They are:

a. Set a memory location based on the state of the button.

b. Count the number of times the button is pressed.

Task 13-1 a. Determine Switch Closure

Purpose: Set memory location 0040 to one if the button is not being pressed, and to zero

if it is.

Sample Cases:

1. Button open (not pressed)

Result = (0040) = 01

2. Button closed (pressed)

Result = (0040) = 00

Flowchart:

Program 13-1a:

8001 PIACA EQU

8000 PIADDA EQU

8000 PI ADA EQU

0001 MASK EQU
..

0 000 ORG

0000 7F 8001 CLR

0003 7F 8000 CLR

0006 86 04 LDA

OOOfl 87 8001 STA

OOOB OF 40 CLR

0000 B6 8000 LDA

0010 84 01 ANDA

OOP 27 02 BEQ

0014 oc 40 INC

0016 3F DONE swr

Using the 6820 Penpheral Interface Adapter (PIA) 13-13

(0040) = 0

Input and mask
Pushbutton Data

(0040) = 1

$8001
$8000
$8000
%00000001

$0000
PIACA ADDRESS DATA DIRECTION REGISTER

PIADDA MAKE ALL DATA LINES INPUTS

t%00000100 ADDRESS DATA REGISTER

PIACA

$40 CLEAR BUTTON MARKER

PI ADA READ BUTTON POSITION

�MASK IS BUTTON CLOSED (LOGICAL ZERO)?

DONE YES, DONE

$40 NO, SET BUTTON MARKER

The addresses PJACA (Control Register A), PIADDA (Data Direction Register
A), and PI ADA (Data Register A) depend on how the PIA is connected in your
microcomputer. This example does not use the PIA control lines.

MASK depends on the bit to which the pushbutton is connected. It has a one in
the button position and zeros elsewhere.

13-14 6809 Assembly Language Programming

Button Position Mask

(Bit Number) Binary Hexadecimal

0 00000001 01
1 00000010 02
2 00000100 04
3 00001000 08
4 00010000 10
5 00100000 20
6 01000000 40
7 10000000 80

Jf the button is attached to bit 7 of the PIA input port, the program can use a LDA
or TST instruction to set the Sign (Negative) Oag and thereby determine the button's

state. For example,

LOA PIADA

BPL DONE

TST PIADA

BPL DONE

IS BUTTON CLOSED (LOGIC ZERO)?

YES, DONE:

IS BUTTON CLOSED (LOGIC ZERO)?

YES, DONE:

We could also use shift instructions if the button is attached to bit 0, 6, or 7. The

sequence for bit 0 is:

LSR

BCC

PI ADA

DONE

IS �UTTON CLOSED (LOGIC ZERO)?

YES, DONE

The instructions ASL or ROL can be used with bit 6 or 7. Do the contents of the PIA

data register actually change? Explain your answer.

Task 13-1 b. Count Switch Closures

Purpose: Count the number of button closures by incrementing memory location 0040

after each closure.

Sample Case:

Pressing the button ten times after the start of the program should result in

(0040) = OA

In order to count the number of times the button has been pressed, we must be

sure that each closure causes a single transition. However, a mechanical pushbutton

does not produce a single transition for each closure, because the mechanical contacts

bounce back and forth before settling into their final positions. We can use a one-shot

to eliminate the bounce or we can handle it in software.

The program can debounce the pushbutton by waiting after it finds a closure.

The required delay is called the debouncing time and is part of the specifications of the

pushbutton. It is typically a few milliseconds long. The program should not examine the

pushbutton during this period because it might mistake the bounces for new closures.

The program may either enter a delay routine like the one described previously or may

simply perform other tasks for the specified amount of time.

Using the 6820 Peripheral Interface Adapter (PI A) 13-15

Even after debouncing, the program must still wait for the present closure to

end before looking for a new closure. This procedure avoids double counting. The

following program uses a software delay of 10 ms to debounce the pushbutton. You may

want to try varying the delay or eliminating it entirely to see what happens. To run this

program, you must also enter the delay subroutine into memory starting at location

0030.

Flowchart:

Program 13-1 b:

0030 DELAY

8001 PIACA

8000 PIADDA

8000 PI ADA

0001 MASK
*

0000
0000 7F 8001
0003 7 F 8000
000fi 86 04
0008 87 8001
0008 OF 40
OOOD B6 8000 CHKCLO
0010 84 01
OOP 26 F9
0014 oc 40
001r; 86 OA
OOlS 90 30
0(]1A B6 8000 CHKOPN

OOlD 84 01
OOlF 27 F9

0021 20 EA

COUNT= 0

COUNT=

COUNT+

Debounce button

with 1 0 ms wait

EQU $0030
EQU $8001
EQU $8000
EQU $8000
EQU %00000001

ORG $0000
CLR PIACA ADDRESS DATA DIRECTION REGISTER

CLR PIAOOA MAKE PORT A LINES INPUTS

LOA #%00000100 ADDRESS DATA REGISTER

STA PIACA

CLR $40 COUNT = ZERO INITIALLY

LOA PI ADA

ANOA !!MASK IS BUTTON BEING PRESSED?

BNE CHKCLO NO, WAIT UNTIL I T I S

INC $40 YES, ADD 1 TO CLOSURE COUNT

LOA 1110 WAIT 10 MS TO DEBOUNCE BUT TON

JSR DELAY

LOA PI ADA IS BUTTON STILL BEING PRESSED?

ANDA #MASK

BEQ CHKOPN YES, WAIT FOR RELEASE

BRA CHKCLO NO, LOOK FOR NEXT CLOSURE

13-16 6809 Assembly Language Programming

The three instructions beginning with the label CHKOPN determine when the

switch reopens (i.e., when the button is released). If the PIA is addressed as shown in

the last column of Table 13-1, we can load Index Register X with the address of Data

Register A, and we can then use indexed offsets to address the PIA as follows:

Original

CLR PIACRA
CLR PIADORA
STA PIACRA
LOA PIADRA

Replacement

(X)= PIADRA

CLR 1, X
CLR ,X
STA l,X
LOA , X

Clearly we do not need a PIA for this simple interface. An addressable tristate buffer

would do the job at far lower cost.

13-2. A MULTIPLE-POSITION (ROTARY, SELECTOR,
OR THUMBWHEEL) SWITCH

We will interface a multiple-position switch to a 6809 microprocessor. The lead

corresponding to the switch position is grounded, while the other leads are high (logic

ones).

Figure 13-3 shows the circuitry required to interface an 8-position switch. The

switch uses all eight data bits of one port of a PIA. Typical tasks are to determine the

position of the switch and to check if that position has changed. The program must

handle two special conditions:

1. The switch is temporarily between positions so no leads are grounded.

2. The switch has not reached its final position.

The first condition can be handled by waiting until the input is not all ones, i.e.,

until a switch lead is grounded. We can handle the second condition by examining the

switch again after a delay (such as 1 or 2 seconds) and only accepting the input when it

,... 7 .. PA7
�6

PA6
�5 PA5

t ::: 4 -
PA4

(�3 .. PA3 6820 "

� � 2 -- PA2 PIA)
::: I v

� 0 PA1
� - PAO

To CPU

Common

Figure 13-3. A Multiple-Position Switch

Using the 6820 Peripheral Interface Adapter (PIA) 13-17

Table 13-7. Data Input vs Switch Position

Date Input
Switch Position

Binary Hex

0 11111110 FE
1 11111101 FD
2 11111011 FB
3 11110111 F7
4 11101111 EF
5 11011111 OF
6 10111111 BF
7 01111111 7F

This scheme is inefficient, since it requires eight bits to distinguish among eight different positions

remains the same. This delay will not affect the responsiveness of the system to the

switch. Alternatively, we could use another switch (i.e., a Load switch) to tell the pro­
cessor when to read the selector switch.

We will perform two tasks involving the circuit of Figure 13-3. These are:

a. Monitor the switch until it is in a definite position, then determine the posi­
tion and store its binary value in a memory location.

b. Wait for the position of the switch to change, then store the new position in a

memory location.

If the switch is in a position, the lead from that position is grounded through the com­

mon line. Pullup resistors on the input lines avoid problems caused by noise.

Task 13-2a. Determine Switch Position

Purpose: The program waits for the switch to be in a specific position and then stores the

position number in memory location 0040.

Table 13-7 contains the data inputs corresponding to the various switch positions.

This scheme is inefficient, since it requires eight bits to distinguish among eight
different positions.

We have arranged the loop that identifies the switch position for somewhat

increased efficiency. The program initializes the position to -1 and then increments the
position (with INCB) before shifting the input (with LSRA). What happens if you

initialize the switch position to zero and shift and check the input before incrementing

the position? The approach in which you start the program one step backward often

increases execution speed because it lets you handle the first iteration in the same way as
the subsequent ones.

A short, quick way to determine if the switch is in a position is:
CHKSW INC PIADA IS SWITCH IN A POSITION?

BEQ CHKSW NO, WAIT UNTIL IT IS

Why does this approach work'! Do the contents of the PIA Data Register actually

change? Could you use the CARRY flag instead of the ZERO flag? Explain your

answers.
This example assumes that the switch is debounced in hardware. How would you

change the program to de bounce the switch in software?

13-18 6809 Assembly Language Programming

Flowchart:

Program 13-2a:

8001
8000
8000

0000

0000 7F 8001
0003 7F 8000

DATA=
Switch position

POSITION= 0

Shift DATA
right 1 bit

POSITION=
POSITION+ 1

PIACA EQU

Yes

$8001
PIADDA EQU $8000
PI ADA EQU $8000
*

ORG $0000
CLR PIACA
CLR PIADDA

(0040) =
POSITION

ADDRESS DATA DIRECTION REGISTER
MAKE ALL DATA LINES INPUTS

0006 86 04 LDA J%00000100 ADPRESS DATA REGISTER
0008 B7 8001 STA PIACA
OOOB B6 8000 CHKSW LOA PI ADA
OOOE 81 FF CMPA J$FF IS SWITCH IN A POSITION?
0010 27 F9 BEQ CHKSW NO, WAIT UNTIL IT IS
0012 C6 FF LOB JSFF SWITCH POSITION = -1
0014 5C CHKPOS !NCB ADD 1 TO SWITCH POSITION
0015 44 LSRA IS NEXT BIT GROUNDED POSITION?
0016 25 FC BCS CHKPOS NO, KEEP LOOKING
0018 07 40 STB $40 SAVE SWITCH POSITION
001A 3F SWI

,... 7 .. (;6
� 5 ..

tn4 --
�3 :.

· � 2 --�1 ..

;:;o __iii,,

Common

Using the 6820 Peripheral Interface Adapter (PI A) 13-19

10
i1
12
i3
i4
15
i6
17

74LS148 02
8-to-3 01
Encoder 00

PA2
To CPU

- 6820
PA1 :- PIA
PAO

Figure 13-4. A Multiple-Position Switch with an Encoder

A TTL or MOS encoder could reduce the number of input bits needed. Figure 13-
4 shows a circuit using the 74LS 148 TTL 8-to-3 encoder.J We attach the switch outputs
in inverse order, since the 74LS148 device has active-low inputs and outputs. The out­
put of the encoder circuit is a 3-bit representation of the switch position. Many switches
include encoders so their outputs are coded, usually as a BCD digit (in negative logic).

The encoder produces active-low outputs, so, for example, switch position 5,

which is attached to input 2, produces an output of 2 in negative logic (or 5 in positive
logic). You may want to verify the double negative for yourself.

Suppose that a faulty switch or defective PIA results in the input always being
FF16. How could you change the program so it would detect this situation?

Task 13-2b. Wait for Switch Position to Change

Purpose: The program waits for the switch position to change and places the new posi­
tion (decoded) into memory location 0040. The program waits until the switch
reaches its new position.

Program 13-2b:

8001 PIACA EQU $8001

8000 PIADDA EQU $8000

8000 PI ADA EQU $8000
*

0000 ORG $0000

0000 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTER

0003 7F 8000 CLR PIADDA MAKE ALL DATA LINES INPUTS

0006 86 04 LDA ll%00000100 ADDRESS DATA REGISTER

0008 B7 8001 STA PIACA

OOOB B6 8000 CHKFST LDA PI ADA GET SWITCH DATA

OOOE 81 FF CMPA *SFF IS THE SWITCH IN A POSITION?

0010 27 F9 BEQ CHKFST NO, WAIT UNTIL IT IS

0012 97 40 STA $40 YES, SAVE SWITCH POSITION

0014 B6 8000 CHKSEC LOA PI ADA GET NEW SWITCH DATA

0017 91 40 CMPA $40 IS POSITION SAME AS BEFORE?
0019 27 F9 BEQ CHKSEC YES, WAIT FOR POSITION TO

* CHANGE

13-20 6809 Assembly Language Programming

001B C6 FF
0010 sc
001E 44
001F 25 F C
0021 07 40
0023 3F

Flowchart:

LOB J$FF
CHKPOS !NCB

LSRA
BCS CHKPOS
STB $40
SWI

Old data=
Switch position

New data =
Switch position

NO, START POSITION AT -1
ADD 1 TO SWITCH POSITION

IS NEXT BIT GROUNDED POSITION?
NO, KEEP LOOKING
YES, STORE SWITCH POSITION

Position = - 1

Position=
Position+ 1

Shift data
right 1 bit

(0040) = Position

The last two programs both need one byte of temporary storage. How would you
rewrite each example to use the Hardware Stack for that storage? What are the advan­
tages and disadvantages of using the Stack? Note that it makes the programs reentrant
and more general, as well as easier to use since they do not incidentally change specific
memory locations.

13-3. A SINGLE LED

We will interface a single light-emitting diode to a 6809 microprocessor, providing
separate interfaces and programs to handle positive logic (a '1' lights the LED and a '0'

turns it off) and negative logic (a '0' lights the LED and a '1' turns it off).
Figure 13-5 shows the circuitry required to interface an LED. The LED lights

when its anode is positive with respect to its cathode (Figure 13-Sa). Therefore, you

Using the 6820 Peripheral Interface Adapter (PI A) 13-21

R
+5V�----------------------�

Anode 8Cathode

1
a. Basic LED circuitry. The resistor R should limit the maximum current to 50 mA and

the average current to 1 0 mA

6820
PIA

Driver

b. Interfacing an LED with positive logic. A logic 1 from the CPU lights the LED.

6820
PIA

Driver

c. Interfacing an LED with negative logic. A logic '0' from the CPU lights the LED.

Either the driver or the CPU may invert the logic levels.

Figure 13-5. Interfacing an LED

-

-

+5 v

R

can light the LED either by grounding the cathode and having the computer supply a
one to the anode (Figure 13-Sb) or by connecting the anode to + 5 volts and having the

computer supply a zero to the cathode (Figure 13-Sc). Controlling the cathode is the

more common approach since most MOS or TTL l/0 ports perform better in this mode.

The LED is brightest when it operates from pulsed currents of about 10 or 50 rnA

applied a few hundred times per second. LEOs have a very short turn-on time (in the

microsecond range) so they are well suited to multiplexing (operating several from a

�ingle port). LED circuits usually need peripheral or transistor drivers and current-limit­

ing resistors. MOS devices normally cannot drive LEOs directly and make them bright

enough for easy viewing.

The PIA has an output latch on each port. However, the B port is normally used

13-22 6809 Assembly Language Programming

for output, since it has somewhat more drive capability. In particular, the B port outputs
are capable of driving Darlington transistors (providing 3.2 rnA minimum at 1.5V).
Darlington transistors are high-gain transistors capable of switching large amounts of
current at high speed; they are useful in driving solenoids, relays, and other devices.

Task 13-3. Turn the Light On or Off

Purpose: The program turns a single LED either on or off.

A. Send a Logic One to the LED (light a display that operates in positive logic or turn
off a display that operates in negative logic).

Program 13-3:

(form data initially)

8003

8002

8002
0080

0000
0000 7F 8003

0003 86 FF

0005 87 8002
0008 86 04
OOOA 87 8003
0000 85 80
OOOF 87 8002

0012 3F

PIACB EQU

PIADDB EQU

PIADB EQU
MASKP EOU
*

ORG

CLR

LOA

STA
LOA

STA
LOA
STA

SWI

$8003

$8002

$8002

%10000000

$0000
PIACB ADDRESS DATA DIRECTION REGISTER

J$FF MAKE ALL DATA LINES OUTPUTS
PIADDB
J%00000100 ADDRESS DATA REGISTER

PIACB
JMASKP GET DATA FOR LED
PIADB SEND DATA TO LED

We use the B side of the PIA because of the buffering. This allows the CPU to read

the data back (if necessary) without any difficulty.

(update data)

0013 86 8002 LDA PIA DB GET OLD DATA
0016 8A 80 ORA #MASKP SET LED OUTPUT BIT TO 1

0018 87 8002 STA PIA DB
0018 3F SWI

MASKP has a '1' bit in the LED position and zeros elsewhere. Logically ORing

the contents of Accumulator A with MASKP leaves the other bit positions unchanged;

those positions may control unrelated LEOs. Note that the CPU can read the PIA data
register even when some or all the pins have been assigned as outputs.

B. Send a Logic Zero to the LED (turn off a display that operates in positive logic or
light a display that operates in negative logic).

The differences are that MASKP must be replaced by its logical complement
MASKN and ORA#MASKP must be replaced by ANDA =#:MASKN. MASKN has a
zero bit in the LED position and ones elsewhere. Logically ANDing with MASKN does

not affect the other bit positions.

13-4. SEVEN-SEGMENT LED DISPLAY

We will interface a seven-segment LED display to a 6809 microprocessor. The dis­

play may be either common-anode (negative logic) or common-cathode (positive logic).

PB6

PB5

PB4

From CPU [
6820

PB3 / PIA r

PB2

PB1

PBO

Using the 6820 Peripheral Interface Adapter (PI A) 13-23

-

Drivers

.. -

-

- g
- f

- e --

- d Display
- c

b

a
Common

__ I __

-

(Common- (Common-

Cathode) Anode)
PB7 may be used for a decimal point LED.

Figure 13-6. Interfacing a Seven-Segment Display

Figure 13-6 shows the circuitry required to interface a seven-segment display.
Each segment may have one, two, or more LEOs attached in the same way. There are

two ways of connecting the displays. One is tying all the cathodes together to ground

(see Figure l3-7a); this is a "common-cathode display," and a logic one at an anode

lights a segment. The other is tying all the anodes together to a positive voltage sup­

ply (see Figure 13-7b); this is a "common-anode display," and a logic zero at a

cathode lights a segment. So the common-cathode display uses positive logic and the

common-anode display negative logic. Either display requires appropriate drivers and

resistors.

The Common line from the display is tied either to ground or to + 5 volts. The

display segments are customarily labelled:

a

b

g

e c

d

The seven-segment display is widely used because it contains the smallest

number of separately controlled segments that can provide recognizable representa­

tions of all the decimal digits (see Figure 13-8 and Table 13-8). Seven-segment dis­

plays can also produce some letters and other characters (see Table 13-9). Better repre­

sentations require a substantially larger number of segments and more circuitry.4 Since

seven-segment displays are so popular, low-cost seven-segment decoder/drivers have

become widely available. The most popular devices are the 7447 common-anode driver

and the 7448 common-cathode driver;s these devices have Lamp Test inputs (that turn

13-24 6809 Assembly Language Programming

a. Common-cathode b. Common-anode

Figure 13-7. Seven-Segment Display Organization

Table 13-8. Seven-Segment Representations of Decimal Numbers

Hexadecimal Representation
Number

+5 v

Common-cathode Common-anode

0 3F 40
1 06 79
2 58 24
3 4F 30
4 66 19
5 60 12
6 70 02
7 07 78
8 7F 00
9 67 18

Bit 7 is always zero and the others are g. f. e. d. c. b. and a in decreasing order of significance.

all the segments on) and blanking inputs and outputs (for blanking leading or trailing

zeros).

Task 13-4a. Display a Decimal Digit

Purpose: Display the contents of memory location 0040 on a seven-segment display if it

contains a decimal digit. Otherwise, blank the display.

Sample Problems:

a.

b.

(0040) = 05

Result is 5 on display

(0040) = 66

Result is a blank display

0. Segments f. e. d. c. b. a on
a

d

1. Segments c. b on

2 Segments g. e. d. b. a on
a

g

e

d

3. Segments g. d. c. b. a on
a

g

d

4. Segments g, f. c. b on

f

9

b

c

b

b

b

c

I

I
b

c

Using the 6820 Peripheral Interface Adapter (PIA) 13-25

5. Segments g, f. d. c. a on
a

9

d

6. Segments 9. f. e. d. c. a on
a

9

e

d

c

Note that the alternate representat1on w1th a off

may be reserved for the lower case letter ·b·

7. Segments c. b. a on

a

8. Segments g. f. e. d. c. b. a on
a

g

e

d

b

c

b

Th1s 1s the same as LAMP TEST

g, Segments g, f. c. b. a on
d

b

9

An alternate has segment d on also

Figure 13-8. Seven-Segment Representation of Decimal Digits

13-26 6809 Assembly Language Programming

Table 13-9. Seven-Segment Representations of Letters and Symbols

Upper-case Letters
Lower-case Letters

and Special Characters

Hexadecimal Hexadecimal

Representation Representation
Letter Character

Common· Common- Common· Common-

cathode anode cathode anode

A 77 08 b 7C 03

c 39 46 c 58 27

E 79 06 d 5E 21

F 71 OE h 74 OB

H 76 09 n 54 28

I 06 79 0 5C 23

J 1E 61 r 50 2F

L 38 47 u 1C 63

0 3F 40 - 40 3F

p 73 oc ? 53 2C

u 3E 41

y 66 19

Source Program:

8003 PIACB EQU $8003

8002 PIADB EQU $8002

8002 PIADDB EQU $8002

DOFF BLANK EQU SFF
*

0000 ORG $0000

0000 7F 8003 CLR PIACB ADDRESS DATA DIRECTION REGISTER
0003 86 FF LOA �SFF MAKE ALL DATA LINES OUTPUTS
0005 87 8002 STA PIADDB
0008 Bfi 0 4 LOA 1%00000100 ADDRESS DATA REGISTER
OOOA 87 8003 STA PIACB
OOOD C6 FF LOB tBLANK GET BLANK CODE
OOOF 96 40 LOA $40 GET DATA
0011 Bl 09 CMPA 19 IS DATA A DECIMAL DIGIT (9 OR

* LESS)?

0013 22 05 BHI DSPLY NO, DISPLAY BLANK CODE
0015 BE OllE LOX tSSEG YES, CONVERT DIGIT TO SEVEN-

0018 Eli 8') LOB A, X SEGMENT CODE

001A F7 fl002 DSPLY STB PIA DB SEND CODE TO DISPLAY

0010 3F SWI

BLANK is 00 for a common-cathode display, FF for a common-anode display. An

alternative procedure would be to put the blank code at the end of the table and replace

all improper data values with I 0; i.e., the instructions after ST A PIACRB are:

LDA $40 GET DATA
CMPA #9 IS DATA A DECIMAL DIGIT (9 OR LESS)?

BLS CNVRT

LOA uo NO, REPLACE DATA WITH INDEX FOR BLANK

CODE

CNVRT LOX #SSEG CONVERT DATA TO SEVEN-SEGMENT CODE

LOB A, X

STB PIADRB S END CODE TO DI SPL AY

SWI

Table SSEG is either the common-cathode or the common-anode representation

of the decimal digits from Table 13-8 with the appropriate blank code in the tenth posi­

tion.

Figure 13-9 shows how to multiplex displays (i.e., drive several displays from the

same port).o A brief pulse on control line CB2 automatically clocks the decade counter

Flowchart:

Using the 6820 Peripheral Interface Adapter (PJA) 13-27

CODE: Blank

OAT A = (0040)

CODE = (SSEG +

DATA)

Send CODE
to display

after each output operation, thus directing the data to the next display. RESET initial­

izes the decade counter to 9 so that the first output operation clears the counter and

directs data to the first (actually, the zeroth) display.

The next program uses a transparent 1 ms delay routine (described earlier in this
chapter) to pulse each of ten common-cathode displays for 1 ms. An observer will see a
continuous ten-digit display much like the ones typical of electronic calculators,

watches, and point-of-sale terminals.

Task 13-4b. Display Ten Decimal Digits

Purpose: Continuously display the contents of memory locations 0040 through 0049 on
ten 7-segment displays that are multiplexed with a counter and a decoder. The

most significant (leftmost) digit is in memory location 0040.

Sample Problem:

(0040) 66
(0041) 3F
(0042) 7F
(0043) 7F
(0044) 06
(0045) 58
(0046) 07
(0047) 4F
(0048) 60
(0049) 70

The number on the displays is 4088127356

13-28 6809 Assembly Language Programming

0, C, B, and A (0 most significant,
A least significant) are the 4-bit
output from the counter. These 4
bits activate the correspondingly
n u m b e r e d o u t put f r o m t h e
decoder, and hence the correspon­
dingly numbered display.

From CPU

Clock

6820
PIA

PBO-PB7

7490
Decade
Counter

Reset

Reset

0

c

B

A

0 98765432

c 7442
4 to 10

B Decoder Driver

A

Figure 13-9. Multiplexed Seven-Segment Displays

1 0

Program 13-4b:

0030 DELAY
8003 PIACB
8002 PIADDB
8002 PIADB

•

0000
0000 7F 8003
0003 86 FF
0005 B7 8002
0008 86 2C

*

OOOA B7 8003
0000 BE 0040 SCAN
0010 C6 OA
0012 A6 80 DSPLY
0014 B7 8002
0017 90 30
0019 SA
001A 26 F6
OOlC 20 EF

EQU
EQU
EQU
EQU

ORG
CLR
LDA
STA
LDA

STA
LOX
LOB
LOA
STA
JSR

Using the 6820 Peripheral Interface Adapter (PIA) 13-29

$0030
$8003
$8002
$8002

$0000
PIACB ADDRESS DATA DIRECTION REGISTER
tSFF MAKE ALL DATA LINES OUTPUTS
PIADDB
11%00101100 MAKE CB2 A BRIEF PULSE,

ADDRESS I/0
PIACB
t$40 POINT TO START OF DATA
flO NUMBER OF DISPLAYS = 10
,X+ GET DATA FOR A DISPLAY

PIA DB· SEND DATA TO DISPLAY
DELAY WAIT 1 MS

DECB COUNT DISPLAYS
BNE DSPLY
BRA SCAN START ANOTHER SCAN

Control register bit 5 = 1 to make CB2 an output, bit 4 = 0 to make it a pulse, and

bit 3 = 1 to make it a brief pulse lasting one clock cycle. We have assumed here that
subroutine DELAY (starting at address 0030) provides a transparent 1 ms wait (i.e., it

does not affect any registers).

MORE COMPLEX 1/0 DEVICES

More complex 1/0 devices differ from simple keyboards, switches, and dis-

plays in that:

1. They transfer data at higher rates.

2. They may have their own internal clocks and timing.

3. They produce status information and require control information, as well

as transferring data.

Because of their high data rates, you cannot handle these 110 devices casually. If

the processor does not provide the appropriate service, the system may miss input data

or produce erroneous output data. You are therefore working under much more exact­

ing constraints than in dealing with simpler devices. Interrupts are a convenient method

for handling complex 1/0 devices, as we shall see in Chapter 15.

SYNCHRONIZATION

Peripherals such as keyboards, teletypewriters, cassettes, and floppy disks pro­

duce their own internal timing. These devices provide streams of data separated by

specific timing intervals. The computer must synchronize the initial input or output

operation with the peripheral clock and then provide the proper interval between sub­

sequent operations. A simple delay loop like the one shown previously can produce

the time interval. The synchronization may require one or more of the following pro­

cedures:

1. Looking for a transition on a clock or strobe line provided by the peripheral

for timing purposes. The simplest method is to tie the strobe to a PIA control

13-30 6809 Assembly Language Programming

line and wait until the appropriate bit of the PIA control register is set.

2. Finding the center of the time interval during which the data is stable. We
would prefer to determine the value of the data at the center of the pulse
rather than at the edges, where the data may be changing. Finding the center
requires a delay of one-half of a transmission interval (bit time) after the
edge. Sampling the data at the center also means that small timing errors have
little effect on the accuracy of the reception.

3. Recognizing a special starting code. This is easy if the code is a single bit or if
we have some timing information. The procedure is more complex if the code
is long and could start at any time. Shifting will be necessary to determine
where the transmitter is starting its bits, characters, or messages (this is often
called a search for the correct "framing").

4. Sampling the data several times. This reduces the probability of receiving
data incorrectly from noisy lines. Majority logic (such as best 3 out of 5 or 5

out of 8) can be used to decide on the actual data value.

Reception is, of course, much more difficult than transmission, since the periph­
eral controls the reception and the computer must interpret timing information gener­
ated by the peripheral. In transmission, the computer provides the proper timing and
formatting for a specific peripheral.

CONTROL AND STATUS INFORMATION

Peripherals may require or provide other information besides data and timing.

We refer to other information transmitted by the computer as "control information;"

it may select modes of operation, start or stop processes, clock registers, enable buffers,
choose formats or protocols, provide operator displays, count operations, or identify the
type and priority of the operation. We refer to other information transmitted by the pe­

ripheral as "status information;" it may indicate the mode of operation, the readiness
of devices, the presence of error conditions, the format of protocol in use, and other
states or conditions.

The computer handles control and status information just like data. This informa­
tion seldom changes, even though actual data may be transferred at a high rate. The
control or status information may be single bits, digits, bytes, or multiple bytes. Often

single bits or short fields are combined and handled by a single input or output port.

Separating Status Information

Combining status and control information into bytes reduces the total number of
1/0 port addresses required by the peripherals. However, the combination does mean
that individual status input bits must be separately interpreted and control output bits
must be separately determined. The procedure for isolating status bits is as follows:

Step 1. Read status data from the peripheral.

Step 2. Logical AND with a mask (the mask has ones in bit positions that must
be examined, and zeros elsewhere).

Step 3. Shift the separated bits to the least significant bit positions.

Step 3 is unnecessary if the field is a single bit, since the Zero nag will contain the

Using the 6820 Peripheral Interface Adapter (PIA) 13-31

complement of that bit after Step 2 (try it!). A Shift or Load instruction can replace Step

2 if the field is a single bit and occupies the least significant, most significant, or next to

most significant bit position (positions 0, 7, or 6). These positions are often reserved for

the most frequently used status information. You should try to write the required

instruction sequences for the 6809 processor. Note, in particular, the use of the Bit Test

instruction. This instruction performs a logical AND between the contents of the

Accumulator and the contents of a memory location but does not save the result; the

flags are set as follows:

Zero flag

Sign flag

l if the logical AND produces a zero result, 0 if it does not.

bit 7 of the result of the logical AND.

Combining Control Information

This is the procedure for setting and clearing control bits:

Step 1. Read prior control information.

Step 2. Logical AND with mask to clear bits (mask has zeros in bit positions to
be cleared, ones elsewhere).

Step 3. Logically OR with mask to set bits (mask has ones in bit positions to be
set, zeros elsewhere).

Step 4. Send new control information to peripheral.

Here again the procedure is simpler if the field is a single bit and occupies a posi­

tion at either end of a data byte.

Some examples of separating and combining status bits are:

l . A 3-bit field i n bit positions 2 through 4 of a PIA Data Register is a scaling fac­

tor. Place that factor in Accumulator A.
*

*READ STATUS DATA FRO� INPUT PORT
*

LOA PIA DR READ STATUS DATA

*

*MASK OFF UNWANTED RITS AND SHIFT RCSULT

*

ANDA 1%00011100 SAVE SCALING FACTOR

L:3R.I\
LSR!\

SHIFT TWICE TO �IOR/VIALIZE

2. Accumulator A contains a 2-bit field that must be placed in bit positions 3 and

4 of a PIA Data Register.
*

*MOVE DATA TO FIELD POSITIONS

*

*

ASLA

ASLA

ASLA

SHIFT DATA TO BIT POSITIONS 3 AND 4

ANDA #%00011000 CLEAR OUT OTHER BITS

*COMBINE NEW FIELD POSITIONS WITH OTHER DATA
*

PSHS

LOA

ANDA

ORA

STA

A

PIADR

#%11100111

,S+

PIADR

SAVE NEW FIELD VALUE AT TOP OF STACK

CLEAR OLD FIELD VALUE

INSERT NEW FIELD VALUE AND CLEAR STACK

The instruction ORA ,S+ not only logically ORs the accumulator with the data we

13-32 6809 Assembly Language Programming

I +5 v

� I ----e�---0

1+5
v

Key 2

j_ ----------���--------�0 nu----------e

I +5 v

� Key3

_ ____.....! --oj_

Each key is a switch just like a pushbutton and grounds an input

bit if it is pressed.

Figure 13-10. A Small Keyboard

saved at the top of the Hardware Stack, but it also increments the Hardware Stack

Pointer and thus removes the data from the Stack.

Documenting Status and Control Transfers

Documentation is a serious problem in handling control and status information.

The meanings of status inputs or control outputs are seldom obvious. The pro­

grammer should clearly indicate the purposes of input and output operations in the

comments, for example, "CHECK IF READER IS ON," "CHOOSE EVEN PARITY

OPTION," or "ACTIVATE BIT RATE COUNTER." The Logical and Shift instruc­

tions will otherwise be very difficult to remember, understand, or debug.

13-5. AN UNENCODED KEYBOARD

The processor will recognize a key closure from an unencoded 3 x 3 keyboard

and place the number of the key that was pressed in Accumulator B.

Keyboards are just collections of switches (see Figure 13-10). Small numbers of

keys are easiest to handle if each key is attached separately to a bit of an input port.

Interfacing the keyboard is then the same as interfacing a set of switches.

Using the 6820 Peripheral Interface Adapter (PIA) 13-33

Matrix Keyboard

Keyboards with more than eight keys require more than one input port and

therefore multibyte operations. This is particularly wasteful if the keys are logically sepa­

rate, as in a calculator or terminal keyboard where the user will only strike one at a time.

The number of input lines required may be reduced by connecting the keys into a
matrix, as shown in Figure 13-ll. Now each key represents a potential connection
between a row and a column. The keyboard matrix requires n + m external lines,

where n is the number of rows and m is the number of columns. This compares to n x

m external lines if each key is separate. Table 13-lO compares the number of keys

required by typical configurations.

Column 0 Column 1 Column 2

KeyO

Y
Key 1Y Key2 Y

RowO ----��----4-----�----�----�.-----+------------

Key
3 Y Key4 Y Key

5 Y
Row 1

Key6 Y Key 7Y Key8 Y
Row 2 ----�------4-----�-----;----�.-----;-------------

Pressing a key connects a row to a column. For example, pressing key 2 connects row 0 to column 2.

Figure 13-11. A Keyboard Matrix

Table 13-10. Comparison Between Independent Connections

and Matrix Connections for Keyboards

Keyboard Size
Number of Lines with Number of Lines with

Independent Connections Matrix Connections

3 X 3 9 6
4 X 4 16 8
4 X 6 24 10
5 X 5 25 10

6 X 6 36 12
6 X 8 48 14
8 X 8 64 16

13-34 6809 Assembly Language Programming

KeyO'y
00

Key 3'y
Data Bus

(from CPU)
PIA

Output 01
Port

Key6 'y

02

Key 1 y

Key 4

y

Key 7 y

Column 0

10

Key8y

Column 1

11

PIA
Input
Port

Data Bus (to CPU)

Figure 13-12.1/0 Arrangement for a Keyboard Scan

Keyboard Scan

+5 v

Row 0

Row 1

Row 2

Column 2

12

A program can determine which key has been pressed by using the external

lines from the matrix. The usual procedure is a "keyboard scan." We ground Row 0

and examine the column lines. If any lines are grounded, a key in that row has been

pressed, causing a row-to-column connection. We can determine which key was pressed

by determining which column line is grounded; that is, which bit of the input port is

zero. If no column line is grounded, we proceed to Row land repeat the scan. Note that

we can check to see if any keys at all have been pressed by grounding all the rows at

once and examining the columns.

The keyboard scan requires that the row lines be tied to an output port and the

column lines to an input port. Figure 13-12 shows the arrangement. The CPU can

Using the 6820 Peripheral Interface Adapter (PIA) 13-35

ground a particular row by placing a zero in the appropriate bit of the output port and
ones in the other bits.

The CPU can determine the state of a particular column by examining the
appropriate bit of the input port.

Task 13-5a. Wait for Key Closure

Purpose: Wait for a Key to be Pressed
The procedure is as follows:

1. Ground all the rows by clearing all the output bits.

2. Fetch the column inputs by reading the input port.

3. Return to Step 1 if all the column inputs are ones.

Flowchart:

Program 13-5a:

8001
8000
8000
8003
8002
8002

0000

PIACA EQU
PIADDA EQU
PI ADA EQU
PIACB EQU
PIADDB EQU
PIADB EQU
*

ORG

Ground all

keyboard rows

$8001
$8000
$8000
$8003
$8002
$8002

$0000

0000 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTERS

0003 7F 8003 CLR PIACB

0006 7F 8000 CLR PIADDA MAKE A SIDE DATA LINES INPUTS
0009 86 FF LOA t$FF

OOOB B7 8002 STA PIADDB MAKE B SIDE DATA LINES OUTPUTS

OOOE 86 04 LOA t%00000100 ADDRESS DATA REGISTERS
0010 B7 8001 STA PIACA
0013 B7 8003 STA PIACB
0016 7F 8002 CLR PIA DB GROUND ALL KEYBOARD ROWS

0019 86 8000 WAITK LOA PI ADA GET DATA FROM KEYBOARD COLUMNS
001C 84 07 ANDA t%00000111 MASK COLUMN BITS
001E 81 07 CMPA t%00000111 ARE ANY KEYS CLOSED?
0020 2 7 F 7 BEQ WAITK NO, WAIT

0022 3F SWI

Masking off the column bits eliminates any problems that could be caused by the
states of the unused input lines.

13-36 6809 Assembly Language Programming

We could generalize the routine by naming the output and masking patterns:

ALLGND
OPEN

EQU

EQU

%11111000

%00000111

We could then use these names in the program; changing to a different keyboard

would require only a change in the definitions and a re-assembly.

Of course, a 3 x 3 or 4 x 4 keyboard only needs one port of a PIA. Rewrite the

program to use only port A.

Task 13-5b. Identify Key

Purpose: Identify a key closure by placing the number of the key in Accumulator B.

The procedure is as follows:

1. Set key number to 1, keyboard output port to all ones except for a zero in bit

0, and row counter to number of rows.

2. Fetch the column inputs by reading the input port.

3. If any column inputs are zero, proceed to Step 7.

4. Add the number of columns to the key number to reach next row.

5. Update the contents of the output port by shifting the zero bit left one posi­

tion.

6. Decrement row counter. Go to Step 2 if any rows have not been scanned;

otherwise, go to Step 9.

7. Add I to key number. Shift column inputs right one bit.

8. If Carry = 1, return to Step 7.

9. End of program.

This program does not wait for the operator to press a key, so the key must be

pressed before the program is executed. How would you modify the program to wait for

at least one key to be pressed?

Program 13-5b:

8001 PIADA EQU $8001

8000 PIADDA EQU $8000
8000 PI ADA EQU $8000
8003 PIACB EQU $8003

8002 PIADDB EQU $8002

8002 PIA DB i:QU $8002
*

0000 ORG soooo

0000 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTERS
0003 7F 8003 CLR PIACB
0006 7F 8000 CLR PIADDA MAKE A SIDE DATA LINES INPUTS
0009 86 FF LOA #SFF MAKE B SIDE DATA LINES OUTPUTS
OOOB 87 8002 STA PIADDB
OOOE 86 04 LDA ll%00000100 ADDRESS DATA REGISTERS
0010 B7 8001 STA PIACA
0013 B7 8003 STA PIACB
0016 86 FE LDA #%11111110 START BY GROUNDING ROW ZERO
0018 B7 8002 STA PIA DB
001B 86 03 LDA #3 COUNTER = NUMBER OF ROWS
0010 97 40 STA $4 0

001F Cli FF LDB tSFF KEY NUMBER = -1

0021 B6 8000 FROW LOA PI ADA GET COLUMN INPUTS

0024 84 07 ANDA #%00000111 MASK OFF COLUMN BITS

0026 81 07 CMPA #%00000111 ARE ANY KEYS C LOSED IN THIS
* ROW?

0028 26 OA
002A CB OJ
002C 78 8002
002F OA 40
0031 26 EE
0033 3F
0034 5C
0035 44
0036 25 FC
0038 3F

Flowchart:

Using the 6820 Peripheral Interface Adapter (PIA) 13-37

BNE FCOL
ADDB t3
ASL PIA DB
DEC $40
BNE FROW
SWI

FCOL INCB
LSRA
BCS FCOL
SWI

KEY NUMBER = -1
COUNTER= Number

of rows
Keyboard output

port = 11 111 11 02

Update keyboard
output port by

shifting contents

left arithmetically

KEY NUMBER=
KEY NUMBER+
number of columns

COUNTER =
COUNTER - 1

YES, DETERMINE WHICH ONE
NO, PROCEED TO NEXT ROW

UPDATE SCAN PATTERN
CONTINUE IF ANY ROWS NOT SCANNED

KEY NUMBER = KEY NUMBER + 1
IS THIS COLUMN GROUNDED?

NO, EXAMINE NEXT COLUMN
YES, KEY CLOSURE

KEY NUMBER=

KEY NUMBER + 1
Shift column

inputs right 1 bit

Yes

IDENTIFIED

Each time a row scan fails, we must add the number of columns (3 in the exam­

ple) to the key number to move to the next row (try the procedure on the keyboard in

Figure 13-12).

We could generalize the program by making the number of rows, the number of

columns, and the masking patterns into named parameters with Equate (EQU) direc­

tives.
What result does the program produce in Accumulator B if no keys are being

pressed? Change the program so that it starts the scan over again in that case.

An alternative approach is to use the bidirectional capability of the PIA. 7 The pro­

cedure would be:

I. Ground all columns and save the row inputs.

13-38 6809 Assembly Language Programming

Data Bus
to CPU �

PAO-PA7

6820
PIA

CA1

A

"
}

Keyboard
data inputs

Keyboard
strobe

(_J_ or -u-)

Figure 13-13. 1/0 Interface for an Encoded Keyboard

2. Ground all rows and save the column inputs.

3. Use both the row and the column inputs to determine the key number from a
table.

Write a program to implement this procedure.

13-6. AN ENCODED KEYBOARDS

The processor will fetch data, when it is available, from an encoded keyboard that
provides a strobe along with each data transfer.

An encoded keyboard provides a unique code for each key. It has internal
electronics that perform the scanning and identification procedure of the previous
example. The tradeoff is between the simpler software required by the encoded

keyboard and the lower cost of the unencoded keyboard.
Encoded keyboards may use diode matrices, TTL encoders, or MOS encoders.

The codes may be ASCII, EBCDIC, or a custom code. PROMs are often part of the
encoding circuitry.

The encoding circuitry may do more than just encode key closures. It may also

debounce the keys and handle "rollover," the problem of more than one key being

struck at the same time. Common ways of handling rollover are "2-key rollover," in
which two keys (but not more) struck at the same time are resolved into separate
closures, and "n-key rollover," in which any number of keys struck at the same time
are resolved into separate closures.

The encoded keyboard also provides a strobe with each data transfer. The

strobe indicates that another key has been pressed. Figure 13-13 shows the interface
between an encoded keyboard and the 6809 microprocessor. We tie the keyboard strobe
line to input CAl; a pulse on the strobe line sets bit 7 of the PIA Control Register. Bit 1

of the Control Register determines which edge (leading or trailing) of the pulse the PIA

recognizes. Bit l = 0 to recognize the trailing edge (high-to-low transition), and 1 to
recognize the leading edge (low-to-high transition).

The PIA thus contains an edge-sensitive latched serial status port as well as a
parallel data port. It also contains an inverter that allows it to recognize either edge of a
pulse. A PIA can therefore replace many simple circuit elements, such as flip-flops,
gates, inverters, and buffers. The designer can correct errors by changing the contents of

Using the 6820 Peripheral Interface Adapter (PI A) 13-39

the PIA control register (a simple software change) rather than by rewiring a bread­

board. For example, changing the active edge on the strobe line requires the changing of

one bit in a program, wherease it might require additional parts and rewiring on a bread­

board.

Be careful, however, of the fact that the PIA does not contain an input latch. An

actual interface may require a latch if the keyboard is not guaranteed to hold its data.

The latch can also be controlled by the strobe signal.

Task: Wait for an active-low strobe on control line CA 1 and then load the keyboard

data into Accumulator A.

Note that reading the data from the Data Register clears the status bit (this circui­

try is part of the 6820 PIA).

Flowchart:

Read Control
register

Read Data
register

The hardware must hold the control lines in a logic one state while RESET is

active to prevent the accidental setting of status flags. An initial read of the Data

Registers in the startup routine may be used to clear the PIA status bits.9

Program 13-6:

8001 PIACA EQU $8001
8000 PIADDA EQU $8000
9000 PI ADA EQU $8000

*

0000 ORG $0000

0000 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTER

0003 7F 8000 CLR PIADDA MAKE ALL DATA LINES INPUTS

0006 86 04 LDA #%00000100 ADDRESS DATA REGISTER

0008 B7 8001 STA PIACA

OOOB 86 8001 KBWAIT LDA PIACA HAS KEY BEEN PRESSED?

OOOE 2A FB BPL KBWAIT NO, WAIT

0010 s�; 8000 LDA PI ADA YES, FETCH DATA FROM KEYBOARD

0013 3F SWI

To set control register bit 7 on low-to-high transitions on the keyboard strobe line,

simply replace LOA :*f01r>00000100 with LOA :*f%00000110.

13-40 6809 Assembly Language Programming

If we tied the keyboard strobe line to CA2, control register bit 6 would then serve

as the status latch.

Show that reading the Data Register clears the status bit, indicating that the CPU

has read the most recent data and allowing the next input operation to occur. Hint: Save

the contents of the PIA control register in memory before and after the instruction LOA

PI ADA is executed. What happens if you replace LOA with STA? How about TST,

CLR, COM, ADD? Remember that writing data into the Data Register does not clear

the status bit, nor does writing data into or reading data from the control register. What

happens if you replace LOA PI ADA with LOA PIACA or STA PIACA?

One reason why we are concerned with the effects of instructions on PIA

registers is that we may want to use the control lines for purposes that have nothing
to do with the data ports. For example, we may be using a PIA to interface a simple pe­

ripheral (e.g., a set of switches or single LEOs) that does not require any status or con­

trol lines. The control lines are then available as serial 1/0 lines at no additional hard­

ware cost. The only problem is that we must manipulate these lines using facilities that

are provided on the assumption of a direct connection between the serial lines and the

parallel data port.

13-7. A DIGITAL-TO-ANALOG CONVERTER10-13

The processor sends data to an 8-bit digital-to-analog converter, which has an

active-low latch enable.

Digital-to-analog converters produce the continuous signals required by

solenoids, relays, actuators, and other electrical and mechanical output devices. Typi­

cal converters consist of switches and resistor ladders with the appropriate resistance

values. The user must generally provide a reference voltage and some other digital and

analog circuitry, although complete units are becoming available at low cost.

Figure 13-14 describes the 8-bit Signetics NE5018 D/ A converter, which con­

tains an on-chip 8-bit parallel data input latch. A low level on the LE (Latch Enable)

input gates the input data into the latches, where it remains after LE goes high.

0/ A Converter Interface

Figure 13-15 illustrates the interfacing of the NE5018 to a 6809 system. Note

that port B of the PIA automatically produces the active-low pulse required to latch the

data into the D/ A converter; CB2 acts as an OUTPUT READY signal, indicating that

the CPU has sent data to the output port. Remember that in the brief pulse mode, CB2

goes low automatically on the clock pulse following a write operation on Data Register

B, and remains low until the next clock pulse (see Table 13-5). The control register bits

that cause the PIA to operate this way are:

Bit 5 1 to make CB2 an output

Bit 4 0 to make CB2 a pulse

Bit 3 = 1 to make CB2 a brief pulse that typically lasts one clock cycle. (Enable

pulses and clock pulses are the same in typical 6809 systems).

Note that the PIA contains an output latch. The data therefore remains stable dur­

ing and after conversion, even though the processor only leaves it on the data bus for

one clock cycle. Output latches are essential in microcomputer systems, since the pro-

vee

VREF O--­
Out

VREF 0 ___. • .___ __ _

Ad1

Bipolar
Offset

l

R

•

LE

I

Vee

I

DB7
MSB

DB6 DB5 084 083

Latches and
Switch Drivers

DAC Switches

DB2

Figure 13-14. Signetics NE5018 D/ A Converter

081 DBO
LSB

DAC Current
Output

D1gital
GND

0
sum �, ---�•.,..._..... Node

R

........_. __ OVout

Amp
-----0 Comp

,..._ _____ 0 Analog • GND

--

All R values equal 5 kll and are thermally matched.

c "'
:::: (J(l
::r (1)
0'-00 N 0
'"tl (1)
�. "0 ::r (1), "'
::::
;:;,
;;;;"'
t:')
(1)

>
c. "'
?.
(1)
....,

�

�
>

....
Co)

�

13-42 6809 Assembly Language Programming

Data Bus
(from CPU) t) �

6820
PIA

PBO-PB7

CB2

I

NE5018
0/A

Converter

) -
v

-
LE

l

Figure 13-15. 1/0 Interface for an 8-Bit Digital-to-Analog Converter

Analog
Output

cessor uses its data bus constantly to transfer data and instructions to and from memory.

The converter typically requires only a few microseconds to produce analog outputs, but

other peripherals may need the data for much longer periods.

In applications where eight bits of resolution are not enough, you can use the

widely available 10 to 16-bit converters. Ones that are advertised as "microprocessor­
compatible" usually have separate data ports for the most and least significant bytes.

Such devices are much easier to interface than devices that only accept all the data at one

time through a single port.

The PIA serves as both a parallel data port and a serial control port. CB2 pro­

vides a pulse that lasts one clock cycle after the CPU latches output data into the PIA.

This pulse is long enough to meet the requirements (typically 400 ns) of the NE5018

converter.

Task 13-7. Send Data to D/ A Converter

Purpose: Send data from memory location 0040 to the D/ A converter.

Flowchart:

Data = (0040)

Send data to
converter and

latch it

Program 13-7:

8003 PIAC8

8002 PIADD8

8002 PIAD8
*

0000

0000 7F 8003

0003 86 FF

0005 87 8002

0008 86 2C

OOOA 87 8003

0000 06 40

OOOF F7 8002
*

0012 3F

EQU

EQU

EQU

ORG

CLR

LOA

STA

LOA

STA

LOB

STB

SWI

Using the 6820 Peripheral Interface Adapter (P! A) 13-43

$8003

$8002

$8002

$0000

PIAC8 ADDRESS DATA DIRECTION REGISTER

#$FF MAKE ALL DATA LINES OUTPUTS

PIADD8

#%00101100 ADDRES S DATA REGISTER,

PIACB PROVIDE BRIEF STROBE

$4 0 GET DATA

PIADB SEND DATA TO 0/A CONVERTER

A ND LATCH

The PIA produces the Load pulse automatically after the CPU stores the data in
the Data Register. No explicit instructions are necessary. Although automatic opera­
tions like this save time and memory, they also result in documentation problems since
there is no record in the program of when they occur. To understand the operation of
this interface, you would need a detailed understanding of the 6820 device as well as a
hardware schematic and a program listing. Such requirements make maintenance and
updating difficult.

The automatic pulse lasts only one clock cycle. If this is not long enough (or if an
active-high pulse is necessary), we could use the level output from CB2. This operating
mode is often called a manual mode, since the PIA does not produce any pulses auto­
matically. The program to use the mode would be:

CLR

LOA

STA

LDA
STA

LOB

STB
ORA
STA
ANDA
STA

SWI

PIACB

nSfF

PIADDB

#%00110100

PIACB

$40

PIA DB

#%00001000

PIACB

#%11110111
PIACB

ADDRESS DATA DIRECTION REGISTER

MAKE ALL DATA LINES OUTPUTS

ADDRESS DATA REGISTER, PULSE LOW

GET DATA

SEND DATA TO DAC
OPEN DAC LATCH (BRING ENABLE HIGH)

LATCH DATA (BRING ENABLE LO\•i)

This approach requires more instructions, but it produces a longer pulse and is
easier to understand. Here bit 4 of the PIA control register is set to make CB2 a level
with the value of bit 3. We can then set and clear bit 3 using the logical instructions (OR
with '1' to set, AND with '0' to clear).

In the level or manual mode, CB2 is completely independent of operations on

the parallel data port. It is simply a serial output that is available for any purpose.

The only precaution one must take in using it is to avoid changing any of the other

bits in the PIA control register, since they have unrelated functions. Using the logical
OR and AND instructions makes the procedure independent of the contents of the PIA
control register, since only bit 3 is changed.

13-8. ANALOG-TO-DIGITAL CONVERTER14-19

The processor fetches data from an 8-bit analog-to-digital converter that requires
a Start Con version pulse to start the conversion process and provides an End of Con ver­
sion output to indicate the completion of the process and the availability of valid data.

13-44 6809 Assembly Language Programming

Analog-to-digital converters handle the continuous signals produced by various

types of sensors and transducers. The converter produces the digital input that the

computer requires.

One form of analog-to-digital converter is the successive approximation device,

which makes a direct 1-bit comparison during each clock cycle. Such converters are fast

but have little noise immunity. Dual slope integrating converters are another form of

analog-to-digital converter. These devices take longer to con vert data but are more

resistant to noise. Other techniques, such as the incremental charge balancing techni­

que, are also used.

Analog-to-digital converters usually require some external analog and digital cir­

cuitry, although complete units are becoming available at low cost.

NATIONAL
MM5357 8-bit AID converter

General Description

The MM535 7 is an 8-bit monolithic A/D converter using P-channel ion-implemented MOS technology. It
contains a high input impedance comparator. 256 series resistors and analog switches, control logic and
output latches. Conversion is performed using a successive approximation technique where the unknown
analog voltage is compared to the resistor tie points using analog switches. When the appropriate tie
point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8-
bit complementary binary word corresponding to the unknown. The binary output is tri-state to permit
bussing on common data lines.

Features

Low cost

+5 V, 10 V input ranges

No missing codes

Ratiometric conversion

Tri-state outputs

Contains output latches

TTL compatible

Timing Diagram:

Clock Input

+5V -r_

Key Specs

Resolution

Linearity

Conversion speed

Input impedance

Supply voltages

Clock range

8 bits

+ 1/2 LSB

401-'S

> 100 Met>

+5 V, -12 V, GND

5.0 kHz to 2.0 MHz

Start
Conversion ov--1 ��-----------------�

EOC

Output Enable +5 V -------------r------------,1

0 v ---------11�--JJ

Disable Delay -

Data is complementary binary (Full scale is "Os" output).

Figure 13-16. General Description and Timing Diagram
for the National 5357 AID Converter

Connection Diagram

Typical Application

2-4

2-3
2-2

(MSBl 2-1
R Network

STRT CONY

Output Enable

VGG
EOC

15
10
18

Using the 6820 Peripheral Interface Adapter (PI A) 13-45

1 18
2 17
3 16
4 MM5357 15
5 AD 14
6 Converter 13
7 12
8 11
9 10

+VREF 2-1
Vss 2-2

2-3

4 a
3 a
2

-

Voo
2-5
2-6
+VREF
2-7
2-s (LSB)

v,N
Clock
Vss

MSB +5V
+5V
GND

-5 v --� 8

Voo
R NET 2-4 1 a

11 Digital Output
-12 v

Analog Input

Clock

Start Conversation

Output Enable

12
11-

6a
7

VGG 2-5
v 2-6
C� MM5357 2_7
SC AID 2-8 Converter
OE EOC

+5 v < v,N < -5 v

16
14

-

..

13
-

9 LSB

End of Conversion

Figure 13-17. Connection Diagram and Typical Application
for the National 5357 AID Converter

Figure 13-16 contains a general description and a timing diagram for the

National MM5357 8-bit AID converter. The device contains output latches and tristate

data outputs. A pulse on the Start Conversion (STR T CONY) line starts conversion of

the analog input; after about 40 clock cycles (the converter requires a TTL level clock

with a minimum pulse width of 400 ns), the result will go to the output latches and the

End of Conversion (EOC) output will indicate this by going high. Data is read from the

latches by applying a '1' to the OUTPUT ENABLE input. Figure 13-17 shows the con­

nections for the device and some typical applications circuits.

A/D Converter Interface

Figure 13-18 shows the interface between the 6809 microprocessor and the 5357

AID converter. Control line CA2 is used in the level (manual) output mode to provide

an active-high Start Conversion pulse of sufficient length. The End of Conversion signal

is tied to control line CAl so bit 7 of PIA Control Register A is set when EOC goes high.

The important transition on the End of Conversion line is the leading edge (low-to-high

transition), which indicates the completion of the conversion. Here we are using the

6820 PIA to handle parallel input, serial input, and serial output, since the AID con­

verter requires a complete handshake. The OUTPUT EN ABLE pin on the converter is

tied high, since we are not placing the data directly on the microprocessor's tristate data

bus. Note (see Fig. 13-16) that the converter's data outputs are complementary binary

(an all zeros output is full scale).

13-46 6809 Assembly Language Programming

6820
PIA

National
5357

Data Bus
to CPU

...

�
PAO-PA7 v

�

A/0
Converter -

Analog
Input

STAT
CA2 CA 1 EOC CONV

� + I t

Figure 13-18. Interface for an 8-Bit Analog-to-Digital Converter

Task 13-8. Input from Converter

Purpose: Start the conversion process, wait for End of Conversion (EOC) to go high,
then read the data and store it in memory location 0040.

Program 13-8:

8001 PIACA EQU $8001
8000 PIADDA EQU $8000
8000 PIADA EQU $8000

*

0000 ORG $0000
0000 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTER
0003 7F 8000 CLR PIADDA MAKE ALL DATA LINES INPUTS
0006 86 36 LDA #%00110110 BRING START LOW, TRIGGER ON
0008 B7 8001 STA PIACA EOC GOING HIGH
OOOB 8A 08 ORA #%00001000 BRING START CONVERSION HIGH
OOOD 87 8001 STA PIACA
0010 84 F7 ANDA #%11110111 BRING START CONVERSION LOW
0012 B7 8001 STA PIACA
0015 B6 8001 WTEOC LDA PIACA HAS CONVERSION BEEN COMPLETED?
0018 2A FB BPL WTEOC NO, WAIT
001A 86 8000 LDA PI ADA YES, FETCH DATA FROM CONVERTER
001D 43 COMA COMPLEMENT DATA TO PRODUCE TRUE

• VALUE
001E 97 40 STA $40 SAVE DATA IN MEMORY
0020 3F SWI

This program would use less time and memory if we used Index Register X to
address the PIA. Rewrite the program to do this. We have used explicit addresses in the

interest of clarity.
The PIA control register bits are determined as follows:

Bit 5 = 1 to make CA2 an output.

Bit 4 = 1 to make CA2 a level (i.e., to operate in the manual mode).

Bit 3 0 to bring Start Conversion low initially.

Bit 1 1 to set bit 7 on a low-to-high transition (leading edge) on the End of
Conversion line.

A delay routine of appropriate length Oonger than the maximum guaranteed
conversion time) could replace the examination of the status bit.

Using the 6820 Peripheral Interface Adapter (PIA) 13-47

Flowchart:

No

Pulse Start
Conversion

line

Read data from
data input port
(0040) = Data

(Has EOC gone high?)

Here the PIA serves as a parallel data port, a serial status port, and a serial control

port. An initial read of the Data Register in the startup routine would clear the status
flags originally and eliminate problems that might be caused by stray pulses on the con­
trol lines.

13-9. A TELETYPEWRITER (TTY)

We will transfer data to and from a standard 1 0-character-per-second serial
teletypewriter.

Standard TTY Character Format

The common teletypewriter transfers data in an asynchronous serial mode. The

procedure is as follows:

1. The line is normally in the mark state (logic 'I').

2. A Start bit (space state or logic '0').

3. The character is usually 7-bit ASCII with the least significant bit transmitted
first.

4. The most significant bit is a Parity bit, which may be even, odd, or fixed at
zero or one.

5. Two stop bits (logic 'I 's) follow each character to provide a minimum separa­
tion between characters.

Figure 13-19 shows the format. Note that each character requires the transmission
of eleven bits, of which only seven contain information. Since the data rate is ten charac­

ters per second, the bit rate is 10 x 11, or 110 Baud. Each bit therefore has a width of

11110 of a second, or 9.1 milliseconds. This width is an average; the teletypewriter does
not maintain it to any high level of accuracy.

13-48 6809 Assembly Language Programming

Mark ('1')--..,

Space ('0')
. ,. ·o· '1' ·o· ·o· ·o·

-----..- --... ______ -v----,..--------�- -..- '-..,..-Start Parity Stop Stop

Bit 7 Data Bits Bit Bit Bit

Character is ASCII 'E' with odd parity (45 hex)

The transmission order is: Start bit ('0'). bit 0. bit 1, bit 2. bit 3, bit 4, bit 5. bit 6.
Parity bit. Stop bit ('1'). Stop bit ('1').

Figure 13-19. Teletypewriter Data format

TTY Receive Mode

This is the receive procedure, flowcharted in Figure 13-20:

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Look for a Start bit (a logic zero) on the data line.

Center the reception by waiting one-half bit time, or 4.55 milliseconds.

Fetch the data bits, waiting one bit time before each one. Assemble the
data bits into a word by tirst shifting the bit to the Carry and then cir­

cularly shifting the data with the Carry. Remember that the least signifi­
cant bit is received first.

Generate the received Parity and check it against the transmitted Parity.
If they do not match, indicate a "Parity error."

Fetch the Stop bits (waiting one bit time between inputs). If they are not
correct (if both Stop bits are not one), indicate a "framing error."

TTY Transmit Mode

This is the transmit procedure, flowcharted in Figure 13-21:

Step 1.
Step 2.
Step 3.
Step 4.

Transmit a Start bit (i.e., a logic zero).

Transmit the seven data bits, starting with the least significant bit.

Generate and transmit the Parity bit.

Transmit two Stop bits (i.e., logic ones).

The transmission routine must wait one bit time between output operations.

Task 13-9a. Read Data from TTY

Purpose: Fetch data from a teletypewriter using bit 7 of a PIA data port and place the

data in memory location 0060. Figure 13-20 describes the procedure.

Using the 6820 Peripheral Interface Adapter (PIA) 13-49

Start

Get input data

Wait one-half

bit time

COUNT= 8
DATA= 0

Wait one bit time

Get input data

Carry = Input data

Shift data right

with Carry

COUNT=

COUNT-

Generate

received parity

Parity

error

COUNT= 2

Wait one bit time

Get input data

Framing

error

COUNT=

COUNT -1

Figure 13-20. Flowchart for Receive Procedure

13-50 6809 Assembly Language Programming

Program 13-9a:

Carry = Start bit
Get output data
Shift data left
circularly with Carry
COUNT= 11

Send data to
Output Port

Shift data right
circularly with Carry
Carry = 1 (Stop bit)
Wait 1 bit time

COUNT=

COUNT -1

Figure 13-21. Flowchart for Transmit Procedure

Assume that the serial port is bit 7 of the PIA and that no parity or framing check

is necessary. 8001 PIACA EQU $8001
8000 PIADDA EQU $8000
8000 PI ADA EQU $8000

*

0000 ORG $0000
0000 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTER
0003 7F 8000 CLR PIADDA MAKE ALL DATA LINES INPUTS
0006 86 04 LOA l%00000100 ADDRESS DATA REGISTER
0008 B7 8001 STA PIACA
OOOB B6 8000 WTSTB LDA PI ADA IS THERE A START BIT?
OOOE 2B FB BMI WTSTB NO, WAIT
0010 BD 00 3 0 JSR DLY'2 YES, DELAY HALF BIT TIME TO

* CENTER RE.C.EPTION
0013 86 80 LOA 1%10000000 COUNT WITH '1' BIT IN MSB
0015 BD 00 35 TTYRCV JSR DELAY WAIT 1 BIT TIME
0018 79 8000 ROL PI ADA GET NEXT DATA BIT
0018 46 RORA COMBINE WITH PREVIOUS DATA
OOlC 24 F7 BCC TTYRCV CONTINUE UNTIL COUNT BIT
OOlE 97 60 STA $60 TRAVERSES DATA
0020 3F SWI

(Delay program)

0030 8E 0 231; DLY2
0033 20 03
0035 8E 046C DELAY
0038 30 1F DLY
003A 21; FC
003C 39

Using the 6820 Peripheral Interface Adapter (PIA) 13-51

LOX t$0236 COUNT FOR 4.55 MS (CLOCK
BRA DLY RATE = 1 MHZ)
LOX I$046C COUNT FOR 9.1 MS
LEAX -l,X
BNE DLY
RTS

Remember that bit 0 of the data is received first.
This program assumes that the monitor has initialized the Hardware Stack

Pointer. If this is not the case, you will have to initialize the Hardware Stack Pointer with
LOS as shown in Chapter 10.

We obtained the constants for the delay routine as described earlier in this
chapter, assuming a clock rate of 1 MHz. You may want to check them for yourself. The
delay times do not have to be highly accurate because the routine centers the reception,
each character is handled separately, the bit rate is low, and the teletypewriter itself is
not highly accurate.

How would you extend this program to check parity?

Task 13-9b. Write Data to TTY

Purpose: Transmit data to a teletypewriter using bit 0 of a PIA data port. The data is in
memory location 0060.

Program 13-9b:

Assume that parity need not be generated.

0035 DELAY EQU $0 035
8001 PIACA EQU $8001
8000 PIADA EQU $8000
8000 PIADDA EQU $8000

*

0000 ORG $0000
0000 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTER
0003 86 FF LDA tSFF MAKE ALL DATA LINES OUTPUTS
0005 B7 8000 STA PIADDA
0008 86 04 LDA l%00000100 ADDRESS DATA REGISTER
OOOA B7 8001 STA PIACA
OOOD 96 60 LDA $60 GET DATA
OOOF C6 OB LDB U1 COUNT = 11 BITS IN CHARACTER
0011 7F 8000 CLR PI ADA SEND START BIT
0014 9D 35 TBIT JSR DELAY WAIT 1 BIT TIME
0016 1A 01 ORCC 1%00000001 SET CARRY TO FORM STOP BIT
0018 46 RORA GET NEXT BIT OF CHARACTER
0019 79 8000 ROL PI ADA SEND NEXT BIT TO TTY
001C SA DECB
001D 26 FS BNE TBIT
001F 3F SWI

The DELAY subroutine is the same as before. Remember that bit 0 of the data
must be transmitted first.

In actual applications, you should place a logic '1' on the teletypewriter line as part
of the startup routine, since that line should normally be in the mark (1) state.

Each character consists of 11 bits, beginning with a start bit ('0') and ending with
two stop bits (' 1 's). The instruction ORCC =#:%0000000 1 sets the least significant bit of
the Condition Code Register (the Carry flag), thus generating a logic '1' which RORA
then shifts into the most significant bit of Accumulator A.

We can generate parity by counting bits as shown in Chapter 6. The program is

13-52 6809 Assembly Language Programming

as follows:

LDA

CLRB

CHBIT ASLA

ADCG

TSTA

BNE

SWI

Sf'iO

�0

CHBIT

GET DATA

BIT COUNT = ZERO INITIALLY

SHIFT A DATA BIT TO CARRY

IF BIT IS l, ADD 1 TO BIT COUNT

KEEP COUNTING UNTIL DATA BECOMES ZERO

Accumulator B contains the number of' I' bits in the data. The least significant bit
of Accumulator B is therefore an even Parity bit.

UART

These procedures are sufficiently common and complex to merit a special LSI
device: the UART, or Universal Asynchronous Receiver/Transmitter.zu The UART
will perform the reception procedure and provide the data in parallel form and a Data
Ready signal. It will also accept data in parallel form, perform the transmission pro­
cedure, and provide a Peripheral Ready signal when it can handle more data. UARTs
may have many other features, including:

I. Ability to handle various bit lengths (usually 5 to 8), parity options, and num­
bers of Stop bits (usually 1, 1-1/2, and 2).

2. Indicators for framing errors, parity errors, and "overrun errors" (failure to
read a character before another one is received).

3. RS-23221 compatibility; i.e., a Request-to-Send (RTS) output signal that indi­
cates the presence of data to communications equipment and a Clear-to-Send
(CTS) input signal that indicates, in response to RTS, the readiness of the
communications equipment. There may be provisions for other RS-232 sig­
nals, such as Received Signal Quality, Data Set Ready, or Data Terminal
Ready.

4. Tristate outputs and control compatibility with a microprocessor.

5. Clock options that allow the UART to sample incoming data several times in
order to detect false Start bits and other errors.

6. Interrupt facilities and controls.

UARTs act as four parallel ports: an input data port, an output data port, an input
status port, and an output control port. The status bits include error indicators as well as
Ready flags. The control bits select various options. UARTs are inexpensive ($5 to $50,
depending on features) and easy to use.

PROBLEMS

13-1. An On-Off Pushbutton

Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory
location 0040. The location initially contains zero. The program should con­
tinuously examine the pushbutton and complement location 0040 with each

Using the 6820 Peripheral Interface Adapter (PIA) 13-53

closure. You may wish to complement a display output port instead, so as to

make the results easier to see.

Sample Case:

Location 0040 initially contains zero.

The first pushbutton closure changes location 0040 to FF16, the second changes it

back to zero, the third back to FF11, etc. Assume that the pushbutton is debounced in

hardware. How would you include debouncing in your program?

13-2. Debouncing a Switch in Software

Purpose: Debounce a mechanical switch by waiting until two readings, taken a

debounce time apart, give the same result. Assume that the debounce time

(in ms) is in memory location 0040 and store the switch position in memory

location 0041.

Sample Problem:

(0040) = 03 causes the program to wait 3 ms between readings

13-3. Control for a Rotary Switch

Purpose: Another switch serves as a Load switch for a four-position unencoded rotary

switch. The CPU waits for the Load switch to close (be zero), and then reads

the position of the rotary switch. This procedure allows the operator to move

the rotary switch to its final position before the CPU tries to read it. The pro­

gram should place the position of the rotary switch into memory location

0040. Debounce the Load switch in software.

Sample Problem:

Place rotary switch in position 2. Close Load switch.

Result: (0040) = 02

13-4. Record Switch Positions on lights

Purpose: A set of eight switches should have their positions renected on eight LEOs.

That is to say, if the switch is closed (zero), the LED should be on; otherwise,

the LED should be off. Assume that the CPU output port is connected to the

cathodes of the LEOs.

Sample Problem:

SWITCH 0 CLOSED
SWITCH 1 OPEN
SWITCH 2 CLOSED
SWITCH 3 OPEN
SWITCH 4 OPEN
SWITCH 5 CLOSED
SWITCH 6 CLOSED
SWITCH 7 OPEN

Result: LED
LED
LED
LED
LED
LED
LED
LED

0 ON
1 OFF
2 ON
3 OFF
4 OFF

5 ON
6 ON
7 OFF

13-54 6809 Assembly Language Programming

How would you change the program so that a switch attached to bit 7 of Port A of

PIA #2 determines whether the displays are active (i.e., if the control switch is closed,

the displays attached to Port B reflect the switches attached to Port A; if the control

switch is open, the displays are always off)? A control switch is useful when the displays

may distract the operator, as in an airplane.

How would you change the program to make the control switch an on-off

pushbutton; that is, each closure inverts the previous state of the displays? Assume that

the displays start in the active state and that the program examines and debounces the

pushbutton before sending data to the displays.

13-5. Count on a Seven-Segment Display

Purpose: The program should count from 0 to 9 continuously on a seven-segment dis­

play, starting with zero.

Hint: Try different timing lengths for the displays and see what happens. When does the

count become visible? What happens if the display is blanked part of the time?

13-6. Separating Closures from an Unencoded Keyboard

Purpose: The program should read entries from an unencoded 3 x 3 keyboard and save

them in an array. The number of entries required is in memory location 0040

and the array starts in memory location 0041.

Separate one closure from the next by waiting for the current closure to end.

Remember to debounce the keyboard (this can be simply a 1 ms wait) .

Sample Problem:

(0040) = 04

Entries are 7. 2, 2, 4

Result: (0041) 07

(0042) 02

(0043) 02

(0044) = 04

13-7. Read a Sentence from an Encoded Keyboard

Purpose: The program should read entries from an ASCII keyboard (7 bits with a zero

Parity bit) and place them in an array until it receives an ASCII period (hex

2E) . The array starts in memory location 0040. Each entry is marked by a

strobe as in Example 13-6.

Sample Problem:

Entries are H. E. L. L, 0.

Result: (0040) 48 'H'

(0041) 45 'E'

(0042) = 4C 'L'
(0043) 4C 'L'

(0044) 4F ·o·
(0045) = 2E

. .

Using the 6820 Peripheral Interface Adapter (PIA) 13-55

13-8. A Variable Amplitude Square Wave Generator

Purpose: The program should generate a square wave, as shown in the next figure,
using a 01 A converter. Memory location 0040 contains the scaled amplitude
of the wave, memory location 0041 the length of a half cycle in milliseconds,
and memory location 0042 the number of cycles.

Assume that a digital output of 8016 to the converter results in an analog output of
zero volts. In general, a digital output of D results in an analog output of (D-80)180 x
- V REF volts.

Sample Problem:

Result.

+ VREF I
"' VREF I

(0040) A016
(0041) 04
(0042) 03

g> -4- I

g
o �----F----r---JF---1c---i----,-----r

l �:::: L-.1: 4ms : "ms I T1me ----------•

The base voltage is 80 1 6 = 0 volts.
Full scale is 1 0016 = -VREF volts.
So A015 = (A0-80)/80 x 1-VREFI = -VREF/4

The program produces 3 pulses of amplitude V REF 14 with a half cycle length of 4 ms.

13-9. Averaging Analog Readings

Purpose: The program should take four readings from an AID converter 10 millise­
conds apart and place the average in memory location 0040. Assume that the
AID conversion time can be ignored.

Sample Problem:

Hexadecimal readings are 86, 89, 81, 84

Result: (0040) = 851s

13-1 0. A 30 Character-per-Second Terminal

Purpose: Modify the transmit and receive routines of Example 13-9 to handle a 30 cps
terminal that transfers ASCII data with one stop bit and even parity. How
could you write the routines to handle either terminal depending on a flag in
memory location 0061; e.g., (0061) = 0 for the 30 cps terminal, and (0061) =

I for the 10 cps terminal?

13-56 6809 Assembly Language Programming

REFERENCES

I. A. Osborne et at. An Introduction to Microcomputers: Volume 2- Some Real

Microprocessors, pp. 9-45 through 9-54.

2. J. Gilmore and R. Huntington. "Designing with the 6820 Peripheral Interface

Adapter," Electronics, December 23, 1976, pp. 85-86.

3. The TTL Data Book for Design Engineers, Texas Instruments Inc., P.O. Box 5012,

Dallas, Tex. 75222, pp. 7-I5I through 7-156.

4. E. Dilatush. "Special Report: Numeric and Alphanumeric Displays," EDN, Janu­

ary 5, 1978, pp. 26-35.

5. The TTL Data Book for Design Engineers, Texas Instruments Inc., P.O. Box 5012,

Dallas, Tex. 75222, pp. 7-22 through 7-34.

6. A. Pshaenich. "Interface Considerations for Numeric Display Systems," Motorola

Semiconductor Products Inc., Application Note AN-741, Phoenix, Ariz. 1975.

7. Motorola Semiconductor Products Inc., Microprocessor Applications Manual,

McGraw-Hill, New York, I 975, pp. 5-6 through 5-11.

8. Motorola Semiconductor Products Inc., Microprocessor Applications Manual,

McGraw-Hill, New York, 1975, pp. 5- I through 5-5.

9. See Reference 2.

10. J. Kane et al. An Introduction to Microcomputers: Volume 3- Some Real Support

Devices, Osborne/McGraw-Hill, Berkeley, Calif. I 979, Section El.

11. E. R. Hnatek. A User's Handbook of DIA and AID Converters, Wiley, New York,

1976.

12. P. H. Garrett. Analog Systems for Microprocessors and Minicomputers, Reston Pub­

lishing Co. (Prentice-Hall), Reston, VA, 1978.

13. B. Amazeen. "Monolithic D-A Converter Operates on Single Supply," Electronics,

February 28, 1980, pp. 125-31.

14. See Reference 11.

15. See Reference 12.

16. J. Kane et al. An Introduction to Microcomputers: Volume 3- Some Real Support

Devices, Osborne/McGraw-Hill, Berkeley, Calif. 1979, Section E2.

17. D. Aldridge. ''Analog to Digital Conversion Techniques with the M6800

Microprocessor System," Motorola Semiconductor Products Inc. Application

Note AN-757, Phoenix, Ariz. 1975.

18. P. Bradshaw. "Two-Chip AID Converter," Electronic Design, March 29, 1979, pp.

128-36.

19. M. Tuthill and D. P. Burton. "Low-Cost AID Converter Links Easily with

Microprocessors," Electronics, August 30, 1979, pp. 149-55.

20. For a discussion ofUARTs, seeP. Ronyet al. "The Bugbook lla," E and L Instru­

ments Inc., 61 First Street, Derby, Conn. 06418 or D. G. Larsen et at. "INWAS:

Interfacing with Asynchronous Serial Mode," IEEE Transactions on Industrial

Electronics and Control Instrumentation, February 1977, pp. 2- I 2.

Using the 6820 Peripheral Interface Adapter (PI A) 13-57

21. "Interface Between Data Terminal Equipment and Data Communications Equip­

ment Employing Serial Binary Data Interchange," EIA RS-232C, Electronic

Industries Association, 2001 I Street N.W., Washington, D.C. 20006, August

1969.

J. Kane et al. An Introduction to Microcomputers: Volume J- Some Real Support

Devices, Osborne/McGraw-Hill, Berkeley, Calif. pp. J5-9 through J5-14.

G. Pickles. "Who's Afraid of RS-232?", Kilobaud, May 1977, pp. 50-54.

C. A. Ogdin. "Microcomputer Buses- Part II," Mini-Micro Systems, July 1978,

pp. 76-80.

14
Using the 6850 ACIA

The 6850 ACIA, or Asynchronous Communications Interface Adapter, (see

Figure 14-1) is a UART specifically designed for use in 6800, 6809, and 6502-based

microcomputers. It occupies two memory addresses and contains two read-only

registers (received data and status) and two write-only registers (transmitted data

and control). Tables 14-1 and 14-2 describe the contents of these registers.

ADDRESSING THE 6850 ACIA

The internal registers of the ACIA are addressed by means of the RS (register

select) and R/W (read/write) lines (see Table 14-3). If, as is usual, RS is tied to AO,
the least significant bit of the 6809's address bus, then the address of the Data Registers
is one larger than the address of the Control and Status Registers. The use of R/W for

addressing means that read and write cycles access different registers, so the program
can neither read the transmitted data or control registers nor write into the received data
or status registers. If the program must recall what it stored in the write-only registers, it

must retain a copy in RAM. We will refer to the addresses as ACIADR (the receive

data register when reading, the transmitted data register when writing), ACIASR

(the read-only status register), and ACIACR (the write-only control register).

ACIASR and ACIACR are the same physical address.

14-2 6809 Asscm bly Language Programming

ock -
Clock

Generator
Transmit Cl

En a ble

t
Read/W rite___.

to-. Chip

Select Transmit
Chip Selec

Chip Selec t 1 ___. and Data

Read/Write Register

t i___. Control

? lect-.

Chip Selec

Register Se

- �
Status

-
�

Register DO

. - .. D1
A

D2 - ...

. Data

t + Bus

- ... Buffers

D3

D4

. .. -)
D5

.,
--

� Control
- Register

D6

D7

......
--

Receive
Data

Register

Receive Clock

�
Parity

Generator

� Transmit
Shift

,.. Register

+
�

Transmit
Control

j�

Interrupt
- ...

Logic

-

-
Receive
Control

.--

•
Parity

Check

At.,.
Receive

,..___ Shift

"" Register

•
- Clock
...

Generator

•
Sync
Logic

Figure 14-1. Block Diagram of the 6850 ACIA

f4-

f4-
�

�

--..

�

�

�._

Transmit

Data

Clear-to- Send

Interrupt

Request

Request­

to-Send

Receive Data

Using the 6850 ACIA 14-3

Table 14-1. Definition of 6850 ACIA Register Contents

Buffer Address

Data RS·R/W RS·R/W RS ·R/W RS·R/W
Bus Transmit Receive

Line Data Data Control Status
Number Register Register Register Register

(Write Only) (Read Only) (Write Only) (Read Only)

0 Data Bit 0' Data Bit 0 Counter Divide Receive Data Register
Select 1 (CRO) Full (RDRF)

1 Data Bit 1 Data Bit 1 Counter Divide Transmit Data Register
Select 2 (CR 1) Empty (TORE)

2 Data Bit 2 Data Bit 2 Word Select 1 Data Carrier Detect
(CR2) (DCD)

3 Data Bit 3 Data Bit 3 Word Select 2 Clear-to-Send
(CR3) (CTS)

4 Data Bit 4 Data Bit 4 Word Select 3 Framing Error

(CR4) (FE)

5 Data Bit 5 Data Bit 5 Transmit Control 1 Receiver Overrun
(CR5) (OVRN)

6 Data Bit 6 Data Bit 6 Transmit Control 2 Parity Error (PE)
(CR6)

7 Data Bit r·· Data Bit r· Receive Interrupt Interrupt Request
Enable (CR7) (IRQ)

• Leading bit = LSB = Bit 0

•• Data bit will be zero in 7 -bit plus parity modes
"' Data bit is "don't care" in 7 -bit plus parity modes

SPECIAL FEATURES

Note the following special features of the 6850 ACIA:

1. Read and write cycles address physically distinct registers. Therefore, you
cannot use the ACIA registers as addresses for instructions like Increment,
Decrement, or Shift, which involve both read and write cycles.

2. The ACIA Control register cannot be read by the CPU. You will have to
save a copy of the Control register in memory if the program needs its value.

3. The ACIA has no Reset input. It can be reset only by placing ones in Control

register bits 0 and 1. This procedure (called "Master Reset") is necessary
before the ACIA is used, in order to avoid having a random starting
character.

4. The RS-232 signals are all active-low. Request-to-Send (RTS), in particu­
lar, should be brought high to make it inactive if it is not in use.

14-4 6809 Assembly Language Programming

Table 14-2. Meaning of the 6850 ACIA Control Register Bits

CR6 CR5 Function

0 0 RTS =low. Transmitting Interrupt Disabled
0 1 irts =low. Transmitting Interrupt Enabled
1 0 RTS = high. Transmitting Interrupt Disabled
1 1 RTS = low. Transmits a Break level on the

Transmit Data Output. Transmitting
Interrupt Disabled

CR4 CR3 CR2 Function

0 0 0 7 Bits + Even Parity + 2 Stop Bits
0 0 1 7 Bits + Odd Parity + 2 Stop Bits
0 1 0 7 Bits + Even Parity + 1 Stop Bit
0 1 1 7 Bits + Odd Parity + 1 Stop Bit
1 0 0 8 Bits + 2 Stop Bits
1 0 1 8 Bits + 1 Stop Bit
1 1 0 8 Bits + Even Parity + 1 Stop Bit
1 1 1 8 Bits + Odd Parity + 1 Stop Bit

CR1 CRO Function

0 0 +1

0 1 +16

1 0 +64

1 1 Master Reset

Table 14-3. Internal Addressing for the 6850 ACIA

RS R/W Indexed Offset

(Register Select) (Read/Write) Register Addressed from ACIA

1 = Read, 0 = Write Control Register

0 0 Control Register (write-only) 0

0 1 Status Register (read-only) 0

1 0 Transmit Data Register (write-only) 1

1 1 Receive Data Register (read-only) 1

5. The ACIA requires an external clock. Typically, 1760Hz is supplied and the

+I 6 mode (Control register bit I = 0, bit 0 = 1) is used. The A CIA will use
the clock to center the reception and to avoid false Start bits caused by noise

on the lines.

6. The Data Ready (receive data register full, or RDRF) flag is bit 0 of the

Status register. The Peripheral Ready <transmit data register empty, or

TDRE) flag is bit 1 of the Status register.

Using the 6850 ACIA 14-5

PROGRAM EXAMPLES

14-1. RECEIVE DATA FROM TTY

Purpose: Receive data from a teletypewriter using a 6850 ACIA and store the data in

memory location 0060.

Program 14-1:

0000

8010
8010
8011

0000 86 03
0002 87 8010
0005 86 45
0007 87 8010
OOOA 86 8010

ACIACR EQU

ACIASR EQU

ACIADR EQU

ORG

LOA

STA

LOA

STA

WAITD LOA

OOOD 44 LSRA
OOOE 24 FA BCC

0010 86 BOll LOA

0013 97 60 STA

0015 3F SWI

$8010
$8010
$8011

$0000
t%00000011 MASTER RESET ACIA

ACIACR

t%0 1000101 ACIA OPERATING MODE

ACIACR

ACIASR

WAITD

ACIADR

$60

WITH ODD PARITY

GET STATUS OF ACIA

HAS DATA BEEN RECEIVED?

NO, WAIT

YES, READ THE DATA

AND SAVE IT IN MEMORY

-- TTY

The program must reset the ACIA originally by placing ones in Control register

bits 0 and l. The ACIA does have an internal power-on reset which holds the ACIA in

the reset state until Master Reset is applied.

The program determines the operating mode of the ACIA by setting the bits in

the Control Register as follows:

Bit 7 0 to disable the receiver interrupt

Bit 6 1 to make Request-to-Send (RTS) high (inactive)

Bit 5 0 to disable the transmitter interrupt

Bit 4 0 for 7-bit words

Bit 3 0, Bit 2 1 for odd parity with 2 Stop bits

Bit 1 0, Bit 0 I for --;- 16 clock (1760 Hz must be supplied)

The received data status flag is bit 0 of the ACIA Status Register. What would

happen if we tried to replace

with the single instruction

LOA ACIASR

LSR A

LSR ACIASR

Remember that the Status and Control registers share an address but are physically dis­

tinct.

Try adding an error-checking routine to the program. Set

(0061) = 0 if no errors occurred
= 1 if a parity error occurred

(Status register bit 6 = 1)
= 2 1f an overrun error occurred

(Status register bit 5 = 1)
= 3 if a framing error occurred

(Status register bit 4 = 1)

Assume that the priority of the errors is from left to right in the ACIA status

register (i.e., parity errors have priority over overrun errors which, in turn, have priority

over framing errors if more than one error has occurred).

14-6 6809 Assembly Language Programming

14-2. SEND DATA TO TTY

Purpose: Send data from memory location 0060 to a teletypewriter using a 6850 ACIA.

Program 14-2:

8010 ACIACR EQU $8010

8010 ACIASR EQU $8010

8011 ACIADR EQU $8011
*

0000 ORG $0000

0000 86 03 LOA 1%00000011 MASTER RESET ACIA

0002 87 8010 STA ACIACR

0005 86 45 LOA t%01000101 ACIA OPERATING MODE -- TTY

0007 87 8010 STA ACIACR WITH ODD PARITY

OOOA 86 02 LOA t%00000010 IS ACIA READY TO TRANSMIT?

oooc 85 8010 WAITR 8ITA ACIASR NO, WAIT

OOOF 27 F8 8EQ WAITR YES, GET DATA

0011 96 60 LOA $60 AND TRANSMIT IT

0013 87 8011 STA ACIADR

0016 3F SWI

The transmitter status flag is bit 1 of the ACIA Status register. The Bit Test

instruction is convenient here, since it performs a logical AND without changing the

contents of the Accumulator. How could you modify the receive program to use the Bit

Test instruction?

REFERENCES

A. Osborne et al. An Introduction to Microcomputers: Volume 2- Some Real

Microprocessors, pp. 9-55 through 9-61.

K. Fronheiser. "Device Operation and System Implementation of the

Asynchronous Communications Interface Adapter," Motorola Semiconductor

Products Inc. Application Note AN-754, Phoenix, AZ, 1975.

J. Volp. "Software Switches Baud Rate," EDN, November 5, 1979, p. 83.

15
Interrupts

Interrupts are inputs that the CPU examines as part of each instruction cycle.
These inputs allow the CPU to react to asynchronous events more efficiently than by
polling devices. The use of interrupts generally involves more hardware than does

ordinary (programmed) 1/0, but interrupts provide a faster and more direct response. I

Why use interrupts? Interrupts allow events such as alarms, power failure, the
passage of a certain amount of time, and peripherals having data or being ready to
accept data to get the immediate attention of the CPU. The program does not have to
examine (poll) every potential source, nor need the programmer worry about the
system missing events.

An interrupt system is like the bell on a telephone - it rings when a call comes in
so that you don't have to pick up the receiver occasionally to see if someone is on the
line. The CPU can go about its normal business (and get a lot more done). When some­
thing happens, the interrupt alerts the CPU and forces it to service the input before
resuming normal operations. Of course, this simple description becomes more compli­
cated (just like a telephone switchboard) when there are many interrupts of varying
importance and tasks that cannot be interrupted.

CHARACTERISTICS OF INTERRUPT SYSTEMS

The implementation of interrupt systems varies greatly. Among the questions
that characterize a particular system are:

1. How many interrupt inputs are there?

2. How does the CPU respond to an interrupt?

3. How does the CPU determine the source of an interrupt if the number of
sources exceeds the number of inputs?

4. Can the CPU differentiate between important and unimportant interrupts?

5. How and when is the interrupt system enabled and disabled?

15-2 6809 Assembly Language Programming

There are many different answers to these questions. The aim of all the imple­

mentations, however, is to have the CPU respond rapidly to interrupts and resume nor­

mal activity afterwards.

The number of interrupt inputs on the CPU chip determines the number of

different responses that the CPU can produce without any additional hardware or
software. Each input can produce a different internal response. Unfortunately, most

microprocessors have a very small number (one or two, typically) of separate interrupt

inputs.

The ultimate response of the CPU to an interrupt must be to transfer control to

the correct interrupt service routine and to save the current value of the Program
Counter. The CPU must therefore execute a Jump-to-Subroutine or Call instruction

with the beginning of the interrupt service routine as its address. This action will save

the return address in the Stack and transfer control to the interrupt service routine. The

amount of external hardware required to produce this response varies greatly. Some
CPUs internally generate the instruction and the address; others require external hard­

ware to form them. The CPU can only generate a different instruction or address for

each separate input.

Polling and Vectoring

If the number of interrupting devices exceeds the number of inputs, the CPU

will need extra hardware or software to identify the source of the interrupt. In the

simplest case, the software can be a polling routine which checks the status of the

device that may be interrupting. The only advantage of such a system over normal poll­

ing is that the CPU knows that at least one device is active. The alternative solution is

for additional hardware to provide a unique data input (or "vector") for each source.

The two alternatives can be mixed; the vectors can identify groups of inputs from which

the CPU can identify a particular one by polling.

Priority

An interrupt system that can differentiate between important and unimportant

interrupts is called a "priority interrupt system." Internal hardware can provide as

many priority levels as there are inputs. External hardware can provide additional levels

through the use of a Priority register and comparator. The external hardware does not

allow the interrupt to reach the CPU unless its priority is higher than the contents of the

Priority register. A priority interrupt system may need a special way to handle low­

priority interrupts that may be ignored for long periods of time.

Enabling and Disabling

Most interrupt systems can be enabled or disabled. In fact, most CPUs automat­

ically disable interrupts when a RESET is performed (so the startup routine can initialize

the interrupt system) and on accepting an interrupt (so that the interrupt will not inter­

rupt its own service routine). The programmer may wish to disable interrupts while pre­

paring or processing data, performing a timing loop, or executing a multi-byte operation.

An interrupt that cannot be disabled (sometimes called a "nonmaskable inter­

rupt") may be useful to warn of power failure, an event that obviously must take pre­
cedence over all other activities.

Interrupts 15-3

Disadvantages of Interrupts

The advantages of interrupts are obvious, but there are also disadvantages.
These include:

1. Interrupt systems may require a large amount of extra hardware.

2. Interrupts still require data transfers under program control through the CPU.

There is no speed advantage as there is with DMA.

3. Interrupts are random inputs, which make debugging and testing difficult.

Errors may occur sporadically, and therefore may be very hard to locate and

correct.2

4. Interrupts may involve a large amount of overhead if many registers must be

saved and the source must be determined by polling.

6809 INTERRUPT SYSTEM

The 6809 microprocessor's internal response to an interrupt is moderately com­
plex. The interrupt system consists of:

1. Two active-low maskable interrupts (IRQ and FIRQ) and an active-low
nonmaskable interrupt (NMI).

2. Separate interrupt disable (or mask) bits for the two maskable interrupts
(IRQ and FIRQ). If an interrupt mask bit is 1, the corresponding interrupt is

disabled. The IRQ mask bit (or I flag) is bit 4 of the Condition Code Register;

the FIRQ mask bit (or F flag) is bit 6 of the Condition Code Register. The E

(entire) flag (bit 7 of the Condition Code Register) distinguishes FIRQ inter­

rupts from other interrupts as we will describe later. As might be expected,

Reset sets both the I and F bits, thus starting the processor with both inter­

rupts disabled. This allows the programmer to initialize the system before

allowing interrupts.

6809 INTERRUPT RESPONSE

The 6809 checks the current status of the interrupt system at the end of each
instruction. If an interrupt input is active and enabled, the response is as follows:

1. The CPU disables the mask able interrupt (IRQ); that is, it sets bit 4 (the I

flag) of the Condition Code Register. If the active input is FIRQ or NMI, the

CPU also disables the fast interrupt (FIRQ); that is, it sets bit 6 (the F flag) of

the Condition Code Register.

2. If the CPU is not executing CWAI or SYNC (we will discuss those instruc­
tions later), it clears theE flag in response to FIR-Q and sets it otherwise.
The E flag is bit 7 of the Condition Code Register.

3. The CPU saves either the Program Counter and the Condition Code
Register (input is FIRQ) or all the user registers (any other input or
instruction) in the Hardware Stack. Figure 15-1 shows the order in which

15-4 6809 Assembly Language Programming

Before After

5555 - 3

5555 - 2

S5SS - 1

cc f-.--Hardware

PCH Stack

PCL
Pointer

!-Hardware ssss
Stack

Pointer

Stack Stack

ss5s = original contents of Hardware Stack Pointer
cc = Original contents of Condition Code Register (With bit 7. the Entire flag. cleared)
PCH = Original contents of Program Counter high-order byte
PCL = Original contents of Program Counter low-order byte

Figure 15-1. Saving the Limited Processor State in the Hardware Stack (Response to FIRQ)

the limited state is saved after the recognition of FIRQ and Figure 15-2 shows
the order in which the entire state is saved after other inputs or instructions.

TheE (Entire) flag distinguishes the two alternatives (E is 1 if the entire state
has been saved and 0 if only the limited subset has been saved).

4. The CPU fetches an address from a specified pair of memory locations and

loads that address into the Program Counter. Table 15-1 lists the locations
assigned to the various inputs and to the SWI instructions.

Table 15-1. Memory Map for Interrupt Vectors

Memory Map for
Vector Location Interrupt Vector

Description
MSBs LSBs

FFFE FFFF RESET
FFFC FFFD NMI
FFFA FFFB SWI
FFFS FFF9 IRQ
FFF6 FFF7 FIRQ
FFF4 FFF5 SWI2
FFF2 FFF3 SWI3
FFFO FFF1 Reserved

The addresses are stored in the usual 6809 manner with
the most significant bits at the lower address.

SPECIAL FEATURES

Note the following features of the 6809 interrupt system:

1. The M09 automatically saves the entire or limited state of the processor in

Interrupts 15-5

Before After

ssss - 12

ssss - 11

ssss - 10

t-
�

c
_
c

_
-4- Hardware

-Hardware
Stack
Pointer

Stack

a a

bb

ssss - 9 dd

ssss- 8 XH

ssss- 7 XL

ssss - 6 YH

ssss - 5 YL

ssss - 4 UH

ssss - 3 UL

ssss - 2 PCH

ssss - 1 PCL

ssss = Original contents of Hardware Stack pointer

Stack
Pointer

Stack

cc = Contents of Condition Code Register with bit 7, the Entire flag, set to 1.
aa = Contents of Accumulator A
bb = contents of Accumulator B
dd = Contents of Direct Page Register
XH = Index Register X high-order byte
XL = Index Register X low-order byte
YH = Index Register Y high-order byte
YL = Index Register Y low-order byte
UH = User Stack Pointer U high-order byte
UL = User Stack Pointer U low-order byte
PCH = Original contents of Program Counter high-order byte
PCL = Original contents of Program Counter low-order byte

Figure 15-2. Saving the Entire Processor State in the Hardware Stack

the Hardware Stack. The Program Counter is always saved so the inter­
rupted program can be resumed. The Condition Code Register (including the

Interrupt Mask and Fast Interrupt Mask flags) is always saved as well.

2. The Fast Interrupt Request not only provides a second maskable interrupt
input, but it also provides a faster response since only the Program Counter

and the Condition Code Register are saved. Saving only the limited state

reduces the response time by 9 clock cycles, since 1 clock cycle is needed to

transfer each byte to the Stack.

3. The 6809 provides external hardware signals (using the BUS AV AILA­

BLE and BUS STATE lines) to indicate that it has accepted an interrupt.
These lines can be used to activate external hardware.

4. The 6809 has no special internal provisions for determining the source of

an interrupt when there are several sources tied to the same input.

15-6 6809 Assembly Language Programming

lnterrupt·Related Instructions

The following special instructions can be used to manipulate the 6809 interrupt

system:

1. ANDCC =#=%11101111 (or CLI) clears bit 4 of the Condition Code Register
and thus enables the regular interrupt. ANDCC =#= %10111111 (or CLF)

similarly clears bit 6 of the Condition Code Register and thus enables the fast
interrupt. Of course, ANDCC =tt:%10101111 (or CLIF) enables both inter­
rupts at once.

2. ORCC #%00010000 (or SEI) sets bit 4 of the Condition Code Register and
thus disables the regular interrupt. ORCC =#=%01000000 (or SEF) similarly
sets bit 6 of the Condition Code Register and thus disables the fast interrupt.
ORCC # %01010000 (or SElF) disables both interrupts at once.

3. SWI (Software Interrupt) sets the Entire flag, saves all the user registers in
the Hardware Stack, and disables the regular and fast interrupts. It then places
the contents of addresses FFFA and FFFB in the Program Counter. SWI2

(Software Interrupt 2) and SWI3 (Software Interrupt 3) are similar, except
that they do not affect the interrupt masks and they use different vector
addresses (FFF4 and FFF5 for SWI2, FFF2 and FFF3 for SWI3).

4. RTI (Return from Interrupt) restores the registers from the Hardware Stack
at the end of an interrupt service routine. If the recovered E flag is cleared,

R TI restores only the Condition Code Register and the Program Counter.
Thus RTI is similar toRTS, but RTI restores other registers as well as the
Program Counter.

5. CWAI (Clear and Wait for Interrupt) logically ANDs a byte of immediate
data with the Condition Code Register (usually enabling the regular or fast
interrupts), saves all the user registers in the Hardware Stack, and waits for an
interrupt to occur. The response to the interrupt is rapid (9 clock cycles),
since the registers have already been saved. Note that, if a CW AI instruction
has been executed and a fast interrupt occurs, the CPU will enter the fast
interrupt service routine with all its registers saved (and with the E flag in the
Stack set).

6. SYNC (Synchronize to External Event) causes the processor to stop execut­
ing instructions. The CPU simply waits for an interrupt. If the interrupt is
masked or lasts less than 3 clock cycles, the CPU continues to the next
instruction without stacking registers or performing an interrupt service
routine. Otherwise, the CPU performs its normal interrupt response. SYNC
allows an extremely fast response to a single (presumably high-priority) inter­
rupt, since no stacking or vectoring is performed. Obviously, the use of SYNC
is a one-time only approach, since the CPU does not save its previous state or
identify the source. Figure 15-3 illustrates the use of the SYNC instruction in
this manner.

The SWI (Software Interrupt) instructions produce almost exactly the same

response as an interrupt signal (hence the name). The only difference is the locations

from which the CPU obtains the new value of the Program Counter. SWI instructions
are useful for debugging (see Chapter 19) and for returning control to a monitor or
operating system while simultaneously saving the current state in the stack. SWI

Interrupts 15-7

instructions are also referred to as traps, since they can be used to trap the microcom­

puter to special routines in the event of hardware errors or other unusual events.3

SWI is commonly used in packaged monitors and operating systems to transfer control
from user to system; SWI2 is supposed to be available to the end user, and hence should

not be used in packaged systems software.

Fast Interrupt

The fast interrupt is a high-priority maskable interrupt. In response to it, the
CPU clears the E flag and saves the Program Counter and Condition Code Register in

the Hardware Stack (assuming that it is not executing a CW AI instruction). It then
obtains the new value for the Program Counter from memory addresses FFF6 and
FFF7. The differences between regular and fast interrupts are thus minimal from the
programmer's point of view and we will not refer to fast interrupts again.

Nonmaskable Interrupt

The nonmaskable interrupt is an edge-sensitive input. The processor therefore
only reacts to the edge of a pulse on this line, and the pulse will not interrupt its own ser-

SYNC

'
Interrupt

Occurs
I

Load byte into

Accumulator and

store in buffer area.

Decrement Byte

Counter

Wait for data byte available

Device generates an interrupt when

a byte of data is available.

Has all the data

been transferred?

Figure 15-3. Using the SYNC Instruction in Interrupt-Driven Input/Output

15-8 6809 Assembly Language Programming

vice routine. Nonmaskable interrupts are useful for applications that must respond to

loss of power (usually by saving data in a low-power memory or switching to a backup

battery) .4 Typical applications are communications equipment that must retain codes

and partially received messages, and test equipment that must keep track of partially

completed tests. We will not discuss the nonmaskable interrupt any further. Henceforth,

we will assume that- all interrupt inputs are tied to IRQ.

6820 PIA INTERRUPTS

Most 6809 interrupt systems involve 6820 PIAs. Each port of the 6820 PIA has

the following features for use with interrupts:

1. An active-low interrupt output.

2. Interrupt enable bits (bit 0 of the Control Register for control line 1, bit 3 for

control line 2 if it is an input).

3. Interrupt status bits (bit 7 of the Control Register for control line 1, bit 6 for

control line 2).

Bits 1 (control line l) and 4 (control line 2) determine whether a rising edge (low­

to-high transition) or a falling edge (high-to-low transition) on the control line causes an

interrupt.

Note the following:

1. The PIA has interrupt enable bits, whereas the 6809 microprocessor has

interrupt mask flags. That is, the PIA bits must be 'I' to allow interrupts,

while the microprocessor flags must be '0' to have the same effect.

2. RESET clears the PIA control register and thus disables all interrupts.

Even if the PIA interrupt outputs are tied to NMI on the 6809 CPU, no inter­

rupts will occur until the PIA enable bits have been set.

3. The CPU can check bits 6 and 7 of the Control Register to see if a PIA has a

pending interrupt. Once a status bit has been set, it remains set until the CPU
reads the corresponding PIA Data register.

4. The PIA will remember an interrupt that occurs while PIA interrupts are

disabled and will provide an output as soon as the corresponding enable bit is

set.

6850 ACIA INTERRUPTS

The 6850 ACIA can also produce interrupts. You should note the following

features of the 6850 ACIA in interrupt-based systems:

1. The transmitter interrupt (signifying that the ACIA is ready for data) is

enabled only if Control Register bit 6 = 0 and Control Register bit 5 = 1.

2. The receiver interrupt (signifying that the ACTA has received new data) is

enabled only if Control Register bit 7 = 1.

3. Master reset does not affect the interrupt enable bits.

Interrupts 15-9

4. The occurrence of either interrupt sets bit 7 of the Status Register. Either
reading data from the ACIA or writing data into the ACIA clears bit 7.

6809 POLLING INTERRUPT SYSTEMS

Most 6809 interrupt systems must poll each PIA and ACIA to determine which

one caused an interrupt. The polling method is:

1. Check each PIA by examining bits 6 and 7 of the Control Register:

LOI\ PTACRI\
FF� f INTJ<PJ
'' S Ll\
f>MI l'ITRP/.

CS BIT 7 SET?
YES, INTERRUPT l HAS OCCURRED

[S BIT !i SET?

YES, INTERRUPT 2 HAS OCCURRED

2. Check each 6850 ACIA by examining bit 7 of the Status Register:

L Dl\
l:lPL
LS Rl\

BCS
RHI\

1\CT Nif1

'\JXTCH!<

HCVINT

TX l '�T

IS BIT 7 SET?

NO, NO INTERRUPTS ON THIS ACIA
YES, IS BIT 0 SET?

YES, RECEIVER INTERRUPT HAS OCCURRED

NO, IT MUST HAVE BEEN TRANSMITTER

INTERRUPT

Bit 7 of the ACIA Status Register indicates that either a receiver or a transmit­
ter interrupt has occurred. Bit 0 will be set if a receiver interrupt has occurred
and bit 1 will be set if a transmitter interrupt has occurred. Of course, the
interrupt must be one or the other, so our program assumes a transmitter
interrupt if it does not find a receiver interrupt.

The important features of a 6809 polling interrupt system are:

1. The order in which status bits are examined determines the priority of the

interrupts. Obviously, the CPU will proceed no further if it finds an active
interrupt; thus it ignores activity from sources later in the sequence. Priorities
are easy to establish (merely by selecting the order of examination) but
difficult to change or vary.

2. The service routine must clear a PIA interrupt by reading the correspond­

ing Data Register, even if the port is being used for output or no data

transfer is necessary. Otherwise, the interrupt will remain active. The pro­
grammer can use the TST (test zero or minus) instruction to read the PIA
Data Register without changing its contents or the contents of a User
Register.

DISADVANTAGES OF POLLING INTERRUPTS

Polling routines are adequate if the number of sources is small and the frequency
of interrupts is low. If there are many sources or interrupts are frequent, polling

routines are slow and awkward for the following reasons.

15-10 6809 Assembly Language Programming

1. The average number of polling operations increases linearly with the num­

ber of inputs. On the average, of course, a polling routine will have to

examine half of the inputs before finding the active one. You can reduce the
average number of polling operations somewhat by checking the most fre­

quent inputs first.

2. PIA and ACIA addresses are rarely consecutive or evenly spaced; therefore,

separate instructions are necessary to examine each input. Polling routines
are therefore difficult to expand. You can use tables of 1/0 addresses,
accessed via one of the indexed addressing modes.

3. Interrupts that are polled early may shut out those that are polled later

unless the order of polling is varied. However, varying the order of polling is

difficult since the addresses are not consecutive.

6809 VECTORED INTERRUPT SYSTEMS

The problem of polling in 6809-based systems is typically solved by special

methods, unique to a particular application or microcomputer. The 6828 Priority Inter­

rupt Controllers provides an eight-level vectored interrupt system based on the regu­

lar interrupt input. This device simply recognizes the addresses FFF8 and FFF9 (see
Table 15-1) when they appear on the address bus and replaces them with one of the
eight vectors. Special hardware can also utilize the interrupt acknowledge signal pro­

vided by the 6809 microprocessor. We will not discuss 6809 vectored interrupt systems

any further.

COMMUNICATIONS BETWEEN MAIN PROGRAM

AND SERVICE ROUTINES

A major problem in writing programs for interrupt-based systems is providing

communications between the main program and the service routines. The criteria for

communications methods are:

1. They should not interfere with the normal execution of the main program.

2. They should not depend on how the main program operates. For example,

they should not require the main program to be inactive (i.e., executing

CW AI or SYNC) or assume that certain registers are always available.

3. They should be well-defined and capable of handling varied amounts of data.

4. They should not require instantaneous action by the main program. The more
patient the system is, the easier it will be to develop and maintain.

The idea is to make the service routines and the main program transparent to each

other. This approach allows the programmer to change one without affecting the other.
It also helps limit errors to one or the other, rather than to the connection between

them.

lntern:pts 15-11

SOFTWARE HANDSHAKE

A simple approach to communications is a software "handshake," much like
the hardware handshake used in asynchronous input/output as described in Chapter

12. The provider of data (the interrupt service routine for input or the main program
for output) sets a flag to indicate that new data is available. The receiver or acceptor

of data can then examine that flag (sometimes called a semaphore) and can clear it
after transferring (or accepting) the data. The receiver may itself set another flag (an

acknowledgment) to indicate that the most recent datas been processed and more can
be sent.

Where do we place the flags and the data? A simple approach is to use a single

memory location for each flag and for the data; the location can be a specific memory

address or an address in the Hardware Stack that has been set aside for that purpose.

The main program and the service routines then communicate through those locations,

much as the processor communicates with 1/0 devices through I/0 ports.

BUFFERED INTERRUPTS

The approach outlined above assumes that we handle 110 on a byte-by-byte basis.

The processor must provide each output byte separately and must handle each input

byte separately. Clearly, all operations must proceed at a rate that is guaranteed to be

fast enough to avoid losing data. As with normal 1/0, we can relax the time con­

straints by using buffers. In this approach, the service routine transfers data to or

from a buffer and updates the buffer pointer for the next operation. The only time the
main program has to be concerned is when an input buffer is full or an output buffer
is empty. The service routines act as I/0 devices that have their own local memory in

which data can be stored temporarily. This approach is referred to as buffered interrupts.

Double Buffering

In fact, we can extend this approach. We can provide one buffer for the service

routine and a separate buffer for the main program. Now even the filling or emptying

of a buffer creates no problem as long as the other buffer is immediately available. In

fact, the identities of the buffers can simply be interchanged when the service routine

has filled or emptied its buffer. This approach is known as double buffering; it allows

interrupt-driven input/output to proceed in almost total independence of the main pro­

gram.

ENABLING AND DISABLING INTERRUPTS

A further problem in writing programs for interrupt-based systems is deciding
when to enable or disable interrupts.

WHEN TO DISABLE INTERRUPTS

In general, you disable interrupts in the situations itemized below.

15-12 6809 Assembly Language Programming

l. During the initialization of the interrupt system itself. This may involve
loading initial values into pointers, flags, and counters or determining an

initial order for polling or other operations. Remember that RESET automat­
ically disables the CPU and PIA interrupts, so the system startup routine will

have to explicitly enable them.

2. During the servicing of an interrupt. If interrupts are not disabled at least

until the current one is cleared, the computer will enter an endless loop with

the interrupt endlessly interrupting its own service routine. Remember that

the 6809 microprocessor automatically disables the regular interrupt as part of

its normal response. Note also that an NMI interrupt will not interfere with its

own service routine, since the input is edge-sensitive, rather than level-sensi­

tive.

3. During operations that occur in real time (such as delay loops or high-speed
synchronous 1/0) or that could produce erroneous results if interrupted. A

typical example of the latter situation is the updating of multi-byte data that

the interrupt service routine must use, such as the calendar time or

geographical position. A partial update could produce a highly erroneous

value, such as a clock time that is off by an hour or a day because the interrupt

occurred before that part of the time was changed.

WHEN TO ENABLE INTERRUPTS

On the other hand, you want to enable interrupts as soon as possible whenever
they might occur. Otherwise, the system could miss an interrupt and either lose some

input or fail to produce the proper output data.

INITIALIZING THE INTERRUPT SYSTEM

The normal order in which you initialize a 6809-based interrupt system is as
follows (starting from RESET):

1. Initialize all system parameters.

2. Enable the interrupts from each PIA and ACIA.

3. Enable the CPU interrupts by clearing the appropriate interrupt mask flags.

PIA INTERRUPTS

If you must disable a particular interrupt, you can disable it independently of
other interrupts by clearing the interrupt enable flag for a specific port of a particular
PIA. You can do this without affecting other control register bits by using logical opera­

tions.

l. Disabling a PIA interrupt.
Control line 1

LDA Pl/I.CR
ANDA :!5lllllllrl DISABLE CONTROL LINE 1 INTERRUP'!

STA PIACP

or (if you know that the interrupt is currently enabled)
\

DEC DISABLE CONTROL LINE l INTERRUPT

Control line 2

LDl\ r> !.C'I(

Interrupts 15-13

AND.A. H 1 1 1 I C• l!! DISABLE CONTROL LINE 2 INTERRUPT
ST� P !\CH

2. Enabling a PIA interrupt.

Control line 1

Ll.l/\ r lAC�<

Oil,\ 'l·','l[li;''!J; lJ ENABLE CONTROL LINE 1 INTF.RRUPT

::;T!'. '1 J J\.C t�

or (if you know that the interrupt is currently disabled)

INC PIACR

Control line 2

LOA PIACR

ENABLE CONTROL LINE 1 INTERkUPT

ORA l%00001000 ENABLE CONTROL LINE 2 INTERRUPT

STA PIACR

The INC and DEC instructions take advantage of the fact that bit 0 is the interrupt

enable for control line I. However, these instructions can affect the entire PIA control

register if they are inadvertently executed when the interrupt enable is already in the

desired state. Consider, for example, what would happen if the CPU were to execute

DEC PIACR when bit 0 of the control register was already 0. The INC and DEC instruc­

tions arc thus less general, as well as more difficult for the casual reader to understand,

than the logical instructions.

SAVING AND RESTORING INTERRUPT STATUS

A related problem6 is restoring the original state of the interrupt system after

performing operations that require interrupts to be disabled. If, for example, an 1/0 or

other subroutine must be executed with interrupts disabled, the subroutine must

restore the original state of the interrupt system before returning control to the main

program. Clearly, we do not want the subroutine to enable interrupts if they were dis­

abled in the calling program or not re-enable interrupts if they were enabled in the call­

ing program.

The solution is simple: save and restore the condition code register that con­

tains the interrupt mask bits. We can save that register before disabling interrupts with

the instruction PSHS CC; we can restore that register before returning control to the

main program or performing operations that could be interrupted with the instruction

PULS CC.

CHANGING THE VALUES IN THE STACK

The 6809 microprocessor automatically saves all or some of its registers in

response to an interrupt; the RTI instruction at the end of the service routine restores

those registers. Most service routines leave the registers in the stack alone to pro­

mote generality and simplicity. However, programmers occasionally find it necessary
to alter some of the registers. Typical reasons are to force a return to a different

address? or to disable the entire interrupt system. In these cases, the programmer must

know how to find the various registers in the Hardware Stack.

15-14 6809 Assembly Language Programming

Table 15-2. Indexed Offsets for Entire Processor State

Register
Indexed Offset
(Hexadecimal)

Condition Code 00
Accumulator A 01
Accumulator B 02
Direct Page Register 03
High-Order Byte of Index Register X 04
Low-Order Byte of Index Register X 05
High-Order Byte of Index Register Y 06
Low-Order Byte of Index Register Y 07
High-Order Byte of User Stack Pointer U 08
Low-Order Byte of User Stack Pointer U 09
High-Order Byte of Program Counter OA
Low-Order Byte of Program Counter OB

Table 15-3. Indexed Offsets for Limited Processor State

Register
Indexed Offset
(Hexadecimal)

Condition Code 00
High-Order Byte of Program Counter 01
Low-Order Byte of Program Counter 02

Table 15-2 contains the indexed offsets required to access the registers in the case

in which the processor has saved the entire state. Table 15-3 contains the indexed
offsets required in the case (in response to FIRQ) in which the processor has saved only

the program counter and the condition code register. Typical routines using the offsets

in Table 15-2 are:

1. Changing the return address to EEXIT (an error exit routine):

LOX

STX

HEX IT

SOA,S

RETURN ADDRESS � ERROR EXIT

2. Decrementing the return address by 1 (used in the event that an interrupt or
SWI instruction has been used to replace an actual program instruction for

debugging or testing purposes):

TST

BNE

DEC

DECLSB DEC

SOB,S

DECLSB

SOA,S

SOI:l,S

ARE LSB'S OF RETURN ADDRESS ZERO?

YES, REDUCE MSB'S BY 1

REDUCE LSB'S OF RETURN ADDRESS BY 1

Only if the LSB's of the return address are zero is it necessary to decrement
the MSB's in order to produce a correct 16-bit decrement.

3. Disabling the regular interrupt by setting the regular interrupt mask bit (bit
4 of the Condition Code Register):

LOA , S

ORA #%00010000 DISABLE REGULAR INTERRUPT

STA , S

Interrupts 15-1 5

4. Disabling the fast interrupt by setting the fast interrupt mask bit (bit 6 of the

Condition Code Register):

LDA ,S
ORA #%01000000 DISABLE FAST INTERRUPT
STA ,S

Obviously, the programmer must be extremely careful when altering stack values,

since these changes could have unforeseen side effects in the main program.

INTERRUPT OVERHEAD

Responding to an interrupt always involves some overhead cycles, since the CPU

may have to fetch a new program counter value from memory and save registers in the

Hardware Stack. Of course, the restoring of registers from the Hardware Stack, if

necessary, also uses processor time. You can determine the amount of overhead

involved in servicing interrupts from the time requirements in Table 15-4.

Table 15·4. Time Kcquirements for Interrupt-Related Operations

Number of
Operation

Clock Cycles

Normal response to IRQ or NMI 21
Normal response to FIRU 12
Response to any interrupt while executing CWAI 9
Escape from SYNC state if interrupts disabled 1
Execution of CW AI 20
Execution of RTI with E flag set (Entire state) 15
Execution of RTI with E flag cleared (Limited state) 6
Execution of SWI 19
Execution of SWI2 or SWI3 20
Execution of SYNC 2

PROGRAM EXAMPLES

15-1. A STARTUP INTERRUPT

Purpose: The computer waits for a PIA interrupt to occur before starting actual opera­

tions.

Often a system remains inactive until the operator actually starts it or until a

DATA READY signal is received. On RESET, such a system must initialize the Stack

Pointer, enable the startup interrupt, and execute a halt (CW AI) or an endless loop or

jump-to-self instruction. Remember that RESET disables the processor interrupt (by

setting I and F both to I) as well as all the PIA interrupts (by clearing all the PIA inter­

rupt enable bits). In the flowchart, the decision as to whether startup is active is made in

hardware (by the CPU examining the interrupt input internally) rather than in software.

15-16 6809 Assembly Language Programming

Program 1 5-1 :

Main Program:

8001 PIACA

8000 PI ADA

0100 INTRP
•

0000

0000 10CE 0100
•

0004 86 05
0006 B7 8001
0009 3C EF

*

OOOB 3F

Interrupt Service Routine:

0100

0100 B6
0103 3B

Flowchart:

8000

EQU
EQU
EQU

ORG

LDS

$8001
$8000

$0100

$0000

#$100 START STACK AT MEMORY LOCATION

OOFF
LDA
STA
CWAI

t%00000101
PIACA

ll%11101111

ENABLE INTERRUPT FROM

STARTUP PIA

ENABLE REGULAR INTERRUPT

AND WAIT
SWI

ORG
LDA

RTI

INTRP
PI ADA

Initialize Stack
Pointer

Enable startup
interrupt on PIA

Enable CPU interrupt

DUMMY CONTINUATION

CLEAR STARTUP INTERRUPT
RETURN AND PROCEED

The exact location (INTRP) of the interrupt service routine varies with the
microcomputer. If your microcomputer has no monitor, you can simply place whatever
address you want in memory locations FFF8 and FFF9 (or whatever locations respond
to those addresses). You must then start the interrupt service routine at the address you
chose. Of course, you should locate the routine so it does not interfere with fixed
addresses or with other programs.

Interrupt Handling by Monitors

If your microcomputer has a monitor, the monitor will reserve addresses FFFS

and FFF9. Those addresses will either contain the starting address at which you must

place your interrupt service routine, or will contain the starting address of a routine

that allows you to choose the starting address of the interrupt service routine. A typi­
cal monitor routine would be:

MONINT ,JMP [USRINT] JUMP TO USER-SUPPLIED SERVICE ADDRESS

Interrupts 15-17

You must then place the starting address of your service routine in memory loca­
tions USRINT and USRINT + l. Remember that MONINT is an address in the moni­
tor program and its value is in addresses FFF8 and FFF9.

You can include the loading of memory locations USRINT and USRINT + 1 in
your mam program:

LDX #INTRP
STX USRINT

GET STARTING •"lilURC:S�' OP SEI<VICI' ROUTIN£
STORE IT AT A0rR�SS MONfTOR USES

These instructions must precede the enabling of the interrupts.

Program Operation

The main program's only action is to enable the interrupt from the startup PIA.
The program enables that interrupt by setting bit 0 of the PIA Control Register before

enabling the CPU interrupt. Note that we must set the PIA interrupt enable and clear
the CPU interrupt mask bit.

The CWAI instruction logically ANDs the Condition Code Register with the
following byte of immediate data before halting instruction execution. Logically AND­
ing the Condition Code Register with 111011112 clears bit 4 of the Condition Code
Register, thus enabling the regular interrupt. Similarly, logically ANDing with
101111112 would clear bit 6 of the Condition Code Register, thus enabling the fast inter­
rupt. Logically ANDing with 101011112 would enable both maskable interrupts.

CW AI causes the 6809 CPU to save all its registers in the Hardware Stack and wait
for an interrupt to occur.

In response to an interrupt (IRQ), the CPU disables IRQ and transfers control to
the address in memory locations FFF8 and FFF9. (Remember that all the registers have
already been saved in the Hardware Stack.)

The service routine clears the startup interrupt by reading the appropriate PIA
Data Register. This operation is necessary, even though no data transfer is required.
Otherwise, the startup interrupt would remain active and would interrupt again as soon
as the CPU interrupt was reenabled.

RTI restores all the user registers from the Hardware Stack, thus reenabling the
CPU interrupt (since the old flag is restored) and transferring control to the instruction
immediately following CW AI. Note that transferring control to the service routine does
not change the contents of the user registers, but R TI does. The LOA instruction in the
service routine affects Accumulator A and the Condition Code Register, but those
effects are lost when RTI is executed.

15-2. A KEYBOARD INTERRUPT

Purpose: The main program clears a flag in memory location 0040 and waits for a
keyboard interrupt. The interrupt service routine sets the flag in memory
location 0040 to 1 and places the data from the keyboard in memory location
0041.

Sample Problem:

Keyboard data 43

Result: (0040)
(0041)

01 Flag indicating new keyboard data
43 Keyboard data

15-18 6809 Assembly Language Programming

Program 15-2a:

Main Program:
8001 PIACA

8000 PIADDA

8000 PIADA

0100 INTRP
*

0000
0000 10CE 0100

*

0004 OF 40
0006 7F 8001
0009 7F 8000
oooc 86 05
OOOE B7 8001
0011 1C EF
0013 OD 40 WTRDY
0015 27 FC
0017 3F

Interrupt Service Routine:

0100
0100 oc
0102 86
0105 97
0107 38

Flowchart:

40
8000
41

Main Program:

Interrupt Service Routine:

EQU $8001

EQU $8000
EQU $8000
EQU $0100

ORG $0000
LDS .$100 START STACK AT MEMORY LOCATION

OOFF
CLR $4 0 CLEAR DATA READY FLAG
CLR PIACA ADDRESS DATA DIRECTION REGISTER
CLR PIADDA MAKE ALL DATA LINES INPUTS
LOA 1%00000101 ENABLE KEYBOARD INTERRUPT
STA PIACA ON PIA
AN DCC t%11101111 ENABLE CPU INTERRUPT

TST
BEQ
SWI

ORG
INC
LDA
STA

RTI

$40
WTRDY

INTRP
$4 0
PI ADA
$41

Initialize Stack
Pointer

Data Ready Flag = 0
Enable keyboard
interrupt on PIA

Enable CPU interrupt

Data Ready Flag
= 1

(0041)
= Keyboard Data

IS THERE DATA FROM THE KEYBOARD?
NO, WAIT
YES, PROCEED

SET DATA READY FLAG
FETCH DATA FROM KEYBOARD
SAVF. DATA IN MEMORY

Interrupts 15-19

You must initialize the PIA completely before enabling interrupts. This includes
establishing the directions of ports and control lines and determining the transitions to
be recognized on input strobes.

The main program clears the Data Ready Flag (memory location 0040) and then
simply waits for the interrupt service routine to set it. The main program and the service
routine communicate through two fixed memory addresses:

0040 is a flag that indicates whether new data has been received from the
keyboard.

0041 is a single-location data buffer used to hold the value received from the
keyboard.

Note the similarity between the Data Ready Flag in memory and the status bit in
the control register of the keyboard PIA. The program does not have to test bit 7 of the
PIA control register because there is a direct hardware (interrupt) connection between
that bit and the CPU. Of course, we have also assumed that the keyboard is the only
source of interrupts.

The R TI instruction at the end of the service routine transfers control back to the
main program. If you want to transfer control somewhere else (perhaps an error
routine), you can change the Program Counter in the Hardware Stack using the

methods outlined earlier. If the entire state of the processor has been saved, the return
address will be at offsets OA16 and 0816 from the Hardware Stack Pointer.

We do not use the registers to pass parameters and results. In the first place,
the 6809 automatically restores the old register values when it executes RTI. Sec­
ondly, if we were to change the register values in the stack, we could interfere with
the execution of the main program. In most applications, the main program is using
the registers and random changes will cause havoc. At the very least, changing the
registers lacks generality, since modifications to the main program surely could
result in the use of registers that are currently available.

The service routine does not have to explicitly re-enable the interrupts. The
reason is that RTI automatically restores the old Condition Code Register with the
Interrupt Mask bit in its original (cleared) state. In fact, you will have to change the
Interrupt Mask bit in the Stack (bit 4 of the top location) if you do not want the inter­
rupts to be re-enabled.

You can save and restore other data (such as the contents of a memory location)
by using the Hardware Stack. This method can be expanded indefinitely (as long as
there is RAM available for the Stack), since nested service routines will not destroy the
data saved by earlier routines.

Filling a Buffer via Interrupts

An alternative approach would be for the interrupt service routine to set
memory location 0040 only after receiving an entire line of text (such as a string of
characters ending with a carriage return). Here we use memory location 0040 as an end­
of-line flag and memory locations 0041 and 0042 as a buffer pointer. We will assume
that the buffer starts in memory location 0050.

15-20 6809 /\sscmhly Language Programming

Program 15-2b:

Main Program:

8001 PIACA EQU $8001
8000 PIADDA EQU $8000
8000 PI ADA EQU $8000
0100 INTRP EQU $0100
OOOD CR EQU SOD

*

0000 ORG $0000
0000 10CE 0100 LOS #$100

*

0004 OF 40 CLR $40
0006 BE 0050 LOX #$50
0009 9F 41 STX $41

OOOB 7F 8001 CLR PIACA

OOOE 7F 8000 CLR PIADDA

START STACK AT MEMORY L OCATION
OOFF

CLEAR END OF LINE FLAG
INITIALIZE BUFFER POINTER TO

START OF BUFFER

ADDRESS DATA DIRECTION REGISTER
MAKE ALL DATA LINES INPUTS

0011 86 05 LDA Jl%00000101 ENABLE KEYBOARD INTERRUPT
0013 B7 8001 STA PIACA FROM PIA
0016 1C EF AN DCC #%11101111 ENABLE CPU INTERRUPT
0018 00 40 WTEOL TST $40 HAS A LINE BEEN RECEIVED FROM

* THE KEYBOARD?
001A 27 FC BEQ WTEOL NO, WAIT
001C 3F SWI

Interrupt Service Routine:

0100 ORG INTRP

0100 9E 41 LOX $41 GET BUFFER POINTER

0102 B6 8000 LOA PI ADA FETCH DATA FROM THE KEYBOARD

0105 A7 80 STA ,X+ SAVE DATA IN BUFFER AND
* INCREMENT POINTER

0107 9F 41 STX $41 STORE ADJUSTED BUFFER POINTER

0109 81 OD CMPA *CR IS DATA A CARRIAGE RETURN?

010B 26 02 BNE DONE

0100 oc 40 INC $40 YES, SET END OF LINE FLAG

010F 3B DONE RTI

This program fills a buffer starting at memory location 0050 until it receives a car­

riage return character (CR). Memory locations 0041 and 0042 hold the current buffer

pointer. The interrupt service routine increments that pointer (with autoincrementing)

after each use.

In a real application, the CPU could perform other tasks between interrupts. It

could, for example, edit, move, or transmit a line from one buffer while the interrupt

was filling another buffer. This is the double buffering approach. The main program only

has to ensure that no buffers ever overflow.

An alternative approach would be for memory location 0040 to contain a

counter rather than a flag. The contents of that location would then indicate to the

main program how many bytes of data had been received. The main program could then

deal with the buffer whenever a certain number of new data bytes were in it. The service

routine would simply increment the counter as well as the buffer pointer as part of each

input operation.

15-3. A PRINTER INTERRUPT

Purpose: The main program clears a flag in memory location 0040 and waits for a printer

interrupt. This interrupt service routine sets the flag in memory location 0040

to 1 and sends the contents of memory location 0041 to the printer.

Sample Problem:

(004 1) 51

Interrupts 15-21

Result: (0040) 01 Flag indicating last data item has been sent

Printer receives a 51 16 (ASCII Q) when it is ready.

Program 15-3a:

Main Program:

8003 PIACB
8002 PIADDB
8002 PIADB
0100 INTRP

•

0000
0000 10CE 0100

•

0004 OF 40
0006 7F 8003
0009 86 FF
0008 87 8002
OOOE 86 OS

0010 87 8003
0013 1C EF

0015 OD 40 WTACK
•

0017 27 FC

0019 3F

Interrupt Service Routine:

0100

0100 oc
0102 96
0104 87
0107 8 6
010A 3B

Flowchart:

Main Program:

40
41
800/
8002

EQU $8003
EQU $8002
EQU $8002
EQU $0100

ORG $0000
LDS J$100 START STACK AT MEMORY LOCATION

OOFF

CLR $40 CLEAR DATA ACCEPTED FLAG
CLR PIACB ADDRESS DATA DIRECTION REGISTER
LOA J$FF MAKE ALL DATA LINES OUTPUTS
STA PIADD8
LOA #%00000101 ENABLE PRINTER INTERRUPT
STA PIACB ON PIA
AN DCC #%11101111 ENABLE CPU INTERRUPT
TST

BEQ
SWI

ORG

INC
LOA
STA
LDA
RTI

$40 HAS THE PRINTER ACCEPTED
DATA?

WTACK NO, WAIT
YES, PROCEED

INTRP

$40
$41
PIA DB
PIA DB

SET DATA ACCEPTED FLAG
GET DATA FOR PRINTER
SEND DATA TO PRINTER
CLEAR PRINTER INTERRUPT

Initialize Hardware
Stack Pointer

Data Accepted Flag
=0

Enable printer
interrupt on PIA

Data = (004 1)
Enable CPU interrupt

THE

15-22 6809 Assembly Language Programming

Interrupt Service Routine:

Data Accepted Flag
= 1

Send Data to printer

The only differences from the keyboard interrupt routines are the meaning of the

flag, the direction of the data transfer, and the need for the dummy instruction LOA

PIAOB to clear bit 7 of the PIA Control Register. Remember that an input operation au­

tomatically clears that bit, but an output operation does not.

Here the flag in memory location 0040 indicates that the CPU has data available

that has not yet been sent to the printer. When the interrupt service routine sets the flag,

the main program knows the data has been sent. The flag acts as an acknowledgement

from the printer or a Data Accepted indicator.

Remember that you may find it necessary to place a dummy read at the start of the

main program to clear stray interrupts. LOA PIA DB or TST PIA DB will do the job, as

long as you place it after the instruction that addresses the data register but before the

instruction that enables CPU interrupts.

Emptying a Buffer with Interrupts

As in the keyboard example, we could have the interrupt service routine set the

Data Accepted flag after it sends the printer an entire line of data ending with a car­

riage return. Here again we use memory location 0040 as an end-of-line flag and

memory locations 0041 and 0042 as a buffer pointer. We will assume that the buffer

starts in memory location 0050.

Program 15-3b:

Main Program:

8003 PIACB EQU $8003
8002 PIADDB EQU $8002
8002 PIA DB EQU $8002
0100 INTRP EQU $0100
OOOD CR EQU $00

*

0000 ORG $0000
0000 10CE 0100 LDS J$100 START STACK AT MEMORY L OCATION

* OOFF
0004 OF 40 CLR $40 CLEAR END OF LINE FLAG
0006 BE 0050 LDX i$50 INITIALIZE BUFFER POINTER TO
0009 9F 41 STX $41 START OF BUFFER
0008 7F 8003 CLR PIACB ADDRESS DATA DIRECTION REGISTER
OOOE 86 FF LDA J$FF MAKE ALL DATA LINES OUTPUTS
0010 87 8002 STA PIADDB
0013 86 05 LOA U00000101 ENABLE PRINTER INTERRUPT

0015 87 8003 STA PIACB FROM PIA
0018 1C EF AN DCC i%11101111 ENABLE CPU INTERRUPT

001A OD 40 WTEOL TST $40 HAS A LINE BEEN PRINTED?
001C 27 FC BEQ WTEOL NO, WAIT
001E 3F SWI

Interrupt Service Routine:

0100
0100 9E 41
0102 A6 80

*

0104 B7 8002
0107 7D 8002
010A 9F 41
010C 81 OD

010E 2 6 02
0110 oc 40
0112 3B DONE

ORG
LDX
LDA

STA
TST
STX
CMPA
BNE
INC
RTI

INTRP
$41

,X+

PIA DB
PIA DB

$41
#CR
DONE

$40

Interrupts 15-23

GET BUFFER POINTER
GET DATA FROM BUFFER AND

INCREMENT POINTER
SEND DATA TO PRINTER
CLEAR PRINTER INTERRUPT
STORE ADJUSTED BUFFER POINTER
IS DATA A CARRIAGE RETURN?

YES, SET END OF LINE FLAG

We could use double buffering to allow 1/0 and processing to occur independently

without ever halting the CPU.

Fixed-Length Buffer

Still another approach uses memory location 0040 as a buffer counter. For

example, the following program waits for 20 characters to be sent to the printer.

Program 15-3c:

Main Program:

8003 PIACB EQU $8003
8002 PIADDB EQU $8002
8002 PIA DB EQU $8002
0100 INTRP EQU $0100

*

0000 ORG $0000
0000 10CE 0100 LDS #$100 START STACK AT MEMORY LOCATION

* OOFF
0004 OF 40 CLR $40 CLEAR BUFFER COUNTER
0006 BE 0050 LDX 11$50 INITIALIZE B�FFER POINTER TO
0009 9F 41 STX $41 START OF BUFFER
OOOB 7F 8003 CLR PIACB ADDRESS DATA DIRECTION REGISTER
OOOE 86 FF LDA #SFF MAKE ALL DATA LINES OUTPUTS
0010 B7 8002 STA PIADDB

0013 86 05 LDA #%00000101 ENABLE PRINTER INTERRUPT

0015 87 8003 STA PIACB FROM PIA

0018 1C EF AN DCC #%11101111 ENABLE CPU INTERRUPT

001A 8C 14 LDA #20 TARGET COUNT = 20
001C 91 40 WTCNT CMPA $40 HAS TARGET COUNT BEEN REACHED?

001E 26 FC BNE WTCNT NO, WAIT
0020 3F SWI YES, PROCEED

Interrupt Service Routine:

0100 ORG INTRP

0100 9E 41 LDX $41 GET BUFFER POINTER

0102 A6 80 LDA ,X+ GET DATA FROM BUFFER AND
* INCREMENT POINTER

0104 B7 8002 STA PIA DB SEND DATA TO PRINTER

0107 7D 8002 TST PIA DB CLEAR PRINTER INTERRUPT
OlOA 9F 41 STX $41 STORE ADJUSTED BUFFER POINTER

010C oc 40 INC $40 INCREMENT BUFFER COUNTER

010E 3B RTI

15-4. A REAL-TIME CLOCK INTERRUPT

Purpose: The computer waits for an interrupt from a real-time clock.

15-24 6809 Assembly Language Programming

Real-Time Clock

A real-time clock simply provides a regular series of pulses. The interval be­

tween the pulses can be used as a time reference. Real-time clock interrupts can be

counted to give any multiple of the basic time interval. A real-time clock can be pro­
duced by dividing down the CPU clock, by using a timer like the 6840 device or the one
included in the 6846 multifunction support device, or by using external sources such as
the AC line frequency.

Note the tradeoffs involved in determining the frequency of the real-time clock.

A high frequency (say 10kHz) allows the creation of a wide range of time intervals of
high accuracy. On the other hand, the overhead involved in counting real-time clock
interrupts may be considerable, and the counts will quickly exceed the capacity of a
single 8-bit register or memory location. The choice of frequency depends on the preci­

sion and timing requirements of your application. The clock may, of course, consist

partly of hardware; a counter may count high frequency pulses and interrupt the pro­

cessor only occasionally. A program will have to read the counter to measure time to

high accuracy.

One problem is synchronizing operations with the real-time clock.Ciearly, there
will be some effect on the precision of the timing interval if the CPU starts the measure­
ment randomly during a clock period, rather than exactly at the.beginning. Some ways

to synchronize operations are:

1. Start the CPU and clock together. RESET or a startup interrupt can start the
clock as well as the CPU.

2. Allow the CPU to start and stop the clock under program control.

3. Use a high-frequency clock so that an error of less than one clock period will
be small.

4. Line up the clock (by waiting for an edge or interrupt) before starting the

measurement.

A real-time clock interrupt should have very high priority, since the precision of
the timing intervals will be affected by any delay in servicing the interrupt. The usual

practice is to make the real-time clock the highest priority interrupt except for power

failure. The clock interrupt service routine is generally kept extremely short so that it
does not interfere with other CPU activities.

15-4a. Wait for Real-Time Clock

Program 1 5-4a:

Main Program:

8001 PIACA EQU $8001
8000 PI ADA EQU $8000
0100 INTRP EQU $0100

*

0000 ORG $0000
0000 10CE 0100 LDS #$100 START STACK AT MEMORY LOCATION

* OOFF

0004 OF 40 CLR $40 CLEAR CLOCK COUNTER TO START

0006 86 05 LDA t%00000101 ENABLE REAL-TIME CLOCK

0008 B7 8001 STA PIACA INTERRUPT

OOOB 1C EF AN DCC #%11101111 ENABLE CPU INTERRUPT

OOOD OD 40 WTCLK TST $40 HAS CLOCK B EEN INCREMENTED?

OOOF 27 FC BEQ WTCLK NO, WAIT

0011 3F SWI YES, PROCEED

Interrupt Service Routine:

0100
0100 86
0103 oc
0105 38

8000
40

ORG

LDA

INC

RTI

INTRP

PI ADA

$40

Interrupts 15-25

CLEAR CLOCK INTERRUPT

INCREMENT CLOCK COUNTER

Memory location 0040 contains the clock counter.

If bit 1 of the PIA Control Register is 0, the interrupt will occur on the high-to-low

(falling) edge of the clock. If that bit is 1, the interrupt will occur on the low-to-high (ris­

ing) edge of the clock.

The interrupt service routine must explicitly clear bit 7 of the PIA Control

Register since no data transfer is necessary.

You could still use the PIA data port as long as you did not accidentally clear the

status bit from the real-time clock before it was recognized. This would be no problem if

the port were used for output to a simple peripheral (such as a set of LEOs), since out­

put operations do not affect the status bits anyway.

Clearly, we can easily extend this routine to handle more counts and provide

greater precision by using more memory locations for the clock counter and a different

test in the main program.

15-4b. Wait for 10 Clock Interrupts

Program 15-4b:

Main Program:

8001 PIACA

8000 PI ADA

0100 INTRP
*

0000
0000 10CE 0100

*

0004 OF 40
0006 86 05
0008 87 8001
OOOB 1C EF

OOOD 86 OA

OOOF 91 40 WTCNT
*

0011 26 F C

0013 3F

Interrupt Service Routine:

0100
0100 86
0103 oc
0!.05 38

8000
40

EQU

EQU

EQU

ORG

LDS

CLR

LDA

STA

AN DCC

LDA

CMPA

BNE

SWI

ORG

LDA

INC

RTI

$8001
$8000
$0100

$0000
11$100 START STACK AT MEMORY LOCATION

DOFF

$40 CLEAR CLOCK COUNTER TO START

U00000101 ENABLE REAL-TIME CLOCK

PIACA INTERRUPT

#%11101111 ENABLE CPU INTERRUPT

uo
$40

WTCNT

INTRP

PI ADA

$4 0

TARGET COUNT = 10
HAS CLOCK COUNTER REACHED

COUNT?

NO, WAIT

CLEAR CLOCK INTERRUPT

INCREMENT CLOCK COUNTER

TARGET

15-4c. Maintaining Real Time

A more realistic real-time clock interrupt routine could keep track of the

passage of time using several memory locations. For example, the following routine

uses addresses 0040 through 0043 to maintain clock (calendar) time as follows:

0040 - hundredths of seconds
004 1 - seconds
0042 - minutes
0043 - hours

15-26 6809 Assembly Language Programming

We assume that a 100Hz input clock provides the regular source of interrupts.

Flowchart:

Clear clock interrupt
Hundredths =

Hundredths + 1

Hundredths = 0
Seconds =

Seconds + 1

Seconds = 0
Minutes =

Minutes+ 1

Minutes = 0
Hours =

Hours + 1

Interrupts 15-27

Program 15-4c:

Interrupt Service Routine:

8000 PIADA EQU $8000
0100 INTRP EQU $0100

*

0100 ORG INTRP
0100 B6 8000 LDA PIADJI. CLEAR CLOCK INTERRUPT
0103 8E 0040 LDX fl$40
0106 6C 84 INC ,X UPDATE HUNDREDTHS OF SECONDS
0108 86 64 LDA uoo IS THERE A CARRY TO SECONDS?
010A A1 84 CMPA ,X
010C 26 1 6 BNE END INT NO, DONE
010E 6F 84 CLR ,X YES, MAKE HUNDREDTHS ZERO
0110 f;C 01 INC 1,X UPDATE SECONDS
0112 86 3C LDA J60 IS THERE A CARRY TO MINUTES?
0114 A1 01 CMPA 1,X
0116 26 oc BNE END INT NO, DONE
0118 6F Ol CLR 1,X YES, MAKE SECONDS ZERO
OllA 6C 02 INC 2,X UPDATE MINUTES

OllC A1 02 CMPA 2,X IS THERE A CARRY TO HOURS?
011E 26 04 BNE END INT NO, DONE

0120 6F 02 CLR 2,X YES, MAKE MINUTES ZERO
0122 6C 03 INC 3,X UPDATE HOURS
0124 3B END INT RTI

Now we could produce a delay of 300 ms in the main program with the routine:

LDA S40 0FT CURRENT TIME
ADDA #30 DESIRED TI"'lE IS 30 C OU NTS LATF:R
CMPA ffl 00 "''OD 100
BCS ltJTCNT

SUBA Ul 00
lii:TCNT CMPll $40 HAS DESIRF.D TIME BEEN REACHF.D?

BNE WTCNT NO, WAIT

This approach is the same one you would take if you had to let something cook for
20 minutes. You must determine the current time by reading your watch (the counter),

calculate the target time by adding 20 (mod 60, so 20 minutes past 6:50 is 7:10), and wait

for your watch to reach the target time. Change the program so it produces a 20 minute

delay (an obvious requirement for a microprocessor-controlled microwave oven).
Of course, the program could perform other tasks and only check the elapsed time

occasionally. How would you produce a delay of seven seconds? Of three minutes?

Many applications do not require long delays to be highly accurate; for example, the
operator of a microwave oven does not care if the time intervals are off by a few seconds.

Sometimes you may want to keep time either as BCD digits or as ASCII charac­

ters. How would you revise the last interrupt service routine to handle these alterna­

tives?

Service Time for the Real- Time Clock

The complete service routine for a real-time clock may seem long, but it

actually uses very little processor time. The execution times are as follows:

Condition

No additional updating

Update seconds
Update minutes

Update hours

Frequency

Every 10 ms

Every second

Every minute

Every hour

Number of clock cycles

required

59
82

104
118

15-28 6809 Assembly Language Programming

Much of the execution time (see Table 15-4) goes to the interrupt response (21
clock cycles) and to the RTI instruction (15 clock cycles), since these require the
transfer of many registers to and from the Hardware Stack. Thus the largest number of
clock cycles ever used by the real-time clock service routine is 118 during a total period
of 10 milliseconds. This is 1.18rVcJ of the available processor time if the clock frequency is
1 MHz. The average requirement is half the maximum, since the service routine
requires its minimum execution time 99 times out of 100 and only requires its max­
imum execution time once every 360,000 times (once per hour). Thus a real-time clock
generally does not burden the processor very much, unless its frequency is high.

High-Frequency Clock

Even a high-frequency real-time clock can be handled without much processor

intervention. The usual method is to have the clock increment a set of counters which

then interrupt the processor at a much lower frequency. For example, the input fre­
quency could be 1 MHz; that input frequency would then be passed through 3 decimal
counters and the output of the last one would be tied to the PIA. The PIA would receive
a single clock pulse for every 1000 input pulses (that is, when the 3 decimal counters
overnow). The processor can determine the time to greater precision than 1 ms by read­
ing the counters, since they contain the less significant digits. As usual, some additional
hardware (counters and input ports) is necessary to reduce the burden on the CPU. This
is a typical tradeoff; the additional hardware is worthwhile only if the application
requires precise timing.

15-5. A TELETYPEWRITER INTERRUPT

15-5a. ACIA Interrupt Routine

Purpose: The main program clears a flag in memory location 0040 and waits for an
interrupt from a 6850 ACIA. The interrupt service routine sets the nag in
memory location 0040 to 1 and places the data from the ACIA in memory
location 0041. The characters are 7-bits in length with odd parity and two stop
bits.

Program 15-5a:

Main Program:

8010 ACIACR EQU $8010

8011 ACIADR EQU $8011

0100 INTRP EQU $0100
*

0000 ORG $0000
0000 10CE 0100 LOS S$100 START STACK AT MEMORY LOCATION

* OOFF

0004 OF 40 CLR $40 CLEAR DATA READY FLAG

0006 86 03 LDA t%00000011 MASTER RESET ACIA

0008 B7 8010 STA ACIACR

OOOB 86 cs LOA #%11000101 ENABLE ACIA RECEIVER
OOOD B7 8010 STA ACIACR INTERRUPT

0010 1C EF AN DCC #%11101111 ENABLE CPU INTERRUPT

0012 OD 40 WTRDY TST $40 IS THERE DATA FROM THE ACIA?
0014 27 FC BEQ WTRDY NO, WAIT
0016 3F SWI YES, PROCEED

Interrupts 15-29

Interrupt Service Routine:

0100
0100 B6
0103 97
0105 DC
0107 3B

8 011
41
40

ORG
LOA
STA
INC
RTI

INTRP
ACIADR

$41
$40

GET DATA FROM ACIA
SAVE DATA IN MEMORY
SET DATA READY FLAG

Since the 6850 ACIA has no RESET input, a MASTER RESET (setting Control

register bits 0 and 1 to one simultaneously) is necessary before the ACIA is initialized.

We then initialize the bits in the ACIA control register as follows:

Bit 7 = 1 to enable the receiver interrupt

Bit 6 = 1 and Bit 5 = 0 to disable the transmitter interrupt

Bit 4 = 0, Bit 3 = 0. and Bit 2 = 1 to select 7-bit data with

odd parity and two stop bits

Bit 1 = 0 and Bit 0 = 1 to select the divide by 1 6 clock mode
(a 1 7 60 Hz clock must be supplied for a 11 0 Baud data rate).

To determine if a particular 6850 ACIA is the source of an interrupt, the program

must examine the interrupt request bit (bit 7 of the Status Register). To differentiate

between receiver and transmitter interrupts, the program must examine the Receive

Data Register Full bit (bit 0 of the Status Register). Either reading the Receive Data

Register or writing into the Transmit Data Register clears the A CIA's interrupt request

bit.

15-5b. PIA Start Bit Interrupt

Received data is tied to both data bit 7 and control line 1 of the PIA.

Purpose: The main program clears a flag in memory location 0040 and waits for a

teletypewriter interrupt. The interrupt service routine sets the flag in memory

location 0040 to 1 and places the data from the teletypewriter in memory loca­

tion 004 1 .

Program 15-5b:

Main Program:

8001 PIACA EQU $8001
8000 PIADDA EQU $8000
8000 PI ADA EQU $8000
0100 INTRP EQU $0100
0030 TTYRCV EQU $0030

*

0000 ORG $0000
0000 10CE 0100 LOS H100 START STACK AT MEMORY LOCATION

* DOFF
0004 OF 40 CLR $40 CLEAR DATA READY FLAG

0006 7F 8001 CLR PIACA ADDRESS DATA DIRECTION REGISTER

0009 7F 8000 CLR PIADDA MAKE ALL DATA LINES INPUTS

oooc 86 05 LOA #%00000101 E N ABLE START BIT INTERRUPT
OOOE B7 8001 STA PIACA FROM PIA
0011 1C EF AN DCC #%11101111 E NABLE CPU INTERR UPT
0013 OD 40 WTSTB TST $40 HAS START BIT BEEN RECEIVED?
0015 27 FC BEQ WTSTB NO, WAIT
0017 90 30 JSR TTYRCV YES, FETCH DATA FROM TTY
0019 97 41 STA $41 SAVE DATA IN MEMORY
001B 3F SWI

15-30 6809 Assembly Language Programming

Interrupt Service Routine:

0100 ORG

LOA
INC

LOA

STA

RTI

INTRP

0100 86

0103 oc
0105 86

0107 B7

OlOA 3B

8000

40

04

8001

PIADA CLEAR START BIT INTERRUPT

$40 SET DATA READY FLAG

#%00000100 DISABLE START BIT INTERRUPT

PIACA

Subroutine TTYRCV is the teletypewriter receive routine shown in Chapter 13,
except that we have assumed a version that leaves the data in Accumulator A. The edge
used to cause the interrupt is very important here. The transition from the normal 'I'

(MARK) state to the '0' (SPACE) state must cause the interrupt, since this transition

signifies the start of the transmission. No '0' to' I' transition will occur until a non-zero
data bit is received.

The service routine must disable the PIA interrupt, since otherwise each 'l' to '0'

transition in the character will cause an interrupt. Note that reading the data bits will
clear any status flags set by the ignored transitions. Of course, the program must reena­
ble the PIA interrupt (by selling bit 0 of the control register) to aiiow receipt of the next
character, but this should be done after the current character has been read.

As we mentioned earlier in this chapter, we can also disable PIA interrupts by
using logical functions or the INC and DEC instructions. The following programs are
independent of the contents of the PIA Control Register.

1. Disabling the PIA interrupt from control line l.

or

LOA PIACR

ANDA #%11111110 DISABLE PIA INTERRUPT

STA PIACR

DEC PIACR DISABLE PIA INTI:RRUPT

2. Enabling the PIA interrupt from control line 1.

or

LOA PIACR

ORA #%00000001 ENABLE PIA INT�RHUPT

STA PIACR

INC PIACR ENABLE PIA INTPPPUPT

The DEC instruction only works correctly if you know that the interrupt is
enabled, while the INC instruction only works correctly if you know that the interrupt is
disabled. If the interrupt is already in the desired state, INC or DEC can have curious
effects (try it!), whereas the logical functions have no effect in that case.

MORE GENERAL SERVICE ROUTINES8

More general interrupt service routines that are part of a complete interrupt­

driven system must handle the following tasks:

1. Saving any needed data in the Stack so the interrupted program can be

resumed correctly. The 6809 microprocessor saves all the user registers auto­
matically in response to IRQ or NMI and as part of the execution of CW AI
and the Software Interrupt instructions. An interrupt service routine for

Interrupts 15-31

FIRQ will have to save and restore any registers it uses besides the Program
Counter and the Condition Code Register.

2. Restoring data and registers (if not automatically saved) before executing
RTI and returning control to the interrupted program.

3. Establishing the priority of the interrupt, perhaps by writing that priority
into an external register.

The program can then reenable the rest of the interrupt system. Remember,
however, that to restore the old priority correctly, you must save it in the
stack along with the other status. The program must save a copy of the current
priority in RAM if the external priority register is write-only.

4. Restoring the old priority before returning control to the interrupted pro­
gram.

5. Enabling and disabling interrupts appropriately. Remember that the CPU
automatically disables IRQ after accepting an interrupt on that line and auto­
matically disables IRQ and FIRQ after accepting an interrupt on FIRQ or
NML

The service routines should be transparent as far as the interrupted program is
concerned; that is, they should have no incidental effects.

Any standard subroutines that an interrupt service routine uses must be
reentrant. If some subroutines cannot be made reentrant, the interrupt service routine
must have separate versions to use.

PROBLEMS

15-1. A TEST INTERRUPT

Purpose: The computer waits for a PIA interrupt to occur, then executes the endless
loop instruction:

HERE RRA HERE

until the next interrupt occurs.

15-2. A KEYBOARD INTERRUPT

Purpose: The computer waits for a 4-digit entry from a keyboard and places the digits
into memory locations 0050 through 0053 (first one received in 0050). Each
digit entry causes an interrupt. The fourth entry should also result in the dis­
abling of the keyboard interrupt.

Sample Problem:

Keyboard data = 04. 06. 01. 07

Result: (0050) 04
(0051) 06
10052) 01
(0053) 07

15-32 6809 Assembly Language Programming

15-3. A PRINTER INTERRUPT

Purpose: The computer sends four characters from memory locations 0050 through
0053 (starting with 0050) to the printer. Each character is requested by an
interrupt. The fourth transfer also disables the printer interrupt.

15-4. A REAL-TIME CLOCK INTERRUPT

Purpose: The computer clears memory location 0040 initially and then complements
that location each time the real-time clock interrupt occurs. How would you
change the program so that it complements memory location 0040 after every
ten interrupts? How would you change the program so it leaves 0040 at zero
for ten clock periods, FF 16 for five clock periods, and so on continuously? You
may want to use a display rather than memory location 0041 to make it easier
to see.

15-5. A TELETYPEWRITER INTERRUPT

Purpose: The computer receives TTY data from an interrupting 6850 ACIA and stores
the characters in a buffer starting in memory location 0050. The process con­
tinues until the computer receives a carriage return (0016) . Assume that the
characters are 7-bit ASCII with odd parity. How would you change your pro­
gram to use a PIA? Assume that subroutine TTYRCV is available, as in the
example. Include the carriage return as the final character in the buffer.

REFERENCES

1. A. Osborne. An Introduction to Microcomputers: Volume I -Basic Concepts,

Osborne/McGraw-Hill, Berkeley, Calif., 1980, Chapter 5.

2. R. L. Baldridge. "Interrupts Add Power, Complexity to Microcomputer Software
Design," EDN, August 5, 1977, pp. 67-73.

3. R. Morris. "6800 Routine Supervises Service Requests," EDN, October 5, 1979,
pp. 73-81.

4. l. P. Breikss. "Nonmaskable Interrupt Saves Processor Register Contents,"
Electronics, July 21, 1977, p. 104.

5. A. Osborne. An Introduction to Microcomputers: Volume 2 -Some Real

Microprocessors, Osborne/McGraw-Hill, Berkeley, Calif., pp. 9-71 through 9-77.

6. R. Grappel. "Technique A voids Interrupt Dangers," EDN, May 5, 1979, p. 88.

7. G. Horner. "Online Control of a Laboratory Instrument by a Timesharing Com­
puter," Computer Design, February 1980, pp. 90-106.

8. For further discussion and some real-life examples of designing 6800-based systems
with interrupts, see the following:

S.C. Baunach. "An Example of an M6800-based GPIB Interface", EDN, Septem­
ber 20, 1977, pp. 125-28.

Interrupts 15-33

L. E. Cannon and P. S. Kreager. "Using a Microprocessor: a Real-Life Application,

Part 2 - Software," Computer Design, October 1975, pp. 81-89.

D. Fullager, et al. "Interfacing Data Converters and Microprocessors," Electronics,

December 8, 1976, pp. 81-89.

S. A. Hill. "Multiprocess Control Interface Makes Remote 1-1- P Command Possi­

ble," EDN, February 5, 1976, pp. 87-89.

W. S. Holderby. "Designing a Microprocessor-based Terminal for Factory Data

Collection," Computer Design, March 1977, pp. 81-88.

A. Lange. "OPTACON Interface permits the Blind to 'Read' Digital Instruments,"

EDN, February 5, 1976, pp. 84-86.

J. D. Logan and P. S. Kreager. "Using a Microprocessor: a Real-Life Application,

Part 1- Hardware," Computer Design, September 1975, pp. 69-77.

A. Moore and M. Eidson. "Printer Control," Application Note available from

Motorola Semiconductor Products, Phoenix, Ariz.
M. C. Mulder and P. P. Fasang. "A Microprocessor Controlled Substation Alarm

Logger," IECI '78 Proceedings - Industrial Applications of Microprocessors,

March 20-22, 1978, pp. 2-6.

P. J. Zsombar-Murray et al. "Microprocessor Based Frequency Response
Analyzer," IECI '78 Proceedings - Industrial Applications of Microprocessors,

March 20-22, 1978, pp. 36-44.

The Proceedings of the IEEE's Industrial Electronics and Control Instrumentation

Group's Annual Meeting on "Industrial Applications of Microprocessors" contain

many interesting articles. Volumes (starting with 1975) are available from IEEE Service

Center, CP Department, 445 Hoes Lane, Piscataway, N. J. 08854.

IV
Software Development

The previous chapters have described how to write short assembly language pro­

grams. While this is an important topic, it is only a small part of software development.

Although writing assembly language programs is a major task for the beginner, it soon

becomes simple. By now you should be familiar with standard methods for program­

ming in assembly language on the 6809 microprocessor. The next six chapters will de­

scribe how to formulate tasks as programs and how to combine short programs to

form a working system.

THE STAGES OF SOFTWARE DEVELOPMENT

Software development consists of many stages. Figure IV -1 is a flowchart of the

software development process. Its stages are:

• Problem definition

• Program design

• Coding

• Debugging

• Testing

• Documentation

• Maintenance and redesign

Each of these stages is important in the construction of a working system. Coding,

the writing of programs in a form that the computer understands, is only one stage in a

long process.

IV-2. 6809 Assembly Language Programming

Problem definition

and documentation

Program design

and documentation

Design

evaluation

Yes

No

Coding and

documentation

Debugging

Testing

No

Final

documentation

Maintenance

and redesign

Figure IV-1. Flowchart of Soft ware Development

Software Development IV-3

RELATIVE IMPORTANCE OF CODING

Coding is usually the easiest stage to define and perform. The rules for writing

computer programs are easy to learn. They vary somewhat from computer to computer,

but the basic techniques remain the same. Few software projects run into trouble

because of coding; indeed, coding is not the most time-consuming part of software

development. Experts estimate that a programmer can write one to ten fully debugged

and documented statements per day. Clearly, the mere coding of one to ten statements

is hardly a full day's effort. On most software projects, coding occupies less than 25°/(J of

the programmer's time.

MEASURING PROGRESS IN OTHER STAGES

Measuring progress in other stages is difficult. You can say that half of the pro­

gram has been written, but you can hardly say that half of the errors have been removed

or half of the problem has been defined. Timetables for such stages as program design,

debugging, and testing are difficult to produce. Many days or weeks of effort may result

in no clear progress. Furthermore, an incomplete job in one stage may result in tremen­

dous problems later. For example, poor problem definition or program design can make

debugging and testing very difficult. Time saved in one stage may be spent many times

over in later stages.

DEFINITION OF THE STAGES

Problem Definition

Problem definition is the formulation of the requirements that the task places

on the computer. For example, what is necessary to make a computer control a tool, run

a series of electrical tests, or handle communications between a central controller and a

remote instrument? Problem definition requires that you determine the forms and rates

of inputs and outputs, the amount and speed of processing that is needed, and the types

of possible errors and their handling. Problem definition takes a vague idea of building a

computer-controlled system and defines the tasks and requirements for the computer.

Program Design

Program design is the outline of the computer program that will meet the

requirements. In the design stage, the tasks are described in a way that can easily be

converted into a program. Among the useful techniques in this stage are flowcharting,

structured programming, modular programming, and top-down design.

Coding

Coding is the writing of the program in a form that the computer can either

directly understand or translate_ The form may be machine language, assembly

language, or a high-level language.

IV-4. 6809 Assembly Language Programming

Debugging

Debugging, also called program verification, is making the program perform

according to the design. In this stage, you use such tools as breakpoints, traces, simula­

tors, logic analyzers, and in-circuit emulators. The end of the debugging stage is hard to

define, since you never know when you have found the last error.

Testing

Testing, also referred to as program validation, is ensuring that the program per­

forms the overall system tasks correctly. The designer uses simulators, exercisers, and

statistical techniques to measure the program's performance. This stage is like quality

control for hardware.

Documentation

Documentation is the description of the program in the proper form for users

and maintenance personnel. Documentation also allows the designer to develop a pro­

gram library so that subsequent tasks will be far simpler. Flowcharts, comments,

memory maps, and library forms are some of the tools used in documentation.

Maintenance and Redesign

Maintenance and redesign are the servicing, improvement, and extension of

the program. Clearly, the designer must be ready to handle field problems in computer­

based equipment. Special diagnostic modes or programs and other maintenance tools

may be required. Upgrading or extension of the program may be necessary to meet new

requirements or handle new tasks.

16
Problem Definition

Typical microprocessor tasks require a lot of definition. For example, what

must a program do to control a scale, a cash register, or a signal generator? Clearly,

we have a long way to go just to define the tasks involved.

INPUTS

How do we start the definition? The obvious place to begin is with the inputs. We

should begin by listing all the inputs that the computer may receive in this applica­

tion.

Examples of inputs are:

Data blocks from transmission lines

Status words from peripherals

Data from AID converters

Then we may ask the following questions about each input:

1. What is its form; that is, what signals will the computer actually receive?

2. When is the input available and how does the processor know it is available?

Does the processor have to request the input with a strobe signal? Does the

input provide its own clock?

3. How long is it available?

16-2 6809 Assembly Language Programming

4. How often does it change, and how does the processor know that it has

changed?

5. Does the input consist of a sequence or block of data? Is the order important?

6. What should be done if the data contains errors? These may include transmis­

sion errors, incorrect data, sequencing errors, extra data, etc.

7. Is the input related to other inputs or outputs?

OUTPUTS

The next step to define is the output. We must list all the outputs that the com-

puter must produce. Examples of outputs include:

Data blocks to transmission lines

Control words to peripherals

Data to D/ A converters

Then we may ask the following questions about each output:

I. What is its form; that is, what signals must the computer produce?

2. When must it be available, and how does the peripheral know it is available?

3. How long must it be available?

4. How often must it change, and how does the peripheral know that it has

changed?

5. Is there a sequence of outputs?

6. What should be done to avoid transmission errors or to sense and recover

from peripheral failures?

7. How is the output related to other inputs and outputs?

PROCESSING SECTION

Between the reading of input data and the sending of output results is the process­

ing section. Here we must determine exactly how the computer must process the input

data. The questions are:

I. What is the basic procedure (algorithm) for transforming input data into out­

put results?

2. What time constraints exist? These may include data rates.

3. What memory constraints exist? Do we have limits on the amount of program

memory or data memory, or on the size of buffers?

4. What standard programs or tables must be used? What are their require-

ments?

5. What special cases exist, and how should the program handle them?

6. How accurate must the results be?

7. How should the program handle processing errors or special conditions such

as overflow, underflow, or loss of significance?

Problem Definition 16-3

ERROR HANDLING

An important factor in many applications is the handling of errors. Clearly, the

designer must make provisions for recovering from common errors and for diagnosing

malfunctions. Among the questions that the designer must ask at the definition stage

are:

1. What errors could occur?

2. Which errors are most likely? If a person operates the system, human error is

the most common. Following human errors, communications or transmission

errors are more common than mechanical, electrical, mathematical, or pro­

cessor errors.

3. Which errors will not be immediately obvious to the system? A special prob­

lem is the occurrence of errors that the system or operator may not recognize

as incorrect.

4. How can the system recover from errors with a minimum loss of time and

data and yet be aware that an error has occurred?

5. Which errors or malfunctions cause the same system behavior? How can

these errors or malfunctions be distinguished for diagnostic purposes?

6. Which errors involve special system procedures? For example, do parity

errors require retransmission of data?

Another question is: How can the field technician systematically find the source of

malfunctions without being an expert? Built-in test programs, special diagnostics, or sig­

nature analysis can help. I

HUMAN FACTORS/OPERATOR INTERACTION

Many microprocessor-based systems involve human interaction. Human factors

must be considered throughout the development process for such systems. Among the

questions that the designer must ask are:

1. What input procedures are most natural for the human operator?

2. Can the operator easily determine how to begin, continue and end the input

operations?

3. How is the operator informed of procedural errors and equipment malfunc-

tions?

4. What errors is the operator most likely to make?

5. How does the operator know that data has been entered correctly?

6. Are displays in a form that the operator can easily read and understand?

7. Is the response of the system adequate for the operator?

8. Is the system easy for the operator to use?

9. Are there guiding features for an inexperienced operator?

10. Are there shortcuts and reasonable options for the experienced operator?

11. Can the operator always determine or reset the state of the system after

interruptions or distractions?

16-4 6809 Assembly Language Programming

Building a system for people to use is difficult. The microprocessor can make the

system more powerful, more flexible, and more responsive. However, the designer still

must add the human touches that can greatly increase the usefulness and attractive­

ness of the system and the productivity of the human operator.2

The processor, of course, has no intrinsic preference in situations involving

human characteristics or cultural choices. The processor does not prefer left-to-right

over right-to-left, forward over backward, increasing order over decreasing order, or

decimal numbers over other number systems. Nor does the processor recognize the

operator's preference for simplicity, consistency, compatibility with previous

experience, and "logical" order of operations. The processor never gets distracted, dis­

oriented, confused, or bored. The designer must allow for aJI these considerations in the

design and development of interactive systems.

EXAMPLES

DEFINING A SWITCH AND LIGHT SYSTEM

Figure 16-1 shows a simple system in which the input is from a single SPST

switch and the output is to a single LED display. In response to a switch closure, the

processor turns the display on for one second. This system should be easy to define.

Switch Input

Let us first examine the input and answer each of the questions previously pre­

sented:

1. The input is a single bit, which may be either '0' (switch closed) or' 1' (switch

open) .

2. The input is always available and need not be requested.

3. The input is available for at least several milliseconds after the closure.

4. The input will seldom change more than once every few seconds. The pro­

cessor has to handle only the bounce in the switch. The processor must moni­

tor the switch to determine when it is closed.

5. There is no sequence of inputs.

6. The obvious input errors are switch failure, failure in the input circuitry, and

the operator attempting to close the switch again before a sufficient amount of

time has elapsed. We will discusss the handling of these errors later.

7. The input does not depend on any other inputs or outputs.

Problem Definition 16-5

Input

Port

CPU +5V

Output

Port

The switch input is a '1' if the switch is open. '0' if the switch is closed.

The CPU applies the output to the cathode of the LED: a ·o· lights the display.

Figure 16-1. The Switch and Light System

Light Output

The next requirement in defining the system is to examine the output. The
answers to our questions are:

1. The output is a single bit, which is '0' to turn the display on, '1' to turn it off.

2. There are no time constraints on the output. The peripheral does not need to
be informed of the availability of data.

3. lf the display is an LED, the data need be available for only a few milliseconds
at a pulse rate of about 100 times per second. The observer will see a con­
tinuously lit display.

4. The data must change (go off) after one second.

5. There is no sequence of outputs.

6. The possible output errors are display failure and failure in the output circui­
try.

7. The output depends only on the switch input and time.

Processing

The processing section is extremely simple. As soon as the switch input
becomes a logic '0', the CPU turns the light on (a logic '0') for one second. No time or
memory constraints exist.

Error Handling

Let us now look at the possible errors and malfunctions. These are:

Another switch closure before one second has elapsed

Switch failure

Display failure

Computer failure

16-6 6809 Assembly Language Programming

Surely the first error is the most likely. The simplest solution is for the processor

to ignore switch closures until one second has elapsed. This brief unresponsive period

will hardly be noticeable to the human operator. Furthermore, ignoring the switch dur­

ing this period means that no debouncing circuitry or software is necessary, since the

system will not react to the bounce anyway.

Clearly, the last three failures can produce unpredictable results. The display may

stay on, stay off, or change state randomly. Some possible ways to isolate the failures

would be:

Lamp-test hardware to check the display; i.e., a button that turns the light on

independently of the processor

A direct connection to the switch to check its operation

A diagnostic program that exercises the input and output circuits

If both the display and switch are working, the computer is at fault. A field techni­

cian with proper equipment can determine the cause of the failure.

DEFINING A SWITCH-BASED MEMORY LOADER

Figure 16-2 shows a system that allows the user to enter data into any memory

location in a microcomputer. One input port, DPORT, reads data from eight toggle
switches. The other input port, CPORT, is used to read control information. There

are three momentary switches: High Address, Low Address and Data. The output is

the value of the last completed entry from the data switches; eight LEDs are used for
the display.

The system will also, of course, require resistors, buffers, and drivers.

Inputs

The characteristics of the switches are the same as in the previous example. To

simplify the debouncing procedure and force the operator to release the buttons, we
have the system respond only after a button is released; this is a common technique

that reduces wear on the switches as well, since the operator is less tempted to press a

button repeatedly. In this system there is a distinct sequence of inputs, as follows:

1. The operator must set the data switches according to the eight most significant

bits of an address, then

2. press and release the High Address button. The high address bits will appear

on the lights, and the program will interpret the data as the high byte of the

address.

3. Then the operator must set the data switches with the value of the least sig­

nificant byte of the address and

4. press and release the low Address button. The low address bits will appear on

the lights, and the program will consider the data to be the low byte of the

address.

5. Finally, the operator must set the desired data into the data switches and

6. press and release the Data button. The display will now show the data, and the

program stores the data in memory at the previously entered address.

CPU

Data
Bus

Input
Port

DPORT

Input
Port

CPORT

Output
Port

Problem Definition 16-7

-

-

..L. High Address .,_ ____ u

..L Low Address

..L. Data
t-----o

+5V

Figure 16-2. The Switch-Based Memory Loader

16-8 6809 Assembly Language Programming

The operator may repeat the process to enter an entire program. Clearly, even in

this simplified situation, we will have many possible sequences to consider. How do we

cope with erroneous sequences and make the system easy to use?

Output

Output is no problem. After each input, the program sends to the displays the
complement (since the displays are active-low) of the input bits. The output data

remains the same until the next input operation.

Processing

The processing section remains quite simple. There are no time or memory con­

straints. The program can debounce the switches by waiting for a few milliseconds, and

must provide complemented data to the displays.

Error Handling

The most likely errors are operator mistakes. These include:

Incorrect entries

Incorrect order

Incomplete entries; for example, forgetting the data

The system must be able to handle these problems in a reasonable way, since they

are certain to occur in actual operation.

The designer must also consider the effects of equipment failure. Just as before,

the possible difficulties are:

Switch failure

Display failure

Computer failure

In this system, however, we must pay more attention to how these failures affect

the system. A computer failure will cause a complete system breakdown that will be easy

to detect. A display failure may not be immediately noticeable; here a Lamp Test feature

will allow the operator to check the operation. Note that we would like to test each LED

separately, in order to diagnose the case in which output lines are shorted together. In

addition, the operator may not immediately detect switch failure; however, the operator

should soon notice it and establish which switch is faulty by a process of elimination.

Operator Error Correction

Let us look at some of the possible operator errors. Typical errors will be:

Erroneous data

Wrong order of entries or switches

Trying to go on to the next entry without completing the current one

Problem Definition 16-9

The operator will presumably notice erroneous data as soon as it appears on the

displays. What is a viable recovery procedure? Some options are:

1. The operator must complete the entry procedure; i.e., enter Low Address and

Data if the error occurs in the High Address. Clearly, this procedure is waste­

ful and annoying.

2. The operator may restart the entry process by returning to the high address

entry steps. This solution is useful if the error was in the High Address, but

forces the operator to re-enter earlier data if the error was in the Low Address

or Data stage.

3. The operator may enter any part of the sequence at any time simply by setting

the Data switches with the desired data and pressing the corresponding but­

ton. This procedure allows the operator to make corrections at any point in the

sequence.

This type of procedure should always be preferred over one that does not allow

immediate error correction, has a variety of concluding steps, or enters data into the

system without allowing the operator a final check. Any added complication in hard­

ware or software will be justified in increased operator efficiency. You should always

prefer to let the microcomputer do the tedious work and recognize arbitrary sequences;

it never gets tired and never forgets the operating procedures.

A further helpful feature would be status lights that would define the meaning
of the display. Three status lights, marked "High Address," "Low Address," and

"Data," would let the operator know what had been entered without having to remem­

ber which button was pressed. The processor would have to monitor the sequence, but

the added complication in software would simplify the operator's task. Clearly, three

separate sets of displays plus the ability to examine a memory location would be even

more helpful to the operator.

We should note that, although we have emphasized human interaction,

machine or system interaction has many of the same characteristics. The

microprocessor should do the work. If complicating the microprocessor's task makes

error recovery simple and the causes of failure obvious, the entire system will work
better and be easier to maintain. Note that you should not wait until after the software

has been completed to consider system use and maintenance; instead, you should

include these factors in the problem definition stage.

DEFINING A VERIFICATION TERMINAL

Figure 16-3 is a block diagram of a simple credit-verification terminal. One

input port derives data from a keyboard (see Figure 16-4); the other input port

accepts verification data from a transmission line. One output port sends data to a set

of displays (see Figure 16-5); another sends the credit card number to the central

computer. A third output port turns on one light whenever the terminal is ready to

accept an inquiry, and another light when the operator sends the information. The

"busy" light is turned off when the terminal receives a response. Clearly, the input

and output of data will be more complex than in the previous case, although the process­

ing is still simple.

16-10 6809 Assembly Language Programming

,...--- Keyboard

r-- Input Port

�
Display

Output Portis)

� CPU !------" X MIT
f----. Output Port

.....___ RCV

r-- Input Port

� Status Light
Output Port

J

...

-

,.

r

]

.

Keyboard Strobe

Keyboard Data

Display

Peripheral Ready Strobe

To Central Computer

Data Strobe

From Central Computer

BUSY Display

READY Display

Figure 16-3. Block Diagram of a Verification Terminal

The digit keys allow digit entries.

CLEAR deletes the entire entry.

SEND transmits the entry to the central computer.

Figure 16-4. Verification Terminal Keyboard

Additional displays may be useful to emphasize the meaning of the response.

Many terminals use a green light for "Yes," a red light for "No," and a yellow light for

"Consult Store Manager." Note that these lights will still have to be clearly marked with

their meanings to allow for a color-blind operator.

Problem Definition 16-11

READY BUSY

D D

The display consists of ten 7 -segment displays. which may be multiplexed. controlled by a shift

register. or addressed separately. Two additional lights. READY and BUSY. are also present.

Figure 16-5. Verilication Terminal Display

Inputs

Let us first look at the keyboard input. This is, of course, different from the
switch input, since the CPU must have some way of distinguishing new data. We will

assume that each key closure provides a unique hexadecimal code (we can code each
of the 12 keys into one digit) and a strobe. The program will have to recognize the

strobe and fetch the hexadecimal number that identifies the key. There is a time con­
straint, since the program cannot miss any data or strobes. The constraint is not serious,

since keyboard entries will be at least several milliseconds apart.

The transmission input similarly consists of a series of characters, each iden­
tified by a strobe (perhaps from a UART). The program will have to recognize each
strobe and fetch the character. The data being sent across the transmission lines is
usually organized into messages. A possible message format is:

Introductory characters, or header

Terminal destination address

Coded yes or no

Ending characters, or trailer

The terminal will check the header, read the destination address, and see if the
message is intended for it. If the message is for the terminal, the terminal accepts the
data. The address could be (and often is) hard-wired into the terminal so that the ter­

minal receives only messages intended for it. This approach simplifies the software at
the cost of some flexibility.

Outputs

The output is also more comolex than in the earlier examples. If the displays are
multiplexed, the processor must not only send the data to the display port but must
also direct the data to a particular display. We will need either a separate control port
or a counter and decoder to handle this. Note that hardware blanking controls can blank
leading zeros as long as the first digit in a multi-digit number is never zero. Software can
also handle this task. Time constraints include the pulse length and frequency required

to produce a continuous display for the operator.

16-12 6809 Assembly Language Programming

The communications output will consist of a series of characters with a particu­

lar format. The program will also have to consider the time required between charac­

ters. A possible format for the output message is:

Header

Terminal address

Credit card number

Trailer

A central communication computer may poll the terminals, checking for data

ready to be sent.

Processing

The processing in this system involves many new tasks, such as:

Identifying the control keys by number and performing the proper actions

Adding the header, terminal address, and trailer to the outgoing message

Recognizing the header and trailer in the returning message

Checking the incoming terminal address

Note that none of the tasks involves any complex arithmetic or any serious time

or memory constraints.

Error Handling

The number of possible errors in this system is, of course, much larger than in

the earlier examples. Let us first consider the possible operator errors. These include:

Entering the credit card number incorrectly

Trying to send an incomplete credit card number

Trying to send another number while the central computer is processing one

Clearing nonexistent entries

Some of these errors can be handled easily by organizing the program correctly.

For example, the program should not accept the Send key until the credit card number

has been completely entered, and it should ignore any additional keyboard entries until

the response comes back from the central computer. Note that the operator will know

that the entry has not been sent, since the Busy light will not go on. The operator will

also know when the keyboard has been locked out (the program is ignoring keyboard

entries), since entries will not appear on the display and the Ready light will be off.

Correcting Keyboard Errors

Incorrect entries are an obvious problem. If the operator recognizes an error, he

or she can use the Clear key to make corrections. The operator would probably find it

more convenient to have two Clear keys, one that cleared the most recent key and one

that cleared the entire entry. This would allow both for the situation in which the

operator recognizes the error immediately and for the situation in which the operator

Problem Definition 16-13

recognizes the error late in the procedure. The operator should be able to correct errors

immediately and have to repeat as few keys as possible. The operator will, however,

make a certain number of errors without recognizing them. Most credit card numbers

include a self-checking digit; the terminal could check the number before permitting

it to be sent to the central computer. This step would save the central computer from
wasting processing time checking the number.

This requires, however, that the terminal have some way of informing the

operator of the error, perhaps by flashing one of the displays or by providing some other
special indicator that the operator is sure to notice.

Still another problem is how the operator knows that an entry has been lost or

processed incorrectly. Some terminals simply unlock after a maximum time delay. The
operator notes that the Busy light has gone off without an answer being received. The
operator is then expected to try the entry again. After one or two further attempts, the
operator should report the failure to supervisory personnel.

Many equipment failures are also possible. Besides the displays, keyboard, and
processor, there now exist the problems of communications errors or failures and
central computer failures.

Correcting Transmission Errors

The data transmission will probably have to include error checking and correct­

ing procedures. Some possibilities are:

1. Parity provides an error detection facility but no correction mechanism. The

receiver will need some way of requesting retransmission, and the sender will
have to save a copy of the data until proper reception is acknowledged. Parity
is, however, very simple to implement.

2. Short messages may use more elaborate schemes. For example, the yes/no
response to the terminal could be coded to provide error detection and correc­
tion capability.

3. An acknowledgement and a limited number of retries could trigger an indica­
tor that would inform the operator of a communications failure (inability to
transfer a message without errors) or central computer failure (no response
within a certain period of time). Such a scheme, along with the Lamp Test,
would allow simple failure diagnosis.

A communications or central computer failure indicator should also "unlock"

the terminal, that is, allow it to accept another entry. This is necessary if the terminal

will not accept entries while a verification is in progress. The terminal may also unlock

after a certain maximum time delay. Certain entries could be reserved for diag­

nostics; i.e., certain credit card numbers could be used to check the internal operation
of the terminal and test the displays.

16-14 6809 Assembly Language Programming

REVIEW

Problem definition is as important a part of software development as it is of any
other engineering task. Note that it does not require any programming or knowledge of
the computer; rather, it is based on an understanding of the system and sound engineer­
ing judgment. Microprocessors offer flexibility and local intelligence that the designer
can use to provide a wide range of features.

Problem definition is independent of any particular computer, computer
language, or development system. It should, however, provide guidelines as to what
type or speed of computer the application will require and what kind of hardware/

software tradeoffs the designer can make. The problem definition stage should not

even depend on whether a computer is used, although a knowledge of the capabilities

of the computer can help the designer in suggesting possible implementations of pro­

cedures.

REFERENCES

1. D. R. Ballard. "Designing Fail-Safe Microprocessor Systems," Electronics, January
4, 1979, pp. 139-43.

"A Designer's Guide to Signature Analysis," Hewlett-Packard Application Note
222, Hewlett-Packard, Inc, Palo Alto, CA, 1977.

Donn, E. S. and M. D. Lippman. "Efficient and Effective Microcomputer Testing
Requires Careful Preplanning," EDN, February 20, 1979, pp. 97-107 (includes self­
test examples for 6502).

Gordon, G. and H. Nadig. "Hexadecimal Signatures Identify Troublespots in
Microprocessor Systems," Electronics, March 3, 1977, pp. 89-96.

Neil, M. and R. Goodner. "Designing a Serviceman's Needs into Microprocessor­
Based Systems," Electronics, March 1, 1979, pp. 122-28.

Schweber, W. and L. Pearce. "Software Signature Analysis Identifies and Checks
PROMs," EDN, November 5, 1978, pp. 79-81.

Srini, V. P. "Fault Diagnosis of Microprocessor Systems," Computer, January 1977,
pp. 60-65.

2. For a brief discussion of human factors considerations, see G. Morris. "Make Your
Next Instrument Design Emphasize User Needs and Wants," EDN, October 20,
1978, pp. 100-05.

17
Program Design

Program design is the stage in which the problem definition is formulated as a

program. If the program is small and simple, this stage may involve little more than

the writing of a one-page flowchart. If the program is larger or more complex, the

designer should consider more elaborate methods.

We will discuss flowcharting, modular programming, structured programming,

and top-down design. We will try to indicate the reasoning behind these methods, and

their advantages and disadvantages. We will not, however, advocate any particular

method since there is no evidence that one method is always superior to all others. You

should remember that the goal is to produce a good working system, not to follow

religiously the tenets of one methodology or another.

BASIC PRINCIPLES

All the methodologies are based on common principles, many of which apply to

any kind of design. Among these principles are:

1. Proceed in small steps. Do not try to do too much at one time.

2. Divide large jobs into small, logically separate tasks. Make the sub-tasks

as independent of one another as possible, so that they can be tested sepa­

rately and so that changes can be made in one without affecting the others.

3. Keep the flow of control simple to make programs easy to follow and errors

easy to locate and correct.

4. Use pictorial or graphic design descriptions as much as possible. They are

easier to visualize than word descriptions. This is the great advantage of

flowcharts.

17-2 6809 Assembly Language Programming

5. Emphasize clarity and simplicity at first. You can improve performance (if
necessary) once the system is working.

6. Proceed in a thorough and systematic manner. Use checklists and standard
procedures.

7. Do not tempt fate. Either do not use methods that you are not sure of, or

use them very carefully. Watch for situations that might cause confusion,

and clarify them as soon as possible.

8. Keep in mind that the system must be debugged, tested and maintained.

Plan for these later stages.

9. Use simple and consistent terminology and methods. Repetitiveness is no
fault in program design, nor is complexity a virtue.

10. Have your design completely formulated before you start coding. Resist
the temptation to start writing down instructions: it makes no more sense

than making parts lists or laying out circuit boards before you know exactly

what will be in the system.

11. Be particularly careful of factors that may change. Make the implementa­

tion of likely changes as simple as possible.

12. Keep the overall task in mind. Build a total framework in which individual
pieces can be defined and tested. Do not leave the entire system integration
to the end.

13. If the data is complex or there are numerous relationships between data

items, you must organize your data just as carefully as you organize your

program. We will briefly discuss the design of data structures at the end of

this chapter.

FLOWCHARTING

Flowcharting is certainly the best-known of all program design methods. Program­
ming textbooks describe how programmers first write complete flowcharts and then
start writing the actual program. In fact, few programmers have ever worked this way,

and flowcharting has often been more of a joke or a nuisance to programmers than a

design method. We will try to describe both the advantages and disadvantages of

flowcharts, and show the place of this technique in program design.

ADVANTAGES OF FLOWCHARTING

The basic advantage of the flowchart is that it is a pictorial representation. Peo­
ple find such representations much more meaningful than written descriptions. The

designer can visualize the whole system and see the relationships of the various parts.

Logical errors and inconsistencies often stand out instead of being hidden in a printed
page. At its best, the flowchart is a picture of the entire system.

Some specific advantages of flowcharts are:

l. Standard symbols exist (see Figure 17-l} so that flowcharting forms are

widely recognized.

Program Design 17-3

�� Processing operation L__j (Arithmetic. Logic. Data movement)

0 Connector point

(..._ ____ _.,.) Terminal point (Beginning or Ending)

Figure 17-1. Standard Flowchart Symbols

2. Flowcharts can be understood by someone without a programming

background.

3. Flowcharts can be used to divide the entire project into sub-tasks. The

flowchart can then be examined to measure overall progress.

4. Flowcharts show the sequence of operations and can therefore aid in locating

the source of errors.

5. Flowcharting is widely used in other areas besides programming.

6. There are many tools available to aid in flowcharting, including programmer's

templates and automated drawing packages.

DISADVANTAGES OF FLOWCHARTING

These advantages are all important. There is no question that flowcharting will

continue to be widely used. But we should note some disadvantages of flowcharting as

a program design method:

1. Flowcharts are difficult to design, draw, or change in all except the simplest

situations.

17-4 6809 Assembly Language Programming

2. There is no easy way to debug or test a flowchart.

3. Flowcharts tend to become cluttered. Designers find it difficult to balance be­

tween the amount of detail needed to make the flowchart useful and the

amount that makes the flowchart little better that a program listing.

4. Flowcharts show only the program organization. They do not show the

organization of the data or the structure of the input/output modules.

5. Flowcharts do not help with hardware or timing problems or give hints as to

where these problems might occur.

6. Flowcharts allow unstructured design. There are no rules governing the num­

bers of entries and exits, the number or type of interconnections, or the logic

that may be employed.

7. There is no obvious way to represent the simple repetition of a loop.

MAKING FLOWCHARTS USEFUL

The most useful flowcharts may ignore program variables and ask questions

directly. Of course, compromises are often necessary here. Two versions of the

flowchart are sometimes helpful - one general version in layman's language, which

will be useful to non-programmers, and one programmer's version in terms of the

program variables, which will be useful to other programmers.

A third type of flowchart, a data flowchart, may also be helpful. This flowchart

serves as a cross-reference for the other flowcharts, since it shows how the program han­

dles a particular type of data. Ordinary flowcharts show how the program proceeds, han­

dling different types of data at different points. Data flowcharts, on the other hand,

show how particular types of data move through the system, passing from one part of

the program to another. Such flowcharts are very useful in debugging and maintenance,

since errors most often show up as a particular type of data being handled incorrectly.

Thus flowcharting is a helpful technique that you should not try to extend too

far. Flowcharts are useful as program documentation, since they have standard

forms and are comprehensible to non-programmers. As a design tool, however,

flowcharts cannot provide much more than a starting outline; the programmer cannot

debug a detailed flowchart and the flowchart is often more difficult to design than the

program itself.

EXAMPLES

Flowcharting the Switch and Light System

This simple task, in which a single switch turns on a light for one second, is

easy to flowchart. In fact, such tasks are typical examples for flowcharting books,

although they form a small part of most systems. The data structure here is so simple

that it can be safely ignored.

Figure 17-2 is the flowchart. There is little difficulty in deciding on the amount of

detail required. The flowchart gives a straightforward picture of the procedure, which

anyone could understand.

Program Design 17-5

Turn light on

Turn light off

Figure 17-2. Flowchart of One-Second Response to a Switch

Flowcharting the Switch-Based Memory Loader

This system (see Figure 16-2) is considerably more complex than the previous

example, and involves many more decisions. The flowchart (see Figure 17-3) is more
difficult to draw and is not as straightforward as the previous example. In this exam­
ple, we face the problem that there is no way to debug or test the flowchart.

The flowchart in Figure 17-3 includes the improvements we suggested as part of
the problem definition. Clearly, this flowchart is beginning to get cluttered and lose its

advantages over a written description. Adding other features that define the meaning of

the entry with status lights and allow the operator to check entries after completion

would make the flowchart even more complex. Drawing the complete flowchart from

scratch could quickly become a formidable task. However, once the program has been

written, the flowchart is useful as documentation.

Flowcharting the Verification Terminal

In this application (see Figures 16-3 through 16-5) the flowchart will be even

more complex than in the switch-based memory loader case. Here, the best idea is to
flowchart sections separately so that the flowcharts remain manageable. However,
the presence of data structures (as in the multi-digit display and the messages) will make

the gap between flowchart and program much wider.

17-6 6809 Assembly Language Programming

Wait

debounce

time

High byte of

Address =

Switches

Lights =

Switches

Wait

de bounce

time

Low byte of

Address =

Switches

Lights =

Switches

Wait

de bounce

time

Data=

Switches

Lights =

Switches

Store Data

in Address

Wait

debounce time

Figure 17-3. Flowchart of Switch-Based Memory Loader

Let us look at some of the sections. Figure 17-4 shows the keyboard entry pro­

cess for the digit keys. The program must fetch the data after each strobe and place the

digit into the display array if there is room for it. If there are already ten digits in the

array, the program simply ignores the entry.

The actual program will have to handle the displays at the same time. Note that

either software or hardware must de-activate the keyboard strobe after the processor

reads a digit.

Clear Entry Array

Key Pointer = Start

of Entry Array

Key Counter = 0

Key = Keyboard

Input Data

(Key Pointer) = Key

Key Pointer =

Key Pointer + 1
Key Counter =

Key Counter + 1

Program Design 17-7

Yes

End

Figure 17-4. Flowchart of Keyboard Entry Process

Figure 17-5 adds the Send key. This key, of course, is optional. The terminal

could just send the data as soon as the operator enters a complete number. However,

that procedure would not give the operator a chance to check the entire entry. The

flowchart with the Send key is more complex because there are two alternatives.

1. If the operator has not entered ten digits, the program must ignore the Send

key and place any other key into the entry._

2. If the operator has entered ten digits, the program must respond to the Send

key by transferring control to the Send routine; and ignore all other keys.

Note that the flowchart has become much more difficult to organize and to follow.

There is also no obvious way to check the flowchart.

Figure 17-6 shows the flowchart of the keyboard entry process with all the func­

tion keys. In this example, the flow of control is not simple. Clearly, some written

description is necessary. The organization and layout of complex flowcharts requires

careful planning. We have followed the process of adding features to the flowchart one

at a time, but this still results in a large amount of redrawing. Again we should remem­

ber that throughout the keyboard entry process, the program must also refresh the dis­

plays if they are multiplexed and not controlled by shift registers or other hardware.

17-8 6809 Assembly Language Programming

Clear Display Array

Key Pointer = Start

of Display Array

Key Counter = 0

Key = Keyboard

Input Data

(Key Pointer) = Key
Key Pointer =

Key Pointer + 1
Key Counter =

Key Counter + 1

Figure 17-5. Flowchart of Keyboard Entry Process with Send Key

Figure 17-7 is the flowchart of a receive routine. We assume that the serial/
parallel conversion and error checking are done in hardware (e.g., by a UART). The
processor must:

1. Look for the header. (We assume that it is a single character.)

2. Read the destination address (we assume that it is three characters long) and
see if the message is meant for this terminal; i.e., if the three characters agree
with the terminal address.

3. Wait for the trailer character.

4. If the message is meant for the terminal, turn off the Busy light and go to Dis­
play Answer routine.

5. In the event of any errors, request retransmission by going to the appropriate
RTRANS routine.

Clear Display Array
Key Pointer = Start

of Display Array
Key Counter = 0

Key = Keyboard
Input Data

(Key Pointer) = Key
Key Pointer =

Key Pointer + 1

Program Design 17-9

Figure 17-6. Flowchart of Keyboard Entry Process with Function Keys

This routine involves a large number of decisions, and the flowchart is neither

simple nor obvious.

Clearly, we have come a long way from the simple flowchart (Figure 17-2) of
the first example. A complete set of flowcharts for the transaction terminal would be
a major task. It would consist of several interrelated charts with complex logic, and

would require a large amount of effort. Such an effort would be just as difficult as writing

a preliminary program, and not as useful, since you could not check the flowcharts on

the computer.

17-10 6809 Assembly Language Programming

Header flag = 0
Parity Error fla;J =
Address Match

flag= 0
Address Pointer =

Start of terminal
address

Address Counter= 0
Nmess = 0

Header flag

Parity Error
flag = 1

Address Match
flag = 1

Address Counter =

Address Counter + 1
Address Pointer =

Address Pointer + 1

Messg (Nmess)
Character

Nmess = Nmess + 1

Turn off Busy
light

Retransmission

Figure 17-7. Flowchart of Receive Routine

Program Design 17-11

MODULAR PROGRAMMING

Once programs become large and complex, flowcharting is no longer a satisfactory
design tool. However, the problem definition and the flowchart can help you divide the
program into reasonable sub-tasks. The division of the entire program into sub-tasks

or modules is called "modular programming." Clearly, most of the programs we pre­
sented in earlier chapters would typically be modules in a large program. The problems

that the designer faces in modular programming are how to divide the program into

modules and how to put the modules together.

ADVANTAGES OF MODULAR PROGRAMMING

The advantages of modular programming are obvious:

l. A single module is easier to write, debug, and test than an entire program.

2. A module is likely to be useful in many places and in other programs, particu­
larly if it is reasonably general and performs a common task. You can build a
library of standard modules.

3. Modular programming allows the programmer to divide tasks and use pre­
viously written programs.

4. Changes can be incorporated into one module rather than into the entire
system.

5. Errors can often be isolated and then attributed to a single module.

6. Modular programming helps with project management, since it results in
obvious goals and milestones.

DISADVANTAGES OF MODULAR PROGRAMMING

The idea of modular programming is so simple that its disadvantages are often

ignored. These include:

1. Fitting the modules together can be a major problem, particularly if different
people write the modules.

2. Modules require very careful documentation, since they may affect other
parts of the program, such as data structures used by all the modules.

3. Testing and debugging modules separately is difficult, since other modules
may produce the data used by the module being debugged and still other
modules may use the results. You may have to write special programs (called
"drivers") just to produce sample data and test the programs. These drivers
require extra programming effort that adds nothing to the system.

4. Programs may be very difficult to modularize. If you modularize the program
poorly, integration will be very difficult, since almost all errors and changes
will involve several modules.

5. Modular programs often require extra time and memory, since the separate
modules may repeat functions.

17-12 6809 Assembly Language Programming

Therefore, while modular programming is certainly an improvement over trying

to write the entire program from scratch, it does have some disadvantages as well.

Important considerations include restricting the amount of information shared

by modules, limiting design decisions that are subject to change to a single module,

and restricting the access of one module to another. t

PRINCIPLES OF MODULARIZATION

An obvious problem is that there are no proven, systematic methods for

modularizing programs. We should mention the following principles ;2

1. Modules that reference common data should be parts of the same overall

module.

2. Two modules in which the first uses or depends on the second, but not the

reverse, should be separate.

3. A module that is used by more than one other module should be part of a

different overall module than the others.

4. Two modules in which the first is used by many other modules and the second

is used by only a few other modules should be separate.

5. Two modules whose frequencies of usage are significantly different should be

part of different modules.

6. The structure or organization of related data should be hidden within a single

module.

If a program is difficult to modularize, you may need to redefine the tasks that

are involved. Too many special cases or too many V?riables that require special han­

dling are typical signs of inadequate problem definition.

EXAMPLES

Modularizing the Switch and Light System

This simple program can be divided into two modules:

Module 1 waits for the switch to be turned on and turns the light on in

response.

Module 2 provides the one-second delay.

Module 1 is likely to be specific to the system, since it will depend on how the

switch and light are attached. Module 2 will be generally useful, since many tasks

require delays. Clearly, it would be advantageous to have a standard delay module that

could provide delays of varying lengths. The module will require careful documentation

so that you will know how to specify the length of the delay, how to call the module, and

what registers and memory locations the module affects.

A general version of Module 1 would be far less usefuL since it would have to deal

with different types and connections of switches and lights.

You would probably find it simpler to write a module for a particular configuration

of switches and lights rather than try to use a standard routine. Note the difference be­

tween this situation and Module 2.

Program Design 17-13

Modularizing the Switch-Based Memory Loader

The switch-based memory loader is difficult to modularize, since all the pro­

gramming tasks depend on the hardware configuration and the tasks are so simple

that modules hardly seem worthwhile. The flowchart in Figure 17-3 suggests that one

module might be the one that waits for the operator to press one of the three pushbut­

tons.

Some other modules might be:

A delay module that provides the delay required to debounce the switches

A switch and display module that reads the data from the switches and sends it

to the displays

A Lamp Test module

Highly system-dependent modules such as the last two are unlikely to be generally use­

ful. This example is not one in which modular programming offers great advantages.

Modularizing the Verification Terminal

The verification terminal, on the other hand, lends itself very well to modular

programming. The entire system can easily be divided into three main modules:

Keyboard and display module

Data transmission module

Data reception module

A general keyboard and display module could handle many keyboard- and dis­

play-based systems. The sub-modules would perform such tasks as:

Recognizing a new keyboard entry and fetching the data

Clearing the array in response to a Clear Key

Entering digits into storage

Looking for the terminator or Send key

Displaying the digits

Although the key interpretations and the number of digits will vary, the basic

entry, data storage, and data display processes will be the same for many programs. Such

function keys as Clear would also be standard. Clearly, the designer must consider

which modules will be useful in other applications, and pay careful attention to those

modules.

The data transmission module could also be divided into such sub-modules as:

1. Adding the header character.

2. Transmitting characters as the output line can handle them.

3. Generating delay times between bits or characters.

4. Adding the trailer character.

5. Checking for transmission failures� i.e., no acknowledgement, or inability to

transmit without errors.

17-14 6809 Assembly Language Programming

The data reception module could include sub-modules which:

1. Look for the header character.

2. Check the message destination address against the terminal address.

3. Store and interpret the message.

4. Look for the trailer character.

5. Generate bit or character delays.

INFORMATION HIDING PRINCIPLE

Note here how important it is that each design decision (such as the bit rate,

message format, or error-checking procedure) be implemented in only one module. A

change in any of these decisions will then require changes only to that single module.

The other modules should be written so that they are totally unaware of the values

chosen or the methods used in the implementing module. An important concept here is

the "information-hiding principle,"J whereby modules share only information that

is absolutely essential to getting the task done. Other information is hidden within a

single module.

Error handling is a typical situation in which information should be hidden.

When a module detects a lethal error, it should not try to recover; instead, it should

inform the calling module of the error status and allow that module to decide how to

proceed. The reason is that the lower level module often lacks sufficient information to

establish recovery procedures. For example, suppose that the lower level module is one

that accepts numeric input from a user. This module expects a string of numeric digits

terminated by a carriage return. Entry of a non-numeric character causes the module to

terminate abnormally. Since the module does not know the context (i.e. is the numeric

string an operand, a lone number, an 1/0 unit number, or the length of a file?), it can­

not decide how to handle an error. If the module always followed a single error recovery

procedure, it would lose its generality and only be usable in those situations where that

procedure was required.

REVIEW OF MODULAR PROGRAMMING

Modular programming can be very helpful if you abide by the following rules:

1. Use modules of 20 to 50 lines. Shorter modules are usually a waste of time,

while longer modules are seldom general and may be difficult to integrate.

2. Make modules reasonably general. Differentiate between common features

like ASCII code or asynchronous transmission formats, which will be the

same for many applications, and key identifications, number of displays, or

number of characters in a message, which are likely to be unique to a particu­

lar application. Make the changing of the latter parameters simple. Major

changes like different character codes should be handled by separate modules.

3. Take extra time on modules like delays, display handlers, keyboard handlers,

etc. that will be useful in other projects or in many different places in the

present program.

4. Make modules independent of each other. Restrict the flow of information

between modules and implement each design in a single module.

5. Do not modularize simple tasks that are already easy to implement.

Program Design 17-15

4

c B

Figure 17-8. Flowchart of an Unstructured Program

STRUCTURED PROGRAMMING

How do you keep modules distinct and stop them from interacting? How do you

write a program that has a clear sequence of operations so that you can isolate and

correct errors? One answer is to use the methods known as "structured program­

ming," whereby each part of the program consists of elements from a limited set of

structures and each structure has a single entry and a single exit.

Figure 17-8 shows a flowchart of an unstructured program. If an error occurs in

Module 8, we have five possible sources for that error. Not only must we check each

sequence, but we also have to make sure that corrections do not affect any sequences.

The usual result is that debugging becomes like wrestling an octopus. Every time you

think the situation is under control, there is another loose tentacle somewhere.

BASIC STRUCTURES

The solution is to establish a clear sequence of operations so that you can isolate

errors. Such a sequence uses single-entry, single-exit structures. A program consists

of a sequence of structures; it may be a single statement or it may consist of structures

that are nested within each other to any level of complexity. Th(_ required structures

are listed below.

17-16 6809 Assembly Language Programming

1. An ordinary sequence; that is, a linear structure in which programs are
executed consecutively. If the sequence is:

P1
P2
P3

the computer executes P1 first, P2 second, and P3 third. P1, P2, and P3 may
be single statements or complex programs.

2. A conditional structure in which the execution of a program depends on a
condition.

There are many possible conditional structures, but a common one is "if C
then P1 else P2 " whe:-e C is a condition and Pl and P2 are programs. The
computer executes P1 if Cis true, and P2 if Cis false. Figure 17-9 shows the
logic of this structure. Note that it has a single entry and a single exit; the
computer cannot enter or leave P1 or P2 other than through the structure.

3. A loop structure in which a program is repeated until (or as long as) a con­
dition holds.

There are many possible loop structures. A common one (called a "do­
while " structure) is "while C do P," where C is a condition and P is a pro­
gram. The computer continually checks C and then executes Pas long as Cis
true.
An obvious alternative is ''until C do P" in which the computer continually
checks C and then executes P as long as C is false. Figures 17-10 and 1 7-11
show the logic of these alternatives. Both have a single entry and a single exit.
The computer will not execute Pat all if Cis originally in the exit state; thus P
is not executed at least once automatically as it is in a FORTRAN DO loop.
Alternative structures like "do P while C" or "repeat P until C" produce the
FORTRAN implementation in which the computer checks the condition after
executing the program (remember Figures 5-l and 5-2). This approach is

often more efficient, but we will use only the form in Figure 17-10 to simplify

No

P1 P2

Figure 17-9. Flowchart of the If-Then-Else Structure

Program Design 17-17

No

End

p

Figure 17-10. Flowchart of the Do-While Structure

Yes

p

Figure 17-11. Flowchart of the Do-Until Structure

the discussion. Most high-level structured languages allow all four alterna­

tives to provide flexibility. In most cases, the program P must eventually force
C into the exit state; if it does not, the computer will execute P endlessly (the
so-called DO FOREVER structure) as it must if P is the overall control pro­
gram for an instrument, computer peripheral, test system, or electronic game.

4. A case structure. Although it is not a primitive structure like our first three,
the case structure is so common that it merits a special description. The case
structure is "case I of PO, Pl, ... , Pn," where I is an index and PO, Pl, ... , Pn
are programs. The computer executes program PO if I is 0, Pl if I is 1, and so
on; it executes only one of the n programs. Ifl is greater than n (the number
of programs in the case statement) or after execution of one of the programs,

17-18 6809 Assembly Language Programming

No

PO
No

P1

P2

----,

I

I

Pn

Figure 17-12. Flowchart of the Case Structure

End

the computer then executes the next sequential statement as shown in Figure

17-12. Obviously, we could implement a case structure as a series of condi­

tional structures, much as we could implement a jump table as a series of con­

ditional branches. However, the alternative implementations are long, awk­

ward, and difficult to expand.

FEATURES AND EXAMPLES OF STRUCTURES

Note the following features of structured programming:

1. Only the three basic structures, and possibly a small number of auxiliary

structures, are permitted. Variations of the conditional and loop structures

may be allowed.

Program Design 17-19

2. Structures may be nested to any level of complexity since any structure can,

in turn, contain any of the structures.

3. Each structure has a single entry and a single exit.

Some examples of the conditional structure illustrated in Figure 17-9 are:

1. P2 included:

if X > 0 then NPOS = NPOS + l
else NNEG = NNEG + 1

Both Pl and P2 are single statements.

2. P2 omitted:
if X t 0 then Y = l/X

Here no action is taken if C (X f 0) is false. P2 and "else" can be omitted in this case.

Some examples of the loop structure illustrated in Figure 17-10 are:

1. Form the sum of integers from 1 to N.

I = 0
SUM = 0
do whi 1 e I < N

I = I + l
SUM = SUM + I

end

The computer executes the loop as long as I< N. lfN=O, the program within the "do­

while" is not executed at all.

2. Count characters in an array SENTENCE until you find an ASCII period.

NCHAR = 0
do while SENTFNCE(NCHAR) I PERIOD

NCHAR = NCHAR + 1
end

The computer executes the loop as long as the character in SENTENCE is not an ASCII

period. The count is zero if the first character is a period.

ADVANTAGES OF STRUCTURED PROGRAMMING

The advantages of structured programming are:

1. The sequence of operations is simple to trace. This allows you to test and

debug programs easily.

2. The number of structures is limited and the terminology is standardized.

3. The structures can easily be made into modules.

4. Theoreticians have proved that the given set of structures is complete; that is,

all programs can be written in terms of the three structures.

5. The structured version of a program is partly self-documenting and fairly easy

to read.

6. Structured programs are easy to describe with program outlines.

7. Structured programming has been shown in practice to increase programmer

productivity.

Structured programming basically forces much more discipline on the pro­

grammer than does modular programming. The result is more systematic and better

organized programs.

17-20 6809 Assembly Language Programming

DISADVANTAGES OF STRUCTURED PROGRAMMING

The disadvantages of structured programming are:

l . Only a few high-level languages (e.g., PLIM, PASCAL) will directly accept the

structures. The programmer therefore has to go through an extra translation

stage to convert the structures to assembly language code. The structured ver­

sion of the program, however, is often useful as documentation.

2. Structured programs often execute more slowly and use more memory than

unstructured programs.

3. Limiting the structures to the three basic forms makes some tasks very awk­

ward to perform. The completeness of the structures only means that all pro­

grams can be implemented with them; it does not mean that a given program

can be implemented efficiently or conveniently.

4. The standard structures are often quite confusing: e.g., nested "if-then-else"

structures may be very difficult to read, since there may be no clear indication

of where the inner structures end. A series of nested "do-while" loops can

also be difficult to read.

5. Structured programs consider only the sequence of program operations, not

the flow of data. Therefore, the structures may handle data awkwardly.

6. Few programmers are accustomed to structured programming. Many find the

standard structures awkward and restrictive.

WHEN TO USE STRUCTURED PROGRAMMING

We are neither advocating nor discouraging the use of structured programming.

It is one way of systematizing program design. In general, structured programming is

most useful in the following situations:

Larger programs, perhaps exceeding 1000 instructions.

Applications in which memory usage is not critical.

Low-volume applications where software development costs, particularly test­

ing and debugging, are important factors.

Applications involving string manipulation, process control, or other

algorithms rather than simple bit manipulations.

In the future, we expect the cost of memory to decrease, the average size of

microprocessor programs to increase, and the cost of software development to

increase. Therefore, methods like structured programming, which decrease software

development costs for larger programs but use more memory, will become more

valuable.

Just because structured programming concepts are usually expressed in high-level

languages does not mean that structured programming is not applicable to assembly

language programming. On the contrary, the assembly language programmer, with the

total freedom of expression that assembly level programming allows, needs the struc­

turing concept provided by structured programming. Creating modules with single

entry and exit points, using simple control structures and keeping the complexity of

each module minimal increases the productivity of the assembly language pro­

grammer.

Program Design 17-21

EXAMPLES

Structured Program for the Switch and Light System

The structured version of this example is:

SWITCH = OFF
do while SWITCH OFF

READ SWITCH

end
LIGHT ON

DELAY 1
LIGHT = OFF

ON and OFF must have the proper definitions for the switch and light. We assume
that DELAY is a module that provides a delay given by its parameter in seconds.

A statement in a structured program may actually be a subroutine. However, in
order to conform to the rules of structured programming, the subroutine cannot have
any exits other than the one that returns control to the main program.

Since "do-while" checks the condition before executing the loop, we set the
variable SWITCH to OFF before starting. The structured program is straightforward,
readable, and easy to check by hand. However, it would probably require somewhat
more memory than an unstructured program, which would not have to initialize
SWITCH and could combine the reading and checking procedures.

Structured Program for the Switch-Based Memory Loader

The switch-based memory loader is a more complex structured programming

problem. We may implement the flowchart of Figure 17-3 as follows (a "' indicates a
comment, and we use "begin" and "end" around a conditionally executed program
that consists of more than one line):

*

*CLEAR ADDRESS INITIALLY SO ITS STARTING VALUE IS ZERO
*

HIADDRESS = 0
LOADDRESS = 0
*

*CONTINUOUSLY EXAMINE THE SWITCHES AND LOAD DATA INTO MEMORY
* NOTE THAT "DO FOREVER" IS JUST "DO WHILE" WITH NO CONDITION
*

do forever
*

*TEST HIGH ADDRESS BUTTON. IF IT IS BEING PRESSED, DEBOUNCE IT
* AND WAIT FOR THE OPERATOR TO RELEASE IT. THEN ENTER HIGH
* ADDRF.SS FROM THE SWITCHES AND SHOW IT ON THE LIGHTS
*

*

if HIADDRDUTTON = 0 then
beg in

end

do while HIADDRBUTTON = 0
DELAY (DFBOUNCE TIME)
end

HIADDRESS = SWITCHES

LIGHTS = SWITCHES

*TEST LOW ADDRESS BUTTON. IF IT IS BEING PRESSED, DEBOUNCE IT AND
* WAIT FOR THE OPERATOR TO RELEASE IT. THEN ENTER LOW ADDRESS
* FROM THE SWITCHES AND SHOW IT ON THE LIGHTS
*

if LOADDRBUTTON = 0 then
beg in

do while LOADDRBUTTON 0

17-22 6809 Assembly Language Programming

end
*

DELAY (DEBOUNCE TIME)

end
LOADDRESS = SWITCHES
LIGHTS = SWITCHES

*TEST DATA BUTTON. IF IT IS BEING PRESSED, DEBOUNCE IT AND WAIT
* FOR THE OPERATOR TO RELEASE IT. THEN ENTER DATA FROM THE
* SWITCHES, SHOW IT ON THE LIGHTS, AND STORE IT IN MEMORY AT
* (HIGH ADDRESS, LOW ADDRESS)
*

if DATAAUTTON = 0 then
beg in

do while DATABUTTO� = 0

DELAY (DEBOUNCE TIME)

end
DATil = SWITCHES
LIGHTS = SWITCHI'S

(HIADDRESS, LOADORESS) = D'TI\

end

*WAIT THE DEBOUNCING TIME BEFORE EXAMINING THE BUTTONS AGAIN.
* THIS DELAY DEBOUNCES THE RELF.ASE FOR SURE
*

DELAY (DEBOUNCE TIME)

end
*

*THE LAST END ABOVE TERMINATES THE
* DO fOREVER LOOP
*

Structured programs are not easy to write, but they can give a great deal of insight

into the overall program logic. You can check the logic of the structured program by

hand before writing any actual code.

Structured Program for the Verification Terminal

Let us look at the keyboard entry for the transaction terminal. We will assume

that the display array is ENTRY, the keyboard strobe is KEYSTROBE, and the

keyboard data is KEY IN. The structured program without the function keys is:

NKEYS = 10
*

*CLEAR ENTRY TO START
*

*

do while NKEYS > 0
NKEYS = NKEYS - 1
ENTRY(NKEYS) = 0

end

*FETCH A COMPLETE ENTRY FROM KEYBOARD
*

do while NKEYS < 10
if KEYSTROBE = ACTIVE then

end

beg in
KEYSTROBE = INACTIVE
ENTRY(NKEYS) = KEYIN

NKEYS = NKEYS + 1
end

Adding the SEND key means that the program must ignore extra digits after it

has a complete entry, and must ignore the SEND key until it has a complete entry.

The structured program is:

NKEYS = 10
*
*CLEAR ENTRY TO START
*

do while NKEYS > 0
NKEYS = NKEYS - 1

*

ENTRY(NKEYS) = 0
end

Program Design 17-23

*WAIT FOR COMPLETE ENTRY FOLLOWED BY SEND KEY
*

do while KEY I SEND or NKEYS I 10
if KEYSTROBE = A�1IVE then

end

beg in
KEYSTROBE = INACTIVE
KEY = KEYIN
if NKEYS I 10 and KEY I SEND then

beg in

end

ENTRY(NKEYS) = KEY
NKEYS = NKEYS + l

end

Note the following features of this structured program.

1. The second if-then is nested within the first one, since the keys are only
entered after a strobe is recognized. If the second if-then were on the same

level as the first, a single key could fill the entry, since its value would be

entered into the array during each iteration of the do-while loop.

2. KEY need not be defined initially, since NKEYS is set to zero as part of the
clearing of the entry.

Adding the CLEAR key allows the program to clear the entry originally by

simulating the pressing of CLEAR; i.e., by setting NKEYS to 10 and KEY to CLEAR

before starting. The structured program must also only clear digits that have previously

been filled. The new structured program is:
*

*SIMULATE COMPLETE CLEARING
*

NKEYS = 10
KEY '" CLEAR
*

*WAIT FOR COMPLETE ENTRY AND SEND KEY
*

do while KEY I SEND or NKEYS I 10
*

*CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK
*

*

if KEY '" CLEAR then
beg in

KEY = 0
do while NKEYS > 0

NKEYS = NKEYS - l
ENTRY(NKEYS) = 0

end
end

*GET DIGIT IF ENTRY INCOMPLETE
•

end

if KEYSTROBE = ACTIVE then
b�'J in

KEYSTROBE = INACTIVE

KEY '" KEYIN

if KEY < ln and NKEYS I 10 then
begin

end

ENTRY(NKEYS) = KEY

NKEYS = NKEYS + l
end

Note that the program resets KEY to zero after clearing the array, so that the operation

is not repeated.

17-24 6809 Assembly Language Programming

We can similarly build a structured program for the receive routine. An initial

program could just look for the header and trailer characters. We will assume that RSTB

is the indicator that a character is ready. The structured program is:
*

*CLEAR HEADER FLAG TO START
*

HFLAG = 0
*
*WAIT FOR HEADER AND TRAILER
*

do wh i 1 e HF LAG 0 or CHAR I TRAILER
*

*GET CHARACTER IF READY. LOOK FOR HEADER
*

end

if RSTB = ACTIVE then
begin

RSTB = INACTIVE

CHAR = INPUT

if CHAR = HEADER then HFLAG 1
end

Now we can add the section that checks the message address against the three

digits in TERMINAL ADDRESS (TERMADDR). If any of the corresponding digits

are not equal, the ADDRESS MATCH flag (ADDRMATCH) is set to 1.
*

*CLEAR HEADER FLAG, ADDRESS MATCH FLAG, ADDRESS COUNTER TO START
*

HFLAG = 0
ADDRMATCH = 0
ADDRCTR = 0
*

*WAIT FOR HEADER, DESTINATION ADDRESS, AND TRAILER
*

do while HFLAG = 0 or CHAR I TRAILER or ADDRCTR I 3
*

*GET CHARACTER IF READY
*

if RSTB = ACTIVE then
beg in

RSTB INACTIVE

CHAR = INPUT
end

*

*CHECK FOR TERMINAL ADDRESS AND HEADER
*

end

if HFLAG = 1 and ADDRCTR I 3 then
beg in

if CHAR I TERMADDR(ADDRCTR) then ADDRMATCH 1
ADDRCTR = ADDRCTR + 1

end
if CHAR = HEADER then HFLAG = l

The program must now wait for a header, a three-digit identification code, and a

trailer. You must be careful of what happens during the iteration when the program

finds the header, and of what happens if an erroneous identification code character is the

same as the trailer.

A further addition can store the message in MESSG. NMESS is the number of

characters in the message; if it is not zero at the end, the program knows that the ter­
minal has received a valid message. We have not tried to minimize the logic expres­

sions in this program.

*

*CLEAR FLAGS, COUNTERS TO START
*

HFLAG = 0
ADDRMATCH = 0

ADDRCTR = 0
NMESS = 0
*

Program Design 17-25

*WAIT FOR HEADER, DESTINATION ADDRESS, AND TRAILER
*

do while HFLAG = 0 or CHAR � TRAILER or ADDRCTR � 3
*

*GET CHARACTER IF READY
*

*

if RSTB = ACTIVE then
beg in

RSTB INACTIVE
CHAR = INPUT

end

*READ MESSAGE IF DESTINATION ADDRESS = TERMINAL ADDRESS
*

*

if HFLAG = l and ADDRCTR = 3 then
if ADDRMATCH = 0 and CHAR � TRAILER then

beg in
MESSG(NMESS) = CHAR
NMESS = NMESS + l

end

*CHECK FOR TERMINAL ADDRESS
*

*

if HFLAG = l and ADDRCTR � 3 then
begin

if CHAR� TERMADDR(ADDRCTR) then ADDRMATCH 1
ADDRCTR ADDRCTR + l

end

*LOOK FOR HEADER
*

if CHAR = HEADER then HFLAG = l
end

The program checks for the identification code only if it found a header during a

previous iteration. It accepts the message only if it has previously found a header and a

complete, matching destination address. The program must work properly during the

iterations when it finds the header, the trailer and the last digit of the destination

address. It must not try to match the header with the terminal address or place the trailer

or the final digit of the destination address in the message. You might try adding the

rest of the logic from the flowchart (Figure 17-7) to the structured program. Note that

the order of operations is often critical. You must be sure that the program does not

complete one phase and start the next one during the same iteration.

REVIEW OF STRUCTURED PROGRAMMING

Structured programming brings discipline to program design. It forces you to

limit the types of structures you use and the sequence of operations. It provides

single-entry, single-exit structures, which you can check for logical accuracy. Struc ·

tured programming often makes the designer aware of inconsistencies or possible

combinations of inputs. Structured programming is not a cure-all, but it does bring

some order into a process that can be chaotic. The structured program should also aid
in debugging, testing, and documentation.

Structured programming is not simple. The programmer must not only define

the problem adequately, but must also work through the logic carefully. This is
tedious and difficult, but it results in a clearly written, working program.

17-26 6809 Assembly Language Programming

Terminators

The particular structures we have presented are not ideal and are often awk­

ward. In addition, it can be difficult to determine where one structure ends and

another begins, particularly if they are nested. Theorists may provide better struc­

tures in the future, or designers may wish to add some of their own. A terminator for

each structure seems necessary, since indenting does not always clarify the situation.

"End" is a logical terminator for the "do-while" loop. There is no obvious terminator,

however, for the "if-then-else" statement; some theorists have suggested "endif' or

"fi" ("if' backwards), but these are both awkward and detract from the readability of

the program.

RULES FOR STRUCTURED PROGRAMMING

We suggest the following rules for applying structured programming:

1. Begin by writing a basic flowchart to help define the logic of the program.

2. Start with the "sequential," "if-then-else," and "do-while" structures.

They are known to be a complete set, i.e., any program can be written in

terms of these structures.

3. Indent each level a few spaces from the previous level, so that you will know
which statements belong where.

4. Use terminators for each structure: e.g., "end" for the "do-while" and

"endif' or "fi" for the "if-then-else." The terminators plus the indentation

should make the program reasonably clear.

5. Emphasize simplicity and readability. Leave lots of spaces, use meaningful

names, and make expressions as clear as possible. Do not try to minimize the

logic at the cost of clarity.

6. Comment the program in an organized manner.

7. Check the logic. Try all the extreme cases or special conditions and a few

sample cases. Any logical errors you find at this level will not plague you later.

TOP-DOWN DESIGN

The remaining problem is how to check and integrate modules or structures.

Certainly we want to divide a large task into sub-tasks. But how do we check the sub­

tasks in isolation and put them together? The standard procedure, called "bottom-up

design," requires extra work in testing and debugging and leaves the entire integra­

tion task to the end. What we need is a method that allows testing and debugging in

.: . .:a . . u«i _p �ram cnvironmc;.� �11d moduL.: :Lcs system it�tegration.

This method is "top-down design." Here we start by writing the overall super­

visor program. We replace the undefined sub-programs by program "stubs," tempor­

---Y prv,., ... , ..• s tha: _:::.n ;-,·.-::r,rd th(�nt..-;, •. ·r. ide���- .::r.:,wrr to a .,t:�·ctt.: test

problem, or do nothing. We then test the supervisor program to see that its logic is

correct.

Program Design 17-27

We proceed by expanding the stubs. Each stub will often contain sub-tasks,

which we will temporarily represent as stubs. This process of expansion, debugging,

and testing continues until all the stubs are replaced by working programs. Note that

testing and integration occur at each level, rather than all at the end. No special driver or

data generation programs are necessary. We get a clear idea of exactly where we are in

the design. Top-down design assumes modular programming, and is compatible with

structured programming as well.

DISADVANTAGES OF TOP-DOWN DESIGN

The disadvantages of top-down design are:

1. The overall design may not mesh well with system hardware.

2. It may not take good advantage of existing software.

3. Stubs may be difficult to write, particularly if they must work correctly in

several different places.

4. Top-down design may not result in generally useful modules.

5. Errors at the top level can have catastrophic effects, whereas errors in bottom­

up design are usually limited to a particular module.

In large programming projects, top-down design has been shown to greatly

improve programmer productivity. However, almost all of these projects have used

some bottom-up design in cases where the top-down method would have resulted in a

large amount of extra work.

Top-down design is a useful tool that should not be followed to extremes. It pro­
vides the same discipline for system testing and integration that structured program­

ming provides for module design. The method, however, has more general

applicability, since it does not assume the use of programmed logic. However, top­

down design may not result in the most efficient implementation.

EXAMPLES

Top-Down Design of Switch and Light System

The first structured programming example actually demonstrates top-down

design as well. The program was:

SWITCH = OFF
do while SWITCH OFF

READ SWITCH

end

LIGHT ON
DELAY l
LIGHT = OFF

These statements are really stubs, since none of them is fully defined. For example,

what does READ SWITCH mean? If the switch were one bit of input port SPORT, it

really means:

SWITCH = SPORT and SMASK

where SMASK has a 'I' bit in the appropriate position. The masking may, of course, be

implemented with a Bit Test instruction.

17-28 6809 Assembly Language Programming

Similarly, DELAY 1 actually means (if the processor itself provides the delay):

REG = COUNT
do while REG � 0

REG = REG - l
end

COUNT is the appropriate number to provide a one-second delay. The expanded ver­

sion of the program is:

SWITCH = 0
do while SWITCH = 0

SWITCH = SPORT and MASK
end
LIGHT = O N

REF = COUNT

do while REG � 0
REG REG - l

end
LIGHT = not (LIGHT)

Certainly this program is more explicit, and could more easily be translated into

actual instructions or statements.

Top-Down Design of the Switch-Based Memory Loader

This example is more complex than the first example, so we must proceed

systematically. Here again, the structured program contains stubs.

For example, if the HIGH ADDRESS button is one bit of input port CPORT, "if
HIADDRBUTTON = 0 " really means:

1. Input from CPORT

2. Logical AND with HAMASK

where HAM ASK has a '1' in the appropriate bit position and ' 0 's elsewhere. Similarly
the condition "if OAT A BUTTON = 0 " really means:

1. Input from CPOR T

2. Logical AND with DAMASK

So, the initial stubs could just assume that no buttons are being pressed:

HIADDRBUTTON l
LOADDRBUTTON = l
DATABUTTON = 1

A run of the supervisor program should show that it takes the implied "else" path
through the "if-then-else" structures, and never reads the switches. Similarly, if the
stub were:

HIADDRBUTTON = 0

the supervisor program should stay in the "do while HIADDRBUTTON = 0" loop
waiting for the button to be released. These simple runs check the overall logic.

Now we can expand each stub and see if the expansion produces a reasonable

overall result. Note how debugging and testing proceed in a straightforward and

modular manner. We expand the HIADDRBUTTON =0 stub to:

READ CPORT

HIADDRBUTTON = (CPORT) and HAMASK

The program should wait for the HIGH ADDRESS button to be released. The
program should then display the values of the switches on the lights. This run checks for
the proper response to the HIGH ADDRESS button.

Keyboard

ACK = 0

Transmit
Receive

Program Design 17-29

No

Display

Figure 17-13. Initial Flowchart of Transaction Terminal

We then expand the LOW ADDRESS button module to:
READ CPORT
LOADDR�UTTON = (CPORT) and LAMASK

When the LOW ADDRESS button is released, the program should display the
values of the switches on the lights. This run checks for the proper response to the LOW
ADDRESS button.

Similarly, we can expand the DATA button module and check for the proper
response to that button. The entire program will then have)een tested.

When all the stubs have been expanded, the coding, debugging, and testing

stages will all be complete. Of course, we must know exactly what results each stub

should produce. However, many logical errors will become obvious at each level with­

out any further expansion.

Top-Down Design of Verification Terminal

This example, of course, will have more levels of detail. We could start with the

following program (see Figure 17-13 for a flowchart):
KEYBOARD
ACK = 0
do while ACK = 0

TRANSMIT
RECEIVE

end
DISPLAY

17-30 6809 Assembly Language Programming

Here, KEYBOARD, TRANSMIT, RECEIVE, and DISPLAY are program stubs
that will be expanded later. KEYBOARD, for example, could simply place a ten-digit
verified number into the appropriate buffer.

The next stage of expansion could produce the following program for
KEYBOARD (see Figure 17-14):

VER = 0
do while VER = 0

COMPLETE = 0
do while COMPLETE 0

KEY IN
KEYDS

end
VERIFY

end

Here VER=O means that an entry has not been verified; COMPLETE=O means
that the entry is incomplete. KEYIN and KEYDS are the keyboard input and display
routines respectively. VERIFY checks the entry. A stub for KEYIN would simply place
a random entry (from a random number table or generator) into the buffer and set
COMPLETE to 1.

VER = 0

Complete= 0

Verify

No

Yes

End

KEVIN
KEYDS

Figure 17-14. Flowchart for Expanded KEYBOARD Routine

Program Design 17-31

We would continue by similarly expanding, debugging, and testing

TRANSMIT, RECEIVE, and DISPLAY. Note that you should expand each program

by one level so that you do not perform the integration of an entire program at any one

time. You must use your judgment in defining levels. Too small a step wastes time,

while too large a step gets you back to the problems of system integration that top­

down design is supposed to solve.

REVIEW OF TOP-DOWN DESIGN

Top-down design brings discipline to the testing and integration stages of pro­

gram design. It provides a systematic method for expanding a flowchart or problem

definition to the level required to actually write a program. Together with structured

programming, it forms a complete set of design techniques.

Like structured programming, top-down design is not simple. The designer

must have defined the problem carefully and must work systematically through each

level. Here again, the methodology may seem tedious, but the payoff can be substan­

tial if you follow the rules.

We recommend the following approach to top-down design:

1. Start with a basic flowchart.

2.

3.

4.

Make the stubs as complete and as separate as possible.

Define precisely all the possible outcomes from each stub and select a test set.

Check each level carefully and systematically.

5. Use the structures from structured programming.

6. Expand each stub by one level. Do not try to do too much in one step.

7. Watch carefully for common tasks and data structures.

8. Test and debug after each stub expansion. Do not try to do an entire level at a

time.

9. Be aware of what the hardware can do. Do not hesitate to stop and do a little

bottom-up design where that seems necessary.

DESIGNING DATA STRUCTURES

Beginning programmers seldom think about data structures. They generally

assume that the data will be stored somewhere in the computer's memory, much as

records are piled into a cabinet or books into a bookcase. Designing data structures

seems as far-fetched as establishing a complete card catalog for one's books or records;

few people take organization to such lengths.

But the fact is that most computer-based systems involve a surprisingly large

amount of data processing. Numerical algorithms assume that the processor can easily

find the element in the next row or next column of an array. Editor programs assume

that the processor can easily find the next character, the previous line, a particular string

of characters, or the starting point of an entire paragraph or page. An operator interface

for a piece of test equipment may assume that the processor can easily find a particular

command or data entry and move it from one place to another. Imagine how difficult

17-32 6809 Assembly Language Programming

the following tasks would be to implement if the data is simply scattered through

memory or organized in a long, linear array:

1. The operator of a machine tool wants to insert two extra cutting steps between

steps 14 and 15 of a 40-step pattern.

2. The operator of a chemical processing plant wants to see the last ten values of

the temperature at the inlet to tank #5.

3. An accounting clerk wants to enter a new account into an alphabetical list.

The processor may spend most of its time finding the data, moving from one

data item to the next, and organizing the data.

SELECTING DATA STRUCTURES

Obviously, we cannot provide a complete description of data structures here.4.5

Just as clearly, the design of data structures has great influence on the design of pro­

grams if the data is complex. We will briefly mention the following considerations in

selecting data structures:

1. How are the data items related? Closely related items should be accessible

from each other, since such accesses will be frequent.

2. What kind of operations will be performed on the data? Simple linear struc­

tures are adequate if the data is always handled in a single, fixed order.

However, more complex structures are essential if the tasks involve opera­

tions such as searching, editing, or sorting.

3. Can standard structures be used? Methods are readily available for handling

structures such as queues, stacks, and linked lists. Other arrangements will

require special programming.

4. What kind of access is necessary? Clearly we need more structure if we must

find elements that are identified by a number or a relative position, rather

than just the first or last entries. We must organize the data to make the

accesses as rapid as possible.

REVIEW OF PROBLEM DEFINITION AND

PROGRAM DESIGN

You should note that we have spent two entire chapters without mentioning any

specific microprocessor or assembly language, and without writing a single line of actual

code. However, you should now know a lot more about the examples than you would if

we had just asked you to write the programs at the start. Although we often think of the

writing of computer instructions as a key part of software development, it is actually

one of the easiest stages.

Once you have written a few programs, coding will become simple. You will

soon learn the instruction set, recognize which instructions are really useful, and

remember the common sequences that make up the largest part of most programs. You

Program Design 17-33

will then find that many of the other stages of software development remain difficult
and have few clear rules.

We have suggested some ways to systematize the important early stages. In the
problem definition stage, you must define all the characteristics of the system - its
inputs, outputs, processing, time and memory constraints, and error handling. You
must particularly consider how the system will interact with the larger system of
which it is a part, and whether that larger system includes electrical equipment,
mechanical equipment, or a human operator. You must start at this stage to make
the system easy to use and maintain.

In the program design stage, several techniques can help you to systematically
specify and document the logic of your program. Modular programming forces you to
divide the total program into small, distinct modules. Structured programming pro­
vides a systematic way of defining the logic of those modules, while top-down design
is a systematic method for �ntegrating and testing them. Of course, no one can compel
you to follow all of these techniques; they are, in fact, guidelines more than anything
else. But they do provide a unified aproach to design, and you should consider them a
basis on which to develop your own approach.

REFERENCES

1. D. L. Parnas (see the references below) has been a leader in the area of modular
programming.

2. Collected by B. W. Unger (see reference below).

3. Formulated by D. L. Parnas.

4. K. J. Thurber. and P. C. Patton. Data Structures and Computer Architecture, Lex­
ington Books, Lexington, Mass., 1977.

5. K. S. Shankar ... Data Structures, Types, and Abstractions,'' Computer, April 1980,

pp. 67-77.

The following references provide additional information on problem definition and pro­
gram design:

Chapin, N. Flowcharts, Auerbach, Princeton, N.J., 1971.

Dalton, W. F. "Design Microcomputer Software like Other Systems -
Systematically," Electronics, January 19, 1978, pp. 97-101.

Dijkstra, E. W. A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J.,
1976.

Halstead, M. H. Elements ojSoftwareScience, American Elsevier, New York, 1977.

Hughes, J. K. and J. I. Michtom. A Structured Approach to Programming, Prentice­
Hall, Englewood Cliffs, N. J., 1977.

Morgan, D. E. and D. J. Taylor." A Survey of Methods for Achieving Reliable Soft­
ware," Computer, February 1977, pp. 44-52.

Myers, W. "The Need for Software Engineering," Computer, February 1978, pp.
12-25.

Parnas, D. L. "On the Criteria to be Used in Decomposing Systems into Modules,"
Communications of the ACM, December 1972, pp. 1053-58.

17-34 6809 Assembly Language Programming

Parnas, D. L. "A Technique for the Specification of Software Modules with Exam­
ples," Communications of the ACM, May 1973, pp. 330-336.

Phister, M. Jr. Data Processing Technology and Economics, Santa Monica Publishing
Co., Santa Monica, Ca., 1976.

Schneider, V. "Prediction of Software Effort and Project Duration - Four New
Formulas," SJGPLAN Notices, June 1978, pp. 49-59.

Schneiderman, B. et al. "Experimental Investigations of the Utility of Detailed
Flowcharts in Programming," Communications of the ACM, June 1977, pp. 373-
381.

Tausworthe, R. C. Standardized Development of Computer Software, Prentice-Hall,
Englewood Cliffs, N.J., 1977 (Part 1); 1979 (Part 2).

Unger, B. W. "Programming Languages for Computer System Simulation,"
Simulation, April 1978, pp. 101-10.

Wirth, N. Algorithms + Data Structures = Programs, Prentice-Hall, Englewood
Cliffs, N.J., 1976.

Wirth, N. Systematic Programming: an Introduction, Prentice-Hall, Englewood Cliffs,
N.J., 1973.

Yourdon, E. U. Techniques of Program Structure and Design, Prentice-Hall,
Englewood Cliffs, N.J., 1975.

18
Documentation

Software development must yield more than just a working program. A soft­

ware product must also include the documentation that allows it to be used, main­

tained, and extended. Adequate documentation is helpful during program debugging

and testing, and essential in the later stages of the program's life cycle.

SELF-DOCUMENTING PROGRAMS

Although no program is ever completely self-documenting, some of the rules

that we mentioned earlier can help. These include:

Clear, simple, structure with as few transfers of control (jumps) as possible

Use of meaningful names and labels

Use of names for 110 devices, parameters, numerical factors, subroutines,
branch destinations, etc.

Emphasis on simplicity rather than on minor savings in memory usage, execu­
tion time, or typing

For example, the following program sends a string of characters to a

teletypewriter:

LDB $40

LDX #$1000

w LDA ,X+

STA $8008

JSR XXX

DECB

BNE w

SWI

18-2 6809 Assem hly Language Programming

CHOOSING USEFUL NAMES

Even without comments we can improve the program as follows:

COUNT EQU $40
MESSG EQU $1000
TTY PIA EQU $8008

LDB COUNT

LDX #MESSG

OUTCH LDA ,X+

STA TTY PIA

JSR BITDLY

DECB

BNE OUTCH

SWI

This program is undoubtedly easier to understand than the earlier version. Even

without further documentation, you could probably guess at the function of the pro­

gram and the meanings of most of the variables. Other documentation techniques can­
not substitute for self-documentation.

Some further notes on choosing names:

1. Use the obvious name when it is available, like TTY or CRT for output

devices, START or RESET for addresses, DELAY or SORT for subroutines,

COUNT or LENGTH for data.

2. Avoid acronyms like S 16BA for SORT 16-BIT ARRAY. These seldom

mean anything to anybody.

3. Use full words or close to full words when possible, like DONE, PRINT,

SEND, etc.

4. Keep the names as distinct as possible. Avoid names that look alike, such as

TEMPI and TEMP I, or resemble operation codes or other built-in names.

COMMENTS

Comments are a simple form in which to provide additional documentation.

However, few programs (even those used as examples in books) have effective com­

ments. You should consider the following guidelines for good comments:

1. Don't explain the internal effects of the instruction. Instead, explain the

purpose of the instruction in the program. Comments like

DECB B = B - 1

do not help the reader understand the program. A more useful comment is

DECB LINE NUMBER = LINE NUMBER - l

Remember that the standard manuals contain descriptions of how the pro­

cessor executes its instructions. The comments should explain what tasks

the program is performing and what methods it is using.

2. Make the comments as clear as possible. Do not use abbreviations or

acronyms unless they are well-known (like ASCII, PIA, or U ART) or stan­

dard (like no for number, ms for millisecond, etc.) Avoid comments like

DECB LN = LN - l

or
DECB DEC. LN BY 1

The extra typing is certainly worthwhile.

Documentation 18-3

3. Comment every important or obscure point. Be particularly careful to mark

operations that may not have obvious functions, such as

or

ANDA �%00100000 TURN OFF TAPE READER

LDA li,X GET SEVEN-SEGMENT CODE FROM TABLE

Clearly, 1/0 operations often require extensive comments. If you're not

exactly sure what an instruction does, or if you have to think about it, add a

clarifying comment. The comment will save you time later and will be help­

ful in documentation.

4. Don't comment the obvious- A comment on each line makes it difficult

5.

to find the important points. Standard sequences like

DECB

BNE SEARCH

need not be marked unless you're doing something special. One comment

will often suffice for several lines, as in

LSRA

LSRA

LSRA

LSRA

LOA $40

LOB $41
STA $41
STB $40

Place comments on

sequence.

GET MOST SIGNIFICANT DIGIT

EXCHANGE MOST SIGNIFICANT, LEAST

SIGNIFICANT BYTES

the lines to which they refer or at the start of a

6. Keep your comments up-to-date. If you change the program, change the

comments.

7. Use standard forms and terms in commenting. Don't worry about

repetitiveness. Varied names for the same things are confusing, even if the

variations are just COUNT and COUNTER, START and BEGIN, DIS­

PLAY and LEOS, or PANEL and SWITCHES. You gain nothing from

inconsistency. Minor variations may be obvious to you now, but may not be

clear later; others will get confused immediately.

8. Make comments mingled with instructions brief. Leave a complete

explanation to header comments and other documentation. Otherwise the

program gets lost in the comments and you may have a hard time even find­

ing the actual instructions.

9. Keep improving your comments. If you come to one that you cannot read or

understand, take the time to change it. If you find that the listing is getting

crowded, add some blank lines. The comments won't improve themselves;

in fact, they will just become worse as you leave the task behind and forget

exactly what you did.

10. Use comments to place a heading in front of every maj or section, subsec­

tion, or subroutine. The heading should describe the functions of the code

that follows it; it should include information about the algorithm employed,

the inputs and outputs, and any incidental effects that may be produced.

11. If you modify a working program, use comments to describe the modifica­

tions that you made and identify the date and author of the revision. This

18-4 6809 Assembly Language Programming

information should go both at the front of the program (so a user can easily
tell one version from another) and at the points where changes were actually
made.

Remember, comments are important. Good ones will save you time and effort.

Put some work into comments and try to make them effective.

EXAMPLES

18-1. COMMENTING A MULTIPLE-PRECISION ADDITION
ROUTINE

The basic program is:
LOB $40
LOX #$41
LOY #$51
AN DCC Ull111110

ADBYTE LOA ,X
ADCA ,Y+
STA ,X+

DECB
BNE ADBYTE
SWI

Important Points

First, comment the important points. These are typically intializations, data

fetches, and processing operations. Don't bother with standard sequences like updat­
ing pointers and counters. Remember that names are clearer than numbers, so use

them freely.

The new version of the program is:

*
*THE FOLLOWING PROGRAM PERFORMS MULTI-BYTE BINARY ADDITION
*
* INPUTS: LOCATION 0040 CONTAINS LENGTH OF NUMBERS IN BYTES
* LOCATIONS 0041 ON CONTAIN ONE OPERAND STARTING WITH LSB'S
* LOCATIONS 0051 ON CONTAIN ONE OPERAND STARTING WITH LSB'S
*
* OUTPUTS: LOCATIONS 0041 ON CONTAIN SUM STARTING WITH LSB'S
*

LENGTH
OPER1
OPER2

ADBYTE

EQU
EQU
EQU
LOB
LOX
LOY
AN DCC
LOA
AOCA
STA
DECB
BNE
SWI

$40

$41
$51
LENGTH
#0PER1
#0PER2
#%11111110

,X
,Y+

,X+

ADBYTE

Obscure Functions

COUNT = LENGTH OF NUMBERS IN BYTES
POINT TO LSB'S OF FIRST OPERAND, SUM
POINT TO LSB'S OF SECOND OPERAND

GET A BYTE FROM FIRST OPERAND
ADD A BYTE FROM SECOND OPERAND
STORE SUM OVER FIRST OPERAND

Second, look for instructions that may not have obvious functions and explain

their purposes with comments. Here, the purpose of ANDCC:#=%11111110 (the 6800
operation code CLC is surely easier to understand) is to clear the Carry flag before
adding the least significant bytes.

Documentation 18-5

Questions for Commenting

Third, ask yourself whether the comments tell you what you would need to

know to use the program; for example:

1. Where is the program entered? Are there alternative entry points?

2. What parameters are necessary? How and in what form must they be sup-

plied?

3. What operations does the program perform?

4. From where does it get the data?

5. Where does it store the results?

6. What special cases does it consider?

7. What does the program do about errors?

8. How does it exit?

Some questions may be irrelevant and some answers may be obvious. Make sure,

however, that you wouldn't have to dissect the program to answer the important

questions. Remember also that too much explanation may be an obstacle to using the

program. Are there any changes you would like to see in the listing? If so, make

them - you are the one who has to decide if the commenting is adequate and reasona­

ble.

*

*THE FOLLOWING PROGRAM PERFORMS MULTI-BYTE BINARY ADDITION
*

* INPUTS: LOCATION 0040 CONTAINS LENGTH OF NUMBERS IN BYTES
* LOCATIONS 0041 ON CONTAIN ONE OPERAND STARTING WITH LSB'S
* LOCATIONS 0051 ON CONTAIN ONE OPERAND STARTING WITH LSB'S
* OUTPUTS: LOCATIONS 0041 ON CONTAIN SUM STARTING WITH LSB'S
*

LENGTH EQU
OPERl EQU
OPER2 EQU

LOB
LOX
LOY
AN DCC

ADBYTE LOA
ADCA
STA
DECB
BNE
SWI

$40

$41

$51
LENGTH
#OPERl
#OPER2
#%11111110
'X

,Y+

,X+

ADBYTE

LENGTH OF NUMBERS IN BYTES
LSB'S OF ONE OPERAND AND SUM
LSB'S OF OTHER OPERAND
COUNT = LENGTH OF NUMBERS IN BYTES
POINT TO LSB'S OF FIRST OPERAND, SUM
POINT TO LSB'S OF SECOND OPERAND
CLEAR CARRY FOR ADDITION OF LSB'S
GET A BYTE FROM FIRST OPERAND
ADD A BYTE FROM SECOND OPERAND
STORE SUM OVER FIRST OPERAND

CONTINUE UNTIL ALL BYTES ADDED

18-2. COMMENTING A TELETYPEWRITER OUTPUT
ROUTINE

The basic program is:

TBIT

LOA

ASLA
LOB
STA
JSR
RORA
ORCC
DECB

BNE
SWI

$flO

#11
$8008
BITDLY

fl%00000001

TBIT

18-6 6809 Assembly Language Programming

Commenting the important points and adding names gives:

*

*TELETYPEWRITER OUTPUT PROGRAM
*

*THIS PROGRAM SENDS THE CONTENTS OF MEMORY LOCATION 00�0 TO THE

TELETYPEWRITER
*

* INPUTS: CHARACTER TO BE TRANSMITTED IN MEMORY LOCATION 0060

* OUTPUTS: NONE
*

NBITS EQU 11 NUMBER OF BITS PER CHARACTER

TDATA EQU $60 ADDRESS OF CHARACTER TO BE TRANSMITTED
TTY PIA EQU $8008 TELETYPEWRITER OUTPUT DATA PORT

LOA TDATA GET DATA

ASLA SHIFT DATA LEFT AND FORM START BIT
LOB INBITS COUNT = NUMBER OF BITS IN CHARACTER

TBIT STA TTY PIA SEND A BIT TO TELETYPEWRITER

JSR BITDLY WAIT 1 BIT TIME

RORA GET NEXT BIT

ORCC #%00000001 SET CARRY TO FORM STOP BITS

DECB

BNE TBIT COUNT BITS
SWI

Changing the Program

Note how easily we could change this program so that it would transfer a whole
string of data, starting at the address in locations BUFPTR and BUFPTR +land ending
with an "03" character (ASCII ETX). Furthermore, let us make the terminal a 30

character per second device with one stop bit (we will have to change subroutine
BITDL Y). Try making the changes before looking at the listing.

*

*STRING OUTPUT PROGRAM
*
*TERMIN/\L

*TRANSMISSION CEASES WHEN AN ASCII ETX IS ENCOU�TERED

*INPUTS: MEMORY LOCATIONS 00�0 /\NO 00�1 CONTAIN STARTING ADDRESS

* OF STRING TO BE TRANSMITTED

* OUTPUTS: NONE
*

BUFPTR EQU

ENOCH EQU

NBITS EQU

TRMPIA EQU

LDX

TCHAR LOA

CMPA
BEQ

ASLA

LOB
TBIT STA

JSR

RORA

ORCC

DECB

BNE

BRA

DONE SWI

$60

$03

10
$8008
BUFPTR

,X+

tENDCH
DONE

tNBITS

TRMPIA

BITDLY

#%00000001

TBIT

TCHAR

STARTING ADDRESS OF OUTPUT DATA BUFFER

ENDING CHARACTER = ASCII ETX

NUMBER OF BITS PER CHARACTER

TERMINAL OUTPUT DATA PORT

GET STARTING ADDRESS OF OUTPUT BUFFER
GET A CHARACTER ·FROM THE BUFFER

IS IT THE ENDING CHARACTER?
YES, DONE

NO, SHIFT IT LEFT TO FORM A START BIT

COUNT = NUMBER OF BITS IN CHARACTER

SEND A BIT TO THE TERMINAL

GET NEXT BIT

SET CARRY TO FORM STOP BIT

COUNT BITS

Good comments will help you change a program to meet new requirements. For
example, try changing the last program so that it:

Starts each message with ASCJJ STX (02) followed by a three-digit identifica­
tion code stored in memory locations JDCODE through JDCODE + 2.

Adds no start or stop bits

Waits 1 ms between bits

Documentation 18-7

Transmits 40 characters, starting with the one located at the address in DPTR

and DPTR + 1.

Ends each message with two consecutive ASCII ETXs (03)

FLOWCHARTS AS DOCUMENTATION

We have already described the use of flowcharts as a design tool in Chapter 17.

Flowcharts are also useful in documentation, particularly if:

They are not cluttered or too detailed.

Their decision points are explained and marked clearly.

They include all branches.

They correspond to the actual program listings.

Flowcharts are helpful if they give you an overall picture of the program. They are not

helpful if they are just as difficult to read as the program listing.

STRUCTURED PROGRAMS AS DOCUMENTATION

A structured program can serve as documentation for an assembly language pro­

gram if:

You describe the purpose of each section in the comments.

You make it clear which statements are included in each conditional or loop

structure by using indentation and ending markers.

You make the total structure as simple as possible.

You use a consistent, well-defined language.

The structured program can help you check the logic or improve it. Further­

more, since the structured program is machine-independent, it can also help you

implement the same task on another computer.

MEMORY MAPS

A memory map is simply a list of all the memory assignments in a program.

The map allows you to determine the amount of memory needed, the locations of data

or subroutines, and the parts of memory not allocated. The map is a handy reference for

finding storage locations and entry points and for dividing memory between different

routines or programmers. The map will also give you easy access to data and subroutines

if you need them in later extensions or in maintenance. Sometimes a graphical map is

more helpful than a listing.

18-8 6809 Assembly Language Programming

A typical map is:

Program Memory

Address Routine Purpose

EOOO -E1 FF RDKBD Interrupt Service Routine for Keyboard

E200- E240 BRKPT Breakpoint Routine Entered Via Software Interrupt

E241 -E250 DELAY Generalized Delay Program

E251 -E270 DSPLY Control Program for Operator Displays

E271 -E3EF SUPER Main Supervisor Program

E3FO - E3FF Interrupt and Reset Vectors

Data Memory

Address Name Purpose

0000 NKEYS Number of Keys Pressed by Operator

0001 - 0002 KBPTR Keyboard Buffer Pointer

0003-0041 KBUFFR Keyboard Buffer

0042-0050 DBUFFR Display Buffer

0051 - 006F TEMP Miscellaneous Temporary Storage

0070- OOFF STACK Hardware Stack

The map may also list additional entry points and include a specific description

of the unused parts of memory.

PARAMETER AND DEFINITION LISTS

Parameter and definition lists at the start of the main program and each

subroutine make understanding and changing the program far simpler. The following

rules can help.

1. Separate RAM locations, 1/0 units, parameters, definitions, and fixed

memory addresses.

2. Arrange lists alphabetically when possible, with a description of each

entry.

3. Give each parameter that might change a name and include it in the lists.

Such parameters may include time constants, inputs or codes corresponding

to particular keys or functions, control or masking patterns, starting or ending

characters, thresholds, etc.

4. List fixed memory addresses separately. These may include Reset and inter­

rupt service addresses, the starting address of the program, RAM areas, Stack

areas, etc.

5. Give each port used by an 1/0 device a name, even though devices may

share ports in the current system. The separation will make it easier for you to

expand or change the J/0 section.

Documentation 18-9

A typical list of definitions is:

*
* MEMORY SYSTEM CONSTANTS
*

FRQSRV EQU
IRQSRV EQU
RAMST EQU
RESET EQU

STKPTR EQU
*
*I/0 UNITS
*

DSPLAY EQU
KBDIN EQU
KBDOUT EQU

TTY PIA EQU
*

•RAM STOR.ll.Gf.
*

ORG
NKEYS RMB
KPTR RMB
KBFR RMB
DISBFR RMB
TEMP RMB
*

*PARAMETERS
*

BOUNCE EQU
GOKEY EQU
MSCNT EQU
OPEN EQU
TPULS EQU
*

*DEFINITIONS
*

ALLHI EQU
STCON EQU

$El00

$E200
0

$E300

$0180

$8006
$8004
$8006

$8008

RAMST
1

2

$40
$10
$14

2

10

$7A

$OF
1

$FF

$80

SERVICE ADDRESS FOR FAST INTERRUPT
SERVICE ADDRESS FOR REGULAR INTERRUPT

STARTING ADDRESS FOR TEMPORARY STORAGE
RESET ADDRESS

STARTING ADDRESS FOR HARDWARE STACK

OUTPUT PIA FOR DISPLAYS
INPUT PIA FOR K8YBOARD
OUTPUT PIA FOR KEYBOARD

DATA PORT FOR TTY

TEMPORARY DATA STORAGE AREA
NUMBER OF KEYS
KEYBOARD BUFFER POINTER
KEYBOARD INPUT BUFFER
DISPLAY OUTPUT BUFFER
TEMPORARY DATA STORAGE

DEBOUNCING TIME IN MS
IDENTIFICATION NUMBER FOR 'GO' KEY

COUNT FOR 1 MS DELAY
INPUT PATTERN WHEN NO KEYS ARE PRESSED
PULSE LENGTH FOR DISPLAYS IN MS

ALL ONES INPUT
OUTPUT FOR START OF CONVERSION PULSE

Of course, the RAM entries will usually not be in alphabetical order, since the

designer must order these to minimize the number of address changes required in the

program.

LIBRARY ROUTINES

Standard documentation of subroutines helps you build a library of programs

that are easy to use. If you describe each subroutine with a standard form, anyone can

see at a glance what the routines do and how to use them. You should organize the

forms carefully, dividing them, for example, by processor, language, and type of pro­

gram. Remember, without proper documentation and organization, using the library

may be more difficult than writing programs from scratch. If you are going to use

subroutines from a library or other outside source, you must know all their effects in

order to debug your overall program.

STANDARD PROGRAM LIBRARY FORMS

Among the information that you will need in the standard form is:

Purpose of the program

18-10 6809 Assembly Language Programming

Processor used

Language used

Parameters required and how they are passed to the subroutine

Results produced and how they are passed to the main program

Number of bytes of memory used

Number of clock cycles required. This number may be an average or a typical
figure, or it may vary widely. Actual execution time will, of course, depend on
the processor clock rate and the memory cycle time.

Registers affected

Flags affected

A typical example

Error handling

Special cases

Documented program listing

If the program is complex, the standard library form should also include a

general flowchart or a structured outline of the program. As we have mentioned

before, a library program is most likely to be useful if it performs a single function in

a general manner.

18-3. SUM OF DATA/LIBRARY ROUTINE

Purpose: The program SUM8 computes the sum of a set of 8-bit unsigned binary num­
bers.

language: 6809 Assembler

Initial Conditions: Starting address of set of numbers in Index Register X, length of
set in Accumulator B.

Final Conditions: Sum in Accumulator A.

Requirements:

Memory - 7 bytes

Time - 7 + 11 N clock cycles, where N is the length of the set of numbers.

Registers- A,B,X

All flags affected

Typical Case: (all data in hexadecimal)
Start:

End:

(X)
(8)

(0050)
(0051)
(0052)

0050
03
27
3E
26

Starting address
Length of set
Data items

(A) 88 Sum

Error Handling: Program ignores all carries. Carry flag reflects only the result of the last
operation. Initial contents of Accumulator B must be 1 or more.

Listing:

*SUM OF A SET OF 8-BIT DATA TTEMS
*

SUM8 CLRA

ADBYTE ADDA ,X+
DECB
BNE ADBYTE

RTS

CLEAR SUM TO START

ADD AN ELEMENT TO THE SUM

18-4: DECIMAL TO SEVEN SEGMENT

CONVERSION/LIBRARY ROUTINE

Documentation 18-11

Purpose: The program SEVEN converts a binary-coded decimal number to a seven-seg­
ment display code.

Language: 6809 Assembler

Initial Conditions: Data in Accumulator A.

Final Conditions: Seven-segment code in Accumulator B.

Requirements:

Memory- 21 bytes, including the seven-segment code table (10 entries).

Time- 20 clock cycles if the data is valid, 12 if it is not.

Registers - A,B,X

All flags affected

Input data in Accumulator A is not changed.

Typical Case: (data in hexadecimal)

Start:

End:

(A) 05 Decimal data

(B) 60 Seven-segment representation of input data

Error Handling: Program returns zero in Accumulator B if the data is not a decimal digit.

Listing:
*

*DECIMAL TO SEVEN-SEGMENT CODE CONVERSION
*

SEVEN CLRB

CMPA #9
BHI DONE
LDX #SSEG

LOB A,X
DONE RTS

GET ERROR CODE

IS DATA A DECIMAL DIGIT?

NO, KEEP ERROR CODE AS RESULT

YES, GET SEVEN-SP.GMENT CODE FROM TABLf

SSEG FCB $3F,S05,S5B,$4F,$66
FCB $6D,$7D,S07,$7F,$6F

18-5. DECIMAL SUM/LIBRARY ROUTINE

Purpose: The program DECSUM adds two multi-digit decimal (BCD) numbers with
digits packed two to a byte.

Language: 6809 Assembler

18-12 6809 Assembly Language Programming

Initial Conditions: Address of LSD's of one operand (and sum) in Index Register X,

address of LSD's of other operand in Index Register Y. Length of

numbers (in bytes) in Accumulator B. Numbers arranged starting

with LSD's at lowest address.

Final Conditions: Sum replaces number with starting address in Index Register X.

Requirements:

Memory - 13 bytes

Time - 8 + 23N clock cycles, where N is the number of bytes.

Registers - A,B,X, Y

All flags affected - Carry shows if sum produced a carry.

Typical Case: (all data in hexadecimal)

Start:

End:

(X)
(Y)

(B)

(0060)
(0061)

(0050)
(0051) =

0060 Address of LSD's of one operand and sum

0050 Address of LSD's of other operand

02 Length of operands in bytes

�:} 5534 is first operand

�� } 1 588 is second operand

(0060) = 22 }
(0061) = 71 7122 is decimal sum

Carry = 0

Error Handling: Program does not check the validity of decimal inputs. The contents

of Accumulator B must be 1 or more.

Listing:
*

*MUL TI-DIGIT DECIMAL (BCD) ADDITION
*

DECSUM
ADDIGS

ANDCC #%11111110
LDA ,X

ADCA I Y+
DAA
STA ,X+
DECB
BNE ADDIGS
RTS

CLEAR CARRY TO START
GET TWO DIGITS OF FIRST OPERAND

ADD TWO DIGITS OF SECOND OPERAND
DECIMAL CORRECTION
STORE SUM OVER FIRST OPERAND

TOTAL DOCUMENTATION

Complete documentation of microprocessor software will include all or most of

the elements that we have mentioned.

DOCUMENTATION PACKAGE

The total documentation package may involve:

General flowcharts

A written description of the program

A list of all parameters and definitions

A memory map

A documented listing of the program

A description of the test plan and test results

The documentation may also include:

Programmer's flowcharts

Data flowcharts

Structured programs

Documentation 18-13

Even this package is sufficient only for non-production software. Production soft-

ware also requires the following documents:

Program Logic Manual

User's Guide

Maintenance Manual

Program Logic Manual

The program logic manual expands the written explanation provided with the

software. It should explain the system's design goals, algorithms, and tradeoffs, assum­

ing a reader who is competent technically but lacks detailed knowledge of the program.

It should provide a step-by-step guide to the operations of the program and it should

explain the data structures and their manipulation.

User's Guide

The User's Guide is the most important single piece of documentation. No mat­

ter how well-designed the system may be, it will not be useful if no one can understand

its operations or take advantage of its features. The User's Guide should explain

system features and their use, provide frequent examples that clarify the text, and

give tested step-by-step directions. The writing of User's Guides requires care and

objectivity, since the writer must be able to take an outsider's point of view.

One problem in writing User's Guides is the need to avoid overwhelming the

beginner or taxing the patience of the experienced user. Two separate versions can help

overcome this problem. A guide for the beginner can explain the most common

features of the program with the aid of simple examples and detailed discussions. A

guide for the experienced user can provide more extensive descriptions of features

and fewer details. Remember that the beginner needs help getting started, whereas the

experienced user wants organized reference material.

Maintenance Manual

The maintenance manual is designed for the programmer who has to modify the

system. It should explain the procedures for any �hangts or expansion that have been

designed into the program.

-· ----

18-14 6809 Assembly Language Programming

IMPORTANCE OF DOCUMENTATION

Documentation should not be taken lightly or left to the last minute. Good docu­

mentation, combined with proper programming practices, is not only an important part

of the final product but can also make development simpler, faster, and more produc­

tive. The designer should make consistent and thorough documentation part of every

stage of software development.

19
Debugging

As we noted at the beginning of this section, debugging and testing are among the

most time-consuming stages of software development. Even though such methods as

modular programming, structured programming, and top-down design can simplify

programs and reduce the frequency of errors, debugging and testing are still difficult

because they are so poorly defined. The selection of an adequate set of test data is

seldom a clear or scientific process. Finding errors sometimes seems like a game of "pin

the tail on the donkey," except that the donkey is moving and the programmer must

position the tail by remote control. Surely, few tasks are as frustrating as debugging pro­

grams.

This chapter will first describe the tools available to aid in debugging. It will

then discuss basic debugging procedures, describe the common types of errors, and

present some examples of program debugging. The next chapter will describe how to

select test data and test programs.

We will describe only the purposes of most debugging tools. There is little stan­

dardization in this area and we cannot discuss all the available products. The examples

show the uses, advantages, and limitations of some common tools.

Debugging tools have two major functions. One is to pin the error down to a short

section of the program; the other is to provide more detailed information about what the

computer is doing than is provided by normal runs and so make the source of the error

obvious. Current debugging tools do not find and correct errors by themselves; you

must know enough about what is happening to recognize and correct the error when the

debugging tools zero in on it and show its effects in detail.

19-2 6809 Assembly Language Programming

SIMPLE DEBUGGING TOOLS

The most common simple debugging tools are:

A single-step facility

A breakpoint facility

A trace facility

A Register Dump Program (or utility)

A Memory Dump Program

SINGLE STEP

The single-step facility allows you to execute the program one instruction or

one memory cycle at a time. Only some 6809-based microcomputers have this

facility, since the circuitry is fairly complex. Of course, all that you can see when the

computer executes a single-step are the states of the output lines that you are

monitoring. The most important lines are:

Data Bus

Address Bus

Control Lines

BUSY and READ/WRITE

If you monitor these lines either in hardware or in software, you can see the

progression of addresses, instructions, and data as the program is executed. You can

determine what kinds of operations the CPU is performing. This information will be

sufficient for you to identify such errors as Jump or Branch instructions with incorrect

conditions or destinations, omitted or incorrect addresses, incorrect operation codes,

and incorrect data values. However, you cannot see the contents of registers, flags, or

memory locations without some additional debugging tool.

Furthermore, a single-step mode obviously slows the processor way below its

normal speed. You cannot check delay loops or 1/0 operations in real time. Nor can a

single-step mode help you find timing errors or errors in the interrupt or DMA systems.

In fact, the single-step mode typically operates at less than one millionth of normal pro­

cessor speed. To single-step through one second of real processor time would require

more than ten days. The single-step mode, therefore, is useful only to check the logic

of a short sequence of instructions.

BREAKPOINT

A breakpoint is a place at which the program will automatically halt or wait so

that the user can examine the current status of the system. The program will not con­

tinue until the user orders its resumption. Breakpoints allow you to check or pass

through an entire section of a program. Thus, to see if an initialization routine is correct,

you can place a breakpoint at the end of it and run the program. You can then check

memory locations and registers to see if the entire section is correct. However, note that
if the section is not correct, you still must pinpoint the error, either with earlier break­

points or with a single-step mode.

Debugging 19-3

Breakpoints complement the single-step mode. You can use breakpoints either
to localize the error or to pass through sections that you know are correct. You can
then do the detailed debugging in the single-step mode. In some cases, breakpoints do
not affect program timing. They can then be used to check input/output and interrupts.

Software and Hardware Interrupts

Breakpoints often use the microprocessor's interrupt system (see Chapter 15).
The 6809 has 3 Software Interrupt instructions (SWI, SWI2, and SWI3) that can act
as breakpoints. If you are not already using the interrupt inputs (IRQ, FIRQ, and
NMI), you can use those vectors as externally controlled breakpoints. Table 15-l lists
the addresses used by the various instructions and inputs. The breakpoint routine can
print the contents of registers and memory locations or just wait (by executing a condi­
tional jump dependent on a switch input) until the user allows the computer to proceed.
But remember that the interrupts and SWI instructions use the Hardware Stack to store
the return address and the contents of the registers. Figure 19-1 shows a service routine
in which SWI results in an endless loop. The program would have to clear this break­
point with a RESET or non-maskable interrupt (SWI disables the maskable interrupts).

Inserting Breakpoints

The simplest method for inserting breakpoints is to replace the first byte or
bytes of an instruction with a Software Interrupt instruction. Any Software Interrupt
instruction will automatically direct the processor to the breakpoint routine and save the
current values of all the registers (except the Hardware Stack Pointer) in the Hardware
Stack. Figure 15-2 shows the order in which the processor saves its registers. The break­
point routine can print all the register contents by starting at the address in the Hardware
Stack Pointer. The only problem is that the return program counter value will be the
address following the Software Interrupt. You may want to reduce that value by 1 or 2,

either to display the actual breakpoint address or to resume the program correctly after
restoring the original instruction. Typical programs to reduce the value are (using the
methods discussed in Chapter 15):

1. Decrement the return address by 1 (if you are using SWI)

LOX

LEAX

STX

$0A,S

-l,X

$0A,S

GET RETURN ADDRESS

MOVE IT BACK l
PUT ADJUSTED RETURN ADDRESS IN STACK

2. Decrement the return address by 2 (if you are using SW12 or SWI3)

LDX $0A,S

LEAX -2,X

STX $0A,S

onr. BPJ{PT

BRKPT BRI\ BRKPT

ow:; $FFFI\

FD!3 P.R!:PT

GET RETURN ADDRESS

MOVE IT BACK 2 (SWI2 AND SWI3 USE
TWO BYTES EACH)

PUT ADJUSTED RETURN ADDRESS IN STACK

RR�AKPOINT ROUTINE
�-<A IT IN PLI\C:E

SOFT\�1\RE INTCfHWPT BREI\'<POI'IT

ADDRESS OF BREAKPOINT ROUTI�E

Figure 19-1. A Sim pie Breakpoint Routine

19-4 6809 Assembly Lmguage Programming

Store all registers
in Stack.

Count = Number
of bytes in
registers = 1 4

Data Pointer =

Stack Pointer

Print (Data Pointer)
as two hex digits

Data Pointer =

Data Pointer + 1
Count = Count - 1

Res tore all registers
from Stack

Figure 19-2. Flowchart or Register Dump Program

Setting and Clearing Breakpoints

Many monitors have facilities for automatically inserting (setting} and remov­

ing (clearing) breakpoints based on one of the Software Interrupt instructions. Such

breakpoints do not affect the timing of the program until one of them is executed.

However, you obviously cannot replace instructions that are in ROM or PROM. Other

monitors implement breakpoints by actually checking the address lines or the Pro­

gram Counter in hardware or in software. This method allows the user to set break­

points on addresses in ROM or PROM, but it may affect system timing if the address

must be checked in software. A more powerful facility would allow the user to enter an

address to which the processor would transfer control. Another possibility would be a

return dependent on a switch as in the following example.

BRKPT TST PIADRA
BMI BRKPT
RTI

Debugging 19-5

WAIT FOR SWITCH IN BIT 7 TO CLOSE

Of course, other PIA data or control lines could also be used. Remember that RTI

reenables the interrupts automatically. If a PIA interrupt is used, the service routine
must read the PIA data register to clear the interrupt status bit.

Precautions in Using Breakpoints

When you use breakpoints (whether manually or through monitor facilities),
remember the following precautions:

1. Only set breakpoints at addresses that contain operation codes. Replacing
data or parts of addresses with SWI instructions can result in chaos.

2. Interpret the results carefully. Remember that the computer has not yet
executed the instruction that was replaced.

3. Check all conditions before resuming the program. You may have to change
the program counter, correct the contents of registers or memory locations,
clear breakpoints that are no longer necessary, and set new breakpoints.
Methods for resuming programs vary greatly, so consult your microcom­
puter's User's Guide. Be particularly careful never to resume a program in the

middle of an instruction (that is, at an address that does not contain an opera­

tion code) or in the middle of an 1/0 or timing operation (e.g., sending data to

a teletypewriter) that cannot logically be resumed after a delay.

TRACE

The trace facility allows you to see intermediate results. A simple trace prints the
contents of all registers and other variables after each instruction is executed. This
obviously produces a large amount of information, most of which is irrelevant or repeti­

tive. Better trace facilities allow you to specify what you want traced and how often
you want the values printed. This results in less information, but means that you must
decide what you need before instituting the trace.

The following approach will help you use traces:

1. Decide what you need before executing the trace. Otherwise, you will not
know what to do with the results.

2. Start by tracing only one or two variables and printing the results infre­
quently. This will give you less information to analyze at one time.

3. Use breakpoints to limit the extent of the trace.

4. Use whatever facilities your computer has to mark the output. Otherwise,
you will end up with pages of unidentified numbers and you will spend most
of your time just figuring out what they are.

REGISTER DUMP

A Register Dump utility is a program that lists the contents of all the CPU
registers. This information is usually not directly obtainable. The following routine will

19-6 6809 Assembly Language Programming

Value Register

AO SH
68 SL
DC cc
27 A
E5 8
01 DP
86 XH
97 XL
80 YH
14 YL
05 UH
F3 UL
07 PCH
3C PCL

Figure 19-3. Results or a Typical 6809 Register Dump

print the contents of all the registers on the system printer, if we assume that
PRTHEX prints the contents of Accumulator A as two hexadecimal digits. Figure 19-

2 is a flowchart of the program and Figure 19-3 shows a typical result. We assume that
the routine is entered with a BSR or JSR instruction that stores the old Program Counter
at the top of the Hardware Stack. An interrupt or Software Interrupt instruction will
store all the registers (except the Hardware Stack Pointer) on the Hardware Stack.

*

*SAVE ALL CPU REGISTERS IN THE HARDWARE STACK (PC IS ALREADY
*THERE)

*

RDUMP PSHS U,Y,X,DP,B,A,CC SAVE USER REGISTERS
LEAU 12,S CALCULATE ORIGINAL STACK POINTER

PSHS U SAVE ORIGINAL STACK POINTER
*

*P�:NT CONTENTS OF REGISTERS
*ORDER IS S(HIGH) ,S(LOW) ,CC,A,B,DP,X{HIGH) ,X(LOW) ,Y(HIGH) ,Y(LOW),
* U(HIGH) ,U(LOW) ,PC(HIGH) ,PC(LOW)

*

TFR S,U

LOB #14
PRNTl LDA , U+

JSR PRTHEX
DECB

*
BNE PRNTl

POINT TO START OF REGISTER STORAGE
NUMBER OF BYTES = 14

GET A BYTE FROM THE STACK
AND PRINT IT

*RESTORE REGISTERS FROM THE STACK, INCLUDING THE ORIGINAL STACK

* POINTER

*

PULS U RESTORE AND DISCARD STACK POINTER
PULS PC,U,Y,X,DP,B,A,CC RESTORE OTHER REGISTERS AND RETURN

MEMORY DUMP

A Memory Dump is a program that lists the contents of memory on an output
device (such as a printer). This is a much more efficient way to examine data arrays or
entire programs than just looking at single locations. However, large memory dumps are

not useful (except to supply scrap paper) because of the sheer mass of information that

Debugging 19-7

they produce. They may also take a long time to execute on a slow printer. Small dumps

may, however, provide the programmer with a reasonable amount of information that

can be examined as a unit. Relationships such as regular repetitions of data patterns

or offsets of entire arrays may become obvious.

A general dump can be difficult to write. The programmer should be careful of the

following situations:

1. The size of the memory area exceeds 256 bytes, so that an 8-bit counter will

not suffice.

2. The ending address is below the starting address. This can be treated as an

error, since the user would seldom want to print the contents of memory in an

unusual order.

Since the speed of the Memory Dump depends on the speed of the output device,

the efficiency of the routine seldom matters. The following program will ignore cases

where the ending address is below the starting address, and will handle areas of any

size. We assume that the starting address is in memory locations START and START +

1 and the ending address is in memory locations LAST and LAST + 1.
*

*PRINT CONTENTS OF MEMORY LOCATIONS BETWEEN START AND LAST
*

DUMP LDX

CHKEND CMPX

BHI
LDA

JSR

BRA

DONE RTS

START

LAST

DONE
,X+

PRNTl

CHKEND

GET STARTING ADDRESS

ARE WE BEYOND ENDING ADDRESS?

YES, DUMP COMPLETED
NO, GET CONTENTS OF NEXT LOCATION

PRINT CONTENTS AS 2 HEX DIGITS

Figure 19-4 shows the output from a dump of memory locations 1000 through

101F.

This routine correctly handles the case in which the starting and ending addresses

are the same (try it!) . You must interpret the results carefully if the dump area includes

the stack, since the dump subroutine itself uses the stack. PRNT l may also change

memory and stack locations.

A memory dump can display the data in many different formats. Common alter­

natives are ASCII characters or pairs of hexadecimal digits for 8-bit values and four hex­

adecimal digits for 16-bit values. You should select a format based on how you plan to

use the dump. If the area of memory contains object code, a hexadecimal format will be

best, since you can look up the meanings of the operation codes in Appendix D or on a

standard summary card. The following example shows a common format for displaying

the output of a dump; since this approach provides both the hexadecimal and the ASCII

forms, you can use it to examine areas containing either object code or ASCII text.

1000 54 68 �5 20 64 75 6D 70 The dump

23 1 F 60 54 37
6E 42 38 17 59
47 36 23 81 E1
34 ED BC AF FE

28 3E ()0

44 98 3/
FF FF SA
FF 27 02

figure 19-4. Results of a Typical Memory Dump

19-8 6809 Assembly Language Programming

Each line consists of three parts: a starting address (the address of the first byte
shown on the line), the contents of that address and the following seven or fifteen bytes
in hexadecimal form, and the ASCII representation of those contents. You might try

revising the memory dump program so it produces output in this format.

ADVANCED DEBUGGING TOOLS

Popular advanced debugging tools include:

Simulator programs that help in checking program logic.

Logic or microprocessor analyzers that help in checking timing and other
hardware-related factors.

Many variations of both these tools exist; we shall discuss only the standard
features.

SOFTWARE SIMULATOR

The simulator is the computerized equivalent of the pencil-and-paper computer.

It is a computer program that goes through the operating cycle of another computer,
keeping track of the contents of all the registers, flags, and memory locations. We

could, of course, do this by hand, but it would require a large amount of effort and close
attention to the exact effects of each instruction. The simulator program never gets tired
or confused, forgets an instruction or register, or runs out of paper.

Most simulators are large FORTRAN programs. They can be purchased or used
on the time-sharing service. The 6809 simulator is available in several versions from

different sources.

Typical Features

Typical simulator features are:

1. A breakpoint facility. Usually, breakpoints can be set after a particular num­
ber of cycles have been executed, when a memory location or one of a set of
memory locations is referenced, when the contents of a location or one of a
set of locations are altered, or on other conditions.

2. Register and memory dump facilities that can display the values of memory
locations, registers, and 1/0 ports.

3. A trace facility that will print the contents of particular registers or memory

locations whenever the program changes or uses them.

4. A load facility that allows you to set values initially or change them during
the simulation.

Some simulators can also simulate input/output, interrupts, and even DMA.

Debugging 19-9

Advantages

The simulator has many advantages:

1. It can provide a complete description of the status of the computer, since it is

not restricted by pin limitations or other characteristics of the underlying cir­

cuitry.

2. It can provide breakpoints, dumps, traces, and other facilities, without using

any of the processor's memory space or control system. These facilities will

therefore not interfere with the user program.

3. Programs, starting points, and other conditions are easy to change.

4. All the facilities of a large computer, including peripherals and software, are

available to the microprocessor designer.

Limitations

On the other hand, the simulator is limited by its software base and its separa­
tion from the real microcomputer. The major limitations are:

1. The simulator cannot help with timing problems, since it operates far more

slowly than real time and does not model actual hardware or interfaces.

2. The simulator cannot fully model the input/output section.

3. The simulator is usually quite slow. Reproducing one second of actual pro­

cessor time may require hours of computer time. Using the simulator can be

quite expensive.

The simulator represents the software side of debugging; it has the typical
advantages and limitations of a wholly software-based approach. The simulator can
provide insight into program logic and other software problems, but cannot help with
timing, 1/0, and other hardware problems.

LOGIC ANALYZER

The logic or microprocessor analyzer is the hardware approach to debugging.
Basically, the analyzer is the parallel digital version of the standard oscilloscope. The

analyzer displays information in binary, hexadecimal, or mnemonic form on a CRT, and

has a variety of triggering events, thresholds, and inputs. Most analyzers also have a

memory so that they can display the past contents of the busses.

The standard procedure is to set a triggering event, such as the occurrence of a

particular address on the Address Bus or instruction on the Data Bus. For example, one

might trigger the analyzer if the microcomputer tries to store data in a particular area or

execute an input or output instruction. One may then look at the sequence of events

that preceded the breakpoint. Common problems you can find in this way include
short noise spikes (or glitches), incorrect signal sequences, overlapping waveforms,
and other timing or signaling errors. You could not diagnose those errors with a soft­

ware simulator any more than you could conveniently find errors in program logic with a

logic analyzer.

19-10 6809 Assembly Language Programming

Important Features

Logic analyzers vary in many respects. Some of these are:

1. Number of input lines. At least 24 are necessary to monitor an 8-bit Data
Bus and a 16-bit Address Bus. Still more are needed for control signals,
clocks, and other important inputs.

2. Amount of memory. Each previous state that is saved will occupy several
bytes.

3. Maximum frequency. It must be several MHz to handle the fastest pro­
cessors.

4. Minimum signal width (important for catching glitches).

5. Type and number of triggering events allowed. Important features are pre­
and post-trigger delays. These allow the user to display events occurring
before or after the trigger event.

6. Methods of connecting to the microcomputer. This may require a complex
interface.

7. Number of display channels.

8. Binary, hexadecimal, or mnemonic displays.

9. Display formats.

10. Signal-hold time requirements.

11. Probe capacitance.

12. Single or dual thresholds.

All these factors are important in comparing different logic and microprocessor
analyzers, since these instruments are new and unstandardized. A tremendous variety
of products is already available and this variety will become even greater in the future. I

Logic analyzers, of course, are necessary only for systems with complex timing.

Simple applications with low-speed peripherals have few hardware problems that a

designer cannot handle with a standard oscilloscope.

DEBUGGING WITH CHECKLISTS

The designer cannot possibly check an entire program by hand; however, there
are certain trouble spots that the designer can easily check. You can use systematic

hand checking to find many errors before you start using debugging tools. The ques­

tion is where to place the effort. The answer is on points that can be handled with

either a yes-no answer or with a simple arithmetic calculation. Do not try to do com­
plex arithmetic, follow all the flags, or try every conceivable case. Limit your hand
checking to matters that can be settled easily. Leave the complex problems to be solved
with the aid of debugging tools. But proceed systematically, build your checklist, and
make sure that the program performs the basic operations correctly.

Debugging 19-11

WHAT TO CHECK BY HAND

The first step is to compare the flowchart or other program documentation with
the actual code. Make sure that everything that appears in one also appears in the other.
A simple checklist will do the job. It is easy to completely omit a branch or processing
section.

Next concentrate on the program loops. Make sure that all registers and memory
locations used inside the loops are initialized correctly. This is a common source of
errors; once again, a simple checklist will suffice.

Now look at each conditional branch. Select a sample case that should produce a
branch and one that should not; try both of them. Is the branch correct or inverted? If
the branch involves checking whether a number is above or below a threshold, try the
equality case. Does the correct branch occur? Make sure that your choice is consistent
with the problem definition.

Look at the loops as a whole. Try the first and last iterations by hand; these are
often troublesome special cases. What happens if the number of iterations is zero, i.e.,
there is no data or the table has no elements? Does the program fall through correctly?
Programs will often perform one iteration unnecessarily, or even worse, decrement
counters past zero before checking them.

Check off everything down to the last statement. Don't hopefully assume that
the first error is the only one in the program. Hand checking will allow you to get the
maximum benefit from debugging runs, since you will get rid of many simple errors
ahead of time.

A quick review of hand checking questions:

I. Is every element of the program design in the program (and vice versa for
documentation purposes)?

2. Are all registers and memory locations used inside loops initialized before the
loops are entered?

3. Are all conditional branches logically correct?

4. Do all loops start and end properly?

5. Are equality cases handled correctly?

6. Are trivial cases handled correctly?

LOOKING FOR ERRORS

Of course, despite all these precautions (or if you skip over some of them), pro­
grams often still don't work. The designer is left with the problem of how to find the
mistakes. The hand checklist provides a starting place if you didn't use it earlier.

PROGRAMMER ERRORS

Here are some of the errors that you may not have eliminated using the
checklist:

1. Failure to initialize variables such as counters, pointers, sums, indexes,
etc. Do not assume that registers, memory locations, or flags necessarily
contain zero before they are used.

19-12 6809 Assembly Language Programming

2. Inverting the logic of a conditional jump, such as using Branch on Carry Set

when you should use Branch on Carry Clear. Remember the effects of com­
parison (CMP) and subtraction (SBC or SUB) instructions, since these are

the most common flag-setting operations. If A is the contents of Accumula­

tor A and M the contents of the effective address, CMPA (or SUBA) sets

the Carry and Zero flags as follows:

Zero flag = 1 if A = M
Zero flag = 0 if A "I M

Carry flag = 1 if A < M t Assuming unsigned operands
Carry flag = 0 if A ;::_ M f

Note that the Carry flag is cleared in the equality case (A = M). So

Branch on Carry Set causes a branch if A < M and Branch on Carry Clear

causes a branch if A > M. If you want to handle the equality case in the

opposite way, use Branch if Lower or Same (causes a branch if A < M) or

Branch if Higher (causes a branch if A > M). For example, if you want to

force a branch when A is greater than or equal to 10, use

CMPA #10
BCC ADDR

The mnemonic BHS (Branch if Higher or Same) would be clearer than

BCC in this case; both mnemonics represent the same instruction. On the

other hand, if you want to force a branch when A is strictly greater than 10,
use

CMPA no
BHI ADDR

3. Updating counters, pointers, and indexes in the wrong place or not at all.

Be sure that there are no paths through a loop that either skip or repeat

the updating instructions. Note the difference between the 6809's autoincre­

menting and autodecrementing:

In autoincrementing, the processor increments the index register or

stack pointer ajier using its contents.

In autodecrementing, the processor decrements the index register or

stack pointer before using its contents.

4. Failure to handle trivial cases correctly.

Such cases may involve no data in a buffer, no tests to be run, or no

entries in an array or table. Do not assume that such cases will never occur

unless the program eliminates them specifically. Trivial cases often cause

problems if you use FORTRAN-like loop structures (see Figure 5-2) which

execute a routine once before checking conditions.

5. Reversing order of operands.

Remember that TFR R I ,R2 moves the contents of R 1 to R2, not the

other way around.

6. Changing condition flags before you use them.

Almost all instructions affect the Negative and Zero flags. Remember

also that RTI and TFR R 1 ,CC change all the flags, while LEAX and LEA Y

change the Zero flag.

7. Confusing the index registers and the indexed memory address.

Remember that CLR ,X clears the memory location addressed by Index

Debugging 19-13

Register X, not Index Register X itself. Note the difference between INC ,X
and INX (or LEAX 1 ,X); the former adds 1 to the contents of an 8-bit
memory location (addressed by Index Register X) while the latter adds I to
the contents of a 16-bit index register.

8. Confusing data and addresses.

Remember that LOX :#:$1000 loads Index Register X with the number
100016, whereas LDX $1000 loads Index Register X with the contents of
memory locations 100016 and 100116• A similar distinction applies to LOA
COUNT and LOA :#:COUNT. This problem becomes more serious if you
are using the indirect addressing modes. Now you must remember that LDA
,X+ loads Accumulator A from the address in Index Register X and then
adds l to Index Register X, whereas LOA [,X++] loads Accumulator A
from the address contained in the two memory bytes starting at the address
in Index Register X and then adds 2 to Index Register X. Mathematical
descriptions of what is happening are shorter and more meaningful than
word descriptions, but either may be difficult to understand.

9. Accidentally reinitializing a register or memory location.

Make sure that no branches transfer control back into the initialization
routine. Calculating a result and then writing over it is a common error that
is difficult to trace.

10. Confusing numbers and characters.

Remember that the ASCII representation of a digit is not the same as
the binary or BCD representation. For example, the ASCII representation of
7 is 3716; 0716 is the ASCII BELL character which rings the bell on a
teletypewriter.

11. Confusing binary and decimal numbers.

In the BCD representation, each decimal digit is coded separately into
binary. This is not true in the binary representation, since ten is not an
integral power of 2. For example, the decimal number 54 is equal to 3616 in
the binary representation and 5416 in the standard BCD representation.

12. Reversing the order of the data in non-commutative operations like

subtraction and division.

Remember that SUB and CMP both subtract the contents of the effec­
tive address from the contents of the specified register.

13. Ignoring the effects of subroutines and macros.

Subroutine calls and references to macros typically result in the execu­
tion of many instructions. Those instructions will almost always change the
flags and may change registers or memory locations as well. Be sure that you
know the effects of any subroutine or macro you use. Note also the impor­
tance of documenting subroutines and macros so users can determine their
effect without examining a long listing.

14. Using the Shift instructions improperly.

Remember the precise effects of ASR, ASL, LSR, ROL, and ROR.
They are 1-bit shifts that affect all the flags. ASL and LSR both clear the
empty bit, whereas ASR preserves the sign bit. ROR and ROL are circular
shifts that include the Carry. Remember that shift instructions affect all the
flags, even if they are operating on the data in a memory location.

/

19-14 6809 Assembly Language Programming

15. Counting the length of an array incorrectly.

Remember that addresses 0300 through 0304 include five (not four)

memory locations.

16. Confusing 8- and 16-bit quantities.

The Accumulators, Condition Code register, and Direct Page register

are all 8 bits long, whereas the Index Registers, Stack Pointers, and Program

Counter are 16 bits long. You cannot move data between registers of

different lengths using the transfer (TFR) or exchange (EXG) instructions.

17. Forgetting that addresses or 16-bit data occupy two bytes of memory.

Extended or indirect addresses or 16-bit data occupy two memory loca­

tions. The 16-bit registers also occupy two memory locations when they are

stored in memory. For example, LOX $40 loads Index Register X from

memory locations 0040 and 0041. Similarly, STU $50 stores the User Stack

Pointer in locations 0050 and 0051. Note that CMPX, CMPU, CMPY,
CMPS, LOX, LOU, LOY, LOS, etc. can all use 8-bit direct page addresses,

even though they are 16-bit operations.

18. Confusing the Stacks and their pointers.

Instructions like LD, TFR, LEA, and EXG affect the Stack Pointers,

not the contents of the Stacks. PSH and PUL transfer data to and from the

Stacks. Remember that JSR, BSR, RTI, RTS, and SWI all use the Hardware

Stack. Remember also that you must initialize the Hardware Stack Pointer

before calling any subroutines or allowing any interrupts.

19. Changing a register or memory location before using it.

Remember that LD, ST, and TFR all change the contents of the

destination, but not the source. EXG, on the other hand, changes both of its

operands (assuming they are not the same).

20. Forgetting to transfer control past sections of the program that should not

be executed.

Remember that the computer will proceed sequentially through

memory unless specifically instructed to do otherwise. Thus you may need

some unconditional branches to avoid routines that should not be executed.

21. Changing registers that you are using for addressing.

Be particularly careful of instructions like LOA A,X which loads

Accumulator A using the index in Accumulator A. The index in Accumula­

tor A is destroyed, so you had better not need it again. Instructions that use a

register both for addressing and as a destination can be powerfui, but may

also be confusing.

22. Ignoring the effects of autoincrementing and autodecrementing. Instruc­

tions that use these modes change the specified index register or stack

pointer.

23. Ignoring the physical limitations of 1/0 devices and interface chips.

While we may address interface chips as if they were memory locations,

they may not behave like memories. Storing data in an input port seldom

makes sense, nor does loading data from an output port unless the port is

latched and buffered. In particular, be careful of instructions like shifts,

clear, complement, and test which both read and write a memory location.

They may have unpredictable effects on 1/0 ports and interface chips.

24. Ignoring the limitations of read-only memory.

Debugging 19-15

Clearly instructions that both read and write a memory location make
little sense when applied to a ROM address.

25. Forgetting that the Hardware Stack is used in subroutine linkages.

JSR or BSR saves the return address in the Hardware Stack on top of
any parameters you may have placed there. RTS simply transfers control to
the address at the top of the Hardware Stack; if you have not managed the
Stack properly, the computer could end up anywhere.

26. Using the single accumulators and the double accumulator inconsistently.

The double accumulator D is physically the same as Accumulator A
(MSB's) and Accumulator B (LSB's). Double accumulator instructions are
convenient, but you must be sure that they mesh with the single accumula­
tor instructions.

27. Forgetting that addressing modes operate differently on Jump instruc­

tions than on other instructions.

Jump instructions (JMP or JSR) are executed as if one level of indirec­

tion had been removed. For example, JMP $A000 loads the address A00016
into the Program Counter, whereas LOX $AOOO loads the contents of
addresses A00016 and A00116 into Index Register X. The equivalent JMP
instruction would be JMP [$AOOO]. A similar distinction applies to all the
indexed modes; JMP or JSR using an indirect mode has the same effect on
the Program Counter that LOX using the corresponding non-indirect mode
would have on Index Register X. This distinction makes instructions that
use indirect addressing even more confusing than they would normally be.

28. Using the wrong register.

A and B are close together in the alphabet and easy to confuse. So are
X and Y. Even D, DP, S, and U can get into the act if you are not a careful
typist. Although the register assignments will assemble properly, you may
reference the wrong one.

ASSEMBLER-RELATED ERRORS

The use of an assembler is the only practical way to convert source programs

into object code, but it does introduce a few annoying errors. In particular,

1. Be careful of what your assembler may use as defaults. For example, the
standard 6809 assembler assumes that unmarked numbers are decimal and
that instructions without designated addressing modes use direct addressing
(if on the direct page) or extended addressing (otherwise). You must specify
hexadecimal or binary numbers, ASCII characters, immediate addresses,
indexed addresses, or indirect addresses, if you want to use them.

2. Watch for simple typing errors that can produce legal instructions or that

can confuse the assembler completely. Many operation codes differ by a
single letter (e.g., ADCA, ADDA, and ADDD); you can easily make a typing
error and still have a legal program. Some assemblers get confused if you
insert too many spaces, too much punctuation, or meaningless characters like
1/2 or ¢; in fact, the assembler may object to a minor error, but accept a
totally illogical entry that its developer never considered.

19-16 6809 Assembly Language Programming

Remember, the assembler can print a reassuring message like "NO

ASSEMBLY ERRORS" even when the program is wrong. All the message

means is that the assembler found no errors according to its interpretation of

the rules of the language. This does not exclude errors that produce legal

instructions or that are beyond the assembler's comprehension. It certainly

does not mean that the program does what you intended.

INTERRUPT ·DRIVEN PROGRAMS

Interrupt-driven programs are particularly difficult to debug, since errors may
show up only when an interrupt occurs at a particular time. lf, for example, the pro­

gram enables the interrupts a few instructions too early, an error will appear only if an

interrupt occurs while the processor is executing those few intructions. In fact, you can

usually assume that sporadic or random errors are caused by the interrupt system, since

the rest of the system can be reproduced.2 Typical errors in interrupt-driven programs

are:

l. Forgetting to reenable interrupts after accepting one and clearing it.
The processor disables the interrupt system automatically on RESET or

on accepting an interrupt. Be sure that no possible sequences fail to reenable

the interrupt.

2. Forgetting that RTI automatically reenables the interrupt unless you

specifically set the Interrupt Masks in the Stack.

3. Enabling interrupts before initializing all system parameters, such as flags,

vectors, and priority registers.

A checklist can help here.

4. Leaving results in registers and then destroying them by executing RTI.
Remember that R TI restores all the registers from the stack. As we noted

in Chapter 15, you should not use the registers to pass parameters and results

between the main program and the interrupt service routine.

5. Forgetting that the interrupts (including SWI) save the registers in the

Stack whether you want them or not.
You may have to reinitialize or update the Hardware Stack Pointer.

6. Failing to clear the interrupt before exiting from the service routine.
lf the interrupt comes from a PIA, the service routine must read the data

register in order to clear the interrupt flag. The reading is necessary even if the

interrupt is from an output device or a real-time clock. Otherwise, the inter­

rupt will remain active and will be recognized again as soon as the processor

reenables it.

7. Not disabling the interrupt during multi-byte transfers.
Watch particularly for routines that update time, position, or other data

that the interrupt service routine uses. You must avoid situations in which

partial updating results in erroneous values.

8. Failing to reenable the interrupt after executing a routine that requires the

interrupts to be disabled.
Be especially careful of such routines if they may be entered with the

interrupts disabled or enabled. The routine must then save and restore the

Debugging 19-17

condition code register, so that it exits with the interrupt system in its original

state.

Other Approaches

These lists are far from complete, but they should suggest some places where you
can look for errors. Unfortunately, debugging computer programs is not an exact

science� even the most systematic approach can leave you with baffling problems)

Sometimes, your best bet may be to let the problem sit overnight or have someone

with a fresh viewpoint look at it.

PROGRAM EXAMPLES

19-1. DEBUGGING A CODE CONVERSION PROGRAM

The program converts a decimal number in memory location 0040 to a seven-seg­
ment code in memory location 0041. It blanks the display if memory location 0040 does
not contain a decimal number.

Initial Program (from Flowchart in Figure 19-5):

LOA

CMPA

BCS

LOX
LOA

DONE STA

SWI

SSEG FCB

FCB

Using the Checklist

$40 GET DATA

#9 IS DATA A DECIMAL DIGIT?
DONE NO, DONE
SSEG YES, GET BASE ADDRESS OF CODE TABLE
,X GET ELEMENT FROM TABLE

$41 SAVE SEVEN-SEGMENT CODE

$3F,$06,$5B,$4F,$66

$6D,$7D,$07,$7D,$6F

Using a checklist as described earlier in this chapter, we were able to find the
following errors:

1. We have omitted the section that clears Result if the data is not a decimal
digit.

2. The conditional branch (BCS DONE) is incorrect.

For example, if the data is zero, CMP A:#= 9 clears the Carry flag and causes a
branch. The correct version is

CMPA j9
BHI DONE

IS DATA GREATER THAN 9?
YES, DONE

If we had used the mnemonic BLO instead of BCS, the mistake might have been
more obvious (or perhaps never made in the first place) . You can clarify code by using

the mnemonics BLO and BHS after comparisons instead of BCS and BCC.

The 6809 has many conditional branches and you must be careful to choose the
right one.

19-18 6809 Assembly Language Programming

Data = (0040)

Result = (SSEG
+ Data)

(004 1) = Result

Yes

Result= 0

Figure 19-5. Flowchart of Decimal to Seven-Segment Conversion

Second Program:

CLRB

LDA
CMPA
BHI
LDX
LDA

DONE STA
SWI

SSEG FCB
FCB

GET BLANK CODE FOR DISPLAY
$4'0 GET DATA

#9 IS DATA A DECIMAL DIGIT?
DONE NO, KEEP ERROR CODE
SSEG YES, GET BASE ADDRESS OF CODE TABLE
,X GET ELEMENT FROM TABLE

$41 SAVE SEVEN-SEGMENT CODE

$3F,$06,$5B,S4F,$6�
$6D,$7D,$07,$7D,$6F

The hand check did not uncover any errors in this version.

Single Step

Since the program is simple, the next stage is to single-step through it with real

data. We chose the following data for the trials:

0 The smallest decimal digit
9 The largest decimal digit

1 0 A boundary case

6816 A randomly selected case

Debugging 19-19

For the first trial, we placed zero in memory location 0040. The program pro­
ceeded with no apparent errors until it reached the LOA ,X instruction. At that point,
Index Register X contained 3F06, an address that did not even exist in our computer.
Clearly, something had gone wrong.

Hand Check

It was now time for more hand-checking. Since we knew that BHI DONE was cor­
rect, the error had to be further along in the program. The hand check showed that LOX
SSEG placed 3F06 in Index Register X, since it loaded the register with the contents of
the two bytes starting at address SSEG. What we want to place in Index Register X is the
address SSEG, not its contents; that is, we want immediate addressing, not direct
addressing. This change creates an awkward patching problem in the object code, since
LOX with immediate addressing occupies 3 bytes of memory, whereas LOX with direct
addressing occupies only 2 bytes.

Run Test

With this correction (LOX :#:SSEG instead of LOX SSEG), the program worked
correctly when the data was zero. However, when the data was 9, it produced the same
result as for 0 (3F16). A hand check of the LOA ,X instruction showed that the program
was not performing any indexing; it was just loading Accumulator A from the address in
Index Register X. What we want is the accumulator indexed mode in which the pro­
cessor adds the index in Accumulator A to the base address in Index Register X. So we
replaced LOA ,X with LOA A,X.

Third Program:

DONE

CLRB
LDA
CMPA
BHI
LDX

LOA
STA

SWI

$40

#9
DONE
#SSEG

A, X
S41

GET BLANK CODE FOR DISPLAY

GET DATA
IS DATA A DECIMAL DIGIT?

NO, KEEP ERROR CODE
YES, GET BASE ADDRESS OF CODE TABLE

GET ELEMENT FROM TABLE
SAVE SEVEN-SEGMENT CODE

SSEG FCB $3F,S06,$5B,$4F,$66
FCB $60,$7D,$07,$7D,$6F

The results now were:

Another Run Test

Data Result

00 3F
09 6F
OA OA
68 68

The program was not clearing the result if the data was invalid (i.e., greater than
9). In fact, the program never used the blank code in Accumulator Bat all. The required
change is to load the seven-segment code into Accumulator B instead of Accumulator A
(replace LOA A,X with LOB A,X) and store Acccumulator B instead of Accumulator A
(replace ST A $41 with STB $41). After we made these corrections, the program pro­
duced the correct results for all the test cases.

19-20 6809 Assembly Language Programming

Exhaustive Test

Since the program was simple, we could easily test it on each decimal digit. The

results were:

Data Result

0 3F
1 06
2 58
3 4F
4 66
5 60
6 70
7 07
8 70
9 6F

Note that the result for 8 is wrong- it should be 7F, not 70. Since the program

works for all other digits, the error is almost surely in the table. In fact, the eighth entry

in the table had been typed incorrectly.

Final Program:

*

*DECIMAL TO SEVEN-SEGMENT CONVERSION
*

CLRB GET BLANK CODE FOR DISPLAY
LDA $40 GET DATA

CMPA #9 IS DATA A DECIMAL DIGIT?
BHI DONE NO, KEEP ERROR CODE

LDX #SSEG YES, GET BASE ADDRESS OF CODE TABLE
LOB A, X GET ELEMENT FROM TABLE

DONE STB $41 SAVE SEVEN-SEGMENT CODE
SWI

SSEG FCB $3F,$06,$5B,$4F,S66
FCB $6D,$7D,$07,$7F,$6F

Summary of Errors Discovered

The errors that we found in this example are typical of the ones that 6809 as-

sembly language programmers should expect. They include:

1. Failing to initialize registers or memory locations.

2. Inverting the logic on conditional branches.

3. Branching incorrectly in boundary cases.

4. Confusing immediate and direct addressing (i.e., data and addresses).

5. Failing to keep track of the current contents of registers and therefore

using the wrong accumulator, index register, or stack pointer.

6. Using the indexed addressing modes incorrectly. The 6809 terminology can

be confusing, since the 16-bit index registers usually hold base addresses,

not indexes.

7. Copying lists of numbers (or instructions) incorrectly.

Note that straightforward instructions (like AND, DEC, or INC) and simple
addressing modes seldom cause any problems.

Start

Interchange flag = 1
Count = Length

of Array
Pointer = Start

of Array

Interchange
(Pointed.

(Pointer + 1 I
Interchange flag

= 0

Pointer =

Pointer + 1

Count = Count -

Figure 19-6. Flowchart of a Sort Program

Deoogging 19-21

19-22 6809 Assembly Language Programming

19-2. DEBUGGING A SORT PROGRAM

The program sorts an array of unsigned 8-bit binary numbers into decreasing

order. The array begins in memory location 0042 and its length is in memory location

0041.

Initial Program (from flowchart in Figure 19-6):

LOA #l INTERCHANGE FLAG = l
STA $40
LOA $41 COUNT = LENGTH OF ARRAY
LDX #$42 POINT TO START OF ARRAY

PASS LOB ,X GET AN ELEMENT
CMPB l,X IS PAIR IN CORRECT ORDER?

BLO COUNT YES, NO INTERCHANGE
STB l,X NO, INTERCHANGE PAIR

COUNT DECA IS PASS THROUGH ARRAY COMPLETE?
BNE PASS NO, GO ON TO NEXT PAIR
TST $40 YES, WERE ANY INTERCHANGES PERFORMED?

BNE PASS YES, MAKE ANOTHER PASS

SWI

Initial Hand Check

A hand check shows that we have implemented all the blocks in the flowchart
and initialized all the registers and memory locations. We must examine the condi­
tional branches carefully. The instruction BLO COUNT must force a branch if the pair

is already in the correct order - that is, if the second element is less than or equal to the

first element. The program must not interchange equal elements, since such an

interchange would create an endless loop with each pass swapping elements.

Try an example:
(0042) = 30
(0043) = 37

The execution of CMPB 1 ,X causes the CPU to calculate 30 - 37. The Carry flag

is set since the subtraction requires a borrow. This example should result in an
interchange, but BLO COUNT branches around the interchange instructions. BHS

COUNT produces the proper branch in this case. If the two numbers are equal, the com­

parison will clear the Carry flag so BHS COUNT is again correct.

How about BNE PASS at the end of the program? If there are any elements out of

order, the program will clear the interchange flag and the contents of memory location

0040 will be zero. So the branch is inverted; it should be BEQ PASS.

Now let us check the first iteration by hand. The initialization (the first four

instructions) produces the following values:

(A) = COUNT Length of array
(X) = 0042 Starting address of array

(0040) = 1 Interchange flag

The effects of the instructions in the loop are:

LDB ,X (B) = (0042) .
CMPB l,X (004 2) - (0043)
BHS COUNT

STB l,X (004 3) = (004 ?.)
DECA (A) = COUNT - l

Note that we have already checked the conditional branch instructions.

Debugging 19-23

Clearly the logic is incorrect. If the first two numbers are out of order (as in our
example), the results after the first iteration should be:

(0042) = old (0043)
(0043) = old (0042)

(X) = 0043
(A) = COUNT - 1

Instead, they are:
(0042) = Unchanged

(0043) = old (0042)
(X)= 0042
(A) = COUNT - 1

The error in Index Register X is easy to correct. We can use autoincrementing as

long as we remember to adjust the later indexed offsets. Thus we need LOB ,X+;

instead of LOB ,X; CMPB ,X instead of CMPB l ,X (the autoincrementing has increased

Index Register X by 1); and STB ,X instead of STB l,X. We must be careful to incre­
ment X in an instruction that will be executed regardless of the outcome of BHS
COUNT. The interchange requires a bit more care and the use of both Accumulators

(remembering to save the count in the Hardware Stack and restore it at the end):

PSHS
LOA
STB
STA
PULS

A

,X
,X
-l,X
A

SAVE COUNT IN HARDWARE STACK

GET SECOND ELEMENT OF PAIR
REPLACE SECOND ELEMENT WITH FIRST ELEMENT
REPLACE FIRST ELEMENT WITH SECOND ELEMENT
RESTORE COUNT FROM HARDWARE STACK

An interchange always requires a temporary storage place in which the program

can save one element while it is transferring the other one.4

Second Program:

LOA

STA
LOA
LOX

PASS LOB
CMPB
BHS

PSHS
LOA
STB

STA
PULS

COUNT DECA

BEQ
TST

BNE

SWI

u
$40
$41
#$42
,X+
,X
COUNT
A
, X
,X

-l,X
A

PASS
$40
PASS

SET INTERCHANGE FLAG

COUNT = LENGTH OF ARRAY
POINT TO START OF ARRAY

IS PAIR OF ELEMENTS IN ORDER?

NO, INTERCHANGE ELEMENTS

IS PASS THROUGH ARRAY COMPLETE?
NO, GO ON TO NEXT PAIR

WERE ANY INTERCHANGES PERFORMED?
YES, MAKE ANOTHER PASS

How about the last iteration? Let us assume that the array contains three elements:

(0041) = 03
(0042) = 02
(0043) = 04
(0044) = 06

Number of elements

First element

Second element

Third element

Each time through the loop, the program increments Index Register X by 1. So, at the
start of the third (last) iteration,

(X) = 0042 + 2 = 0044

The effects of the instructions in the loop are:

LOB , X+

CMPB ,X

(B) = (0044) , (X)

(0044) - (0045)
0045

19-24 6809 Assembly Language Programming

This is incorrect; the program is working on data beyond the end of the array. In
fact, the previous iteration should have been the last one, since the number of pairs is
one less than the number of elements. The last element in the array has no successor for
comparison. The correction is to reduce the number of iterations by 1: i.e., place DECA

after LOA $41.

Checking Trivial Cases

What happens in the trivial cases - that is, if the array contains no elements or
only one element? The answer is that the program does not work correctly and could
change a large number of memory locations improperly and without any warning (try
it!). The changes that handle the trivial cases are simple but essential; the cost is only a
few bytes of memory to avoid problems that could be difficult to identify and correct.

Third Program:

LOA

CMPA

BLS

LOA

STA

LOA

DECA

LOX

PASS LOB

CMPB

BHS

PSHS

LOA

STB

STA

PULS

COUNT DECA

BNE

TST

BEQ

DONE SWI

$41
#1
DONF

#1
$40
$41

#$42
,X+

,X

COUNT

A

,X

,X

-l,X
A

PASS

$40
PASS

GET LENGTH OF ARRAY

IS THERE MORE THAN ONE ELEMENT?

NO, NO ACTION NECESSARY

SET INTERCHANGE FLAG

GET LENGTH OF ARRAY

NUMBER OF PAIRS = LENGTH - 1
POINT TO START OF ARRAY

IS PAIR OF ELEMENTS IN ORDER?

NO, INTERCHANGE ELEMENTS

IS PASS THROUGH ARRAY COMPLETE?

NO, GO ON TO NEXT PAIR

WERE ANY INTERCHANGES PERFORMED?

YES, MAKE ANOTHER PASS

Run Test With Breakpoints

Now we must check the program on the computer or on the simulator. A simple
set of data is:

(0041 I = 02

(0042) = 00 }
(0043) = 01

Length of array

Array to be sorted

This set consists of two elements in the wrong order. The program should require
two passes. The first pass should exchange the elements, producing:

(0042) = 01 }
(0043) = 00

(0040) = 00

Reordered array

Interchange flag

The second element should find the elements already in the proper (descending)
order and produce:

(0040) = 01 Interchange flag

This program is too long for single-stepping, so we will use breakpoints

Debugging 19-25

instead. Each breakpoint will halt the computer and print the contents of the key
registers. The breakpoints will come:

1. After LOX :#:$42 to check the initialization.

2. After CMPB ,X to check the comparison.

3. After PULS A to check the interchange.

4. After TST $40 to check the completion of a pass through the array.

The contents of the registers at the first breakpoint are:

Register Contents

cc FO
B 00
A 01
X 0042

These are all correct, so the program is performing the initialization properly in
this case.

The results at the second breakpoint are:

These results are also correct.

Register

cc
B
A
X

The results at the third breakpoint are:

Register

cc
B
A
X

Examining memory shows:

(0042) = 01
(0043) = 00

Contents

F9
00
01

0043

Contents

F1
00
01

0043

The program has interchanged the elements correctly.
The results at the fourth breakpoint are:

Register

cc
B
A
X

Examining memory shows:

(0040) = 01

Contents

FO
00
00

0043

The Zero flag (bit 2 of the Condition Code Register) is incorrect, since an
interchange occurred and the program should branch and go back through the array

again. Memory location 0040 (the interchange flag) should contain 0, rather than 1.

Examining the program shows that it never clears the interchange flag; the correction is
to insert the instruction CLR $40 after BHS COUNT. The program now clears the

interchange flag as soon as it determines that an interchange is necessary.

19-26 6809 Assembly Language Programming

We can continue by clearing memory location 0040 and setting the Zero flag (CC
= F416 instead of F016). The results at the second iteration of the second breakpoint are:

Register Contents

cc F9
B 00
A 01
X 0044

The program has not reinitialized the registers (particularly Index Register X).
The condition branch that sends the program through the entire array again should

transfer control to the initialization routine; note that we do not need to check the length

of the array a second time to eliminate the trivial cases.

Final Program:

LOA

CMPA

BLS

ITER LOA
STA

LOA

DECA

LOX

PASS LOB

CMPB

BliS

CLR

PSHS

LOA

STB

STA

PULS

COUNT DECA

BNE

TST

BEQ

DONE SWI

Other Test Cases

$41
#1
DONE

u
$40
$41

$4 2
,X+

,X

COUNT

$40
A

,x
,X

-l,X

A

PASS

$40
ITER

GET LENGTH Of ARRAY

IS THERE MORE THAN ONE ELEMENT?

NO, NO ACTION NECESSARY

SET INTERCHANGE fLAG

GET LENGTH Of ARRAY

NUMBER OF PAIRS � LENGTH - 1
POINT TO START Of ARRAY

IS NEXT PAIR OF EL�MENTS IN ORDER?

NO, CLEAR INTERCHANGE fLAG

AND EXCHANGE ELEMENTS

IS PASS THROUGH ARRAY COMPLETE?

NO, GO ON TO NEXT PAIR

WERE ANY INTERCHANGES PERFORMED?

YES, MAKE ANOTHER PASS

Clearly, we cannot check all possible cases for this program. Two other simple
test cases that we could use for debugging are:

1. Two equal elements

(0041) = 02

(0042) = 00 }
(0043) = 00

Number of elements

Array to be sorted

2. Two elements already in descending order

(0041) = 02

(0042) = 01 l
(0043) = 00 f

Number of elements

Array to be sorted

REFERENCES

1. For more information about logic analyzers, see:

Debugging 19-27

G. Brock. "Logic-State Analyzers Seek Out Microprocessor-System Faults," EDN,

January 5, 1980, pp. 137-40.

R. Lorentzen. "Logic Analyzers Finish What Development Systems Start,"

Electronic Design, March 29, 1980, pp. 81-85.

J. Marshall. "Digital Analysis Instruments," EDN, January 20, 1980, pp. 141-143.

J. McLeod. "Special Report: Logic Analyzers," Electronic Design, March 29, 1980.

pp. 48-56.

C. A. Ogdin. "Setting up a Microcomputer Design Laboratory," Mini-Micro Systems,

May 1979, pp. 87-94.

I. H. Spector and R. Muething. "Logic Analyzer Deploys Its Full Strength,"

Electronic Design, March 29, 1980, pp. 177-214.

2. W. J. Weller. Assembly Level Programming for Small Computers, Lexington Books,

Lexington, Mass., 1975, Chapter 23.

3. R. L. Baldridge. "Interrupts Add Power, Complexity to Microcomputer System

Design," EDN, August 5, 1977, pp. 67-73.

4. One way to interchange A and B without using a temporary storage location is to use

the formulas:

A=AEllB
B=AffiB
A=AffiB

You can verify this sequence if you are handy at Boolean algebra and the use of

DeMorgan's theorem.

20
Testing

Program testing1 is closely related to program debugging. We must test the pro-

gram on the data that we used to debug it; for example,

Trivial cases such as no data or a single statement

Special cases that the program singles out for some reason

Simple cases that exercise particular parts of the program

For the decimal to seven-segment conversion program in Chapter 19, these
cases cover all possible situations. The test data consists of:

The numbers 0 through 9

The boundary case l 0

The random case 6B16

The program does not distinguish any other cases. Here debugging and testing

are virtually the same.

In the sorting program, the problem is more difficult. The number of elements

could range from 0 to 255, and each of the elements could lie anywhere in that range.

The number of possible cases is therefore enormous. Furthermore, the program is

moderately complex. How do we select test data that will give us a degree of confidence

in that program? Here testing requires some design decisions. The testing problem is

particularly difficult if the program depends on sequences of real-time data. How do we

select the data, generate it, and present it to the microcomputer in a realistic manner?

20-2 6809 Assembly Language Programming

TESTING AIDS

Most of the tools mentioned earlier for debugging are helpful in testing also.

Logic or microprocessor analyzers can help check the hardware; simulators2 can help

check the software. Other tools can also be of assistance:

1. 1/0 simulations that can simulate many devices from a single input and a

single output device.

2. In-circuit emulators that allow you to attach the prototype to a development

system or control panel and test it.3

3. ROM simulators that can be changed like RAM but otherwise behave like

the ROM or PROM that will be used in the final system.

4. Real-time operating systems that can provide inputs or interrupts at specific

times (or perhaps randomly) and mark the occurrence of outputs. Real-time

breakpoints and traces may also be included.

5. Emulations (often on microprogrammable computers) that may provide

real-time execution speed and programmable I/0.4

6. Interfaces that allow another computer to control the I/0 system and test the

microcomputer program.

7. Testing programs that check each branch in a program for logical errors.

8. Test generation programs that can generate random data or other distribu­
tions.

Formal testing theorems exist, but are only practical for verifying short pro­

grams. You must be careful that the test equipment does not invalidate the test by

modifying the environment. Often test equipment may buffer, latch, or condition

input and output signals. The actual system may not do this and may therefore
behave differently.

Furthermore, extra software in the test environment may use some of the
memory space or part of the interrupt system. It may also provide error recovery and
other features that will not exist in the final system. A software test bed must be just
as realistic as a hardware test bed since software failure can be just as critical as hardware

failure.

Emulations and simulations are, of course, never precise. They are usually
adequate for checking logic, but can seldom help test interfaces or timing. On the

other hand, real-time test equipment does not provide much of an overview of the pro­
gram logic and may affect the interfacing and timing.

SELECTING TEST DATAs

Few real programs can be checked for all cases. The designer must choose a
sample set that is in some sense representative.

Structured Testing

Testing should, of course, be part of the total development procedure. Top-down
design and structured programming provide for testing as part of the design. This is

called structured testing. Each module within a structured program should be checked

separately. Testing, as well as design, should be modular, structured, and top-down.

Testing 20-3

Special Cases

But that leaves the question of selecting test data for a module. The designer
must first list all special cases that a program recognizes. These may include:

Trivial cases

Equality cases

Special situations

The test data should include all of these.

Forming Classes of Data

You must next identify each class of data that statements within the program
may distinguish. These may include:

Positive or negative numbers

Numbers above or below a particular threshold

Data that does or does not include a particular sequence or character

Data that is or is not present at a particular time

Be careful; each two-way decision doubles the number of classes since you must
test both paths. Thus three conditional branches will result in 2 x 2 x 2 = 8 classes if
the computer always executes each branch. Limiting the size of test sets is another
important reason to keep modules short and general.

Selecting Data from Classes

You must now separate the classes according to whether the program produces
a different result for each entry in the class (as in a table) or produces the same result
for each entry (such as a warning that a parameter is above a threshold). In the dis­
crete case, one may include each element if the total number is small or sample if the
number is large. The sample should include all boundary cases and at least one case
selected randomly. Random number tables are available in books, and random number
generators are part of most computer facilities.6

You must be careful of distinctions that may not be obvious. For example, the
6809 microprocessor will regard an 8-bit unsigned number greater than 127 as negative;
you must consider this when using the branch instructions that depend on the Negative
(Sign) flag. You must also watch for instructions that do not affect flags, overflow in
signed arithmetic, and the distinctions between address-length 06-bit) quantities and
data-length (8-bit) quantities.

EXAMPLES

20-1. TESTING A SORT PROGRAM

The special cases here are obvious:

No elements in the array

One element, magnitude may be selected randomly

20-4 6809 Assembly Language Programming

The other special case to be considered is one in which elements are equal.

There may be some problem here with signs and data length. Note that the array
itself must contain fewer than 256 elements. Using the instruction CLR $40 rather than
DEC $40 to modify the interchange flag means that multiple interchanges will create no
special problems.

We could check to see if the sign of the number of elements has any effect by
choosing half the test cases with elements between 128 and 255 and half with elements
between 2 and 127. We should choose the magnitudes of the elements randomly to
avoid unconscious bias which might favor small numbers, decimal (rather than hex­
adecimal) digits, or regular patterns.

20-2. TESTING AN ARITHMETIC PROGRAM

Here we will presume that a prior validity check has ensured that the number has
the right length and consists of valid digits. Since the program makes no other distinc­
tions, test data should be selected randomly. Here a random number table or random
number generator will prove ideal; the range of the random numbers is 0 to 9.

RULES FOR TESTING

Sensible design simplifies testing. The following rules can help:

1. Eliminate trivial cases early without introducing unnecessary distinctions.

2. Avoid special cases, since they increase debugging and testing time.

3. Perform validity or error checks on the data before it is processed.

4. Avoid inadvertent distinctions, particularly in handling signed numbers or in
using instructions that are intended to handle signed numbers.

5. Check boundary cases by hand. Be sure to define what should happen in
these cases.

6. Emphasize generality. Each distinction and separate routine leads to more
testing.

7. Use top-down design and modular programming to modularize testing.

CONCLUSIONS

Debugging and testing are the stepchildren of the software development pro­

cess. Most projects leave far too little time for them and most textbooks neglect them.

But designers and managers often find that these stages are the most expensive and

time-consuming. Progress may be difficuJt to measure or produce. Debugging and

testing microprocessor software is particularly difficult because the powerful hard­

ware and software tools that can be used on larger computers are seldom available for

microcomputers.

The designer should plan debugging and testing carefully. We recommend the

Testing 20-5

following guidelines:

1. Try to write programs that are easy to debug and test. Modular program­

ming, structured programming, and top-down design are useful techniques.

2. Prepare a debugging and testing plan as part of the problem definition.

Decide early what data you must generate and what equipment you will need.

3. Debug and test each module using top-down design.

4. Debug each module's logic systematically. Use checklists, breakpoints, and

the single-step mode. If the program logic is complex, consider using the soft­

ware simulator.

5. Check each module's timing systematically if this timing is a problem. An

oscilloscope can solve many problems if you plan the test properly. If the tim­

ing is complex, consider using a logic or microprocessor analyzer.

6. Be sure that the test data is representative. Watch for any classes of data
that the program may distinguish. Include all special and trivial cases.

7. If the program handles each element differently or the number of cases is

large, select the test data randomly.

8. Document all tests. If errors are found later, you will not have to repeat tests
you have already run.

REFERENCES

1. G. J. Myers. The Art of Software Testing, Wiley, New York, 1979.

R. C. Tausworthe. Standardized Development of Computer Software, Prentice-Hall,

Englewood Cliffs, N.J., Vo1.1, 1977, Chapter 9; Vol. 2, 1979, Chapters 14 and 15.

E. Yourdon. Techniques of Program Structure and Design, Prentice-Hall, Englewood

Cliffs, N.J., 1975, Chapter 7.

2. F. J. Langley. "Simulating Modular Microcomputers," Simulation, May 1979, pp.

141-54.

L. A. Leventhal. "Design Tools for Multiprocessor Systems," Digital Design, Octo­

ber 1979, pp. 24-26.

F. I. Parke et al. "An Introduction to theN .mPc Design Environment," Proceedings

of the 1979 Design Automation Conference, San Diego, Ca., pp. 513-19.

3. R. Francis and R. Teitzel. "Realtime Analyzer Aids Hardware/Software Integra­

tion," Computer Design, January 1980, pp. 140-50.

4. H. R. Burris. "Time-Scaled Emulations of the 8080 Microprocessor," Proceedings of

the 1977 National Computer Conference, pp. 937-46.

5. R. A. DeMille et al. "Hints on Test Data Selection: Help for the Practicing Pro­

grammer," Computer, April, 1978, pp. 34-41.

W. F. Dalton. "Design Microcomputer Software," Electronics, January 19, 1978,

pp. 97-101.

6. R. D. Grappel and J. Hemenway. "EON Software Tutorial: Pseudorandom Genera­

tors," EDN, May 20, 1980, pp. 119-23.

20-6 6809 Assembly Language Programming

T. G. Lewis. Distribution Sampling for Computer Simulation, Lexington Books, Lex­

ington, Mass., 1975.

R. A. Mueller et al. "A Random Number Generator for Microprocessors," Simula­

tion, April 1977, pp. 123-27.

21
Maintenance and Redesign

Program maintenance always involves elements of redesign. A program may

not work correctly in the field because of a flaw which was not discovered during the

debugging and testing phases of development. Sometimes, however, a program works

correctly but inefficiently - taking too long to respond, for example, or requiring an

awkward sequence of actions by the operator. A manufacturer may decide to adapt a

control program to run in a different hardware configuration. Inevitably, someone will

find a use for a microcomputer that never occurred to the system designer; a user's

needs often change in unanticipated ways. Thus it may become necessary to change a

program or system even if it works correctly.

Sometimes the designer may have to squeeze the last microsecond of speed or

the last byte of extra memory out of a program. As larger single-chip memories have

become available, the memory problem has become less serious. The time problem, of

course, is serious only if the application is time-critical. In many applications the

microprocessor spends most of its time waiting for external devices and program speed

is not a major factor.

COST OF REDESIGN

Squeezing the last bit of performance out of a program is seldom as important as

some writers would have you believe. In the first place, the practice is expensive for the

following reasons:

1. It requires extra programmer time, which is often the single largest cost in

software development.

2. It sacrifices structure and simplicity with a resulting increase in debugging and

testing time.

3. The programs require extra documentation.

4. The resulting programs will be difficult to extend, maintain, or re-use.

21-2 6809 Assembly Language Programming

In the second place, the lower per-unit cost and higher performance may not

really be important. Will the lower cost and higher performance really sell more units?
Or would you do better with more user-oriented features? The only applications that

would seem to justify the extra effort and time are very high-volume, low-cost and

low-performance applications, where the cost of an extra memory chip will far out­

weigh the cost of the extra software development. For other applications, you will find
that you are playing an expensive game for no reason.

MAJOR OR MINOR REORGANIZATION

However, if you must redesign a program, the following hints will help. First,

determine how much more performance or how much less memory usage is necess­

ary. If the required improvement is 25% or less, you may be able to achieve it by

reorganizing the program. If it is more than 25% you have made a basic design error;

you will need to consider drastic changes in hardware or software. We will deal first
with reorganization and later with drastic changes. Reducing memory usage is particu­

larly important if it results in a program that fits in the ROM and RAM provided by a
simple one or two-chip microcomputer. The use of such stand-alone microcomputers
can reduce hardware costs substantially in limited applications.

SAVING MEMORY

The following procedures will reduce memory usage for assembly language pro­

grams:

1. Replace repetitious in-line code with subroutines. Be sure, however, that
the CALL and RETURN instructions do not offset most of the gain. Note
that this replacement usually results in slower programs because of the time
spent in transferring control back and forth.

2. Place the most frequently used data on the direct page and access it with

one-byte addresses. You may even want to place a few 1/0 addresses there.

3. Use the Stack when possible. The Stack Pointer is automatically updated
after each use so that no explicit updating instructions are necessary. PSH

and PUL can move entire groups of registers to and from memory.

4. Eliminate Jump instructions. Try to reorganize the program instead.

5. Take advantage of addresses that you can manipulate as 8-bit quantities.

These include page zero and addresses that are multiples of 100 hex­

adecimal. For example, you might try to place all ROM tables in one 10016-
byte section of memory, and all RAM variables in another 10016-byte sec­
tion.

6. Organize data and tables so that you can address them without worrying

about address calculation carries or without any actual indexing. This will
again allow you to manipulate 16-bit addresses as 8-bit quantities.

7. Use the shift instructions to operate on bit positions at either end of a

b}"te.

Maintenance and Redesign 21-3

8. Take advantage of such instructions as ASL, DEC, INC, LSR, ROL, and

ROR which operate directly on memory locations without using registers.

9. Use INC or DEC to set or reset flag bits.

10. Use relative branches rather than jumps with absolute or indexed address­

mg.

11. Use the Software Interrupt instructions RTS and RTI to perform jumps

and reach subroutines if they are not already being used. SWI2 should

always be available for this purpose. This approach is oarticularly helpful if

the program uses the Stack anyway for temporary storage of data and

addresses.

12. Watch for special short forms of instructions that operate directly on the

Accumulators or other registers.

13. Use algorithms rather than tables to calculate arithmetic or logical expres­

sions and to perform code conversions. This replacement may make the pro­

gram run slower.

14. Reduce the size of mathematical tables by interpolating between entries.
Here again, we are saving memory at the cost of execution time.

15. Use instructions like CMPU, CMPX, and CMPY to perform comparisons

without involving the Accumulator.

16. Employ double accumulator instructions such as AOOO, CMPO, LOO,

STD, and SUBO rather than pairs of single accumulator instructions.

17. Take advantage of the LEA instructions to perform arithmetic as well as to

calculate indirect, indexed, and relative addresses for repeated use later.

18. Use indexed addressing rather than extended addressing to handle PIAs

and other situations involving several addresses that are close together.

19. Remember that operations on some of the registers take longer than on

others. In particular, some address-length registers have more single-byte

operation codes than others; the number is largest for Index Register X,

next largest for the Double Accumulator and User Stack Pointer U, and

smallest for Index Register Y and the Hardware Stack Pointer. For example,

LOX, LOO, and LOU require one-byte operation codes, whereas LOY and

LOS require two-byte codes. So, when assigning address-length registers

in your program, try to maximize the number of single-byte operation

codes that are executed. You can use TFR or EXG to move data from one

register to another.

20. Use the indexed addressing modes to perform address-length additions

during an instruction cycle. This approach is preferable to using LEA when

you do not need the result later.

21. Try to replace sequences of branch instructions with single branches. You

may be able to eliminate sequences by rearranging computations or by using

the conditional branches that depend on combinations of flags. Examine the

precise effects of branches like BG E, BGT, BHI, BLE, BLS, and BL T; they

may be useful in situations that differ greatly from those suggested by their

mnemonics.

22. Use instructions such as BIT, CMP, and TST that affect the flags without

changing any registers or memory locations. You may be able to retain data

for later use.

21-4 6809 Assembly Language Programming

SAVING EXECUTION TIME

Although some of the methods that reduce memory usage also save time, you

can generally save an appreciable amount of time only by concentrating on frequently

executed loop". Even completely eliminating an instruction that is executed only once

can save at most a few microseconds. But a savings in a loop that is executed frequently

will be multiplied many times over.

So, if you must reduc� execution time, proceed as follows:

1. Determine how frequently each program loop is executed. You can do this
by hand or by using the software simulator or other testing methods.

2. Examine the loops in the order determined by their frequency of execu­

tion, starting with the most frequent. Continue through the list until you

achieve the required reduction.

3. First, see if there are any operations that can be moved outside the loop,
such as repetitive calculations, data that can be stored in a register or in the

stack, data or addresses that can be stored on the direct page, special cases or

errors that can be handled elsewhere, etc. Note that this may require extra

initialization and memory but will save time.

4. Try to eliminate Jump statements. These are very time-consuming. Some­

times changing the initial conditions helps, particularly if the changes allow
you to perform tests at the end of a loop rather than at the beginning.

5. Replace subroutines with in-line code. This will save at least a CALL and a
RETURN instruction.

6. Use the stack for temporary data storage if you can take advantage of the
automatic ordering it provides.

7. Use any of the hints mentioned in saving memory that also decrease

execution time. These include the use of 8-bit addresses, SWl, RTI, special

short forms of instructions, etc.

8. Do not even look at instructions that are executed only once. Any changes
that you make in such instructions only invite errors for no appreciable gain.

9. Avoid indexed and indirect addressing whenever possible because they
take extra time.

10. Use tables rather than algorithms; make the tables handle as much of the

tasks as possible even if many entries must be repeated.

MAJOR REORGANIZATION

If you need more than a 25% increase in speed or decrease in memory usage do
not try reorganizing the code. Your chances of getting that much of an improvement are

small unless you call in an outside expert. You are generally better off making a major

change.

Maintenance and Redesign 21-5

BETTER ALGORITHMS

The most obvious change is a better algorithm. Particularly if you are doing

sorts, searches, or mathematical calculations, you may be able to find a faster or shorter

method in the literature. Libraries of algorithms are available in some journals and from

professional groups. See the references at the end of this chapter for some important

sources.

OTHER MAJOR CHANGES

Hardware can replace software. Counters, shift registers, arithmetic units, hard­

ware multipliers, and other fast add-ons can save both time and memory. Calculators,

UARTs, keyboards, encoders, and other slower add-ons may save memory even

though they operate slowly. Compatible parallel and serial interfaces, and other devices

specially designed for use with the 6809 or 6502 may save time by taking some of the

burden off the CPU.

Other changes may help as well:

1. A CPU with a longer word will be faster if the data is long enough. Such a

CPU will use less total memory. 16-bit processors, for example, use memory

more efficiently than 8-bit processors, since more of their instructions are one

word long.

2. Versions of the CPU may exist that operate at higher clock rates. But

remember that you will need faster memory and 1/0 ports, and you will have

to adjust any delay loops.

3. Two CPUs may be able to do the job in parallel or separately if you can

divide the job and solve the communications problem.

4. A specially microprogrammed processor may be able to execute the same

program much faster. The cost, however, will be much higher even if you

use an off-the-shelf emulation.

5. You can make tradeoffs between time and memory. Lookup tables and func­

tion ROMs will be faster than algorithms, but will occupy more memory.

Deciding on a Major Change

This kind of problem, in which a large improvement is necessary, usually

results from lack of adequate planning in the definition and design stages. In the

problem definition stage you should determine which processor and methods will han­

dle the problem. If you misjudge, the cost later will be high. A cheap solution may result

in an unwarranted expenditure of expensive development time. Do not try to just get

by; the best solution is usually to do the proper design and chalk a failure up to

experience. If you have followed such methods as flowcharting, modular program­

ming, structured programming, top-down design, and proppr documentation, vou can

salvage a lot of your effort even if you have to make a major change.

21-6 6809 Assembly Language Programming

REFERENCES

Carnahan, B., et al. Applied Numerical Methods, Wiley, New York, 1969.

Chen, T. C. "Automatic Computation of Exponentials, Logarithms, Ratios, and Square
Roots," IBM Journal of Research and Development, Volume 18, pp. 380-388, July 1972.

Collected Algorithms from ACM, ACM Inc., P.O. Box 12105, Church Street Station,

New York, 10249.

Despain, A. M. "Fourier Transform Computers Using CORDIC Iterations," IEEE

Transactions on Computers, October 1974, pp. 993-1001.

Edgar, A. D. and S.C. Lee. "FOCUS Microcomputer Number System," Communica­

tions of the A CM, March 1979, pp. 166-177.

Hwang, K. Computer Arithmetic, Wiley, New York, 1978.

Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental Algorithms; The

Art of Computer Programming, Volume 2: Seminumerica/ Algorithms; The Art of Computer

Programming, Volume 3: Sorting and Searching, Addison-Wesley, Reading, Mass. 1967-

1969.

Luke, Y. L. Algorithms for the Computation of Mathematical Functions, Academic Press,
New York, 1977.

Schmid, H. Decimal Computation, Wiley-lnterscience, New York, 1974.

New methods for performing arithmetic operations on computers are often discussed in
the triennial Symposium on Computer Arithmetic. The Proceedings (starting with

1969) are available from the IEEE Computer Society, 10662 Los Vaqueros Circle, Los

Alamitos, Calif. 90720.

v
6809 Instruction Set

Chapter 22 and the appendices that follow it comprise a total reference for the

6809 instruction set. Chapter 22 describes each instruction in some detail; the appen­

dices summarize that information and also provide material on indexed and indirect

addressing modes.

22
Descriptions of Individual

6809 Instructions

In this chapter we present instructions in alphabetical order and describe them

in great detail. The information contained here is summarized in Appendices A and C.

We have included several instruction mnemonics which 6809 assemblers may accept

to maintain compatibility with 6800 source code. These may be 6800 instructions

which the 6809 does not have or 6800 mnemonics that are not part of the standard 6809

set. Table 3-10 shows the 6800 mnemonics and the equivalent 6809 instructions. In

some cases, the instruction is a 6800-like mnemonic extended to the 6809's additional

facilities. The assembler turns each of these mnemonics into a 6809 instruction or

sequence whose execution has results equivalent to those of the 6800 instruction.

These instructions are predefined macro calls and may not be available on all 6809

assemblers.

A description generally includes a diagram of the execution of the instruction.

Since the 6809 microprocessor has so many addressing modes, we have not attempted

to describe all the modes for each instruction.

ABA - Add Accumulator 8 to Accumulator A

The 6809 assembler translates this instruction into

PSIIS B

/\f)f)A ,'.;+

This instruction adds the two accumulators and stores the result in Accumulator A. It is

included in the assembler to allow source compatibility between the 6800 and the 6809

microprocessors.

22-2 6809 Assembly Language Programming

ABX - Add Accumulator 8 to Index Register X Unsigned

Object No. of No. of
Code Cycles Bytes

ABX 3A 3 1

Add the contents of Accumulator B to those of Index Register X. Store the result
in Index Register X. ABX treats the contents of B as an unsigned number.

X

y

u

s

PC

E F H

o{:
pp

mm

DP

N Z V C

XX

qq

mm

ABX

Data
Memory

Program
Memory

3A mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose xx = 8416 and ppqq = 109716• After the processor executes the ABX
instruction, Index Register X will contain 111 B16:

1097 = 0001 0000 1001 0111
0084 = 0000 0000 1 000 01 00

0001 0001 0001 1011

This instruction calculates an indexed address and stores it in Register X for

later use. For example, Accumulator B could contain a calculated selection code and
Index Register X the base address of the table from which the selection would be made.
ABX would then store the address of the selected item in Register X. Subsequent
instructions could use that address without repeating the indexing process: for example,
LOA ,X. The selected item could itself be the address of a set of parameters� these
parameters could then be accessed via indirect addressing, as in LOA [,X++] .

ABX performs almost the same address calculation as LEAX B,X. Whereas

ABX has no effect on the flags, LEAX does affect the zero flag. Be careful of another
difference between the two instructions; LEAX treats the contents of Accumulator B

as a twos complement number, while ABX interprets the value in B as an unsigned

number. For example, if B holds FF16 and X contains 27El16, execution of ABX will
leave 28E016 in X, but LEAX B,X will place 27E016 in X. LEAX B,X should be used in

Descriptions of Individual 6809 Instructions 22-3

most situations; however, when program space or execution time is at a premium, the
shorter, faster ABX can replace it. Remember, though, that when you replace LEAX
B,X with ABX, you may have to relocate the memory area being addressed by the index
register.

ABX affects no flags; it is meant to manipulate addresses rather than data. This

is one of the few 6809 instructions that lack generality; it applies to only two specific

registers - B and X - and cannot be extended to any others. The instruction is
included in the 6809 instruction set for compatibility with the 6801 processor.

ADC - Add Memory Plus Carry to Accumulator A or B
ADCA
ADCB

Immediate Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

ADCA 89 2 2 99 4 2 89 5 3 A9 4+ 2+
ADCB C9 2 2 09 4 2 F9 5 3 E9 4+ 2+

This instruction adds the contents of a memory location and the contents of the
Carry flag to the contents of Accumulator A or B. The result is stored in the specified
accumulator.

Consider performing an addition with Carry using immediate data and Accumula­
tor A.

CCR

X

y

u

s

PC

E F H

o{:

mm

DP

N Z V C

XX

mm

ADCA #$7C

Data
Memory

Program
Memory

89

7C

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose that xx = 3A11, and C = 1. After the processor executes the instruction ADCA
:#=$7C, Accumulator A will contain B7 Jo·

22-4 6809 Assembly Language Programming

3A = 0011 1010
7C = 0111 1100

Carry= ___ _

1 0 11 0 1 11 - Nonzero result resets Z to 0

I Ll ---- Carry out of bit 3 sets H to 1

1
0 lJ. 1 = 1, set V to 1
1 sets N to 1

'------ No carry, reset C to 0

The ADC instruction is most frequently used in multibyte additions, to include
the carry in the addition of the second and subsequent bytes. Note that for double byte
addition, the ADDD instruction (described next) will perform the 16-bit addition in one
instruction, and the ADC instruction for the high-order byte is not necessary.

ADD - Add Memory to Accumulator
ADDA
ADDB
ADDD

Immediate Direct

Object No. of No. of Object No. of No. of Object
Code Cycles Bytes Code Cycles Bytes Code

ADDA 88 2 2 98 4 2 8B

AOD8 CB 2 2 DB 4 2 FB

ADDO CJ 4 3 03 6 2 F3

Extended Indexed/Indirect

No. of No. of Object No. of No. of

Cycles Bytes Code Cycles Bytes

5 3 AB 4+ 2+

5 3 EB 4+ 2+

7 3 E3 6+ 2+

ADDA and ADDB add the contents of a memory location to the value in
Accumulator A or Accumulator B, placing the sum in the designated accumulator.
ADDD adds the contents of a memory word (two contiguous bytes) to the value in the
double accumulator, placing the result in the double accumulator.

Consider the 8-bit addition using direct addressing and Accumulator A.

E F H N Z V C ccR(._�.-.. l_x -'-I _l�x_..l_ x...._l_x .._I x__.l

n{:
XX

X

y

u

s

PC mm mm

DP dd

ADDA $40

Data
Memory

yy dd40

Program
Memory

9B mmmm

40 mmmm + 1

mmmm + 2

Descriptions of Individual 6809 Instructions 22-5

Suppose xx = 2411, dd = 0011, and the contents of memory byte 0040- (yy) are
8816• After execution of the ADDA $40 instruction, Accumulator A will contain AF16:

24 = 0010 0100
88"' 1000 1011

1 01 0 11 1 1- Nonzero result resets Z to 0

I \...._ ___ .,.. No Carry from bit 3 resets H to 0

l
0 ¥ 0 = 0. No Carry from bit 6 or 7, reset V to 0

L___ _____ Bit 7 sets N to 1
L___ ___ __ No Carry, reset C to 0

ADDA and ADDB are the usual single-byte addition instructions; they are also

used to add the least significant bytes of multibyte addends greater than 16 bits.

ADDD, which we will describe next, is available for 16-bit addition.

Now consider the ADDD instruction. This instruction adds the contents of two
memory locations to the Double Accumulator D. The double accumulator's high-order
byte is Accumulator A; its low-order byte is Accumulator B. The number to be added
has its high-order byte in the first memory address and its low-order byte in the subse­
quent memory address.

We will illustrate the ADDD instruction using immediate addressing.

E F H N Z V C

ccR._I_ I_ x l_x..L.j_x.._l x....,)

o{:
XX

yy
X
y
u
s

PC mm mm

DP

ADDD :#:$1011

{

Data
Memory

Program
Memory

C3

10
11

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

22-6 6809 Assembly Language Programming

If xx = 1016 and yy = 5516, the instruction ADDD #$1011 yields 206616 in
Accumulator D: that is, 2016 in Accumulator A and 6616 in Accumulator B.

105516 = 0001 0000 0101 0101
101116 = 0001 0000 0001 0001

0010 0000 0110 0110-Nonzero result resets Z to 0

II

No Carry from bit 14 or 15. V = 6 ¥ t = 0
'-----------Bit 15 resets N to 0

'----------• No Carry. reset C to 0

Note that ADDD does not affect the H flag.
The ADDD instruction can be used to perform 16-bit addition in preference to

ADDB, ADCA, which together take longer and require more memory. However, it
cannot readily be extended to handle longer data because of the lack of any way to add
in carries; that is, there is no ADCD instruction. You must remember the order of the
accumulators (A high-order, B low-order) and the fact that two memory locations are
used for data: the one addressed and the one following that.

AND - logical AND Accumulator or Condition Code Register
ANDA
ANDB
AN DCC

Immediate Direct E><tended lnde><edllndirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

ANDA 84 2 2 94 4 2 84 5 3 A4 4+ 2+
ANDB C4 2 2 04 4 2 F4 5 3 E4 4+ 2+
AN DCC 1C 3 2

This instruction logically ANDs the contents of a memory location with
Accumulator A or Accumulator B; the ANDCC instruction allows only immediate
addressing and performs a logical AND of the condition code register with the immedi­
ate byte. The result of the AND operation is stored in the designated register.

Consider the AND instruction using Accumulator Band indexed addressing with
zero offset.

E F H N Z V C

Descriptions of Individual 6809 Instructions 22-7

Data
Memory

ccR ._I__...__la....x l_x_._l_o ..._I ��

X pp

y

u
�--------�--------�

s

mm mm

DP

ANDB .X

yy ppqq

Program
Memory

E4

84

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose that xx = FC16, ppqq = 305616, and the contents of 305616 are 1316 (yy). After
the instruction ANDB ,X executes, Accumulator B will contain the value 1016•

FC = 1 1 1 1 1 1 00
13 = 0001 0011

0001 0000- Nonzero result, Z reset to 0
V is cleared regardless of the result

'------- Bit 1 resets N to 0

Common uses of AND are:

1. To clear bits - that is, to make them 'O's. For example, the instruction
ANDA #%ll0lllll

clears bit 5 of Accumulator A while leaving the other bits of Accumulator A
unchanged. Note that logically ANDing a bit position with a 'l' leaves the
value of the position unchanged, while logically ANDing with a '0' clears the
position.

2. To test bits. For example, the instruction
ANDA �%00001000

produces a result of 00001000 ifbit 3 of Accumulator A is '1' and a result of
zero if bit 3 of Accumulator A is '0'. Thus the instruction sets the Zero flag if
bit 3 of Accumulator A is '0' and clears that flag if bit 3 of Accumulator A is
'1 '. The Zero flag can then be used as a branch condition with the instruction
BNE or BEQ. For example,

liNDA
BNE

ANDA
AEQ

�'1>000f)l(10(J
BITl

,%00010�00
I'?. ITO

RRANCH IF'

RRA!'JCH IF

BIT 1 OF A rs l

BIT � ()F' A r:::: n

22-8 6809 Assembly Language Programming

Now consider the ANDCC instruction.

CCR

X

y

u

s

PC

E F H

o{;

mm

DP

N Z V C

mm

ANDCC #$BF

Data
Memory

Program
Memory

1C mmmm

BF mmmm + 1

mmmm + 2

mmmm + 3

Let the CCR = 04111• After the instruction AN DCC :#$BF, the CCR will contain

0416 = 1101 0100
BF 1 6 = 1 0 1 1 1 1 1 1

1001 0100

All flags may be affected by the ANDCC operation. It clears all the flags that are

logically ANDed with 'O's, while leaving the other flags unchanged. The following
masks can be used to clear individual flags:

Flag Required Mask

Binary Hexadecimal

E 0111 1111 7F
F 1011 1111 BF
H 1101 1111 DF
I 1110 1111 EF
N 1 111 01 11 F7
z 1111 1011 FB
v 1111 1101 FD
c 1111 1110 FE

Of course, 'O's in more than one bit position will clear more than one flag at a

time. However, only a few possibilities are really useful. In particular, we should note:

1\NDCC ��1011 llll
1\NDCC l%1110 llll
MJ nc c H 1 1 1 1 L 1 n 1
1\NDCC ,11111 1110

ENABLE FAST INTERRUPTS
I:NJI.f�Lf: RF:G!JLAR 1\JTER!HJPT:;

CLEAR OVERFLOW
CLEAR CARHY

Remember that clearing an interrupt mask enables the interrupt from that source.

This instruction is used to enable the regular or fast interrupt, to clear the Overflow

flag for later use, and to clear the Carry flag for use as an indicator or to start multi-

Descriptions of individual 6809 Instructions 22-9

pie-precision addition - there is, of course, no carry into the least significant bytes, so

the Carry must be cleared originally. The Carry must also be cleared initially for multi­

ple-precision binary subtraction, to signify that there is no borrow required from the

least significant bytes. The CLR instruction also clears the Carry flag.

ASL - Shift Accumulator or Memory Byte Left
ASLA
ASLB
ASL

Inherent Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

ASL 08 6 2 78 7 3 68 6+ 2+
ASLA 48 2 1
ASLB 58 2 1

Shift the contents of Accumulator A or 8 or the contents of the selected byte of

memory left one bit arithmetically, clearing the least significant bit.
Consider shifting an accumulator (A):

CCR

X

y

u

ASLA

Data
Memory

Program
Memory

48 mmmm

mmmm + 1

Suppose that Accumulator A contains 7 A 16• Executing an ASLA instruction

changes the contents of Accumulator A to F4u-,-

ASLA

Carry Accumulator A

X 0111 1010

0 / 1� 11 0100-Nonzero result. reset Z to 0

L----It------,. l
� lJ 1 = 1 . set V to 1

'-- ------+• Bit 7 sets N to 1

H is undefined

22-10 6809 Assembly Language Programming

The Overflow flag (V) is loaded with the Exclusive-OR of bits 7 and 6 of the origi­
nal operand; these bit values are the same as those of the resulting Carry (C) and Sign
(N) flags. Common uses of ASL include simple multiplication (by small integers such
as 2 or 4), serial-to-parallel conversion, and scaling. Note that a single ASL instruc­
tion multiplies its operand by 2. This instruction is the same as Logical Shift Left (LSL).

An ASL operation on a memory location is exactly like the accumulator opera­
tion. There is, of course, some difference in object code size and execution time,
depending on the addressing mode.

ASR - Shift Accumulator or Memory Byte Right
ASRA
ASRB
ASR

Inherent Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycle• Bytes Code Cycles Bytes Code Cycles Bytes

ASR 07 6 2 77 7 3 67 6+ 2+

ASRA 47 2 1

ASRB 57 2 1

Perform a one-bit arithmetic right shift of the contents of Accumulator A or B or
the contents of a selected byte of memory.

Consider shifting a memory location right. The addressing mode is indexed,
autoincrementing User Stack Pointer U.

CCR

X

y

u

s

PC

E F H

o{:

pp

mm

DP

N Z V C

qq

mm

ASR .U+

Data
Memory

67 mmmm

co mmmm + 1

mmmm + 2

mmmm + 3

Suppose ppqq = 013416 and the contents of location 013416 are CB16• Executing an
ASR ,U+ instruction will change the contents of memory location 013416 to E516. The
final contents of the User Stack Pointer will be 013516•

ASR

Descriptions of Individual 6809 Instructions 22-11

Address 01 34 Carry

1100 1011� X

1110 0101 1

L._ ______ Nonzero result, reset Z to 0

L-.--------- Bit 7 sets N to 1

H is undefined

While the 6809's ASR instruction does not affect the Overflow flag (V), those of

the 6800/0 I /02/03/08 processors do.

An arithmetic right shift preserves the value of the most significant bit (or sign
bit); it can thus be used for scaling twos complement numbers, since it retains their
signs. The ASR instruction is frequently used in division routines.

BCC - Branch if Carry Clear (C = 0)

Object No. of No. of
Code Cycles Bytes

BCC 24 3 2

This instruction is the same as BRA except that it causes a branch only if the Carry

flag is 0. If the Carry flag is 1, the processor continues to the next instruction in the nor­

mal sequence.

Consider the following section of a program:

--------sec NEXT

C=O

A DA #$7F

c = 1

---��-- CLRA

After executing BCC, the processor next executes:

1. CLRA if the Carry flag is 0.

2. ANDA if the Carry flag is l .

When used after a subtract or compare on unsigned binary values, this instruction could

be called "branch if the register was higher or the same as the memory operand�" in

fact, the 6809 assembler will accept the mnemonic BHS for this instruction.

22-12 6809 Assembly Language Programming

BCS - Branch if Carry Set (C - 1)

Object No. of

Code Cycle•

BCS 25 3

No. of

Byte•

2

This instruction is the same as BRA except that it causes a branch only if the Carry

flag is 1. If the Carry flag is 0, the processor continues to the next instruction in the nor­

mal sequence.

Consider the following section of a program:

NEXT
A DA :io$7F

c�1 c-o

.....__--filE*+-- CLRA

After executing BCS, the processor next executes:

1. CLRA if the Carry flag is l .

2. ANDA if the Carry flag is 0.

When used after a subtract or compare on unsigned binary values, this instruction could

be called "branch if the register was higher or the same as the memory operand;" in

fact, the 6809 assembler will accept the mnemonic BHS for this instruction.

BEQ - Branch if Equal to Zero (Z - 1)

Object No. of No. of

Code Cyclee Byt ..

BEQ 27 3 2

This instruction is the same as BRA except that it causes a branch only if the Zero

flag is 1. If the Zero flag is 0, the processor continues to the next instruction in the nor­

mal sequence.

Consider the following section of a program:

z = 1 : 1 z � 0

....__--N�f...-..- CLRA

NEXT
:io$7F

After executing BEQ, the processor next executes:

1. CLRA if the Zero flag is 1.

2. ANDA if the Zero flag is 0.

Remember that the Zero flag is set to 1 if the most recent result was zero. When

BEQ is used after a subtract or compare, branching will occur only if the values com­

pared were exactly the same.

Descriptions of Individual 6809 Instructions 22-13

BGE - Branch if Greater Than or Equal to Zero (N EB V = 0)

Object No. of No. of
Code Cycles Bytes

BGE 2C 3 2

This instruction is the same as BRA except that it causes a branch only if:

I. The Sign flag is 1 and the Overflow flag is I, or

2. The Sign flag is 0 and the Overflow flag is 0.

If neither of these conditions is true, the processor continues to the next instruc­
tion in the normal sequence. The branch conditions can be simplified logically to the
form N EB = 0.

Consider the following section of a program:

NEXT
A DA #$7F

NffiV=O NffiV=1

After executing BG E, the processor next executes:

1. CLRA if NEB V = 0.

2. ANDA if NEBV = 1.

The conditions have the following significance if a CMP (compare) instruction
immediately precedes the branch:

I. N = 0 and V = 0 if the result of CMP is positive (N = 0), and twos comple­
ment overflow did not occur (V = 0).

2. N = 1 and V = 1 if the result appears to be negative (N = 1), but the sign
was changed by twos complement overflow (V = 1).

Thus the branch occurs if the result is a true positive (unaffected by overflow) or a
false negative (affected by overflow). This analysis assumes that the numbers are all in
twos compl�ment form. BGE thus provides a twos complement Greater Than or Equal
To branch; alternatives are:

I. BGT, a twos complement Greater Than branch.

2. BHS (BCC), an unsigned Greater Than or Equal To branch.

BGT- Branch if Greater Than Zero (Z+(NEB V = 0)

Object No. of No. of
Code Cycles Bytes

BGT 2E 3 2

This instruction is the same as BRA except that it causes a branch only if the Zero

22-14 6809 Assembly Language Programming

flag is 0 and:

1. The Sign flag is l and the Overflow flag is 1, or

2. The Sign flag is 0 and the Overflow flag is 0.

If this condition is not true, the processor continues to the next instruction in the

normal sequence. The branch condition can be simplified logically to the form
Z + (N EB V) = 0.

Consider the following section of a program:

------iitAT NEXT

Z +(N ffi VI "" 0

A DA =#:$7F

• Z + IN ffi VI = 1

After executing BGT, the processor next executes:

1. CLRA if Z + (N EB V) = 0.
2. ANDA if Z +(N EB V) = 1.

The condition has the following significance if a CMP (Compare) instruction
immediately precedes the branch:

1. Z = 0, N = 0, and V = 0 if the result of CMP is positive but not zero (Z = 0
and N = 0) and twos complement overflow did not occur (V = 0) .

2. Z = 0, N = 1, and V = l if the result of CMP is not zero and appears to be
negative (N = 1), but its sign was changed by twos complement overflow (V

= 1).

So the branch occurs if the result is not zero and is either a true positive number
(unaffected by overflow) or a false negative number (affected by overflow). This
analysis assumes that all numbers are in twos complement form. BGT thus provides a
twos complement Greater Than branch; alternatives are

l. BGE, a twos complement Greater Than or Equal To branch.

2. BHI, an unsigned Greater Than branch.

BHI - Branch if Higher (Z + C - 0)

Object No. of No. of
Code Cycle• Byte•

liM I 22 3 2

This instruction is the same as BRA except that it causes a branch only if the Zero
flag and the Carry flag are both 0. If either flag is not zero, the processor continues to the
next instruction in the normal sequence.

Descriptions of Individual 6809 Instructions 22-15

Consider the following section of a program:

�--------��� NEXT
A DA :ll:$07

Z+C=O Z+C=1

After executing BHI, the processor next executes:

1. CLRA if the Carry flag and the Zero flag are both 0.

2. ANDA if the Carry flag and/or the Zero flag is l.

The condition has the following significance if a CMP (compare) instruction

immediately precedes the branch:

1. C = 0 and Z = 0 if the result of CMP is not zero and the operation did not

produce a borrow. Remember that the operation sets C to 1 if it requires a

borrow (that is, if the contents of the register were smaller in the unsigned

sense than the number to which they were compared).

2. C = 1 and/or Z = 1 if either the result of CMP is zero or the operation pro­

duced a borrow.

BHI differs from BHS (BCC) after a comparison only if the result is zero; BHS

causes a branch in that case, while BHI does not. BHI thus provides an unsigned Greater

Than branch; alternatives are:

1. BHS (BCC), an unsigned Greater Than or Equal To branch.

2. BGT, a twos complement Greater Than branch.

The instruction BHI is generally not useful after INC/DEC, LD/ST, or TSTI

CLR/COM: CLR always resets the Carry flag to 0; COM always sets the Carry flag to 1,

and the other instructions listed do not affect the Carry flag.

BHS - Branch If Higher or Same (C - 0)

Object No. of No. of
Code Cycles Bytes

BHS 24 3 2

This instruction is exactly the same as BCC. The alternative mnemonic reflects

the fact that the condition has the following significance if a CMP (compare) instruction

immediately precedes the branch:

l . C = 0 if the operation did not require a borrow. That is, the unsigned number

in the register was greater than or equal to the unsigned number to which it

was com pared.

2. C = 1 if the operation required (produced) a borrow. That is, the unsigned

number in the register was less than the unsigned number to which it was

compared.

22-16 6809 Assembly Language Programming

BHS (BCC) causes a branch if the operation did not require a borrow. BHS (BCC) thus
provides an unsigned Greater Than or Equal To branch; alternatives are:

l. BGE, a twos complement Greater Than or Equal To branch.

2. BHI, an unsigned Greater Than branch.

This instruction is generally not useful after INC/DEC, LD/ST, or TST/CLR/COM:
CLR always resets the Carry flag to 0, COM always sets the Carry flag to I, and the other
instructions listed do not affect the Carry flag.

BIT - Bit Test

BIT A

BITB

Immediate

Object No. of

Code Cycles

BIT A 85 2

BITS C5 2

No. of

Bytes

2

2

Direct

Object No. of No. of

Code Cycles Bytes

95 4 2

05 4 2

Extended Indexed/Indirect

Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes

85 5 3 A5 4+ 2+

F5 5 3 E5 4+ 2+

This instruction A NOs the contents of accumulator A orB with the contents of a
selected memory location and sets the flags accordingly, but does not alter the contents
of the accumulator or memory byte. We illustrate this instruction with extended
addressing and Accumulator A.

E F H I
CCR I I I I

o{:
X

y

u

s

PC mm

DP

N z v c

I X I X I 0 I I
'-.,.-'

XX

mm
-

BITA $1641

�
XX Ayy J (

-l. mmmm +3

{

Data
Memory

yy

Program
Memory

85

16

41

1641

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose xx = A616 and yy = E016. After the processor executes BIT A $1641,
Accumulator A will still contain A6 16, and memory location 164116 will still contain E016

Descriptions of Individual 6809 Instructions 22-17

but the flags will be modified as follows:

A6 = 1 0 1 0 0 1 1 0
EO = 1 1 1 0 0000

1010 0000- Nonzero result sets Z to 0.

'-------Bit 7 sets N to 1

V is always cleared.

BIT instructions frequently precede conditional branch instructions. BIT instruc­

tions are also used to perform masking functions on data. Note that BIT instructions

differ from AND instructions only in that BIT instructions do not change the con­

tents of the selected accumulator, thus allowing further tests or other operations with­
out reloading.

BLE - Branch If Less Than or Equal to Zero (Z + (N EB V) - 1)

Object No. of No. of

Code Cycles Bytes

BLE 2F 3 2

This instruction is the same as BRA except that it causes a branch only if:

1. The Zero flag is 1 or

2. The Sign flag is 1 and the Overflow flag is 0 or

3. The Sign flag is 0 and the Overflow flag is 1.

If none of these conditions is true, the processor continues to the next instruction in the

normal sequence. The branch conditions can be simplified logically to the form

Z + (N EB V) = I.

Consider the following section of a program:

__.------ffi:IE NEXT

z +(NEB V) = 1

A DA =lf$7F

z + (NEB V) = 0

After executing BLE, the processor next executes:

l. CLRA if Z + (N EB V) = l.

2. ANDA if Z + (N EB V) = 0.

The condition has the following significance if a CMP (compare) instruction

immediately precedes the branch:

1. Z = 1 if the result of CMP is zero.

2. N = 1 and V = 0 if the result of CMP is negative (N = l), and twos comple­

ment overflow did not occur (V = 0).

3. N = 0 and V = 1 if the result appears to be positive (N = 1), but the sign was

changed by twos complement overflow (V = 1).

22-18 6809 Assembly Language Programming

So the branch occurs if the result is zero, a true negative (unaffected by overflow), or a
false positive (affected by overflow). This analysis assumes that all numbers are in the

twos complement form. BLE thus provides a twos complement Less Than or Equal To

branch; alternatives are:

l. BL T, a twos complement Less Than branch.

2. BLS, an unsigned Less Than or Equal To branch.

BLO - Branch If Lower (C - 1)

Object No. of No. of
Code Cycles Bytes

BLO 25 3 2

This instruction is exactly the same as BCS. The alternative mnemonic reflects the

fact that the condition has the following significance if a CMP (compare) instruction

immediately precedes the branch:

1. C = 1 if the operation required (produced) a borrow. That is, the unsigned

number in the register was less than the unsigned number to which it was

compared.

2. C = 0 if the operation did not require a borrow. That is, the unsigned number

in the register was greater than or equal to the unsigned number to which it
was compared.

So BLO (BCS) causes a branch if the operation required a borrow. BLO (BCS) thus pro­

vides an unsigned Less Than branch; alternatives are:

1. BLS, an unsigned Less Than or Equal To branch.

2. BLT, a twos complement Less Than branch.

BLS - Branch If Lower or Same (C + Z - 1)

Object No. of No. of
Code Cycles Bytes

BLS 23 3 2

This instruction is the same as BRA except that it causes a branch if either the

Carry flag is 1 or the Zero flag is l. If neither flag is 1, the processor continues to the next

instruction in the normal sequence.

Consider the following section of a program:

c + z = 1

NEXT
A DA #$7F

C+Z=O

...__-NH'<-+--- CLRA

Descriptions of Individual 6809 Instructions 22-19

After executing BLS, the processor next executes:

1. CLRA if either the Carry flag or the Zero flag is 1.

2. AN DA if the Carry flag and the Zero flag are both 0.

The condition has the following significance if a CMP (compare) instruction

immediately precedes the result:

1. C = 1 if the operation produced a borrow. Remember that the operation sets

C to 1 if the contents of the register were smaller in the unsigned sense than

the number to which they were compared.

2. Z = 1 if the result of CMP is zero.

BLS differs from BLO (BCS) after a comparison only if the result is zero; BLS causes a

branch in that case, while BLO (BCS) does not, since no borrow is required if the result

is zero. BLS thus provides an unsigned Less Than or Equal To branch; alternatives are:

1. BLO (BCS), an unsigned Less Than branch.

2. BLE, a twos complement Less Than or Equal To branch.

The BLS instruction is generally not useful after INC/DEC, LD/ST, TST/CLR/COM:

CLR always resets the Carry flag to 0, COM always sets the Carry flag to 1 , and the other

instructions listed do not affect the carry flag.

BL T- Branch If Less Than Zero (N ffi V - 1)

Object No. of No. of
Code Cycles Bytes

BLT 20 3 2

This instruction is the same as BRA except that it causes a branch only if:

1. The Sign flag is 1 and the Overflow flag is 0 or

2. The Sign flag is 0 and the Overflow flag is 1.

If neither of these conditions is true, the processor continues to the next instruc­

tion in the normal sequence. The branch conditions can be simplified logically to the

form N EB V = 1.

Consider the following section of a program:

NE8V=1

NEXT
A DA '*F$7F

NffiV=O

After executing BLT, the processor next executes:

1. CLRA if N EB V = 1.

2. ANDA if N EB V = 0.

·-------

22-20 6809 Assembly Language Programming

The conditions have the following significance if a CMP (compare) instruction

immediately precedes the branch:

1. N = 1 and V = 0 if the result of CMP is negative (N = 1), and twos comple­
ment overflow did not occur (V = 0).

2. N = 0 and V = 1 if the result appears to be positive (N = 0), but the sign was
changed by a twos complement overflow (V = 1).

So a branch occurs if the result is a true negative (unaffected by overflow) or a false
positive (affected by overflow). This analysis assumes that the numbers are all in the
twos complement form. BLT thus provides a twos complement Less Than branch; alter­

natives are:

1. BLE, a twos complement Less Than or Equal To branch.

2. BLO (BCS), an unsigned Less Than branch.

BMI - Branch If Minus (N - 1)

Object No. of No. of

Code Cycles Bytes

BMI 28 3 2

This instruction is the same as BRA except that it causes a branch only if the Sign

flag is 1. If the Sign flag is 0, the processor continues to the next instruction in the nor­
mal sequence.

Consider the following section of a program:

-------.MI NEXT

N = 1

A DA *$7F

N = 0

----��---- CLRA

After executing BMI, the processor next executes:

l. CLRA if the Sign flag is I.

2. ANDA if the Sign flag is 0.

BMI is used to test the value in bit position 7; that bit position is often used for

parity, status indicators, or peripheral status bits. Used after an operation on twos
complement binary values, this instruction will "branch if the result is minus," but the
sign may be invalid due to twos complement overflow.

BNE - Branch If Not Equal to Zero (Z = 0)

Object No. of No. of

Code Cycles Bytes

BNE 26 3 2

This instruction is the same as BRA except that it causes a branch only if the zero

Descriptions of Individual 6809 Instructions 22-21

flag is 0. If the Zero flag is 1, the processor continues to the next instruction in the nor­

mal sequence.

Consider the following section of a program:

Z=O C
NEXT

After executing BNE, the processor next executes:

1. CLRA if the Zero flag is 0.

2. ANDA if the Zero flag is 1.

NEXT
#$7F

Remember that the Zero flag is set to 0 if the most recent result was not zero. Used after

a subtract or compare operation on any binary values, this instruction will "branch if the

register is not equal to the memory operand."

BPL - Branch If Plus (N - 0)

Object No. of No. of
Code Cycles Bytes

BPL 2A 3 2

This instruction is the same as BRA except that it causes a branch only if the Sign

flag is 0. If the Sign flag is 1, the processor continues to the next instruction in the nor­

mal sequence.

Consider the following section of a program:

N=O

NEXT

After executing BPL, the processor next executes:

1. CLRA if the Sign flag is 0.

2. ANDA if the Sign flag is 1.

NEXT
#$7F

Used after an operation on twos complement binary values, this instruction will

"branch if the result is positive," but the sign may be invalid due to twos complement

overflow.

BRA - Branch Always

Object No. of No. of
Code Cycles Bytes

BRA 20 3 2

22-22 6809 Assembly Language Programming

BRA always causes a branch to the specified address by placing that address in the

Program Counter. The specified address is the sum of the current value of the program

counter (after the processor has fetched the BRA instruction from memory) and the dis­

placement. The displacement is an 8-bit twos complement number contained in the sec­

ond byte of the instruction.

X

y

u

s

PC

E F H

o{:

mm

DP

N Z V C

mm

BRA *+$25

� �

Data
Memory

Program
Memory

-:l
mmmm+2

20 + 23

._...__ 23

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

If mmmm = 204216, after BRA *+$25 is executed, the program counter will contain

206711, and the processor continues executing instructions from that point.

Consider the following section of a program:

.--------BRA NEXT
ANDA :ii:$7F

NEXT CLRA

After executing BRA, the processor always executes CLRA next. It will never execute

the ANDA instruction unless a branch or jump instruction elsewhere in the program

transfers control to that instruction.

The overall effect of a BRA instruction is:

PC = PC + 2 + disp

The extra factor of 2 is the result of the 2 bytes occupied by the BRA instruction itself.

Since the displacement is an 8-bit twos complement number with the range:

-128 (100000002).::; disp.::; +127 (011111112).

the range of a BRA instruction is:

• -126 .::;_ destination .::;_ • + 129

where * refers to the value of the Program Counter at the start of the instruction.

Descriptions of Individual 6809 Instructions 22-23

BRA does not affect any flags or any registers except the program counter (its
previous value is lost). Some typical example displacements are:

1. 05,6

The final value of the program counter is its original value plus 7 (5 more
than its normal value at the end of a 2-byte instruction).

2. FE16

The final value of the program counter is the same as its original value,
since FE16 = -2 when considered as an 8-bit twos complement number. This
displacement results in an endless loop.

3. FA16

The final value of the program counter is its original value minus 4-6 less
than its normal value at the end of a 2-byte instruction. FA16 = -6 when
considered as an 8-bit twos complement number.

Note that a displacement of 00 produces a no-operation instruction (the pro­
cessor continues its normal sequence) while a displacement of FF (or -1) makes no
sense since it branches back into the middle of the BRA instruction itself.

BRN - Branch Never

Object No. of No. of

Code Cycles Bytes

BAN 21 3 2

BRN is the same as BRA except that it never causes a branch. Thus BRN is really
a no-operation; that is, control always passes to the next instruction. Note that BRN is a
2-byte no-operation, since the second byte contains the displacement that will never be
used. BRN makes the set of branches logically complete. Typical usage of BRN is as a
byte filler, or it may be used to fine-tune delay routines. See the NOP instruction
description for a discussion of uses for no-operations.

BSR - Branch to Subroutine

Object No. of No. of

Code Cycles Bytes

BSR BD 7 2

This instruction is the same as BRA except that it saves the contents of the Pro­
gram Counter (after the 2-byte BSR instruction has been fetched) in the Hardware
Stack.

BSR saves the return address in the Hardware Stack as follows:

1. Decrement the Hardware Stack Pointer and store the low-order byte of the
program counter at that address.

22-24 6809 Assembly Language Programming

X

y

u

s

PC

2. Decrement the hardware Stack Pointer again and store the high-order byte of
the Program Counter at that address.

E F H

o{:

XX

mm

DP

N Z V C

XX

mm

BSR • +$25

Data
Memory

mm xxxx- 2

mm + 2 xxxx - 1

Program

Memory

80

23

xxxx

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose xxxx = DE3016 and mmmm = 102416. After the execution of BSR
*+$25 the stack pointer S will contain DE2E111, the Program Counter will contain
104916, location DE2E16 will contain 1016, and location DE2F will contain 2616.

A later instruction (such as RTS or PULS PC) can then restore that address to the
program counter and thus resume execution of the calling program. BSR differs from
BRA in that BSR "remembers" where it came from, thus allowing control to pass to a
subroutine and back.

Consider the following section of a program:

..------- BSR SUBR

ANDA *$7F

- SUBR CLRA

RTS

After executing BSR, the processor always executes CLRA next just as after BRA.
However, it also saves the address of the AN DA instruction at the top of the hardware
stack. Later an RTS instruction can conclude the subroutine and transfer control back to
the return address at the top of the hardware Stack. Thus control passes from the BSR
instruction to the subroutine and back to the AN OA instruction.

Descriptions of Individual 6809 Instructions 22-25

BVC - Branch If Overflow Clear (V = 0)

Object No. of No. of
Code Cycles Byte a

BVC 28 3 2

BVC is the same as BRA except that it causes a branch only if the Overflow flag is

0. If the Overflow flag is 1, the processor continues to the next instruction in the normal

sequence.

Consider the following section of a program:

-------ftVC NEXT
A DA :11:$7F

V=O - v = 1

NEXT C RA

After executing BVC, the processor next executes:

1. CLRA if the Overflow flag is 0.

2. ANDA if the Overflow flag is l.

Used after an operation on twos complement binary values, this instruction will

"branch if there was no overflow."

BVS - Branch If Overflow Set (V - 1)

Object No. of No. of
Code Cycles Bytes

BVS 29 3 2

BVS is the same as BRA except that it causes a branch only if the Overflow flag is

l. If the Overflow flag is 0, the processor continues to the next instruction in the normal

sequence.

Consider the following section of a program:

V=1 C
NEXT

After executing BVS, the processor next executes:

1. CLRA if the Overflow flag is 1.

2. ANDA if the Overflow flag is 0.

NEXT

Used after an operation on twos complement binary values, this instruction will

"branch if there was an overflow." This instruction is also used after ASL or LSL to

detect binary floating-point normalization.

22-26 6809 Assembly Language Programming

CBA - Compare Accumulators

The 6809 assembler translates this 6800 instruction into:

p�����.:; H

c�1rl\ ,�;+

This instruction subtracts Accumulator B from Accumulator A and sets the flags accor­

dingly. It is handled by the 6809 assembler to allow source compatibility with the 6800

processor. The contents of the accumulators do not change.

CLC - Clear Carry

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction ANDCC'*f::%11111110- that is, into an instruction that clears the least sig­

nificant bit of the Condition Code Register (the Carry flag). CLC does not affect any

other flags or registers. Note that the CLR instruction also clears the Carry flag.

CLF - Clear Fast Interrupt Mask

The 6809 assembler translates this 6800-like instruction into the equivalent 6809

instruction AN DCC '*l=''lh 10111111 -that is, into an instruction that clears bit 6 of the

Condition Code Register (the fast interrupt mask). This instruction enables the fast

interrupt - that is, the 6809 will respond to the fast interrupt request control line. No

other registers or flags are affected. Note that you can also clear the fast interrupt mask

as part of the execution of the CW AI instruction.

CLI - Clear Interrupt Mask

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction ANDCC '*f::%11101111-that is, into an instruction that clears bit 4 of the

Condition Code Register (the regular interrupt mask bit). This instruction enables the

6809's regular interrupt - that is, the 6809 will respond to the interrupt request control

line. No other registers or flags are affected. Note that you can also clear the interrupt

mask as part of the execution of the CW AI instruction.

CLIF - Clear Regular and Fast Interrupt Masks

The 6809 assembler translates this 6800-like instruction into the equivalent 6809

instruction ANDCC'*f::%10101111-that is, into an instruction that clears bits 4 and 6
of the Condition Code Register (the regular and fast interrupt mask bits). This instruc­

tion enables both of the 6809's maskable interrupts - that is, the 6809 will respond to

either the fast interrupt request control line or to the interrupt request control line. No

other registers or flags are affected. Note that you can also clear the interrupt masks as

part or the execution of the CW AI instruction.

Descriptions of Individual 6809 Instructions 22-27

CLR - Clear Accumulator or Memory
CLRA
CLRB
CLR

Inherent Ditect

Object No. of No. of Object No. of No. of Object
Code Cycles Bytes Code Cycles Bytes Code

CLR OF 6 2 7F

CLRA 4F 2 1

CLRB 5F 2 1

Extended lndexed/lnditect

No. of No. of Object No. of No. of

Cycles Bytes Code Cycles Bytes

7 3 6F 6+ 2+

This instruction clears a specified accumulator or a selected byte of memory -

that is, it loads the accumulator or memory location with zero.

We will illustrate clearing Accumulator B:

E F H N Z V C

ccR ..._I -""-""""'--....._'""""l_ o 1_1 .._I _o .._I o�J

X

y

u

s

PC

o{:

mm

DP

XX r-

mm
--

CLRB

00

....

-]. mmmm + 1

Data
Memory

Program
Memory

5F mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose that Accumulator B contains 4316• After the processor executes the instruction

CLRB, Accumulator B will contain 0016. In addition, the Sign, Overflow, and Carry flags

will all be 0 and the Zero flag will be 1.

CLV- Clear Overflow

The 6809 assembler translates this 6800 instruction into the equivalent 6809
instruction AN DCC#% l l l lll 01 - that is, into an instruction that clears bit I of the

Condition Code register (the Overflow flag). No other flags or registers are affected. The

Overflow flag is also cleared by many other instructions, including AND, BIT, CLR,

COM, EOR, LD, OR, ST, and TST.

22-28 6809 Assembly Language Programming

CMP - Compare Memory with a Register
CMPA
CMPB
CMPD
CMPS
CMPU
CMPX
CMPY

Immediate Direct Extended

Object No. of No. of Object No. of No. of Object No. of
Code Cycles Bytes Code Cycles Bytes Code Cycleo

CMPA 81 2 2 91 4 2 81 5

CMP8 C1 2 2 01 4 2 F1 5

CMPO 10 83 5 4 10 93 7 3 10 83 8

CMPS 11 B C 5 4 11 9C 7 3 11 8C 8

CMPU 11 83 5 4 11 93 7 3 11 83 8

CMPX 8C 4 3 9C 6 2 8C 7

CMPY 10 BC 5 4 10 9C 7 3 10 8C 8

Indexed/Indirect

No. of Object No. of No. of
Bytes Code Cycles Bytes

3 A1 4+ 2+

3 E1 4+ 2+

4 10 A3 7+ 3+

4 11 AC 7+ 3+

4 11 A3 7+ 3+

3 AC 6+ 2+

4 10 AC 7+ 3+

There are two forms of this instruction - an 8-bit form and a 16-bit form. The
8-bit form is associated with Accumulators A and B. The 16-bit form is associated with
the 16-bit registers D, X, Y, U, and S. This instruction subtracts the contents of the
selected memory location from the contents of the specified register and sets the Condi­
tion flags accordingly. Neither the contents of the memory location nor the contents of
the register are changed. The Carry flag represents a borrow.

Let us begin with the 8-bit case using immediate addressing and Accumulator A.

CCR

X

y

u

s

PC

E F H

D{:

mm

DP

Suppose that xx

N Z V C

XX

mm

CMPA :lf$18

Data
Memory

Program
Memory

81 mmmm

18 mmmm + 1

mmmm + 2

mmmm + 3

F616. After the processor executes the instruction CMPA :#:$18,

Descriptions of Individual 6809 Instructions 22-29

Accumulator A will still contain F61c,, but the flags will be modified as follows:

F6=1111 0110
Twos complement of 18 = 1110 1000

11 01 11 1 0-- Nonzero result resets Z to 0

II
�

++---------< .. 1 ¥ 1 = 0. reset V to 0

....._ ____ ___.. Bit 7 sets N to 1

'------- No borrow resets C to 0

H is undefined.

Note that C is the complement of the resulting carry since it represents a borrow. Com­

pare instructions are most frequently used to set flags before the execution of branch

instructions. Note that the half-carry flag (H) is undefined after the 8-bit CMP instruc­

tion.

Now consider the 16-bit case. The execution of the two-byte compare is the same

as for the one-byte compare illustrated above with the exception that a 16-bit com­

parison takes place rather than an 8-bit comparison. We will illustrate CMPX using

extended addressing.

CCR

o{:
X pp qq

y

�----------+---------�
u

s

PC mm mm

OP

CMPX $A4F1

Data
Memory

XX A4 F1

yy A4 F2

Program
Memory

BC mmmm {
1-

-A
-
4

_--1
mmmm + 1

F1 mmmm + 2

mmmm + 3

Suppose that ppqq = I AB011,, xx (the contents of memory location A4Fl) = l B1r, and

yy (the contents of memory location A4F2) = 8011,. After the processor executes

CMPX $A4Fl, Index Register X and memory will be unchanged but the Sign, Zero,

Overflow, and Carry flags will be modified as fo::v .> ...

22-30 6809 Assembly Language Programming

1 ABO = 0001 1 01 0 1 011 0000

Twos complement of 1BBO = 1110 0100 0101 0000

1111 1111 0000 0000 -Nonzero result resets Z to 0

II._____: 0 ¥ 0= 0, reset V to 0

· -- - - Bit 1 5 sets N to 1
'------------A borrow sets C to 1

H flag is unaffected.

Notice that C is the complement of the resulting carry, just as in the CMPA
instruction. The flags are affected by the complete 16-bit operation, not by the two 8-bit

operations separately. The similar instructions (CMPD, CMPS, CMPU, and CMPY) all

require 2-byte operation codes while CMPX requires only one. This means that pro­

grammers should prefer Index Register X over Index Register Y and the stack pointers

to minimize the memory usage and execution time of their programs.

COM - Complement Accumulator or Memory
COMA
COMB
COM

Inherent Direct Extended

Object No. of No. of Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

COM 03 6 2 73 7 3

COMA 43 2 1

COMB 53 2 1

Indexed/Indirect

Object No. of No. of
Code Cycles Bytes

63 6+ 2+

This instruction complements the specified accumulator or a selected byte of

memory. This is the ones complement operation, which replaces each 1 in the byte with

a 0, and each 0 with a 1. We will illustrate the COM instruction using the indirect

indexed mode with zero offset from Index Register X.

E F H N Z V C

ccR _(__, l_ x...._j_x,(_o ..._I _,

X
y
u
s

PC

PP

mm

o{: t-----�

qq

mm

DP

COM LXI

Data
Memory

rr ppqq

ss ppqq + 1

XX

Program
Memory

63
94

rrss

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Descriptions of Individual 6809 Instructions 22-31

Suppose that the contents of Index Register X are 010016 and that memory locations
0100 and 0101 contain 011316. lf the contents of memory location 0113 are 2316, then
after the processor executes the instruction COM [,X], memory location 0113 will be
changed to DC16•

23 = 0010 0011
Ones complement of 2 3 = 11 01 11 00- Nonzero result resets Z to 0

V is reset to 0 always

�-----Bit 7 sets N to 1
C is set to 1 always

CWAI - logically AND Immediate Memory with Condition
Code Register and Wait for Interrupt

Object No. of No. of

Code Cycles Bytes

CWAI JC 20 2

This instruction logically ANDs the contents of the following byte of program
memory with the contents of the Condition Code Register, saves all the user registers in
the Hardware Stack, and halts execution until an external interrupt occurs.

Data
Memory

1 0 XX XXXX ssss - c

a a sss5 - B

bb sss5- A

5S5S - 9

cc ssss - 8

dd 5SSS - 7

ee SS5S - 6

CCA
ff 5SSS- 5

99 S55S - 4

hh 5555 - 3

mm ssss - 2

mm + 2 SSS5 - 1
o{:

a a

bb

X cc dd SSS5

y ee ff

Program
Memory

u gg hh

s ss ss

PC mm mm 3C mmmm

DP ii BF mmmm + 1

CWAI #$BF mmmm + 2

22-32 6809 Assembly Language Programming

The logical AND immediate is performed in exactly the same way as described in the
AN DCC instruction. Note that the operation on the Condition Code Register is done
before stacking. The entire flag (E) is set regardless of masking. The normal use of
CW AI is to clear one or more of the interrupt flags and hence enable interrupts before
suspending operations. So the sensible instructions are:

CI..;A I
C\-.jAI
CWI\I
OJAI

It% lll () l I l I
�%1011\lll
lt%10\0llll
�'1;1\lllll l

ENARLE R E GULAR INTERRUPT
ENABLE FAST INTERRUPT
ENABLE REGULAR AND FAST INTERRUPTS
WAIT FOR NONMASKABLE INTERRUPT

Remember that clearing an interrupt mask enables the interrupt from that source.
After the processor has saved the status of the system in the Hardware Stack as

shown in the diagram above, it halts execution until it receives an interrupt. Note that
the contents of the Hardware Stack Pointer are not stacked. When an interrupt occurs,
the interrupt mask bits are set to 1 and the processor jumps to the address in the
appropriate interrupt vector.

This instruction is used to synchronize the CPU with external processes.

CW AI does not tri-state the system busses. A fast interrupt may enter its interrupt

handler with the entire machine state saved; RTI will automatically restore the

entire machine state after testing the E bit of the recovered CCR.

DAA- Decimal Adjust After Addition

Object No. of No. of
Code Cycles Bytea

DAA 19 2 1

Convert the contents of Accumulator A to binary-coded decimal form.
Suppose that Accumulator A contains 3916 and memory location 15El contains 4716.
After the processor has executed the two instructions

.1\DD/\ $l5F.l
DAA

Accumulator A will contain 8616, rather than the 8016 which would be the ordinary
binary result. The Carry flag will be reset to 0 since there was no carry; the Overflow flag
is undefined; the Zero flag is reset to 0 since the result is not zero; and bit 7 sets N to 1.

This is the only instruction that requires the Half-Carry flag (H); its value is needed to
determine if a Carry occurred from the less significant digit.

The Sign and Zero flags are modified to reflect the statuses they represent. The
Overflow flag is destroyed and the Carry flag is set or reset as it should be by a hypotheti­
cal BCD addition. That is, the Carry flag is set if the BCD sum of the more significant
digits produced a carry.

Correction factors of 6 are added to each 4-bit digit of Accumulator A under the
following conditions:

I. Less Significant Digit (LSD)
a. H = 1 or
b. LSO > 9

Descriptions of Individual 6809 Instructions 22-33

2. More Significant Digit (MSD)
a. C = 1 or
b. MSD > 9 or
c. MSD > 8 or LSD > 9

This instruction makes sense only after a binary addition instruction (ADC or
ADD); the combinations ADCA, DAA or ADDA, DAA are decimal addition instruc­
tions that operate on BCD data and generate BCD results.

DEC - Decrement Accumulator or Memory
DECA
DECB
DEC

Inherent Direct Extended

Object No. of No. of Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

DEC OA 6 2 7A 7 3

DECA 4A 2 1

DECB 5A 2 1

Indexed/Indirect

Object No. of No. of
Code Cycles Bytes

6A 6+ 2+

This instruction decrements by one the specified 8-bit accumulator or a selected
memory byte.

Let us consider the case of Accumulator B.

E F H N Z V C

ccR ._I ____ _,jl�x_,jl�x_,jl�x_,jl.__

n{: XX -
X

y

u

s

PC mm mm
......

DP

DECB

...... XX - 1 - :J.._

-:x.. mmmm + 1

Data
Memory

Program
Memory

5A mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose that Accumulator B contains 3A16. After the processor executes DECB,
Accumulator B will contain 3916•

22-34 6809 Assembly Language Programming

3A = 0011 1 010
Ones complement of 1 = 1111 1 1 11

001 1 1 001 - Nonzero result resets Z to 0

Il l_ 1 :V. 1 = 0, Vis reset toO

�Bit 7 resets N to 0
Carry is not affected

The fact that DEC does not affect the Carry flag is quite important; it allows the pro­
grammer to use DE.C (or INC) to count iterations of a loop that is performing multi­
ple-precision arithmetic. The Carry flag is essential in such a loop to transfer informa­

tion (carries or borrows) from one iteration to the next. Decrementing a register or

memory location that contains zero produces a result of FF16 but does not set the Carry

flag.

After decrements of unsigned values, only BEQ and BNE branches will behave

consistently. However, when the operands are twos complement numbers, all signed

branches behave properly.

DES - Decrement Hardware Stack Pointer by 1
The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction LEAS -1 ,S - that is, into an instruction that subtracts 1 from the Hard­

ware Stack Pointer. Note that DES provides a 16-bit decrement that does not affect the

flags.

DEX - Decrement Index Register X by 1
The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction LEAX - 1 ,X - that is, into an instruction that subtracts 1 from Index

Register X. Note that DEX provides a 16-bit decrement that affects only the Zero flag.

DEY - Decrement Index Register Y by 1
The 6809 assembler translates this 6800-like instruction into the equivalent 6809

instruction LEA Y - 1, Y - that is, into an instruction that subtracts 1 from the contents

of Index Register Y. Note that DEY provides a 16-bit decrement that affects only the

Zero flag.

EOR - Logically Exclusive-OR Memory with Accumulator
EORA
EORB

Immediate Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

EORA 88 2 2 98 4 2 88 5 3 AB 4+ 2+

EOR8 C8 2 2 08 4 2 F8 5 3 EB 4+ 2+

Descriptions or Individual 6809 Instructions 22-35

This instruction logically Exclusive-OR s the contents of a memory location with
the contents of Accumulator A orB, treating both operands as simple binary data. The
results are stored in the designated accumulator.

Consider the following example using indirect indexed addressing with an 8-bit
offset and Accumulator B.

E F H N Z V C

ccR ��--'-_._........_-'-l_x_I _x .._I _o I �

D {: 1--------1 �---'
XX

X pp qq
y

u

s

mm mm

DP

EORB [$60,X]

Data
Memory

ss ppqq + 60

tt ppqq + 61

yy

Program
Memory

EB

98

sstt

mmmm

mmmm + 1

60 mmmm + 2

mmmm + 3

Suppose that xx = E316 and yy = A016, and that ppqq = C80016 and sstt = 3E4A16.
After the processor executes the instruction EORB [$60,X] Accumulator B will contain
4316·

E3 = 11 1 0 001 1
AO = 1010 0000

01 00 0011 --Nonzero result resets Z to 0.

l__ , ___ Bit 7 resets N to 0
C is not affected

V is cleared.

Note that a logical Exclusive-OR is the same as a bit-by-bit "not equal" opera­

tion; that is, the output is 1 if and only if the inputs are not equal. EOR is used to test

for changes in bit status and to calculate parity and other error-detecting and correct­

ing codes.

EXG - Exchange Register Contents
Object No. of No. of
Code Cycles Bytes

EXG IE 8 2

This instruction exchanges the contents of one 8- or 16-bit register with another.
The subsequent byte of immediate data determines which registers are exchanged. Note

22-36 6809 Assembly Language Programming

that registers may only be exchanged with registers of like size, that is 8-bit with 8-bit
and 16-bit with 16-bit.

X

y

u

s

PC

We will illustrate the execution of the EXG A,B instruction.

E F H

o{:

mm

DP

N Z V C

XX

yy

mm

EXG A,B

D

....

- -::x. mmmm + 2
...

Data
Memory

Program
Memory

1E mmmm

89 mmmm + 1

mmmm + 2

mmmm + 3

Suppose that xx = 7E16 and yy = A516; then after the processor executes the EXG A,B
instruction, the contents of Accumulator A will be A516 and the contents of Accumula­
tor B will be 7E16•

The EXG instruction has many miscellaneous applications; for example,

1. Exchanging accumulators - EXG A,B

Remember, for example, that only Accumulator A can be operated on with
the DAA instruction.

2. Calling subroutines with a link register - EXG PC,X

This instruction transfers control to the address in Index Register X and saves
the old value of the Program Counter in Index Register X.

3. Changing the direct page - EXG A,DP

This instruction not only places the value from Accumulator A in the Direct
Page Register, but it also saves the old value of the Direct Page Register in
Accumulator A. Note that there is no LD instruction for the Direct Page
Register.

EXG is, of course, symmetric - for instance, EXG A,B and EXG B,A are the same
operation. Note that all EXG instructions require two bytes of memory- one for the
operation code and one for a post byte (immediate data) to specify which registers are to
be exchanged. Be careful of the fact that some EXG instructions are meaningless
(undefined register codes), while others are illegal (exchanging registers with different
lengths).

Descriptions of Individual 6809 Instructions 22-37

The post byte definition is as follows:

POST BYTE

Bit patterns defining the registers are as follows:

Register Binary Hex Register Binary Hex

D 0000 0 PC 0101 5
X 0001 1 A 1000 8

y 0010 2 B 1001 9

u 0011 3 CCR 1010 A

s 0100 4 DP 1011 B

The remaining bit patterns are undefined.

Returning to the previous example, the post byte was determined as follows:

Source: EXG A,B
-..-

Binary:

!
1000 1001

Hexadecimal: 1E 8 9

Bits 0 through 3 of the immediate byte of the instruction define one register, while bits 4

through 7 define the other. The condition codes are not affected unless one of the

registers is the Condition Code Register itself (CCR).

INC - Increment Accumulator or Memory Location by 1
INCA
I NCB
INC

Inherent Direct Extended Indexed/Indirect

Object No. of No. o f Object No. of No. of Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

INC oc 6 2 7C 7 3 6C 6+ 2+

INCA 4C 2 1

INCB 5C 2 1

This instruction adds one to the contents of the specified 8-bit accumulator or byte
of memory.

Consider incrementing a memory location addressed by indirect indexed mode

with Accumulator A offset from Index Register X.

22-38 6809 Assembly Language Programming

E F H N Z V C

ccR l.___,...._.___...__._l_x _I _x "-1 _x _I _,

D {: t---
'
-

r
---t

X pp qq

y

u
t-----�--------f

s

PC mm mm

DP

INC [A.X)

Data
Memory

ss ppqq + rr

tt ppqq + rr + 1

XX

Program
Memory

6C

96

sstt

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

If ppqq = l50AI6• rr = FEI6• sstt = 25E416• and XX = colo• then after the processor
executes the instruction INC [A, X], it will have changed the contents of memory loca­
tions 25E4 to Cl10• Note that rr is interpreted as a twos complement number, so ppqq +
rr = 150816.

co = 1100 0000
1 = 0000 0001

11 00 0001 -Nonzero result resets Z to 0

•
0 ¥ 0 = 0, reset V to 0

Bit 7 sets N to 1

C is not affected.

The fact that INC does not affect the Carry flag is quite important; it allows the
programmer to use INC (or DEC) to count iterations of a loop that is performing
multiple-precision arithmetic. The Carry flag is essential in such a loop to transfer
information (carries or borrows) from one iteration to the next. Incrementing a register
or memory location that contains FF16 produces a result of 0016 but does not set the
Carry flag� however, it does set the Zero flag.

INC and DEC are commonly used to count occurrences of events or numbers of
iterations. INC is more commonly (and more logically) used for event counting, while
DEC is more commonly used for looping since the Zero flag is then available as a con­
venient exit condition.

After increments of unsigned values, only BNE and BEQ branches will behave
consistently. When the operands are twos complement values, all signed branches
function correctly.

Note that this instruction does not apply to the Double Accumulator D. Thus,
the only accumulator forms implemented are INCA and INCB.

Descriptions of Individual 6809 Instructions 22-39

INS - Increment Hardware Stack Pointer by 1

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction LEAS 1 ,S - that is, into an instruction that adds 1 to the contents of the

Hardware Stack Pointer. Note that INS performs a 16-bit increment that does not affect

any flags.

INX - Increment Index Register X by 1

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction LEAX 1,X- that is, into an instruction that adds 1 to the contents of Index

Register X. Note that INX performs a 16-bit increment that affects only the Zero flag.

INY - Increment Index Register Y by 1

The 6809 assembler translates this 6800-like instruction into the equivalent 6809

instruction LEA Y 1, Y - that is, into an instruction that adds 1 to the contents of Index

Register Y. Note that INY performs a 16-bit increment that affects only the Zero flag.

JMP - Unconditional Jump

Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

JMP OE 3 2 7E 4 3 6E 3+ 2+

Jump to the specified memory address. This instruction provides an unconditional

absolute jump capability, as contrasted to the unconditional relative jump capability pro­

vided by BRA and LBRA. We will illustrate its execution using the extended indirect

mode, but you should note that it can use base page direct, extended direct, or any of

the indexed addressing modes.

22-40 6809 Assembly Language Programming

Data
Memory

E F H N z v c

CCR (rr 3A05

ss 3A06

o{:
X

Program
y Memory

u

s

PC mm mm 6E mmmm

DP 9F mmmm + 1

3A mmmm + 2

05 mmmm + 3
JMP [3A05l

If, for example, rrss = D I E5, then after the processor executes the instruction
JMP [$3A05], the Program Counter will contain D 1 E5 and execution will continue from
that point.

The terminology here is somewhat confusing (as on most computers) - JMP
with extended addressing transfers control to the extended address, not to its contents.
So JMP with extended addressing is similar to other instructions (such as LD) with
immediate addressing. For example, JMP $3E08 transfers control to (loads the program
counter with) 3E0816, not the contents of that address. JMP with indexed addressing is
executed in a similar manner, as if one level of indirection had been removed.

In the following instruction sequence:

LOX

.JI'IP

INDEX
[.JTABL, X]

GET INDEX FOR JUMP TABLE
�UMP TO APPROPRIATE TABLE ENTRY

the JMP instruction will perform an indexed jump into a table of addresses starting at
JTABL, with the index given by the contents of memory addresses INDEX and
INDEX+ l. Some part of the program preceding LOX must double the contents of
INDEX and INDEX+ 1 to account for the fact that all addresses occupy two bytes.

Note the distinction from the instruction sequence

LOX
,JI'iP

INDEX
,JTARL,X

Gr:T INDEX FOR TABLE OF BR.I\.'·K!IES

JUMP TO APPROPRIATE BRANCH INSTRUCTION

In this sequence, the JM P instruction will transfer control to the appropriate position in
the table (base address JTABL, index given by the contents of memory addresses
INDEX and INDEX+ 1). That position must contain a JMP or branch instruction
transferring control to the appropriate routine, rather than just the address of the
routine as in the earlier case.

JSR - Jump to Subroutine

Direct

Object No. of No. of

Code Cycles Bytes

JSR 90 7 2

Descriptions of Individual 6809 Instructions 22-41

Extended Indexed/Indirect

Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes

BD 8 3 AD 7+ 2+

Jump unconditionally to the specified memory address, saving the old value of the
Program Counter on the hardware Stack.

We will illustrate the execution of JSR with extended addressing.

If, for example, mmmm = E56B111 and ssss = 08A016, then after the processor
executes the instruction JSR $ElA3, the program counter will contain ElA316 and
execution will continue from that point in memory. The value of the program counter at
the end of the JSR instruction (E56B + 0003 = E56E) will have been saved in the hard­
ware Stack the same way it is saved during the BSR instruction. The final value of the
Hardware Stack Pointer will be 2 less than its original value.

JSR is the same as JMP, except that JSR saves the old value of the program
counter in the hardware Stack, thus providing a subroutine linkage. An RTS instruction
at the end of the subroutine can transfer control back to the instruction immediately
following JSR, providing that the subroutine has not changed the return address or the
Hardware Stack Pointer. JSR provides an unconditional absolute jump-to-subroutine
c1pability, as compared to the relative jump-to-subroutine capability provided by BSR
and LBSR.

JSR, like JMP, can be used to handle jump tables. The only difference is that the
return address is saved at the top of the Stack. The same terminology confusion exists

22-42 6809 Assembly Language Programming

here as with JM P; JSR with extended addressing transfers control to the extended

address, not to its contents. All the indexed modes operate similarly, as if one level of

indirection had been removed.

LBCC - Long Branch If Carry Clear (C - 0)

Object No. of No. of

Code Cycles Bytes

LBCC 10 24 5(6) 4

LBCC is the same as LBRA except that it branches under the same condition as

does BCC. LBCC is a 4-byte instruction using 16-bit relative addressing while BCC is a

2-byte instruction using 8-bit relative addressing. See LBRA and BCC for details on the

operation of LBCC.

LBCS - Long Branch If Carry Set (C - 1)

Object No. of No. of

Code Cycles Bytes
--

LBCS 10 25 5(6) 4

LBCS is the same as LBRA except that it branches under the same condition as

does BCS. LBCS is a 4-byte instruction using 16-bit relative addressing while BCS is

only a 2-byte instruction using 8-bit relative addressing. See LBRA and BCS for details

on the operation of LBCS.

LBEQ - Long Branch If Equal To Zero (Z - 1)

Object No. of No. of

Code Cycles Bytes

LBEO 10 27 5(6) 4

LBEQ is the same as LBRA except that it causes a branch under the same condi­

tion as does BEQ. LBEQ is a 4-byte instruction using 16-bit relative addressing while

BEQ is a 2-byte instruction using 8-bit relative addressing. See LBRA and BEQ for

details on the operation of LBEQ.

LBGE - Long Branch If Greater Than or Equal To Zero
(N EB V = 0)

Object No. of No. of

Code Cycles Bytes

LBGE 10 2C 5(6) 4

LBGE is the same as LBRA except that it causes a branch under the same condi­

tion as does BG E. LBG E is a 4-byte instruction using 16-bit relative addressing while

Descriptions of Individual 6809 Instructions 22-43

BGE is a 2-byte instruction using 8-bit relative addressing. See LBRA and BGE for

details on the operation of LBG E.

LBGT - Long Branch If Greater Than Zero (Z + (N El1 V) - 0)

Object No. of No. of
Code Cycles Bytes

LBGT 10 2E 5(6) 4

LBGT is the same as LBRA except that it causes a branch under the same condi­

tion as does BGT. LBGT is a 4-byte instruction using 16-bit relative addressing while

BGT is a 2-byte instruction using 8-bit relative addressing. See LBRA and BGT for

details on the operation of LBGT.

LBHI - Long Branch If Higher (Z + C - 0)

Object No. of No. of
Code Cycles Bytes

LBHI 10 22 516) 4

LBHI is the same as LBRA except that it causes a branch under the same condi­

tions as does BHI. LBHI is a 4-byte instruction using 16-bit relative addressing while

BHI is a 2-byte instruction using 8-bit relative addressing. See LBRA and BHI for details

on the operation of LBH I.

LBHS - Long Branch If Higher or the Same (C - 0)

Object No. of No. of
Code Cycles Bytes

LBHS 10 24 5(6) 4

LBHS is the same as LBRA except that it causes a branch under the same condi­

tion as does BHS. LBHS is a 4-byte instruction using 16-bit relative addressing while

BHS is a 2-byte instruction using 8-bit relative addressing. See LBRA and BHS for

details on the operation of LBHS.

LBLE - Long Branch If Less Than or Equal To Zero
(Z + (N El1 V) = 1)

Object No. of No. of
Code Cycles Bytes

LBLE 10 2F 516) 4

LBLE is the same as LBRA except that it causes a branch under the same condi­

tion as does BLE. LBLE is a 4-byte instruction using 16-bit relative addressing while

BLE is a 2-byte instruction using 8-bit relative addressing. See LBRA and BLE for

details on the operation of LBLE.

22-44 6809 Assembly Language Programming

LBLO - Long Branch If Lower (C - 1)
Object No. of No. of

Code Cycles Bytes

LBLO 10 25 5(6) 4

LBLO is the same as LBRA except that it causes a branch under the same condi­

tion as does BLO. LBLO is a 4-byte instruction using 16-bit relative addressing while

BLO is a 2-byte instruction using 8-bit relative addressing. See LBRA and BLO for

details on the operation of LBLO.

LBLS - Long Branch If Lower or Same (C + Z - 1)
Object No. of No. of

Code Cycles Byte a

LBLS 10 23 5(6) 4

LBLS is the same as LBRA except that it causes a branch under the same condi­

tion �s does BLS. LBLS is a 4-byte instruction using 16-bit relative addressing while BLS

is a 2-byte instruction using 8-bit relative addressing. See LBRA and BLS for details on

the operation of LBLS.

LBL T - Long Branch If LESS Than Zero (N 61 V - 1)
Object No. of No. of

Code Cycles Bytes

LBLT 10 20 5(6) 4

LBL T is the same as LBRA except that it causes a branch under the same condi­

tion as does BLT. LBLT is a 4-byte instruction using 16-bit relative addressing while

BL T is a 2-byte instruction using 8-bit relative addressing. See LBRA and BL T for

details on the operation of LBL T.

LBMI - Long Branch If Minus (N - 1)
Object No. of No. of

Code Cycles Bytes

LBMI 10 28 5(6) 4

LBMI is the same as LBRA except that it causes a branch under the same condi­

tion as does BMI. LBMI is a 4-byte instruction using 16-bit relative addressing while

BMI is a 2-byte instruction using 8-bit relative addressing. See LBRA and BMI for

details on the operation of LBMI.

LBNE- Long Branch If Not Equal To Zero (Z - 0)
Object No. of No. of

Code Cycles Bytes

LBNE 10 26 516) 4

Descriptions of Individual 6809 Instructions 22-45

LBNE is the same as LBRA except that it causes a branch under the same condi­
tion as does BNE. LBNE is a 4-byte instruction using 16-bit relative addressing while
BNE is a 2-byte instruction using 8-bit relative addressing. See LBRA and BNE for
details on the operation of LBNE.

LBPL - Long Branch If Plus (N - 0)

Object No. of No. of
Code Cycles Bytes

LBPL 10 2A 5(6) 4

LBPL is the same as LBRA except that it causes a branch under the same condi­

tion as does BPL. LBPL is a 4-byte instruction using 16-bit relative addressing while
BPL is a 2-byte instruction using 8-bit relative addressing. See LBRA and BPL for

details on the operation of LBPL.

LBRA - Long Branch Always

Object No. of No. of
Code Cycles Bytes

LBRA 16 5 3

LBR A places the specified address in the Program Counter, thus always causing a

program branch. The specified address is the sum of the current value of the Program
Counter (after the processor has fetched the LBRA instruction from memory) and the
displacement.

X

y

u

s

PC

E

mm

H

[){:

DP

N Z V C

mm

LBRA *+1531

.....

�
mmmm+)

+ 152E

{

Data
Memory

Program
Memory

16

15

2E

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

22-46 6809 Assembly Language Programming

If mmmm = 102316, then after execution of LBRA *+$1531, the Program
Counter would contain 1023 + 3 + 152E = 255416 and execution would continue with
the instruction at that location.

The displacement - the contents of the second and third bytes of the instruc­
tion - forms a 16-bit twos complement number. Thus the overall effect of an LBRA
instruction is:

PC = PC + 3 + disp

The extra factor of 3 is the result of the 3 bytes occupied by the LBRA instruction itself.
LBRA does not affect any flags or registers except the Program Counter (its previous
value is lost). Note that LBRA requires only a 1-byte operation code, while the various
conditional long branches (LBCC, LBCS, LBEQ, etc.) require 2-byte operation codes.
Thus the displacement formula for the long conditional branches is

PC =PC + 4 + disp

Since the displacement is now a 16-bit twos complement number, its range has
increased to

-3276810(1000 0000 0000 0000) .$. disp .$. + 3276710(0111 1111 1111 11112)

the range of the long branches is therefore

•- 3276410 �destination� • + 3277110

where* refers to the value of the Program Counter at the start of the instruction. Con­
sider the following section of a program:

.------ LBRA NEXT
ANDA =IF$7F

NEXT CLRA

After the LBRA instruction, the processor will always execute the CLRA instruc­
tion next. It will never execute the ANDA instruction unless a branch or jump instruc­
tion somewhere else in the program jumps to that instruction.

See the description of BRA for the short relative form, used when the destination
is close enough for a one-byte offset.

LBRN - Long Branch Never

Object No. of No. of·
Code Cycles Bytes

LBRN 10 21 5 4

LBRN is the same as LBRA except that, like BRN, no branch ever occurs. Thus
LBRN is essentially a no-operation; that is, control always passes to the next instruction
with no other changes ever occurring. Note that LBRN is a 4 byte no-op, since it
requires a 2-byte operation code followed by a 2-byte relative address (BRN is a 2-byte
no-op). Of course, the relative address could have any value, since it will never be used.
LBRN is useful as a byte filler or for tuning a delay routine. Generally it is not a very
useful instruction; it makes the set of long branches logically complete. See the descrip­
tion of NOP for a discussion of uses for no-operations.

Descriptions of Individual 6809 Instructions 22-47

LBSR - Long Branch to Subroutine

Object No. of No. of
Code Cycles Bytes

LBSR 17 9 3

LBSR is the same as LBRA except that it saves the value of the Program Counter

in the same fashion as BSR. LBSR offers 16-bit relative addressing while BSR offers 8-

bit relative addressing. Note that LBSR requires a one-byte operation code as does

LBRA. See LBRA and BSR for details on the operation of LBSR.

lBVC - long Branch If Overflow Clear (V = 0)

Object No. of No. of
Code Cycles Byteo

LBVC 10 28 5(6) 4

LBVC is the same as LBRA except that it branches under the same condition as

BVC. LBVC is a 4-byte instruction using 16-bit relative addressing while BVC is a 2-byte

instruction using 8-bit relative addressing. See LBRA and BVC for details on the opera­

tion of LBVC.

LBVS - long Branch If Overflow Set (V - 1)

Object No. of No. of
Code Cycles Byteo

LBVS 10 29 5(61 4

LBVS is the same as LBRA except that it branches under the same condition as

BVS. LBVS is a 4-byte instruction using 16-bit relative addressing while BVS is a 2-byte

instruction using 8-bit relative addressing. See LBRA and BVS for details on the opera­

tion of LBVS.

lO- load Register from Memory
LOA
LOB
LOD
LOS
LOU
LOX
LOY

lmmediete Direct

Object No. of No. of Object No. of No. of
Code Cycleo Byteo Code Cycles Bytes

LOA 86 2 2 96 4 2

LOB C6 2 2 06 4 2

LDD cc 3 3 DC 5 2

LOS 10 CE 4 4 10 DE 6 3

LOU CE 3 3 DE 5 2

LOX BE 3 3 9E 5 2

LOY 10 BE 4 4 10 9E 6 3

Extended Indexed/Indirect

Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes

86 5 3 A6 4+ 2+

F6 5 3 E6 4+ 2+

FC 6 3 EC 5+ 2+

10 FE 7 4 10 EE 6+ 3+

FE 6 3 EE 5+ 2+

BE 6 3 AE 5+ 2+

10 BE 7 4 10 AE 6+ 3+

22-48 6809 Assembly Language Programming

This instruction loads the contents of the selected memory byte(s) into the
specified register and sets the Condition flags accordingly. There are two forms of this
instruction, an 8-bit form and a 16-bit form. The 8-bit form is associated with
Accumulators A and B, while the 16-bit form is associated with the 16-bit registers D,
X, Y, S, and U.

Consider an 8-bit LD using indirect indexed addressing with a double accumula­
tor (D) offset from Index Register X; Accumulator B receives the data.

E F H N Z V C

Data
Memory

ccR ._l_........_........_ l_x ...�.l_x l_o I _...
tt ppqq + rrss

D {: t----::--4} -------..+
X pp qq

y

u

LDB [D,X]

uu ppqq + rrss

yy

Program
Memory

E6

98

+ 1

ttuu

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose that ppqq = 13E 116, rrss = 208816, ttuu (the contents of memory loca­
tions 3499 and 349A) = A47D16, and yy (the contents of memory location A47D) =

AA16. After the processor executes the instruction LDB [D,X], Accumulator B will con­
tain AA10.

AA = 1 01 0 1 01 0- Nonzero result resets Z to 0

Bit 7 sets N to 1) V is cleared

Now consider the 16-bit LD of the double accumulator using indirect indexed
addressing with autoincrementing (by 2) of Index Register Y.

Descriptions of Individual 6809 Instructions 22-49

Data
Memory

E F H N z v c

CCR I I X I X I 0 I I tt rrss

uu rrss + 1

o{:
XX XX ttuu

VY vv ttuu + 1

X
Program

y rr ss Memory

u

s

PC mm mm EC mmmm

DP 81 mmmm + 1

mmmm + 2

LDD !.Y++I mmmm + 3

Suppose that rrss = 8E05H, ttuu (the contents of memory locations 8E05 and 8E06) =

839416, xx (the contents of memory location 8394) = 0716, and yy (the contents of
memory location 8395) = F216• After the processor has executed the instruction LDD
[,Y + +], Accumulator A will contain 0716, Accumulator B will contain F216 (thus
Accumulator D will contain 07F216), and Index Register Y will contain 8E0516+2
8E0716•

07F2 = 0000 0111 1111 0010- Nonzero result resets Z to 0

Bit 1 5 resets N to 0 / V is cleared always.

Note that the flags are affected according to the 16-bit value being loaded and not the
separate 8-bit values.

LEA - Load Effective Address Into 16-Bit Register
LEAS
LEAU
LEAX
LEAY

LEAS

LEAU

LEAX

LEAY

Object
Code

32

33

30

31

No. of No. of

Cycles Bytes

4+ 2+

4+ 2+

4+ 2+

4+ 2+

Form an effective address using one of the indexed addressing modes. Load that
address into a 16-bit register (Index Register X, Index Register Y, Hardware Stack
PointerS, or User Stack Pointer U).

We will illustrate LEA using the indirect indexed mode based on a 16-bit constant
offset from the Program Counter. The result is stored in Index Register X.

22-50 6809 Assembly Language Programming

E F H N z v c
Program

CCR I I X I Memory

o{:
30 mmmm

9D mmmm + 1

X XX yy 02 mmmm + 2

y 3C mmmm + 3

u mmmm + 4

s

PC mm mm

DP XX mmmm + 4 + 023C

LEAX [$023C.PC]
yy mmmm + 4 + 0230

Suppose that mmmm = E385 1<, xx (the contents of memory address E389 + 023C =

E5C5) = DE16, and yy (the contents of memory address E5C6) = 2F16. After the pro­
cessor executes the instruction LEAX [$023C,PC], Index Register X will contain
DE2F16 and the Zero flag will be cleared since the result is not zero. Note that LEAX
and LEA Y affect the Zero flag, while LEAU and LEAS do not; this difference is necess­
ary to maintain compatibility with the 6800 microprocessor. The 6809 assembler trans­
lates the 6800 instructions DEX and IN X into LEAX instructions (LEAX -1 ,X and
LEAX 1 ,X respectively); 6800 programs often use DEX or INX for counting purposes
and employ the zero flag as an exit condition.

The LEA instruction brings to the programmer a great deal more capability

than a casual examination would suggest. It permits the easy generation of position­

independent code and simplifies the handling of local data on stacks, as well as per­

mitting the implementation of several other interesting and useful operations.

The following program segment illustrates one use of LEA. The table of values is
located 10016 bytes from the occurrence of the LEAX instruction. At assembly time,
the assembler computes this offset and inserts it as the two bytes following the LEAX
code. Note that the post byte for the two-byte offset case is 80. Note also that the offset
is the distance from the updated PC following execution of LEAX.

0100 lO
0104 Ae.

010e.

0 20D

qo 0109 START LEAX TABLE,PCR

80 LOOP LDA ,X+

TABLE FCC /TARLE OF CHARACTERS/

Assume that the program is stored at the locations shown. During execution, the offset
0109 is added to the updated program counter value (0104) to yield address TABLE
(0200). This value is loaded into Index Register X, rather than output on the address
bus. When the indexed instruction LOA ,X+ is executed, this newly computed address
(stored in the index register) is used to access data from the table.

Descriptions of Individual 6809 Instructions 22-51

LEA can also be used to perform arithmetic on the contents of index registers
and stack pointers. For example,

1. LEAX l,X increments (adds 1 to) the contents of Index Register X.
Similarly, LEA Y -l,Y decrements (subtracts 1 from) the contents of Index

Register Y.

2. LEAU $2COS,U adds 2C0516 to the contents of the User Stack Pointer.

3. LEAX O,PC loads the Program Counter value at the end of the instruction
into Index Register X. Note that, in position-independent code, it may be
essential to determine that value and make it readily available for use in

addressing.

LSL - Shift Accumulator or Memory Byte Left Logically
LSLA
LSLB
LSL

Inherent Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles tlytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

lSl 08 6 2 78 7 3 68 6+ 2+

lSlA 48 2 1

lSlB 58 2 1

Perform a one-bit logical left shift of the contents of Accumulator A or B or the

contents of a selected byte of memory. This instruction is exactly the same as Arithmetic

Shift Left or ASL; consult ASL for a description of its execution. The mnemonic is

available for the sake of completeness.

LSR - Shift Accumulator or Memory Byte Right Logically

LSRA
LSRB
LSR

Inherent Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

LSR 04 6 2 74 7 3 64 6+ 2+

lSRA 44 2 1

lSRB 54 2 1

The LSR instruction is identical to the ASR instruction except that LSR causes a 0

to be shifted into bit 7 instead of keeping it intact as does the ASR instruction. Flags are

affected the same way by both instructions except for the H flag, which is not affected by

LSR. Of course in the LSR instruction, the N flag is cleared since bit 7 is cleared. Con­
sult ASR for more details on LSR.

MUL- Multiply Unsigned Numbers

Object No. of No. of

Code Cycles Bytes

MUl 3D 11 1

22-52 6809 Assembly Language Programming

Multiply the unsigned number in Accumulator A by the unsigned number in
Accumulator B. Place the result in both accumulators with the most significant bits in
Accumulator A - that is, Accumulator D holds the result.

E F H N Z V C

Data
Memory

ccR _I __ ..._ ___..l_x..._l...-1 x_)

o{:
XX

yy

X

y

u

s

PC mm mm

DP

MUL

}� �
XX X yy

- ::X. mmmm + 1

Program
Memory

30 mmmm

mmmm + 1

mmmm + 2

mmmm + 3

If, for example, Accumulator A contains 6F111 and Accumulator B contains 6 1111, after
the processor executes the MUL instruction, Accumulator A will contain 2A16 and
Accumulator B will contain OF16 (that is, Accumulator 0 will contain 2AOF16).

6F = 011 0 1111
61 = 0110 0001

0110 1111
0 1101 111

01 1011 11
0010 1010 0000 1111 -Nonzero result resets Z to 0.

'-------�>- Bit 7 resets C to 0.

Only two flags are affected by MUL:

1. The Zero flag is set if the en tire result is zero and cleared otherwise.
2. The Carry flag is set to the final value of bit 7 of Accumulator B, thus allowing

rounding to an 8-bit result in A with the sequence:

MUL
/\DCA

MULTIPLY
ROUND TO R BITS

Descriptions of Individual 6809 Instructions 22-53

NEG - Twos Complement (Negate) Accumulator or Memory
NEGA
NEGB
NEG

Inherent Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

NEG 00 6 2 70 7 3 60 6+ 2+

NEGA 40 2 1

NEGB 50 2 1

This instruction replaces the contents of the selected accumulator or the specified
byte of memory with its twos complement. The twos complement of a number is the
value that, when added to the original number, produces a sum of zero. The twos com­
plement of n is thus 0- n.

Consider twos complementing Accumulator A.

E F H N Z V C
ccR (_ __.___...l_x-'-1 �� x l_x_.l_x ""-I x�l

D{:
XX

X

y

u

s

PC mm mm

DP

NEGA

_,..... Xx'+1
--

-(same as
0- XX

--

-"I mmmm + 1
......

Data
Memory

Program
Memory

40 mmmm

mmmm +

mmmm + 2

mmmm + 3

If, for example, Accumulator A contains 3A16, after the processor executes the NEGA
instruction, Accumulator A will contain C616•

Ones complement of 3A = 11 00 01 01
+ 1 = 1

1 1 00 0 1 1 0- Nonzero result resets Z to 0

ll
++-------- 0 ¥ 0 = 0. reset V to 0

'-------- Bit 7 sets N to 1

'-------- A borrow sets C to 1

H is undefined.

22-54 6809 Assembly Language Programming

The Carry flag (C) represents a borrow and is set to the complement of the resulting bin­
ary carry. The V flag is set if and only if the original operand was 1000 00002• The value
0016 is replaced by itself, and only in this case is C cleared.

In the illustration above, we defined the twos complement as the ordinary (ones)
complement plus 1. The sum of any number and its ones complement must have ones
in every bit position, since any position that is 0 in the original number will be 1 in the
ones complement and vice versa. Adding 1 to the number with ones in every bit position
gives a sum of zero (with a carry, which is ignored), so adding 1 to the ones complement
must give the twos complement.

NOP - No Operation

Object No. of No. of

Code Cycles Bytes

NOP 12 2 1

NOP is a one-byte instruction that does nothing except increment the program
counter.

Typical uses of NOP are the following:

1. To provide a position for a label without affecting the object program.

2. To produce a precise delay time. Each NOP instruction adds two clock cycles
to the execution time of a sequence.

3. To replace instructions that are no longer needed because of corrections or
changes.

4. To replace instructions (such as subroutine calls) that you may not want to
include in debugging runs.

NOP is seldom used in completed programs, but it is often quite handy in the debug­
ging and testing stages.

OR - logical (Inclusive) OR
ORA
ORB
ORCC

Immediate Direct

Object No. of No. of Object No. of

Code Cycles Bytes Code Cycles

ORA BA 2 2 9A 4

ORB CA 2 2 OA 4

ORCC lA 3 2

Extended Indexed/Indirect

No. of Object No. of No. of Object No. of No. of

Bytes Code Cycles Bytes Code Cycles Bytes

2 BA 5 3 AA 4+ 2+

2 FA 5 3 EA 4+ 2

This instruction logically (inclusive) ORs the contents of a memory location with

the contents of Accumulator A or B or the Condition Code Register. Only immediate
addressing can be used with CCR.

First consider the accumulator OR using immediate addressing and Accumulator
A.

Descriptions of Individual 6809 Instructions 22-56

E F H N Z V C

ccR f._ ______ l_x..._l _x J_o .._l _.

o{:
XX �

X

y

u

s

PC mm mm
--

DP

-- ..,.,..
�{ XX v AB

-"1. mmmm + 2

ORA *$AB

Data
Memory

Program
Memory

SA

AB

mmmm

mmmm + 1

mmmm + 2

Suppose that xx = E316• After the processor has executed the instruction ORA *$AB,
Accumulator A will contain EB16.

E3 = 1 1 1 0 001 1
AB = 1010 1011

1 1 1 0 1 01 1 -- Nonzero result resets Z to 0

L------ Bit 7 sets N to 1

V is always cleared

OR is a common logical instruction, most often used to set a bit to a '1' value. For
example, the instruction ORA =ll=<Yu 10000000 sets bit 7 of Accumulator A to 1 while leav­
ing the other bits of the accumulator unchanged. Note that logically ORing a bit position
with a '1' produces a result of' 1 ' , while logically ORing a bit position with '0' leaves the
value unchanged. Now consider the ORCC instruction. Data

CCR

X

y

u

s

PC

E F H N

n{:

mm

DP

Memory

Program
Memory

mm 1A

40

ORCC *$40

mmmm

mmmm + 1

mmmm + 2

22-56 6809 Assembly Language Programming

This instruction logically ORs the contents of the following byte of program memory

with the contents of the Condition Code Register. This has the effect of setting all the

flags that are logically ORed with '1 's and leaving unchanged all the flags that are

logically ORed with 'O's. The following patterns will set individual flags:

Flag Required Mask

Binary Hexadecimal

E 10000000 80
F 01000000 40
H 00100000 20
I 00010000 10

N 00001000 08
z 00000100 04
v 00000010 02
c 00000001 01

Of course, setting more than one bit position will set more than one flag at a time.

However, only a few of the possible operations are really useful. In particular, we should

note:
ORCC
OIKC
ORCC
once

ij%01()00000
IJ%00Cl0000
�%00000010
II ':;O 0 0000 0 l

DISABLE FAST INTERf\UPTS
DISABLE REGULAR INTERRUPTS
SP.T OVERFLOW
SET CARRY

Remember that setting an interrupt mask disables the interrupt from that source.

PSH - Push Registers onto the Stack
PSHU
PSHS

PSHS

PSHU

Object
Code

34

36

No. of No. of

I Cycles Bytes

5+ 2+

J 5+ 2+

The PSH instruction will push onto either stack any or all registers except the

Stack Pointer being used. Consider pushing both index registers onto the Hardware

Stack.

X

y

u

s

PC

E F H

o{;
PP

tt

ss

mm

DP

N Z V C

qq

uu

ss

mm

Data

Memory

pp ssss - 4

qq ssss - 3

tt ssss - 2

uu ssss - 1

ssss

Program

Memory

34 mmmm

30 mmmm + 1

PSHS X.Y mmmm + 2

Descriptions of Individual 6809 Instructions 22-57

The second byte of the instruction specifies the registers to be saved as follows:

7 6 5 4 3 2 0 4 ... --Bit No.

Object Code

Each bit position that contains 1 causes the corresponding register to be saved on the
stack. If th. register is 16 bits in length, the process_,; saves its contents as follows:

1 . Decrement the Stack Pointer and store the low-order byte of the register at
the address in the Stack Pointer.

2. Decrement the stack pointer again and store the high-order byte of the
register at the address in the Stack Pointer.

If the register is 8 bits long, the processor performs only one storage operation and
decrements the stack pointer only once.

The order is as follows (with the lowest memory address at the top):

Push Order

Condition Code Register
Accumulator A
Accumulator 8
Direct Page Register
Index Register X (HI)
Index Register X (LO)
Index Register Y (HI)
Index Register Y (LO)
User Stack Pointer/Hardware Stack Pointer (HI)
User Stack Pointer/Hardware Stack Pointer (LO)
Program Counter (HI)
Program Counter (LO)

22-58 6809 Assembly Language Programming

Note that some (or even all) of the registers can be omitted. The processor decre­
ments the Stack Pointer once for each byte that it saves. The internal hardware deter­
mines the order in which registers are stacked; the order in which the programmer
specifies registers does not matter. For example, the instructions PSHS A,B,X,DP and
PSHS DP,A,B,X are identical. You may specify the double accumulator D instead of A
and B.

Note that the Hardware Stack Pointer (S) cannot be pushed onto the Hardware
Stack, nor can the User Stack Pointer (U) be pushed onto the User Stack. Thus the stack
in use determines the meaning of bit 6 of the post byte. Setting bit 6 for PSHS will cause
the User Stack Pointer to be pushed onto the Hardware Stack, while setting bit 6 for
PSHU will cause the Hardware Stack Pointer to be pushed onto the User Stack.

PUL- Pull Registers from the Stack
PULU
PULS

Object No. of No. of

Code Cycles Bytes

PULS 35 5+ 2+

PULU 37 5+ 2+

The PUL instruction will pull from either stack any or all registers except the
designated Stack Pointer. Consider pulling the Condition Code Register (CCR), Index

Register Y, and the Direct Page Register (DP) from the user stack.

CCR

X

y

u

s

PC

E F H

o{:
tt

ss

mm

DP

N Z V C

uu

ss

mm

PULU CCR,Y,DP

Data
Memory

yyyy yyyy ssss

pp ssss + 1

tt ssss + 2

uu ssss + 3

ssss + 4

Program
Memory

37 mmmm

29 mmmm + 1

mmmm + 2

mmmm + 3

The second byte of the instruction specifies the registers to be loaded exactly as for
PSH. The order in which registers are pulled from the stack is the opposite of that in
which they are pushed. As with PSH, you can omit any or all of the registers, you cannot

Descriptions of Individual 6809 Instructions 22-59

pull a stack pointer from its own stack, and the order in which registers are specified in

the assembly language instruction has no effect on the order in which they are pulled

from the stack.

Note that, unless you are loading the Condition Code Register itself, loading

registers in this way does not affect the flags. If you wish to load a register from a stack

and affect the flags, you should use the LD instruction in the autoincrement mode with

the appropriate Stack Pointer. For example, to load Index Register Y from the user stack

and set flags accordingly, use the instruction LOY , U + +.

The instruction PULU PC loads the Program Counter from the user stack and

thus serves as a Return from Subroutine instruction in which the linkage is in the

user stack, rather than the Hardware Stack. Pulling any set of registers that

includes the Program Counter has a similar effect. The programmer can transfer con­

trol to and from subroutines through the user stack; a sequence like

PSHU PC
JMP SUBR

transfers control to subroutine SUBR after saving the Program Counter in the user

stack. Note, however, that the subroutine will have to increment the return address past

the JMP instruction.

ROL - Rotate Accumulator or Memory Byte Left through Carry
ROLA
ROLB
ROL

Inherent Otrect Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

ROL 09 6 2 79 7 3 69 6+ 2+

ROLA 49 2 1

ROLB 59 2 1

This instruction rotates the specified accumulator or the selected byte of memory

one bit to the left through the Carry flag.

Consider rotating a memory byte using indexed addressing with zero offset from

Index Register Y.

22-60 6809 Assembly Language Programming

CCR

X

y

u

s

PC

E F H N Z V C

0 {: �------1

PP qq

mm mm

OP

ROL .Y

Data
Memory

Program
Memory

69

A4

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

For example, suppose that pp = 1416, qq = 0316, the contents of memory location 1403
are 2E16, and the Carry flag contains 0. After the processor executes the instruction ROL
,Y memory location 1403 will contain 5C16 and the Carry flag will contain 0.

Carry Location 1403

0 0010 1110

0 -----------J1 01 11 00 -Nonzero result resets Z to 0

'-------�lc---------0 ¥ � = 0. reset V to 0

L. -----..-.. Bit 7 resets N to 0

The overflow flag (V) is loaded with the Exclusive-OR of bits 7 and 6 of the original
operand; these bit values are the same as those of the resulting Carry (C) and Sign (N)
flags.

The ROL instruction can be used to include the Carry in multiple-byte shifts
and to move serial U-bit) data to or from the Carry flag.

ROR - Rotate Accumulator or Memory Byte Right through
RORA Carry
RORB
ROR

Inherent Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of I Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

ROR 06 6 2 76 7 3 66 6+ 2+
RORA 46 2 1
RORB 56 2 1

Descriptions of Individual 6809 Instructions 22-61

This instruction is the same as ROL except that the rotation is from left to right.
The flags are affected in the same way except that C is now loaded with bit 0 and V is
unaffected. Consult the description of ROL for more details.

RTI - Return from Interrupt

Object No. of No. of

Code Cycles Bytes

ATI 38 6/15 1

This instruction restores the state of an interrupted task by loading the Condition
Code Register and Program Counter from the hardware stack. If the Entire flag (E) is

set, the instruction loads all the other user registers from the hardware stack.

Program
Memory

1 yyyyyyy ssss

XX ssss + 1

yy ssss + 2

dd ssss + 3

pp ssss + 4

qq ssss + 5

tt ssss + 6

uu ssss + 7

vv ssss + 8

ww ssss + 9

CCR jj ssss + A

kk ssss + B

ssss + c

o{:
XX

yy

X pp qq
Program

y ._J! uu Memory

u vv ww

w mmmm

s ss ss

PC jj kk

DP dd mmmm + 1

mmmm + 2

RTI mmmm + 3

22-62 6809 Assembly Language Programming

Suppose that yyy yyyy = 11011012, xx = CB16, yy = 1416, dd = 2E16, ppqq = 37Al16,
ttuu = E50B11, vvww = 027F16, andjjkk = E11516•
After the processor executes the RTI instruction, the registers will appear as follows:

CCR=111011012
A= CB
B = 14
DP = 2E
X= 37A1
Y = E50B
U = 027F
PC = E 11 5 Execution will continue from this address.

F irst, the condition code is pulled from the stack, and the contents of bit 7 (E) are
examined by the hardware of the CPU to determine whether the entire machine status
has been stacked, or just the subset CCR and PC. The order of the registers in the stack
is the same as in the instructions PSHS and PULS. Note that, as in those instructions,
the Hardware Stack Pointer is not saved in its own stack.

The interrupt masks will be automatically restored to their original states. The pre­
vious values of all the user registers are lost. The Hardware Stack Pointer ends with a
value 12 (C16) larger than its starting value when E is set and a value 3 larger when E is
cleared (by a Fast Interrupt request).

RTS - Return from Subroutine

Object No. of No. of
Code Cycles Bytes

RTS 39 5 1

Program control is returned from the subroutine to the calling program by pulling
the return address from the stack and placing it in the Program Counter.

X

y

u

s

PC

E F H

o{;

ss

mm

DP

N Z V C

ss

mm

RTS

Data
Memory

pp ssss

qq ssss + 1

Program
Memory

ssss + 2

39 mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Descriptions of Individual 6809 Instructions 22-63

The previous contents of the program counter are lost. The processor increments the

Hardware Stack Pointer after loading each byte, so the final value of that pointer is two

larger than its starting value.

Each subroutine normally contains at least one RTS instruction; this is the

last instruction executed within the subroutine and causes control to return to the

calling program. RTS does not affect any flags. Note, however, that no RTS instruc­

tion is necessary if the last instruction in the subroutine restores a set of registers

including the program counter from the hardware stack. For example, the instruction

PULS A,B,CC,PC will restore Accumulators A and B and the Condition Code Register

from the hardware stack before returning control to the main program. Of course, the

subroutine must include an appropriate PSHS instruction, such as PSHS A,B,CC.

SBA - Subtract Accumulator B from Accumulator A

The 6809 assembler translates this 6800 instruction into

PSHS 8

SUBA , S+

This instruction subtracts Accumulator B from Accumulator A and sets the condition

flags accordingly. The 6809 assembler handles this instruction to allow source com­

patibility with the 6800 processor.

SBC - Subtract Memory from Accumulator with Borrow

SBCA
SBCB

Immediate Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

SBCA 82 2 2 92 4 2 82 5 3 A2 4+ 2+

SBCB C2 2 2 02 4 2 F2 5 3 E2 4+ 2+

This instruction subtracts the contents of the selected byte of memory and the

contents of the carry flag from the contents of the specified accumulator.

Consider SBCB using an 8-bit constant offset from Index Register Y.

22-64 6809 Assembly Language Programming

CCR

X

y

u

s

PC

E F H

pp

mm

DP

N Z V C

qq

mm

SBCB $3E.Y

Data
Memory

yy ppqq + 3E

Program
Memory

E2

AS

mmmm

mmmm + 1

3E mmmm + 2

mmmm + 3

Suppose that ppqq = 105A 11 ,, xx = 1416, yy (contents of address 1098) = 3416, and C =

1. After the processor executes the instruction SBCB $3E, Y the contents of Accumula­
tor B will be DF111•

1 4 = 000 1 0 1 00
Twos complement of 1 = 11 11 1 11 1

0001 0011
Twos complement of 34 = 1100 1100

11 01 1 11 1 - Nonzero result resets Z to 0

'IlL__ 0
.

¥0 = 0, reset V to 0

t==: B1t 7 sets N to 1

L__ _____ Borrow sets C to 1

H is undefined

Note that C is the complement of the resulting carry since it represents a borrow.

The most common use of SBC is in implementing multiple-precision
arithmetic; this instruction allows borrows from previous byte-length operations to
be included in the current byte-length operation.

SEC - Set Carry Flag

The 6809 assembler translates this 6800 instruction into the equivalent 6809
instruction ORCC=*F0th00000001 -that is, into an instruction that sets to 1 the least sig­

nificant bit of the condition code register (the carry flag). No other flags or registers are
affected. The COM instruction also sets the carry flag.

Descriptions of Individual 6809 Instructions 22-65

SEF - Set Fast Interrupt Mask

The 6809 assembler translates this 6800-like instruction into the equivalent 6809

instruction ORCC =#=%01000000 -that is, into an instruction that sets to 1 bit 6 of the

Condition Code Register (the fast interrupt mask). This instruction disables the fast

interrupt -that is, the 6809 will not respond to the fast interrupt request control line.

No other registers or flags are affected.

SEI - Set Interrupt Mask

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction ORCC =#=%00010000 -that is, into an instruction that sets to 1 bit 4 of the

Condition Code Register (the regular interrupt mask bit). This instruction disables the

6809's regular interrupt -that is, the 6809 will not respond to the interrupt request

control line. No other registers or flags are affected.

SElF - Set Regular and Fast Interrupt Masks

The 6809 assembler translates this 6800-like instruction into the equivalent 6809

instruction ORCC=#=%01010000- that is, into an instruction that sets to 1 bits 4 and 6

of the condition code register (the fast and regular interrupt mask bits). This instruction

disables both of the 6809's maskable interrupts -that is, the 6809 will not respond to

either the fast interrupt request control line or to the (regular) interrupt request control

line. No other registers or flags are affected.

SEV- Set Overflow Flag

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction ORCC =#=%00000010-that is, into an instruction that sets to 1 bit 1 of the

Condition Code Register (the overflow flag). No other flags or registers are affected.

SEX- Sign Extend Accumulator B into Accumulator A

Object No. of No. of
Code Cycles Bytes

SEX 1D 2 1

This instruction transforms an 8-bit twos complement number in Accumulator B

into a 16-bit twos complement number in Accumulator D.

22-66 6809 Assembly Language Programming

CCR

X

y

SEX

Data
Memory

Program
Memory

10 mmmm

mmmm + 1

mmmm + 2

mmmm + 3

SEX accomplishes this transformation by extending bit 7 of Accumulator B into
Accumulator A. Thus Accumulator A is set to 0016 if bit 7 of Accumulator B is 0 and to

FF 16 if bit 7 of Accumulator B is 1. SEX affects the sign flag (set according to the most
significant bit of the result - the same as bit 7 of Accumulator B) and the Zero flag (set
if the result is zero - that is, if Accumulator B contains zero). This instruction is use­

ful in performing twos complement and floating point arithmetic.

ST - Store Register into Memory

STA
STB
STD
STS
STU
STX
STY

STA

STB

STD

STS

STU

STX

STY

Object
Code

97

07

DD

10 OF

OF

9F

10 9F

Direct

No. of
Cycles

4

4

5

6

5

5

6

Extended

No. of Object No. of

Bytes Code Cycles

2 B7 5

2 F7 5

2 FD 6

3 10 FF 7

2 FF 6

2 BF 6

3 10 BF 7

Indexed/Indirect

No. of Object No. of No. of
Bytes Code Cycles Bytes

3 A7 4+ 2+

3 E7 4+ 2+

3 ED 5+ 2+

4 10 EF 6+ 3+

3 EF 5+ 2+

3 AF 5+ 2+

4 10 AF 6+ 3+

Store the contents of the specified register at the selected memory address. There
are two forms of this instruction, an 8-bit form and a 16-bit form. The 8-bit form is as­
sociated with Accumulators A and B, while the 16-bit form is associated with the 16-bit
registers 0, X, Y, S and U.

Consider the 8-bit case, storing Accumulator B using the indexed addressing
mode with a constant 16-bit offset from Index Register Y.

Descriptions of Individual 6809 Instructions 22-67

Data
Memory

E F H N z v c

CCR I I X I X I 0 I I
XX ppqq + 0302

o{:
XX

X

y pp
Program

qq Memory
u

s

PC mm mm E7 mmmm

DP A9 mmmm + 1

03 mmmm + 2
STB $0302,Y

02 mmmm + 3

Suppose that xx = 6316 and ppqq = 023816• After the processor executes the

instruction STB $0302,Y memory location 053A will contain 6316.

63 = 01 10 001 1

Bit 7 resets N to 0)

--- Nonzero result resets Z to 0

V is cleared always.

Now consider the 16-bit case, storing the D register using indexed addressing,

autoincrementing Index Register Y by 2.

E F H N Z V C

CCR -�_....._......__j�x....�.l_x_l_o -.I __.I

D
{ : �-----::----1

X
y pp qq

u
�----------�------�

s

PC mm mm

DP
STD .Y++

Data
Memory

{ XX ppqq
------� �------�

yy ppqq + 1
1-----1

Program
Memory

ED

A1

ppqq + 2

mmmm

mmmm + 1

mmmm + 2

22-68 6809 Assembly Langu<�ge Programming

Suppose that ppqq = 143016, xx = Cl16, and yy = 9A16• After the processor has
executed the instruction STD , Y + + memory location 1430 will contain C 116, memory
location 1431 will contain 9A16, and Index Register Y will contain 143216•

C19A = 1100 0001 1001 1010- Nonzero result resets Z to 0.

'-------------- Bit 1 5 sets N to 1

V is always cleared

Note that the STS and STY instructions have a two byte object code, the first byte
being 1016.

SUB- Subtract Memory from Register
SUBA
SUBS
SUBD

Immediate Direct Extended

Object No. of No. of Object N<J. of No. of Object No. of

Code Cycles Bytes Code Cycles Bytes Code Cycles

SUBA 80 2 2 90 4 2 80 5

SU88 co 2 2 DO 4 2 FO 5

SU8D 83 4 3 93 6 2 83 7

Indexed/Indirect

No. of Object No. of No. of

Bytes Code Cycles Bytes

3 AO 4+ 2+

3 EO 4+ 2+

3 A3 6+ 2+

Subtract the contents of the selected byte of memory from the contents of the
specified accumulator. There are two forms of this instruction, a one-byte form and a
two-byte form. The one-byte form uses an 8-bit accumulator (A or B), while the two­
byte form uses the 16-bit Accumulator D.

First consider 8-bit subtraction using Accumulator Band base page direct address-
mg.

Data
Memory

E F H N z v c
CCR I I X I I X I X I X I X I

yy dd31

D{: XX

X
Program

y Memory
u
s

PC mm mm DO mmmm

DP dd 31 mmmm + 1
mmmm + 2

mmmm + 3
SUBB $31

Descriptions of Individual 6809 Instructions 22-69

Suppose, for example, that xx = E316, dd = 6816, and yy (in memory location
6B31) = A016• After the processor executes the instruction SUBB $31, the contents of
Accumulator B will be 4316.

E3 = 1110 0011
Twos complement of AO = 0 110 0000

0100 0011 -- Non:tero result resets Z to 0
l

+ ++-------1 lJ 1 = 0, reset V to 0

'-------Bit 7 resets N to 0
'-------- No borrow. reset C to 0

H is undefined

The SUBA and SUBB instructions are used to perforiT! single-byte subtractions
or to perform the subtraction of the low-order bytes in multibyte operations.

Now consider the 16-bit form SUBD. We will illustrate its execution using
extended direct addressing.

E F H N z v c

CCR I jxlxlxlx)

o{: XX

yy

X

y

u

s

PC mm mm

DP

SUBD $A074

Data
Memory

rr

ss

Program
Memory

83

A074
A075

mmmm { �-A_o_---i mmmm + 1

74 mmmm + 2

For example, suppose that xx = 2A16, yy = E816, rr = 3716 and ss = E516• After
the processor executes the instruction SUBD $A074, the contents of Accumulator D
will be F30316 - that is, Accumulator A will contain F316 and Accumulator B will con­
tain 0316•

2AE8 = 001 0 1 01 0 1 1 1 0 1 000
Twos complement of 37E5 = 1100 1000 0001 1011

fl111 0011 0000 001 1 ---: :o::t:r:r:�::
s

�:s:t:

0

Z

0

to 0

'+-·-------------Borrow sets C to 1

'------------+-Bit 15 sets N to 1
Note that the Half-carry flag (H) is not affected by SUBD and that C is the com­

plement of the resulting carry, since it represents a borrow.

22-70 6809 Assembly Language Programming

SWI - Software Interrupt
SWI
SWI2
SWI3

SWI
SWI2
SWI3

Object
Code

JF
10 JF
11 JF

No. of No. of
Cycles Bytes

19 1

20 2
20 2

This instruction increments the program counter, sets theE flag (bit 7 ofCCR)­

indicating that the entire state of the processor has been saved, and stores all the user

registers except the Hardware Stack Pointer in the hardware Stack. Control is then

passed through a vector table at the high end of memory.

CCR

o{:
XX

yy

X PP qq

y tt uu

u vv ww

s ss ss

PC mm mm

DP dd

SWI

Data
Memory

1yyy yyyy

XX

yy

dd

pp

qq

tt

uu

vv

ww

mm

mm + 1

Program
Memory

ssss - c

ssss - B

ssss- A

ssss - 9

ssss - 8

ssss - 7

ssss- 6

ssss - 5

ssss - 4

ssss - 3

ssss - 2

ssss - 1

ssss

3F mmmm

mmmm + 1

jj FFFA

kk FFFB

Descriptions of Individual 6809 Instructions 22-71

Note that control is passed to a service routine by placing into the program
counter the address located at FFF A and FFFB, and that the interrupt and fast interrupt
mask bits (bits 4 and 6 of the CCR) are set, disabling the maskable interrupts.

The processor stores the user registers in the same order as the PSHS instruction.
The final contents of the Hardware Stack Pointer are the original contents minus 12
(C16). The E flag is set to 1 so that an RTI instruction will restore the original state,
except that the Program Counter will have been incremented by 1. Thus an R TI will
cause the resumption of execution of the suspended program at the instruction
immediately following SWI. SWI disables both the regular interrupt and the fast inter­
rupt by setting the I and F bits of the CCR but only after the CCR has been pushed onto
the stack. Therefore interrupts are not honored during the SWI service routine, but
interrupt status is restored by execution of an R Tl.

Software interrupt instructions SWI2 and SWI3 are similar to SWI. The vector for
SWI2 is at FFF4 and FFF5, while the vector for SWI3 is at FFF2 and FFF3. SWI2 and
SWI3 are intended for the user, rather than the system software. Motorola guarantees
never to use SWI2 in any of its packaged software. SWI2 and SWI3 do not set the I and F
bits as does SWI, and thus interrupt status is maintained. SWI2 and SWI3 require two
byte operation codes.

The SWI instruction can be used for a variety of functions. The entry point for

any software package- a debug monitor, a disk operating system, or a group of

system subroutines - can be inserted into a software interrupt pointer. The software

system can then be entered by execution of a S WI instruction.

SYNC - Synchronize to External Event (Wait for Interrupt)

Object No. of No. of
Code Cycles Bytes

SYNC 13 2 1

This instruction simply halts CPU execution until a peripheral device requests

an interrupt. Any interrupt clears the halt. If the interrupt is enabled and lasts 3 cycles
or more, the processor will respond to it, stacking the registers and transferring control
to the appropriate vector address. If the interrupt is masked (disabled) or is shorter than
3 cycles long, the processor simply continues to the next instruction without stacking
registers or transferring control to a service routine. SYNC differs from CW AI as
follows:

1. SYNC does not provide a means for enabling interrupts during instruction
execution.

2. The processor tristates its busses while executing SYNC, but not while
executing CW AI.

3. SYNC provides a continuation exit without an interrupt response, whereas
CW AI requires an interrupt response.

SYNC is normally used with interrupts disabled as a HALT instruction which

is cleared by any interrupt input. CW AI is normally used with the appropriate inter­

rupt enabled as a Wait for Interrupt instruction. Figure 22-1 is a flowchart of the logic
of the SYNC instruction.

22-72 6809 Assembly Language Programming

SYNC

Interrupt Occurs

Continue
execution at the
next instruction

in sequence

No

Begin execution of

the SYNC instruction

Wait for any

interrupt

Stack machine
Status transfer to
applicable interrupt

Service Routine

Figure 22-1. MC6809 SYNC Logic

TAB - Transfer Accumulator A to Accumulator B

The 6809 assembler translates this 6800 instruction into
TFH A,B
TSTA

This instruction transfers the contents of Accumulator B to Accumulator A and sets the

flags accordingly. The instruction is handled by the 6809 assembler to allow source com­
patibility with the 6800 processor.

TAP - Transfer Accumulator A to Condition Code Register

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction TFR A,CC - that is, into an instruction that transfers the contents of
Accumulator A to the Condition Code Register (CCR). The instruction is handled by
the 6809 assembler to allow source compatibility with the 6800 processor.

TBA - Transfer Accumulator B to Accumulator A

The 6809 assembler translates this 6800 instruction into
TFR 13,A
TSTA

This instruction is used to transfer data from one register to another. Data may
only be transferred between registers of like size. In contrast to the EXG instruction,
this is a one-way transfer. Consider the transfer from Accumulator A to B.

TFR - Transfer Register to Register

Object No. of No. of
Code Cycles Bytes

TFR 1F 7 2

This instruction transfers the contents of Accumulator A to Accumulator B and sets the
flags accordingly. The instruction is handled by the 6809 assembler to allow source com­
patibility with the 6800 processor.

X

y

u

s

PC

E F H

o{:

mm

DP

N Z V C

XX

mm

TFR A,B

::>

--

Descriptions of Individual 6809 Instructions 22-73

l. mmmm + 2

Data
Memory

Program
Memory

1F mmmm

89 mmmm + 1

mmmm + 2

mmmm + 3

Suppose xx = 6A 16 and the original contents of Accumulator B are 5716. At the

end of the execution ofTFR A,B both accumulators will contain the number 6A16
•

The TFR instruction has many miscellaneous applications:

1. Moving the contents of one accumulator to another - TFR A,B or TFR
B,A. Remember that only Accumulator A can be operated on with the
Decimal Adjust instruction.

2. Loading the direct page register - TFR A,DP. This instruction loads the
direct page register from Accumulator A. There is no LD instruction for the
direct page register.

3. Transferring control to an address contained in an Index Register - TFR

X,PC. This instruction loads the program counter with the contents of Index
Register X; the next instruction to be executed will be taken from that
address.

Note that TFR destroys the old contents of the destination register. You can save
those contents in the source register by using EXG instead. TFR, however, does not
change the contents of the source register.

All TFR instructions require two bytes of program memory - the operation code
and the post byte (the immediate data), which specifies the source and destination
registers. Be careful of the fact that some TFR instructions are meaningless (undefined
register codes), while others are illegal (transferring contents between registers of
different sizes).

The post byte for the TFR instruction is identical to the post byte illustrated in the
EXG instruction description. The TFR post byte's higher order four bits define the
source register while the lower order four bits define the destination register. The flags
are unaffected unless CCR is the destination register.

22-74 6809 Assembly Language Programming

TPA - Transfer Condition Code Register to Accumulator A

The 6809 assembler translates this 6800 instruction into the equivalent 6809
instruction TFR CC,A - that is, into an instruction that transfers the contents of the

Condition Code Register (CCR) to Accumulator A. The instruction is handled by the

6809 assembler to allow source compatibility with the 6800 processor.

TST - Test the Contents of an Accumulator or Memory Byte
TSTA
TSTB
TST

Inherent Direct Extended Indexed/Indirect

Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

TST 00 6 2 70 7 3 60 6+ 2+

TSTA 40 2 1

TSTB 50 2 1

This instruction sets the Sign and Zero flags according to the contents of the

specified accumulator or the selected byte of memory.

Consider testing a byte of memory addressed by Index Register Y with Accumula­

tor A offset.

u

s

E F H N Z V C

�----------+-----------i

mm mm

DP

TST A,Y

Data
Memory

yy ppqq + rr

Program
Memory

60

A6

mmmm

mmmm + 1

mmmm + 2

mmmm + 3

Suppose that Index Register Y contains 010016, Accumulator A contains 0211,, and

the contents of memory location 0102 are 0016• After the processor executes the instruc­

tion TST A, Y the sign and overflow flags will contain zero and the zero flag will contain

one. No registers or memory locations will be changed.

Descriptions of Individual 6809 Instructions 22-75

00 = 0000 0000- Zero result sets Z to 1

Bit 7 resets N to 0 _,}
V is always cleared

The TST instruction lets the programmer set the flags according to the contents

of an accumulator or a byte of memory without performing any operations or chang­

ing any registers.

TSX -Transfer Stack Pointer S to Index Register X

The 6809 assembler translates this 6800 instruction into the equivalent 6809

instruction TFR S,X - that is, into an instruction that transfers the contents of the

Hardware Stack Pointer S to Index Register X. The instruction is handled by the 6809

assembler to allow source compatibility with the 6800 processor. There is a slight

difference between the 6800 and 6809 stack pointers: the 6809 stack pointer points to

the last occupied byte of the stack, while the 6800 pointer indicates the next empty byte.

That is, the 6800 stack pointer value is one less than the 6809's for the same stack condi­

tion. Therefore, although TFR S,X does not increment the value before loading the

index register, as 6800 TSX does, the result is still a correct transfer of pointers.

TXS -Transfer Index Register X to Stack Pointer S

The 6809 assembler will translate this 6800 instruction into the equivalent 6809

instruction TFR X,S - that is, into an instruction that transfers the contents of Index

Register X to the Hardware Stack Pointer, S. The instruction is handled by the 6809 as­

sembler to allow source compatibility with the 6800 processor. There is a slight

difference between the 6800 and 6809 stack pointers: the 6809 stack pointer points to

the last occupied byte of the stack, while the 6800 pointer indicates the next empty byte.

That is, the 6800 stack pointer value is one less than the 6809's for the same stack condi­

tion. Therefore, although TFR X,S does not decrement the value before loading the

Stack Pointer, as 6800 TXS does, the result is still a correct transfer of pointers.

WAI - Wait for Interrupt

The 6809 assembler translates this 6800 instruction into the 6809 instruction

CW AI :#=$FF. This instruction is handled to allow source compatibility with the 6800

processor.

Appendices

The following section presents a complete set of reference tables for the 6809

instruction set.

Appendix A summarizes 6809 instruction operations and effects, and is organized

by function to display the capabilities of the 6809 processor. Appendix B summarizes the

indexed and indirect addressing modes: which modes are available, their assembly

language forms, and the resulting object code post bytes. For each instruction

mnemonic Appendix C shows the available addressing modes, its object code, execu­

tion time in machine cycles, and the number of bytes occupied by the instruction.

Appendices Band C can serve as aids to hand assembly of 6809 instructions. Appendix

D lists all the valid object codes and their instruction mnemonics, and Appendix E lists

all the indexed and indirect addressing post bytes and the assembler forms which gener­

ate them. These two tables can be used for hand checking and disassembly of object

code, tasks sometimes required in the debugging of an assembly language program.

A
Summary of the 6809
Instruction Set

Appendix A uses the following symbols:

The registers:

A.B
D
DP
x.v
PC
s

u

cc

Accumulators
Double Accumulator (A and B concatenated. A high-order)
Direct Page Register
Index registers
Program Counter
Hardware Stack Pointer
User Stack Pointer
Status (Condition Code) Register

The flags (statuses). starting with bit 0 of the condition code register and proceeding to bit 7:

C Carry (Borrow) flag
V Overflow flag
Z Zaro flag
N Sign (Negative) flag
I (Regular) Interrupt Mask bit
H Half-Carry flag
F Fast Interrupt Mask bit
E Entire flag

Symbols in the Status (flags) columns:

(blank)
X

0
1

Operation does not affect flag
Operation affects flag
Operation clears flag
Operation sets flag

Summary of the 6809 Instruction Set A-2

Other symbols and abbreviations:

ACx
a drS

adr16
b0-b7
c

data&
data16
disp8
disp16
EA
M

(M]
[M] [M + 1]

reg
reg. list
R16
R1. R2
SP

ind. forms
[interrupt vector]
xx(HI)
xx(LO)
[]
([)]

1\

v

ltJ

An accumulator. either Accumulator A or Accumulator B
An 8-bit address. a 1 -byte quantity which may be used to directly address memory

locations on the base (direct) page
A 1 6-bit memory address
Bits of a Post Byte or an 8-bit register
Contents of the Carry flag. either 0 or 1
An 8-bit unit of binary data
A 1 6-bit unit of binary data
An 8-bit signed binary address displacement
A 1 6-bit signed binary address displacement
Effective address calculated by any addressing method
Memory address as determined by base page direct, extended direct. indexed, or

indirect addressing
Contents of M
1 6-bit data item; its high-order byte is the contents of M. and its low-order byte is

the contents of the next higher address.
A 16-bit index register or stack pointer (5. U. X. or Y)

A list of registers to be stored on or retrieved from a stack
A 16-bit register (D. S. U, X. or Y)

Two registers. both 8-bit or both 1 6-bit
A stack pointer (either S or U)

Anv of the indexed or indirect addressing methods described in Appendix B
The address contained in one of the interrupt vectors (see Table 1 5-1)
The high-order 8 bits of the 1 6-bit quantity xx
The low-order 8 bits of the 1 6-bit quantity xx
Contents of location enclosed by brackets
Implied memory address: the contents of the memory location designated by the

contents of a register
Logical AND
Logical (Inclusive) OR
Logical Exclusive-OR
Data is transferred in the direction of the arrow
Data is transferred in both directions simultaneously, thus exchanging the contents
of the source and the destination.

Type Mnemonic Operand(s)

LOA } a drS
LOB adr16

ind. forms

STA } a drS
STB adr16

ind. forms
0

LDD a drS :::

� adr16
c:
Ill ind. forms
.,
(,)
c:
., STD a drS ...
Ill

adr16
.,

� ind. forms
>

0
E LOX } a drS
Ill

::!! LOU adr16
>

iij
ind. forms

E LOY } adr8
·;: LOS adr16 IL

ind. forms

STX } a drS
STU adr16

ind. forms

STY } a drS
STS adr16

ind. forms

Appendix A. A Summary of the 6809 Instruction Set

Status
Bytes Cycles Operation Performed

E F H I N z v c

The 6809 permits the following addressing modes for all Pri-
mary Memory Reference instructions: base page direct,
extended direct, indexed, and indirect.

2 4 X X 0 [ACxl- (M]
3 5 Load Accumulator A or B from specified memory location.
2+ 4+

2 4 X X 0 [M)- [ACx)
3 5 Store contents of Accumulator A or B in specified memory
2+ 4+ location.

2 5 X X 0 [D) - [M]:(M + 1)
3 6 Load double Accumulator from specified memory location.
2+ 5+ Sign flag (N) takes the value of bit 1 5 of the data (bit 7 of

Accumulator A).

2 5 X X 0 [M):[M + 1) - [D)
3 6 Store contents of double Accumulator in specified memory
2+ 5+ location. Sign flag takes the value of bit 1 5 of the data (bit 7 of

Accumulator A).

2 5 X X 0 [reg) - (M]:(M + 1]
3 6 Load specified register (X, Y, U, or S) from memory. Sign flag
2+ 5+ (N) takes the value of bit 15 of the data.

3 6 X X 0
4 7
3+ 6+

2 5 X X 0 [M]:(M + 1) - [reg)
3 6 Store contents of specified register (X. Y, U, or Sl in memory.
2+ 5+ Sign flag (N) takes the value of bit 1 5 of the register.

3 6 X X 0
4 7
3+ 6+

--·- ---- - -- - --

!

.

I

I

�
w

0'>
00
0
'-0
>
C/l
C/l
(1)

3
CT
'-<
r
�
::::
(1Q
c
�
(1Q
(1)
"'0
.,
0

(1Q
.,
""

3
3
::::
(1Q

Type Mnemonic Operand(sl

ADCA } adr8
ADCB adr16

ind. forms

-e ADDA } adr8
.. ADDS adr16 Ill

• ind. forms
a.
0

ADDD a drS >
...

adr16 0

E ind. forms D

�
D

ANDA } adr8 1.1
c
D ANDB adr16
lii
.... ind. forms
D
cc

BIT A } adr8 >

5 BITS adr16
E ind. forms D

:!
CMPA } adrB

>
... CMPB adr16 Ill

, ind. forms c
0
<>

CMPD adr8 II
(/)

adr16
ind. forms

CMPS } adr8
CMPU adr16
CMPY ind. forms

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v · c

The 6809 permits the following addressing modes for all
Secondary Memory Reference instructions: base page
direct, extended direct, indexed, and indirect.

2 4 X X X X X [ACx] - [ACxl + [M] + C
3 5 Add with carry to Accumulator A or B.
2+ 4+

2 4 X X X X X [ACx] - [ACx] + [M]
3 5 Add contents of specified memory location to Accumulator A
2+ 4+ or B.

2 6 X X X X [D]- [D] + [M]:[M + 1]
3 7 Add 16-bit value from memory to double Accumulator. The
2+ 6+ operand's high-order byte is in the specified memory location;

the low-order byte is in the next higher address.

2 4 X X 0 [ACx] - [ACx] A [M]
3 5 AND contents of specified memory location with Accumulator
2+ 4+ A or B .

2 4 X X 0 [ACx] A [M]
3 5 AND contents of specified memory location with Accumulator
2+ 4+ A or B. Only the Status register is affected.

2 4 X X X X X [ACx]- [M]
3 5 Compare contents of specified memory location with
2+ 4+ Accumulator A or B. Only the Status register is affected.

3 7 X X X X [D] - [M]:[M + 1]
4 8 Compare 1 6-bit data with double Accumulator. Only the I 3+ 7+ status register is affected. The high-order byte of the data is in

the specified memory location; the low-order byte is in the
next higher address.

3 7 X X X X [reg] - [M]:[M + 1]
4 8 Compare 16-bit data with specified register (S, U, X. or Yl.
3+ 7+ Only the status register is affected. The high-order byte of the

data is in the specified memory location; the low-order byte is
in the next higher address.

(/)
c

3
3
"'
...,
'<

0
....,
.....
::r
�

o--
00
0
'-0

::J

�
.,
c

Po
0
::J

(/)

!!

)>
,1.

Type Mnemonic Operand(s)

CMPX adr8
adr1 6

ind. forms

EORA } a drS
EORB adr1 6

:0 ind. forms
�
::1

ORA } a drS c
-.; ORB adr1 6 c
0 ind_ forms 2

a; SBCA � a drS ..
ca SBCB adr1 6 ...
� ind. forms a.
0
> SUBA } a drS
0 SUBB adr1 6
E
� ind. forms
:E -

SUBD a drS
�

adr16 u
c
ID ... ind. forms
ID
ID
a:
> ... ASL a drS 0

E adr1 6
ID

:E ind. forms
> ...
ca

,
c
0

ASR a drS u
�

Ill adr1 6
ind. forms

-- --- - -

;

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

2 6 X X X X Same as CMPS/CMPU/CMPY. See page A-4.
3 7
2+ 6+

2 4 X X 0 [ACx] - [ACx] ¥ [M]
3 5 Logical Exclusive-OR contents of specified memory location
2+ 4+ with Accumulator A or B.

2 4 X X 0 [ACx] - [ACx] V [M]
3 5 Logical (Inclusive) OR contents of specified memory location
2+ 4+ with Accumulator A or B.

2 4 X X X X X [ACx] - !ACxl - !Ml - C
3 5 Subtract contents of specified memory location and contents
2+ 4+ of Carry flag from Accumulator A or B.

2 4 X X X X X [ACxl - !ACxl - (M]
3 5 Subtract contents of specified memory location from
2+ 4+ Accumulator A or B.

2 6 X X X X [D] - [D] - [M]:(M + 1]
3 7 Subtract 1 6-bit value in memory from double Accumulator.
2+ 6+ The operand's high-order byte is in the specified memory

address; the low-order byte is in the next higher address .

&17 0 J-o. V-N lJ C
2 6 X X X X X

• 3 7
2+ 6+ [M]

Arithmetic shift left. Bit 0 is set to 0 .

2 6 X X X X
3 7
2+ 6+ 7 --.. 0 c

[M]

Arithmetic shift right. Bit 7 stays the same.

- - --__ '---__ - -- - - - - - ---

I

I
I

)>
.

U'l

0\
00
0
\0

)>
Vl
Vl
(11

3
0'
'--<
r
I»
:::s

(JQ
c
I»
(JQ
(11
"0 ..,
0

(JQ
..,
I»

3
3
:::s

(JQ

Type Mnemonic Operand(s)

CLR adrB
adr16

ind. forms

COM adr8
adr16

;; ind. forms
II
:1 DEC adr8 c

..
c adr16
0 ind. forms g
"i INC adr8
...

adr1 6 Ql

� ind. forms a. 0
> LSL adr8
�
E adr1 6
II ind. forms

�
II
u
c
II LSR adrB ...
II

adr16
II

a: ind. forms
>

0
E
II

:e NEG adrB
>

16 adr16
"0 ind. forms c
0
u
II

(,/)

ROL adrB
adr16

ind. forms

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

2 6 0 1 0 0 [MJ-oo,6 3 7 Clear specified memory location.
2+ 6+

2 6 X X 0 1 [M)-rMJ 3 7 Ones complement contents of memory location.
2+ 6+

2 6 X X X [M)-[M) - 1 3 7 Decrement (by 1) contents of memory location.
2+ 6+

2 6 X X X [M)-[M)+1 3 7 Increment (by 1) contents of memory location.
2+ 6+

2 6 X X X X X &17 0 1-0, V- N ¥ C -3 7
2+ 6+ [M)

Logical shift left. Same as ASL.

2 6 0 X X
o- 1 7 •o � 3 7

2+ 6+ [M)
Logical shift right. Bit 7 is set to 0.

2 6 X X X X X [MI -oo,6- [MI 3 7 Twos complement (negate) contents of memory location. Set
2+ 6+ Carry if result is 0016 and clear Carry otherwise. Set Overflow

if result is 801 6 and clear Overflow otherwise. '

2 6 X X X X

Lri]:i7 .. o Pv=N¥c
1 3 7

2+ 6+

[M)
Rotate contents of memory location left through Carry flag.

I

r:/l
c::

3
3
"'
..,

'<

0
.....,

;.
(I)

o--
00
0
'-C>

.....
:J

�
..,
c::

�
a·
:J

r:/l

!!

�
en

Type

ID'ij
u Q) c ::I Q) c
.. ·-ID +' ... c Q) 0 a: (.)
�= 0 Q)
E ';
ID .,

� �
>0
.. > Ill ..

"0 0 c E 0
ID

�� 0-

ID ...
Ill
'6
Q)
E
.E

.!
Ill
�
Q.

0
II ...
Ill
'6 Q)
E
E

Mnemonic

ROR

TST

LOA t
LOB f
LDD

LOU }
LOX

LOS }
LOY

AOCA t
ADCB J
ADDA }
ADDB

ADDD

Operand(s)

a drS
adr16

ind. forms

adr8
adr16

ind. forms

data8

data 16

data16

data16

data8

data8

data16

Appendix A. A Summary of the 6809 Instructic,n Set (Continued)

Status
Bytes I Cycles 1---r--r-T"""--wr---r-..,- -r-"""'1 Operation Performed

2
3
2+

2
3
2+

2

3

3

4

2

2

3

6 7
6+

6 7
6+

2

3

3

4

2

2

4

EIFIHIIINIZIVIC

X

X

X X I I X

X X I 0

X I X I 0

X I X I 0

X I X I 0

XIXIO

��7--------------------�
[M)

Rotate contents of memory location right through Carry flag.

[MJ- oo16
Test contents of memory location for zero or negative value.

[ACxl - data8
Load Accumulator A or B immediate.

[D)- data16
Load double Accumulator immediate. Sign flag reflects bit 1 5
of the data (bit 7 of Accumulator A).

[reg) - data 16
Load specified register IX, Y,U, or S) immediate. Sign flag (N)
reflects bit 1 5 of the register.

X I X I X I X I [ACx) - [ACxl + data8 + C
Add immediate with carry to Accumulator A or B .

X I X I X I X I [ACx] - [ACx} + data8
Add immediate to Accumulator A or B.

X I X I X I X I [D)- [DI + data16
Add 16-bit data to double Accumulator. The high-order byte
follows the operation code: the low-order byte follows the
high-order byte.

> '
....,

0'-.
00
0
-a

>
Vl
Vl
Cb
3
0"

'<
r­
"'
:J

(JQ
c:
"'

(JQ
Cb

'"0 ..,
0

(JQ
..,
"'
3
3
:J

(JQ

Type Mnemonic Operand(s)

ANDA } data8
ANDB

BITA } data8
BITB

CMPA } data8
CMPB

CMPO data1 6

":ij
G)
:I CMPS } data 1 6 c:
·o: CMPU c:
0 CMPY

2
G) CMPX data1 6 ..
ftl
...

EORA } data8 G)
Q.

EORB 0
G)
.. ORA } data8 ftl

:c ORB
Q)

E
SBCA } dataB E

= SBCB

SUBA } dataB
SUBS

SUBD data1 6

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

2 2 X X 0 [ACx] - [ACx] A dataB
Logical AND immediate with Accumulator A or B.

2 2 X X 0 [ACxl A data8
Logical AND immediate with Accumulator A or B but affect
only the status register.

2 2 X X X X X [ACxl - dataB
Subtract immediate from Accumulator A or B but affect only
the status register.

4 5 X X X X [0]- data16
Subtract immediate from double Accumulator but affect only
the status register.

4 5 X X X X [reg] - data 1 6
Subtract immediate from specified register IS. U, X, or Yl. but
affect only the status register.

3 4 X X X X

2 2 X X 0 [ACx] - [ACx] ¥ data8
Logical Exclusive-OR immediate with Accumulator A or B.

2 2 X X 0 [ACx] - [ACx] V data8
Logical (Inclusive) OR immediate with Accumulator A or B.

2 2 X X X X X [ACx] - [ACx] - data8 - C

Subtract with borrow (carry) immediate from Accumulator A
or B.

2 2 X X X X X [ACx] - [ACx] - data8
Subtract immediate from Accumulator A or B.

3 4 X X X X [0] - [0] - data1 6
Subtract immediate from double Accumulator 0.

I

I

Vl
c

3
3
"'
..,

'<

0
-,
-
:r
(1)

"'
00
0
\0

5'
�
..,
c

�
0
:l

Vl

�

l>
I

CD

Type Mnemonic

BRA

JMP

Q.

E
:I

..,
LBRA

TFR

BSR

c:

:; ...
•

a: EXG .,
c:
Ill

ii
(.)

•
c:

�
:I JSR
0 ..

.Q
:I

(/)

'---- - -

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Operand lsi Bytes Cycles Operation Performed

E F H I N z v c

disp8 2 3 [PC) - [PC) + disp8 + 2
Unconditional branch relative to current contents of Program
Counter.

adr8 2 3 [PC)- EA I
adr16 3 4 Unconditional jump to the specified (effective) address using

ind. forms 2+ 3+ base page direct. extended direct, indexed. or indirect 1
addressing.

disp16 3 5 [PC)- [PC)+ disp16 + 3 I
Unconditional long branch relative to current contents of Pro-
gram Counter. I

R16,PC 2 7 [PC)- [R16)
Unconditional jump to the address in the specified 1 6-bit 1
register (D. S. U, X. or VI.

disp8 2 7 [[S)-1]- [PC!LOII I
[(S]-2) - [PC(HI))
[Sl- [S)- 2
[PC)- [PC)+ disp8 + 2

Unconditional branch to subroutine relative to current con-
tents of Program Counter, saving current Program Counter in
the Hardware Stack before performing branch .

R16,PC 2 8 [R16) --[PC)
Unconditional jump to the address in the specified 16-bit
register (0, S, U, X, or Yl. save current Program Counter in the
specified register. Can be used to call a subroutine or return
from a subroutine; the specified 16-bit register acts as a link. ,

adr8 2 7 [(S) - 1) - [PC(LO))
adr16 3 8 [(S] - 2] - [PC(HI)]

ind. forms 2+ 7+ lSI- [S)- 2
[PC)- EA

Unconditional jump to subroutine at the specified (effective)
address using base page direct, extended direct, indirect. or
indexed addressing. Saves current Program Counter in the
Hardware Stack before performing jump.

I
- -- - '---- - '------ - - '---- '------ - -- - -'---- - -- - - - --•

�
CD

0\
00
0
\0

;l>
Vl
Vl
C1>

3
a'

-<
r
"'
;:3

OQ
c:
"'
OQ
C1>
"C
0

OQ ...,
"'
3
3
:;·

OQ

Type Mnemonic Operand(s)

LBSR disp16
�
•
:II
c:
·�
c:
0
g
c:
:; ..

PULS } PC. reg. list •
Ill:

PULU "CC
c:
•

'ii
u
•
c:

+: RTS :II
0 ..
.a
:II

�

BCC disp8
BCS disp8
BEQ disp8

c
0 BGE disp8 +:
=ij BGT disp8
c BHI disp8 0

u BHS disp8
c

BLE disp8 0
� BLO disp8 u
c: BLS disp8 • ..

BLT disp8 ID

BMI disp8
BNE disp8
BPL disp8

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status

I Bytes Cycles Operation Performed
E F H I N z v c

3 9 ([S] - 1] - [PCILO)]
([S] - 21 - [PC(HI)]
!Sl- !Sl- 2
[PC]- [PC] + disp16 + 3 I

Unconditional long branch to subroutine relative to current
contents of Program Counter. saving current Program 1
Counter in the Hardware Stack before performing branch.

2 5+ Return from Subroutine and load other registers from Hard-
ware or User Stack as specified in post byte. Bit 7 of the post

'

byte must be 1 so that the Program Counter is among the
registers loaded from the Stack. See the Stack functions sec- 1
tion of this table for a description of PULS and PULU opera-
tion.

1 5 [PC(HI)] - [(Sll
[PC(LO)] - ([S] + 1]
!Sl- IS]+ 2

Return from subroutine: remove program counter from top of
Hardware Stack and increment Hardware Stack Pointer twice.

[PC] - !PC] + disp8 + 2 if the given condition is true: I
2 3 CzO
2 3 c = 1
2 3 z .. 1 i
2 3 N¥V=O
2 3 Z V(N ¥ V) = 0 I
2 3 cvz-o
2 3 C=O
2 3 Z V(N ¥ V) = 1
2 3 c = 1
2 3 CVZ=1
2 3 N¥V=1
2 3 N = 1
2 3 Z=O
2 3 NzO

I

(I)
c

3
3
I»
..,

'<

0
_,

;;.
(l)

o--
00
0
'1:)

5'
Cll
..... ..,
c

a.
0
::I

(I)

!!

�
...
0

Type Mnemonic Operand(s)

BVC disp8
BVS disp8

'0 LBCC disp16
Cl)

LBCS disp16 :I
c:

LBEQ disp16 ·.-:;
c:

LBGE disp16 0
� LBGT disp16
c: LBHI disp16 0

·.-:; LBHS disp16 �
c: LBLE disp16 0

(,) LBLO disp16
c: LBLS disp1 6 0

J:. LBLT disp16
0

disp16 c: LBMI "'
= LBNE disp16

LBPL disp16
LBVC disp16
LBVS disp16

Cl) EXG R1, R2
0 > 0

G�
.. Cl) TFR R1, R2 ·-
CJIUI
Gl ·-

a: a> Cl)
a:

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c !

2 3 V=O I
2 3 v = 1

[PC] - [PC] + 2 if the given condition is not true.
I

Note that BHS and BCC are different mnemonics for the same 1
operation code, as are BLO and BCS.

[PC] - [PC] + disp16 + 4 if the given condition is true:

4 5(6) C=O
4 5(6) c = 1
4 5(6) z = 1
4 5(6) N.VV=O
4 5(6) Z V(N .V Vl = 0
4 5(6) C VZ=O
4 5(6) C=O
4 5(6) Z V(N .V V) = 1
4 5(6) c = 1
4 5(6) c v z = 1
4 5(6) N .VV=1

4 5(6) N = 1
4 5(6) Z=O
4 516) .N = 0
4 5(6) V=O
4 5(6) v = 1

[PC] - [PC] + 4 if tne given condition is not true.
Note that LBHS and LBCC are different mnemonics for the
same operation code. as are LBLO and LBCS. A long branch
instruction takes 6 cycles to execute if it performs the branch
and 5 cycles otherwise.

2 8 [R1] -- [R2]
Exchange contents of specified registers. No effect on Status
register (CC) unless R 1 or R2 is Status register.

2 7 [R2]- [R1]
Transfer contents of R1 to R2. No effect on Status register
(CC) unless R2 is CC.

- - - - -- -

�
...
...

0'\
00
0
\0

>-
[/] [/J
(1)
3
£

'<
r
""
:J

(JQ
c
""

(JQ
(1)
'"l:l ..,
0

(JQ ..,
""
3
3
:J

(JQ

Type Mnemonic Operand(s)

ABX
...
• .. MUL ..

'61
cr ca
.:. �
• Cl.
.. 0

SEX '61
•

a:

ASLA }
ASLB

ASRA }
ASRB

• ..
Ill

•
Cl.
0
...
•

CLRA }
"61 CLRB
•

cr
COMA}
COMB

DAA

DECA }
DECB

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

1 3 (X] - (X) + (B]
Add unsigned contents of Accumulator B to Index Register X .

1 11 X X (D) - (A) X (B)
Multiply unsigned numbers in Accumulators A and B and place
result in D .
Carry flag takes the value of bit 7 of Accumulator B .

1 2 X X (A) -FF 16 if bit 7 of Accumulator B is 1 .
(A] -00 1 6 if bit 7 of Accumulator B is 0.

Transform an 8-bit twos complement number in B into a 16-
bit twos complement number in D.

1 2 X X X X X

�7 0 1-0, V = N J.l. C ..

(ACx)
Arithmetic shift left Accumulator A or B. Bit 0 is set to 0.

1 2 X X X X

7 - 0 c

(ACx)
Arithmetic shift right Accumulator A or B. Bit 7 stays the
same.

1 2 0 1 0 0 IACx)-0016
Clear Accumulator A or B.

1 2 X X 0 1 (ACx] - (ACx)
Ones complement contents of Accumulator A or B.

1 2 X X X X Decimal adjust Accumulator A. Convert contents of
Accumulator A (assumed to be the binary sum of BCD
operands) to BCD format. Carry is set if it was previously set
or if the adjustment results in a carry.

1 2 X X X [ACxl - [ACxl - 1
Decrement (by 1 I contents of Accumulator A or B. Set Over-
flow flag if result is 7F 16 and clear Overflow flag otherwise.

C/)
c:

3
3
"'
..,

'<

0
-,

;.
�

0'--
00
0
\0

5'
\!?. ..,
c:

Sl
cs·
::J

C/)

�

,..
I

...
N

Type Mnemonic Operand(s)

INCA }
INCB

LSLA }
LSLB

LSRA }
� LSRB Gl
::t
1:

�
1:
0

�
0 NEGA } ..
Cll
... NEGB Gl
a.
0
...
Gl
...
.,

·=
Gl

II:
ROLA }
ROLB

RORA }
RORB

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

1 2 X X X [ACx] - [ACx] + 1
Increment (by 1) contents of Accumulator A or B. Set Over-
flow flag if result is 8016 and clear Overflow flag otherwise.

1 2 X X X X X �7� 0 1- 0. V = N lJ. C

[ACx]
Logical shift left Accumulator A or B. Bit 0 is set to 0. Same as
ASL.

1 2 0 X X
0 7 0 c

[ACx]
Logical shift right Accumulator A or B. Bit 7 is set to 0.

1 2 X X X X X [ACxl -0016- [ACx]
Twos complement (negate) contents of Accumulator A or B.
Set Carry flag if result is 0016 and clear Carry flag otherwise.
Set Overflow flag if result is 8016 and clear Overflow flag
otherwise .

1 2 X X X X

LEH7� 0 j:J V=N lJ. C

[ACx]
Rotate Accumulator A or B left through Carry flag.

1 2 X X X

lEH7 -=oP
[ACx]

Rotate Accumulator A or B right through Carry flag.

-

�
...

w

"'
00
0
\0

>
Vl
Vl
(1)

3
�

'<

r
"'
::I

(JQ
c
"'

(JQ
(1)

'"0
.,
0

(JQ
.,
�

3
3
::I

(JQ

Type Mnemonic Operand(s)

"ii TSTA }
t) TSTB
:I
c

·;;
c LEAX } ind. forms 0

� LEAY
t)

..
IV

Gi
Q.

0
Gi

..
01

·g,
LEAS } ind. forms t)

a:
LEAU

PSHS } reg. list
PSHU

�
u
IV
..

(I)

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

1 2 X X 0 [ACxl - 0016
Test contents of Accumulator A or B for zero or negative
value.

2+ 4+ X [reg]- EA
Form the effective address according to any of the indexed/
indirect addressing modes (see Appendix B) and load that
address into the specified register (X, Y, S, or U). LEA instruc-
tions are primarily intended to calculate an effective address
once for repeated use. but may also be employed to perform
16-bit arithmetic .

2+ 4+

2 5+ Test post byte and store registers in specified stack as follows:

Condition:

b7 = 1; [SP] - [SP] - 1, [[SP]] - [PC(LQ)]
[SP] - [SP] - 1, [[SP]] - [PC(HI))

b6 = 1; [SP) - [SPI - 1, [(SP)] - [U(LO)J or [SILO))
[SPI - [SP] - 1, [(SP)] - [U(HI)) or [S(HI))

b5 = 1; [SP)- [SP] - 1, [(SP]]- [Y(LQ))
[SPI- [SP) - 1, [(SP]]- [Y(HI)l

b4 = 1; [SP]- [SP) - 1, [(SP]]- [X(LO))
!SP)- {SP) - 1, [(SP]]- {X(HI))

b3 = 1; [SP] - [SP] - 1, [(SP]] - [DP)
b2 = 1; [SP) - [SPI - 1, [(SP]] - [B)
b 1 = 1; [SPI - [SPl - 1, [(SP)) - [A)
bO = 1; [SP] - [SP] - 1, [[SPll - [CC]

Push all, none, or any subset of registers onto the specified
Stack, except for the pointer to that Stack.

Execution time increases by one cycle for each byte pushed.

Cl'l
c

3
3
II>
.,

'<

0
._,
....

::T
�

0\
00
0
\0

5'
�
.,

c

$?.
0
;J

Cl'l
�

�
...

�

Type Mnemonic Operand(s)

PULS } reg. list
PULU

�
Gl
:I
r:::

·;:::
c
0

�
�
u
Ill

rn

......_ ---

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

2 5+ Test post byte and load registers from specified stack as
follows:

Condition:

bO = 1; [CCI - [[SPII. [SPI - [SPI + 1

b1 = 1; [AI - I!SPII. [SPI - [SP) + 1
b2 = 1; [B) - [[SP]). (SP] - [SP] + 1
b3 = 1 ; [DPI - [[SPII. [SPI - [SPJ + 1
b4 = 1; [X(HI)) - [(SP)l . !SP] - [SP] + 1

[X(LOll - [(SP)]. [SP] - [SP] + 1
b5 = 1; [Y(HI)] - [[SP]]. [SP] - [SP] + 1

[YILO)) - [(SPll. [SP] - [SP] + 1
b6 = 1; [U(HI)] or [S(HI)] - [[SP]]. [SP] - [SP] + 1

[U(LOll or [SILO)] - [[SPll. (SP] - [SP] + 1
b7 = 1; (PC(HI)] - [[SPll. (SP] - [SP] + 1

[PC(LO)] - [(SP]]. !SP] - [SPI + 1

Pull all. none. or any subset of registers from the specified
stack, except for the Pointer to that Stack. Status register bits
are determined by byte pulled from Stack.

Execution time increases by one cycle for each byte pulled.

.

I

I

!

'------ L___ --- '-- � -- L.__ -'---. --- -- -- -- ----- ---- ----

�
....
U'l

0\
00
0
\0

>
"'
"'
c..

3
c::r

Q"
r
I»
;:I

O'l
c:
I»

O'l
c..
.., ..,
0
O'l ..,
I»

3
3
;:I

O'l

Type Mnemonic Operand(s)

CWAI data8

...
c.

2
� ...
=

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

2 20 [CC] � [CC] A data8. This may clear CC bits.
E� 1
[S] � [SJ - 1. [[S)] � [PC(LO)]
[SJ � [S] - 1, [[S]] � [PC(HI)]
[S] � [S] - 1, [[S)] � [U(LO)]
[S] � [S] - 1, [[S)] � [U(HI)]
[SJ � [S] - 1. [[SJJ � [Y(LO)]
[SJ � [S] - 1. [[SJJ � [Y(HI)]
[SJ - [S] - 1, [[S]] � [X(LO)]
[S]- [S]- 1, [[S]] � [X(HI)]
[S] � [S] - 1, [[S]] � [DP]
[S] � [S] - 1. [[S]] � [8]
[S] � [SJ - 1, [[SJJ � [A]
[SJ � [SJ - 1, [[SJJ � [CC]

Stores all registers in Hardware Stack and waits for an inter-
rupt. When non-masked interrupt occurs, vectors to corres-
ponding interrupt service routine. Note that a fast interrupt
(FIRQ) service routine will be entered with all registers saved.
but RTI will restore them correctly since CWAI sets E flag .
CWAI does not float the system busses.

(/)
c:

3
3
llol
...,

'<

0
.....,
-
::r
(1)

a-..
00
0
\1:>

::l

� ...,
c:

::?.
c;·
::l

(/)

�

�
...
0)

Type Mnemonic Operand(sl

ATI

�
c
:I
c

·::
c
0

2
..
1:1.
:I
Ill ..
..:

SWI
SWI2
SWI3

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c -

1 6/15 Pull registers from Hardware Stack in accordance with value
of E flag in Status register.

If E = 0, pull the subset:

[CCI - !!Sll, lSI - lSI + 1
[PC(Hlll - !!Sll. lSI - lSI + 1
!PC(LOll - [[Sll . lSI - lSI + 1

If E = 1. pull the full complement of registers:

!CCI - !!Sll. (SJ - !Sl + 1
[A) - [[Sll. [S] - (S] + 1
!Bl - [(Sll. lSI - lSI + 1
IDP] - [(SJI. [S] - lSI + 1
IX(HI)] - [[S)), [S] - [SJ + 1
[X(LO)J - IISII, lSI - lSI + 1
[Y(HI)] - !!Sll. (SJ - [S] + 1
IY(LOll - [(SJl. !Sl - IS] + 1
[U(Hlll - [[S)), [S] - !Sl + 1
[U(LO)J - [(S]). [S] - (S] + 1
[PC(HI)) - liS]]. IS] - (S] + 1
[PC(LO)] - [(S]J. [Sl - [S] + 1

Status register bits are as removed from the Hardware Stack .

1 19 1 1 Save all registers in the Hardware Stack and transfer control
2 20 1 to interrupt subroutine. Vectors are in:
2 20 1 FFFA and FFFB for SWI

FFF4 and FFF5 for SWI2
FFF2 and FFF3 for SWI3

E-1
[S] - lSI - 1, [(S)) - [PC(LOII
lSI - [S] - 1, [(S)) - [PC(HI)]
lSI - lSI - 1, [[S)) - (U(LQ)]
lSI - lSI - 1, HSII - [U(Hlll
[S] - lSI - 1, [[S)) - [Y(LO))

I (S] - (S] - 1, ([S)) - IY(Hll]
[S] - [S] - 1. !!Sll - [X(LQ))
IS) - IS] - 1, [(SJJ - [X(Hlll

_ _j

�
...
....,

0\
00
0
'-0

>
(J)
(J)
(1>

3
cr'

-<"'
r-
"'
::l

OCl
s::
"'

OCl
(1>

'"1:1 ..,
0

OCl
..,
"'

3
3
:::::

OCl

Type Mnemonic Operand(s)

SYNC

-:;
•
;:,
c:
:;::
c:
0

g
..
a.
;:,
• ..
.!:

AN DCC data8

..
;:, ..
II

ORCC data8 ..
rn

BRN disp8

LBRN disp16
..
c: NOP 0

:;::
II

e
a.

0
0
2

Appendix A. A Summary of the 6809 Instruction Set (Continued)

Status
Bytes Cycles Operation Performed

E F H I N z v c

1 2 lSI - lSI - 1, !!SJJ - !DPl
lSI - lSI - 1, IISII - !Bl
(S] - lSI - 1, [[SJJ - !AI
[S] - lSI - 1, [[SJJ - [CCI
[PC] - [interrupt vector]

Note that the SWI disables the regular and fast interrupts,
whereas SWI2 and SWI3 do not affect either one.

Stop processing instructions. Float system busses and wait
for an interrupt. When an interrupt occurs, resume processing
as follows:
a. If interrupt is enabled, transfer control to the service

routine.
b. If interrupt is disabled, continue execution at next instruc-

tion in sequence.

2 3 [CCI - !CCI A data8
Logically AND immediate data with contents of status
register. Used to clear bits of status register by logically AND-
ing them with 'O's.

2 3 [CCI - [CCI V data8
Logically (Inclusive) OR immediate data with contents of
status register. Used to set bits of status register by logically
ORing them with '1's.

2 3 Branch never. This is a No operation.

5 4 Long branch never. This is a No operation.

2 1 No operation.

I

til
c:

3
3
"' .,

'<

0
....,
-
:r
�

"'
00
0
'.0

::l

� .,
c

$l
a·
::l

til

!!

�
...
Q)

B
Summary of 6809 Indexed and
Indirect Addressing Modes

Non-indirect ..
• .. Indirect
u :!

Type Form Assembler Post-Byte
>- >-

Assembler Post-Byte (,) Ill

Form Op-code + + Form Op-code

No Offset ,R 1RR00100 0 0 [.AI 1RR10100
Constant Offset 5 -Bit Offset n.R ORRnnnnn 1 0 Defaults to 8-bit
from R 8-Bit Offset nn.R 1RR01000 1 1 [nn.RI 1RR11000

16-Bit Offset mmnn.R 1RR01001 4 2 lmmnn,RI 1RR11001

A - Register Offset A. A 1RR00110 1 0 [A, AI 1RR10110
Accumulator B - Register Offset B. A 1RR00101 1 0 [B,RI 1RR10101
Offset from R D - Register Offset D.R 1RR01011 4 0 [D,R) 1 RR11 011

Increment by 1 .R+ 1RROOOOO 2 0 Not allowed
Auto Increment/ Increment by 2 .A++ 1RR00001 3 0 I.R++) 1RR10001
Decrement R Decrement by 1 .-R 1RR00010 2 0 Not allowed

Decrement by 2 . --R 1RR00011 3 0 1.- -RI 1RR10011

Constant Offset 8-Bit Offset label. PCR 1XX01100 1 1 [label. PCRI 1XX11100
from PC 1 6-Bit Offset labei.PCR 1XX01101 5 2 llabei.PCRI 1XX11101

Extended
1 6-Bit Address [mmnnl 10011111

Indirect
- - - -

R = X. Y. U. or S RR: 00 =X 10 = u
XX = Don't Care 01 = y 11 = s

..
•
u
>-
(,)
+

3

4
7

4
4
7

6

6

4
8

5

Note: This chart conforms to Motorola nomenclature; their use of square brackets [I indicates to the assembler that
the addressing mode is indirect - thus. their use of [I differs from the use in Appendix A.

..
!
>-

Ill

+

0

1
2

0
0
0

0

0

1
2

2

Address
.. Inherent Immediate Direct Extended Indexed/Indirect Relative

Mode

O perand data8 or data 16 adr8 adr16 See Appendix B label or displacement I Form

Instruction + Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of Object No. of No. of

Mnemonic Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

ABX 3A 3 1

ADCA 89 2 2 99 4 2 89 5 3 A9 4+ 2+

XI
CD

ADCB C9 2 2 09 4 2 F9 5 3 E9 4+ 2+

ADDA 88 2 2 98 4 2 88 5 3 A8 4+ 2+

ADDB CB 2 2 DB 4 2 FB 5 3 EB 4+ 2+

ADDD C3 4 3 03 6 2 F3 7 3 E3 6+ 2+

ANDA 84 2 2 94 4 2 84 5 3 A4 4+ 2+

ANDB C4 2 2 04 4 2 F4 5 3 E4 4+ 2+

ANDCC 1C 3 2
ASL 08 6 2 78 7 3 68 6+ 2+

ASLA 48 2 1 '

ASLB 58 2 1

ASR 07 6 2 77 7 3 67 6+ 2+

ASRA 47 2 1

ASRB 57 2 1

BCC 24 3 2

BCS 25 3 2

BEQ 27 3 2
BGE 2C 3 2

BGT 2E 3 2

BHI 22 3 2

8HS 24 3 2
BIT A 85 2 2 95 4 2 85 5 3 A5 4+ 2+
BITB C5 2 2 05 4 2 F5 5 3 E5 4+ 2+

BLE 2F 3 2

BLO 25 3 2

BLS 23 3 2

BLT 20 3 2
BMI 28 3 2
BNE 26 3 2

BPL 2A 3 2

BRA 20 3 2

BRN 21 3 2

BSR 80 7 2

BVC 28 3 2

BVS 29 3 ·2
CLR OF 6 2 7F 7 3 6F 6+ 2+

CLRA 4F 2 1

CLRB 5F 2 1

CMPA 81 2 2 91 4 2 81 5 3 A1 4+ 2+

CMPB C1 2 2 01 4 2 Fl 5 3 E1 4+ 2+
CMPD 10 83 5 4 10 93 7 3 10 83 8 4 10 A3 7+ 3+

.am
E. CD
-.o CDU)
3 -

CD::::S
::::sm
.... (I) ..
... c:
mn

r+
::::s

-
·

a.O

m::::s
>en

CD O
na.
c:CD r+U)
-· ... 0
::::s !:.
-teD
-

· 3
3

CD� n m<

Address

Mode Inherent Immediate Direct

Operand
..... data8 or data16 adr8

Form

Instruction

+
Object No. of No. of Object No. of No. of Object No. of No. of

Mnemonic Code Cycles Bytes Code Cycles Bytes Code Cycles Bytes

CMf'S 11 8C 5 4 1 1 9C 7 3
CMPU 1 1 83 5 4 11 93 7 3
CMPX 8C 4 3 9C 6 2
CMPY 10 8C 5 4 10 9C 7 3
COM 03 6 2

COMA 43 2 1

COMB 53 2 1

CWAI 3C 20 2

DAA 19 2 1

DEC OA 6 2

DECA 4A 2 1

DECB SA 2 1

EORA \ 88 2 2 98 4 2

EORB C8 2 2 DB 4 2

EXG 1 E 8 2

INC oc 6 2
INCA 4C 2 1
INCB 5C 2 1

JMP OE 3 2

JSR 9D 7 2
LBCC

LBCS

LBEO

LBGE

LBGT

LBHI

LBHS

LBLE

LBLO

LBLS

LBLT

L�

LBNE

LBPL

LBRA

LBRN

LBSR

LBVC

LBVS

LOA 86 2 2 96 4 2

LOB C6 2 2 06 4 2

LDD cc 3 3 DC 5 2

Extended Indexed/Indirect

adr16 See Appendix B

Object No. of No. of Object No. of No. of
Code Cycles Bytes Code Cycles Bytes

11 8C 8 4 1 1 AC 7+ 3+

1 1 83 8 4 11 A3 7+ 3+

BC 7 3 AC 6+ 2+

10 BC 8 4 10 AC 7+ 3+

73 7 3 63 6+ 2+

7A 7 3 6A 6+ 2+

88 5 3 AS 4+ 2+

FB 5 3 EB 4+ 2+

7C 7 3 6C 6+ 2+

7E 4 3 6E 3+ 2+

8D 8 3 AD 7+ 2+

86 5 3 A6 4+ 2+

F6 5 3 E6 4+ 2+

FC 6 3 EC 5+ 2+
� -

Relative

label or displacement

Object No. of No. of

Code Cycles Bytes

10 24 5(61 4

10 25 5(61 4

10 27 5(61 4

10 2C 5(6) 4

10 2E 5(6) 4

10 22 5(6) 4

10 24 5(6) 4

10 2F 5(6) 4

10 25 5(6) 4

10 23 5(61 4

10 2D 5(6) 4

10 28 5(6) 4

10 26 5(61 4

10 2A 5(61 4

1 6 5 3

10 2 1 5 4

17 9 3

10 28 5(61 4

10 29 5(6) 4

notes

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

'

(")

,:.,

0"\
00
0
-.a

5'
� ..,
c

�
cs·
::l

n
0
Q.
�
C/)

3:::
("D

3
0 ..,

'<

:::0
�
J:i
=
..,
("D

3
�
::l -
C/)

�
:I
0.

!:Tl
�
�
()
s
cs·
:I

:i
3
�
C/)

Address
Mode

... Inherent Immediate Direct

Operand
.. dataB or data16 adrB Form

Instruction
t

Object No. of No. of Object No. of No. of Object No. of
Mnemonic Code Cycles Bytes Code Cycles Bytes Code Cycles

LOS 10 CE 4 4 10 DE 6

LOU CE 3 3 DE 5

LOX BE 3 3 9E 5

LOY 10 BE 4 4 10 9E 6

LEAS

LEAU

LEAX

LEAY

LSL OB 6
LSLA 48 2 1
LSLB 58 2 1
LSR 04 6

LSRA 44 2 1
LSRB 54 2 1
MUL 30 11 1

NEG 00 6
NEGA 40 2 1
NEGB 50 2 1
NOP 12 2 1

ORA 8A 2 2 9A 4

ORB CA 2 2 DA 4
ORCC 1A 3 2

PSHS 34 5+ 2

PSHU 36 5+ 2

PULS 35 5+ 2

PULU 37 5+ 2

ROL 09 6
ROLA 49 2 1

ROLB 59 2 1
ROR 06 6
RORA 46 2 1

RORB 56 2 1
RTI 38 6i1 5 1

RTS 39 5 1

SBCA 82 2 2 92 4

SBCB C2 2 2 02 4
SEX 10 2 1

STA 97 4
STB 07 4

STO DD 5

STS 10 OF 6

Extended

adr16

No. of Object No. of No. of
Bytes Code Cycles Bytes

3 10 FE 7 4

2 FE 6 3

2 BE 6 3

3 10 BE 7 4

2 78 7 3

2 74 7 3

2 70 7 3

2 BA 5 3

2 FA 5 3

2 79 7 3

2 76 7 3

2 B2 5 3

2 F2 5 3

2 87 5 3

2 F7 5 3

2 FD 6 3

3 10 FF 7 4

Indexed/Indirect

See Appendix B

Object No. of No. of
Code Cycles Bytes

10 EE 6+ 3+

EE 5+ 2+

AE 5+ 2+

10 AE 6+ 3+

32 4+ 2+

33 4+ 2+

30 4+ 2+

31 4+ 2+

68 6+ 2+

6 4 6+ 2+

60 6+ 2+

AA 4+ 2+

EA 4+ 2+

69 6+ 2+

66 6+ 2+

A2 4+ 2+

E2 4+ 2+

A7 4+ 2+

E7 4+ 2+

ED 5+ 2+

10 EF 6+ 3+

Relative

label or displacement

Object No. of No. of

Code Cycles Bytes

notes

I

I
I
I
I

2. 3

2. 3

I 2. 3

2. 3 '

I
I
I

I

o--
00
0
\0

p
Vl
Vl
(1)

3
�

'<

r­
Ill
;:J

O<l
s::
Ill

O<l
(1)

'"C
...,
0

O<l ...,
Ill

3
3
;:J

O<l

�
w

D
6809 Instruction Object Codes

in Numerical Order

The following symbols and abbreviations appear in this appendix:

a drS

adr16

dataB

data16

dd

dd dd

label

mm

mm nn

pp
qq
ssqq

8-bit address

16-bit address
8-bit data
16-bit data

8-bit data

16-bit data
The destination of a Jump or Branch

8-bit displacement in the object code

16-bit displacement in the object code

post byte for indexed and indirect addressing

8-bit address

16-bit address

D-2 6809 Instruction Object Codes

6809 Instruction Object Codes in Numerical Order

Object Code 1 lnstruction2. 3 Addressing Mode

OOqq NEG adr8 Base page (direct)
03qq COM adr8 Base page (direct)
04qq LSR adr8 Base page (direct)
06qq ROR adr8 Base page (direct)
07qq ASR adr8 Base page (direct)
08qq ASL adr8 I LSL adr8 Base page (direct)
09qq ROL adr8 Base page (direct)
OAqq DEC adr8 Base page (direct)
OCqq INC adr8 Base page (direct)
ODqq TST adr8 Base page (direct)
OEqq JMP adr8 Base page (direct)
OF qq CLR adr8 Base page (direct)
10 21 mm nn LBRNiabel Relative
10 22 mm nn LBHIIabel Relative
1023 mm nn LBLS label Relative
1024 mm nn LBHS label I LBCC label Relative
10 25 mm nn LBLO label I LBCS label Relative
1026 mm nn LBNE label Relative
10 27 mm nn LBEOiabel Relative
1028 mm nn LBVC label Relative
1029 mm nn LBVS label Relative
10 2A mm nn LBPL label Relative
10 2B mm nn LBMIIabel Relative
10 2C mm nn LBGEiabel Relative
10 2D mm nn LBLT label Relative
102Emm nn LBGT label Relative
10 2F mm nn LBLE label Relative
10 3F SWI2 Inherent
10 83 dd dd CMPD datal 6 Immediate
10 8C dddd CMPY data16 Immediate
10 8E dd dd LOY data16 Immediate
10 93 qq CMPD adr8 Base page (direct)
10 9C qq CMPY adr8 Base page (direct)
10 9Eqq LOY adr8 Base page (direct)
10 9F qq STY adr8 Base page (direct)
10 A3 pp1 CMPD indexed forms Indexed I indirect
10 AC ppl CMPY indexed forms Indexed I indirect
10 AE pp1 LOY indexed forms Indexed I indirect
lO AF pp1 STY indexed forms Indexed I indirect
10 83 ssqq CMPO adr16 Extended (direct)
10 BC ssqq CMPY adr16 Extended (direct)
10 BE ssqq LOY adrl 6 Extended (direct)
10 BF ss qq STY adr16 Extended (direct)
10 CE dd dd LOS data16 Immediate

Note 1. The post byte may be followed by two bytes, one byte, or no byte. See Appendix B and the discus-
sion of the post byte in Chapter 3 for more details. Appendix E lists all possible post bytes and the
operand forms that produce them.

Note 2. Some instructions have two mnemonics. In each such case. we show both forms, separated by a
slash (!).

Note 3. Appendix B displays the "indexed forms" for operands in the indexed and indirect addressing
modes.

Note 4. In the instructions EXG and TFR. the processor interprets the second byte (the immediate datal as
designating the source and destination registers.

Note 5. In the instructions PSHS. PULS, PSHU, and PULU, the processor interprets the second byte (the
immediate datal as designating which registers are to be included in the transfer of data to or from
the stack.

6809 Assembly Language Programming D-3

6809 Instruction Object Codes in Numerical Order (Continued)

Object Code 1

10 OEqq
10 OF qq
10 EE ppl
10 EF pp1
10 FE ss qq
10 FF ss qq
1 1 3F
11 83 dd dd
11 8C dd dd
11 93 qq
1 1 9C qq
11 A3 pp1
11 AC ppl
1 1 B3 ss qq
11 BC ss qq
12
13
16 mm nn
17 mm nn
19
1A dd
1Cdd
10
1 E dd
1 F dd •

20mm
21 mm
22 mm
23 mm
24 mm
25mm
26mm
27mm
28 mm
29 mm
2A mm
2B mm
2Cmm
20mm
2E mm
2F mm
30pp1
31 ppl
32 pp1
33 pp1

34 dd
35dd
36 dd
37 dd
39
3A
38
3Cdd
30
3 F
40
43
44
46

�·

/

lnstruction2. 3 Addressing Mode

LOS adr8 Base page (direct)
STS adr8 Base page (direct)
LOS indexed forms Indexed I indirect
STS indexed forms Indexed I indirect
LOS adr1 6 Extended (direct)
STS adr1 6 Extended (direct)
SWI3 Inherent
CMPU data1 6 Immediate
CMPS data1 6 Immediate
CMPUadr8 Base page (direct)
CMPS adr8 Base page (direct)
CMPU indexed forms Indexed I indirect
CMPS indexed forms Indexed I indirect
CMPUadr16 Extended (direct)
CMPS adr16 Extended (direct)
N OP Inherent
SYNC Inherent
LBRA label Relative
LBSR label Relative
OAA Inherent
ORCC data8 Immediate

ANOCCdata8 Immediate
SEX Inherent
EXG data8 Register4
TFR data8 Register4
BRA label Relative
BAN label Relative
BHIIabel Relative
B LS label Relative
BCC label I BHS label Relative
BCS label I BLO label Relative
BNE label Relative
BEQ label Relative
BVC label Relative
BVSiabel Relative
BPL label Relative
B MIIabel Relative
BGE label Relative
BL T label Relative
BGT label Relative
BLE label \Relative
LEAX indelled forms 'lndelled I indirect
LEA Y indelled forms lndelled I indirect
LEAS indelled forms Indexed I indirect
LEAU indelled forms Indexed I indirect
PSHS data8 Register5
PULS data8 Register5
PSHU data8 Register5
PULU data8 Register5
RTS Inherent (Stack)
ABX Inherent
RTI Inherent (Stack)
CWAidataS Immediate
MUL Inherent

SWI Inherent
NEGA Accumulator
CO MA Accumulator
LSRA Accumulator
RORA Accumulator

D-4 6809 Instruction Object Codes

6809 Instruction Object Codes in Numerical Order (Continued)

Object Code 1 lnstruction2. 3 Addressing Mode

47 ASRA Accumulator
48 ASLAILSLA Accumulator
49 ROLA Accumulator
4A DECA Accumulator
4C INCA Accumulator
40 TSTA Accumulator
4F CLRA Accumulator
50 NEGB Accumulator
53 COMB Accumulator
54 LSRB Accumulator
56 RORB Accumulator
57 ASRB Accumulator
58 ASLB I LSLB Accumulator
59 ROLB Accumulator
5A DECB Accumulator
sc I NCB Accumulator
50 TSTB Accumulator
5F CLRB Accumulator
60 pp1 NEG indexed forms Indexed I indirect
63 pp1 COM indexed forms Indexed I indirect
64 pp1 LSR indexed forms Indexed I indirect
66 pp1 ROR indexed forms Indexed I indirect
67 pp1 ASR indexed forms Indexed I indirect
68 pp1 ASL I LSL indexed forms Indexed I indirect
69 pp1 ROL indexed forms Indexed I indirect
6A pp1 DEC indexed forms Indexed I indirect
6C pp1 INC indexed forms Indexed I indirect
6Dpp1 TST indexed forms Indexed I indirect
6 E pp1 JMP indexed forms Indexed I indirect
6F pp1 CLR indexed forms Indexed I indirect
70 ss qq NEG adr1 6 Extended (direct)
73 ss qq COM adr1 6 Extended (direct)
74 ss qq LSR adr16 Extended (direct)
76 ss qq ROR adr1 6 Extended (direct)
77 ss qq ASR adr16 Extended (direct)
78 ss qq ASL adr161 LSL adr1 6 Extended (direct)
79 ss qq ROL adr16 Extended (direct)
7A ssqq DEC adr1 6 Extended (direct)
7C ssqq INC adr1 6 Extended (direct)
70 ss qq TST adr1 6 Extended (direct)
7 E ss qq JMP adr16 Extended (direct)
7F ss qq CLR adr1 6 Extended (direct)
80 dd SUBA data8 Immediate
81 dd CMPA data8 Immediate
82 dd SBCA data8 Immediate
83 dd dd SUBDdata16 Immediate
84 dd ANDA data8 Immediate
85 dd BITA data8 Immediate
86 dd LOA data8 Immediate
88 dd EORA data8 Immediate
89 dd ADCA data8 Immediate
8A dd ORA data8 Immediate
8B dd ADDA data8 Immediate
8C dd dd CMPX data16 Immediate
8Dmm BSR label Relative
8 E dd dd LOX data16 Immediate
90qq SUBA adr8 Base page (direct)
91 qq CMPA adr8 Base page (direct)
92 qq SBCA adr8 Base page (direct)
93 qq SUBDadr8 Base page (direct)

6809 Assembly Language Programming D-6

6809 Instruction Object Codes in Numerical Order (Continued)

Object Code 1 lnstruction2· 3 Addressing Mode

94qq ANDAadr8 Base page (direct)
95 qq BIT A adr8 Base page (direct)
96qq LDAadr8 Base page (direct)
97 qq STAadrB Base page (direct)
98qq EORA adr8 Base page (direct)
99qq ADCAadr8 Base page (direct)
9Aqq ORA adr8 Base page (direct)
9Bqq ADDA adrB Base page (direct)
9Cqq CMPXadr8 Base page (direct)
9Dqq JS R adr8 Base page (direct)
9Eqq LOX adr8 Base page (direct)
9F qq STX adrB Base page (direct)
AOpp1 SUB A indexed forms Indexed I indirect
Al pp1 CMPA indexed forms Indexed I indirect
A2 ppl SB CA indexed forms Indexed I indirect
A3 ppl SUB D indexed forms Indexed I indirect

A4pp1 ANDA indexed forms Indexed I indirect

A5pp1 BIT A indexed forms Indexed I indirect

A6 pp1 LOA indexed forms Indexed I indirect

A7 pp1 ST A indexed forms Indexed I indirect

AS pp1 EORA indexed forms Indexed I indirect

A9pp1 ADCA indexed forms Indexed I indirect

AApp1 ORA indexed forms Indexed I indirect

AB pp1 ADDA indexed forms Indexed I indirect

ACpp1 CMPX indexed forms Indexed I indirect

AD ppl JS R indexed forms Indexed I indirect

AE pp1 LOX indexed forms Indexed I indirect

AFpp1 STX indexed forms Indexed I indirect

BOss qq SUB Aadrl6 Extended (direct)
Bl ss qq CMP}'. adrl 6 Extended (direct)
B 2 ssqq SB CA adrl 6 Extended (direct)
B 3 ss qq SUB D adrl 6 Extended (direct)
B 4 ss qq ANDAadr16 Extended (direct)
B 5 ssqq BITAadrl6 Extended (direct)
B 6 ss qq LOA adr16 Extended (direct)
87 55 qq STA adrl 6 Extended (direct)
B S ss qq EORA adrl6 Extended (direct)
B 9 ss qq AOCA adrl6 Extended (direct)
B Assqq ORA adrl6 Extended (direct)
BB ss qq ADDAadr16 Extended (direct)
B C ss qq CMPX adrl6 Extended (direct)
B D ss qq JS R adrl6 Extended (direct'
B E ss qq LOX adr16 Extended (direct)
B F ss qq STX adrl6 Extended (direct)
COdd SUBB data8 Immediate
Cl dd CMPB data8 Immediate
C2 dd SB CB data8 Immediate
C3 dd dd ADDDdatal6 Immediate
C4dd ANDB data8 Immediate
C5dd BITB data8 Immediate
C6dd LOB data8 Immediate
C8dd EORB data8 Immediate
C9dd ADCB data8 Immediate
CAdd ORB data8 Immediate
CB dd ADDS data8 Immediate

cc dd dd LDDdatal6 Immediate
CE dd dd LOU data16 Immediate
DOqq SUBB adrS Base page (direct)
Dl qq CMPB adrB Base page (direct)

D-6 6809 Instruction Object Codes

6809 Instruction Object Codes in Numerical Order (Continued)

Object Code 1 lnstruction2. 3 Addressing Mode

D2qq SBCB adr8 Base page (direct)
03 qq ADDD adr8 Base page (direct)
D4qq ANDB adr8 Base page (direct)
05 qq BITB adr8 Base page (direct)
D6qq LOB adr8 Base page (direct)
07 qq STB adr8 Base page (direct)
D8qq EORB adr8 Base page (direct)
09qq ADCB adr8 Base page (direct)
OAqq ORB a drS Base page (direct)
DBqq ADDB adr8 Base page (direct)
OCqq LDD adr8 Base page (direct)
ODqq STD adr8 Base page (direct)
DE qq LOU adr8 Base page (direct)
OFqq STU adr8 Base page (direct)
EOppl SUBI;! indexed forms Indexed I indirect
E1 pp 1 CMPB indexed forms Indexed I indirect
E2 pp1 SBCB indexed forms Indexed I indirect
E3 ppl ADDD indexed forms Indexed I indirect
E4 ppl ANDB indexed forms Indexed I indirect
ES pp1 BITB indexed forms Indexed I indirect
E6 ppl LOB indexed forms Indexed I indirect
E7 ppl STB indexed forms Indexed I indirect
ES pp1 EORB indexed forms Indexed I indirect
E9 ppl ADCB indexed forms Indexed I indirect
EA ppl ORB indexed forms Indexed I indirect
EB pp1 ADDB indexed forms Indexed I indirect
EC ppl LDD indexed forms Indexed I indirect
ED ppl STO indexed forms Indexed I indirect
EE ppl LOU indexed forms Indexed I indirect
EF ppl STU indexed forms Indexed I indirect
FO S5 qq SUBB adr16 Extended (direct)
F1 ss qq CMPB adr16 Extended (direct)
F2 55QQ SBCB adr16 Extended (direct)
F3 55 qq ADDO adr16 Extended (direct)
F4 ss qq ANOB adr16 Extended (direct)
FS s5qq BITB adr16 Extended (direct)
F6 55 qq LOB adr16 Extended (direct)
F7 55 qq STB adr16 Extended (direct)
FS 55 qq EORB adr16 Extended (direct)
F9 55 qq ADCB adr16 Extended (direct)
FA 55 qq ORB adr16 Extended (direct)
FB 55 qq ADOB adr16 Extended (direct)
FC ssqq LDD adr16 Extended (direct)
FD ssqq STD adr16 Extended (direct)
FE 55 qq LOU adr16 Extended (direct)
FF ss qq STU adr16 Extended (direct)

E
6809 Post Bytes

•

1n Numerical Order

Post
Operand Form 1

Post
Operand Form 1

Post
Operand Form 1

Post
Operand Form 1

Byte Byte Byte Byte

00 O,X 37 -9.Y 6E 14,S 84 (.Y]
01 1,X 38 -B,Y 6F 15.S 85 (B,Y)
02 2,X 39 -7,Y 70 -16,S 86 (A,Y)
03 3,X 3A -6,Y 71 -15.S 88 (nn.Y)
04 4,X 38 -5,Y 72 -14,S 89 (mmnn.Yl
05 5.X 3C -4,Y 73 -13.S BB (D,Y)
06 6,X 30 -3.Y 74 -12,S BC [nn,PCI3
07 7,X 3E -2.Y 75 -11,S BD {mmnn,PC]3
08 B,X 3F -1.Y 76 -10,S BF (mmnnl
09 9,X 40 o.u 77 -9,S co ,U+
OA 10,X 41 1,U 78 -B.S C1 .U++
OB 11.X 42 2.U 79 -7,S C2 .-u

oc 12.X 43 3.U 7A -6,S C3 .--u

00 13,X 44 4.U 78 -5.S C4 .u

OE 14,X 4 5 5.U 7C -4.S C5 B,U
OF 15,X 46 6.U 70 -3,S C6 A.U
10 -16.X 47 7.U 7E -2.S ca nn,U
11 -15,X 48 B,U 7F -1,S C9 mmnn,U
12 -14.X 49 9,U 80 ,X+ CB D.U
13 -13,X 4A lO.U 81 .X++ cc nn.PC2
14 -12.X 48 11.U 82 .-X CD mmnn,Pc2
15 -ll,X 4C 12,U 83 .--X 01 I.U++l
16 -10.X 40 13,U 84 .X 03 L--UI
17 -9.X 4E 14.U 8 5 � 04 LUI
18 -a.x 4F 15.U 86 A. X 05 (B.UI
19 -7,X 50 -16,U 88 nn.X 06 IA.Ul
1A -6,X 51 -15,U 89 mmnn,X DB (nn.U)
18 -5.X 52 -14.U 88 D,X 09 (mmnn,U)
1C -4.X 53 -13,U ac nn,PC2 DB (D,U)
10 -3.X 54 -12,U 80 mmnn,Pc2 DC (nn.PCJ3
1E -2,X 55 -11,U 91 LX++) DO (mmnn.PC]3
1F -1,X 56 -10,U 93 1.--Xl OF (mmnnl
20 O.Y 57 -9,U 94 LXI EO ,S+
21 1,Y 58 -8.u 9 5 (B,X) E1 ,S++
22 2.Y 59 -7.U 96 (A, X) E2 .-s
23 3,Y 5A -6,U 98 Inn. X) E3 .--s
24 4,Y 58 -5.U 99 (mmnn.Xl E4 .S
25 5,Y 5C -4.U 98 [D.Xl E5 B.S
26 6,Y 50 -3.U 9C (nn.PcJ3 E6 A,S
27 7,Y 5E -2.U 90 [mmnn,PC]3 EB nn.S
28 B.Y SF -1.U 9F [mmnn) E9 mmnn,S
29 9,Y 60 O,S AO ,Y+ EB D.S
2A 10.Y 61 1,S A1 ,Y++ EC nn.PC2
28 11.Y 62 2.5 A2 ,-Y ED mmnn,PC2
2C 12.Y 63 3,S A3 .--Y F1 LS++l
20 13,Y 64 4,5 A4 .Y F3 L--SI
2E 14,Y 65 5,S AS B,Y F4 LSI
2F 15,Y 66 6,5 A6 A.Y F5 (B.Sl
30 -16.Y 67 7.5 AB nn.Y F6 IA.Sl
31 -15.Y 68 B,S A9 mmnn.Y FB (nn,S)
32 -14.Y 69 9,S AB D,Y F9 (mmnn,Sl
33 -13.Y 6A 10,S AC nn.PC2 FB (D,S)

34 -12,Y 68 ll.S AD mmnn,PC2 FC inn.PCJ3
35 -11.Y 6C 12,5 81 I.Y++l FD (mmnn.PCI3
36 -10,Y 60 13.5 83 [.--YI FF (mmnnl

Note 1 : See Appendix B for addressing modes which the operand forms represent.

Note 2: May appear in source listing in the form label, PCR.

Note 3: May appear in source listing in the form llabei,PCRI.

Index

A register. See Accumulator A
ABA,22-1
Absolute addresses, 10-17. See also base page direct

addressing, extended direct addressing
Absolute loader, 2-17
ABX, 3-39,22-2-3

difference f(om accumulator offset
addressing, 3-29

difference from LEAX instruction, 22-2-3
Access, 17-12, 17-14
Access time, 12-10, 21-5
Accumulator, 3-4, 4-1-3

A, 3-4
B, 3-4
D, 3-4, 3-10
differences between A and B, 3-4, 4-3, 8-5

Accumulator offset addressing mode, 3-28-29, 4-9,
7-6, 9-14-15, 19-14
difference from ABX instruction, 3-29

Accumulator offset indirect addressing
mode, 3-29-31, 9-14, 12-13, 12-14

Accuracy, 8-3-4, 8-6
ACIA. See 6850 ACIA or 6551 AClA
Acknowledgment from a 6820 PIA, 13-8, 13-9, 13-10
Active transitions on a 6820 PIA control line, 13-4,

13-7--9, 13-38-39, 15-8
ADC, 5-8, 8-1, 8-3, 8-5, 8-7, 22-3-4
AID converters, 13-13-46
ADD, 4-2, 5-6, 8-5, 8-16, 15-27, 22-4-22-5

execution diagrams, 3-9, 3-12, 3-14, 3-16,
3-21-24, 3-27, 3-33, 22-4-5

ADDD, 4-7-s�· 8-4, 8-5, 22-5-6
execution diagrams, 3-10, 3-34, 22-5-6

Adding Carry fbg to Accumulator, 5-9
Adding entry to list example, 9-2-3
Addition:

BCD, 8-4-6,18-11-12
binary, 4-2,4-7-8,8-2-4, 18-4-5, 18-10-11
decimal, 8-4-6, 18-11-12
8-bit, 4-2, 18-10-11
multiple-precision, 8-2-6, 18-4-5, 18-11-12
16-bit, 4-7-8

Address arrays, 3-29-30, 3-34-36, 9-14, 12-13-14
Address field, 2-1, 2-2, 2-10-12, 3-6, 3-45,

3-48-50
general description of options, 2-10-12
options in standard 6809 assembler, 3-48-50

Address register, 5-4. See also index register X,
index register Y, stack pointer S, stack pointer U

Addressing bit in 6820 PIA control register,
13-3, 13-7

Addressing modes. See also base page direct address­
ing, extended direct addressing, extended
indirect addressing, immediate addressing,
indexed addressing modes, indirect addressing

general description, 3-6
6809, 3-7
specific descriptions, 3-7-38
symbols, 3-49

Alarms, 15-1
Alphabetizing strings, 6-1
Analog-to-digital (A/D) converters, 13-44-47
AND, 4-3-4, 13-10, 13-30-31, 15-30, 22-6-7

clearing bits, 13-10, 13-31, 15-30, 22-7
masking, 4-3-4, 13-30
testing bits, 13-13, 13-30-31, 22-7

ANDCC, 3-5, 8-3, 15-5, 18-4, 22-6, 22-8-9
masks for clearing individual flags, 22-8

Apostrophe indicating ASCII character, 3-49,
6-5, 6-8

Architecture of 6809 CPU, 3-3-5
Argument lists, 11-3-8
Arithmetic, 8-1-20

add-ons, 8-20
algorithms, 21-5, 21-6
high-speed, 8-8, 8-12, 8-20
references, 21-6
tables, 4-8-11

Arithmetic and logical expressions, 2-12, 3-50, 7-11
Arithmetic processing units, 8-20
Arithmetic shift, 4-3, 6-10, 8-1, 8-7, 8-12, 22-11
Array, 3-20, 3-31-32, 5-3, 8-7-8. See also data
structures

base address, 3-20, 3-28, 4-9
index, 3-6, 3-20, 4-9
multi-dimensional, 8-7-8
of addresses, 3-29-30,3-34-36,9-13-14,

12-13-14
one-dimensional, 3-20, 5-4
processing, 3-31- 3-32, 5-4

ASCII character code, 6-1-2
assembler format, 3-49, 6-5, 6-8
binary conversion program, 7-8-10
comparison with BCD, 6-2, 6-8
decimal con version program, 7-6-7
FCC directive, 3-46-47
hexadecimal conversion program, 7-6-7
letter offset, 7-2
7-bit version, 6-1
table, 6-2
validity checking, 7-7

ASCII code table, 6-2
ASCII strings, entry of, 2-12, 6-8. See also FCC

directive
ASCII to decimal conversion example, 6-1, 7-6-7
ASCII to EBCDIC conversion, 3-28-29
ASL, 4-3, 5-14, 8-12, 8-15, 13-14, 13-31, 22-9-10

multiplying by small integers, 7-8, 9-13
testing bit 6, 13-14
testing bit 7, 6-10, 13-14

ASR, 22-10-11
Assembler directives, 2-l, 2-5-10, 2-12-14

standard 6809 assembler, 3-46-48
Assembler-related errors, 19-15-16
Assemblers, 1-5-8, 2-1-18

address field, 2-1, 2-2, 2-10-12
advantages, 1-5, 1-6
applications, 1-13
arithmetic and logical expressions, 2-12
choice, 1-7
comments, 2-14
conditional assembly, 2-12-13
definition, 1-5
delimiters, 2-2-3
directives, 2-l, 2-5-10, 2-12-14
disadvantages, 1-7-8

Assember (Continued)
error messages, 2-16
errors from use, 19-15-16
features, 1-6-7
field structure, 2-1-3
formats, 2-2
inputs and outputs, 1-6
labels, 2-3-4, 2-10, 4-7
location counter, 2-11-12, 4-6
macros, 2-13-14
operations codes, 1-4, 2-4-5
pseudo-operations, 2-1, 2-5-10, 2-12-14
rules, 1-6
standard 6809 version, 3-45- 50
symbol table, 2-7
types, 2-15

Assembly-time arithmetic, 2-12, 3-50, 7-10
Asterisk in standard 6809 assembler:

before a line of comments, 3-45
current value of location counter, 3-49, 4-6

Asynchronous input/output:
documentation of programs, 18-1-2, 18-5-7
handshake, 12-5-7
interrupt-driven, 15-28-30
6820 PIA, 13-49-52, 15-29-30
6850 ACIA, 14-1-6, 15-28-29
TTY procedures, 13-48
UARTs, 13-52

Autodecrement, 3-31-36, 5-3, 6-6, 19-12
by 1, 3-32-33
by 2, 3-32, 3-33-36
compatibility with stack storage, 3-32, 10-5
execution diagram, 3-34
indirect, 3-34-36
initialization, 3-32, 3-35, 5-3, 19-13

Autoincrement, 3-31-36,5-2-3, 5-7,6-6,
15-20, 19-12
alternative to DUL instruction, 22-59
by 1, 3-31-36, S-6, 13-31-32
by 2, 3-32, 3-34-36, 5-17
compatibility with stack loading, 3-32, 10-6, 13-31
execution diagrams, 3-33, 3-35
indirect, 3-34-36
initialization, 3-32, 3-34, 5-6

Automatic saving of registers, I 5-4-5, 15-17
Automatic (strobe) modes on a 6820 PIA, 13-7-10,

13-26, 13-27, 13-29, 13-40, 13-43
Auxiliary carry flag. See Half-carry flag

B Register.See Accumulator B
Backwards branches, 4-6, 22-23
Base address, 3-20, 3-26, 3-28, 3-30, 4-9, 4-10, 7-4
Base page. See direct page
Base page direct addressing, 3-4,3-11-13,4-1-2,

execution diagrams, 3-11' 3-12
Base register, 3-16, 3-17, 3-18, 3-19
BASIC computer language, 1-9, 1-111
Baud, 13-47
Baud rate generator, 12-15
Baudot character code, 6-1
ijCC, 22-11. See also BHS

after CMP instruction, 4-5-6, 9-10, 19-12, 19-17.

testing bit 0, 13-14
testing bit 7, 5-14, 13-14

BCD representation, 7-8, 8-4-6. See also decimal
numbers

addition, 8-4-6

counting, 8-6
subtraction, 8-5-6

BCD-to-binary conversion example, 7-8
BCS, 22-12. See also BLO

after CMP instruction, 4-6, 9-5, 9-11, 19-17
BEQ, 22-12

checking for FF (hex), 13-19
checking for zero, 5-14, 19-22
comparing values, 4-5-6, 6-3

BGE, 5-12, 22-13
BGT, 5-12, 22-13-14
BHI, 22-14-15

xii

after CMP instruction, 4-6, 9-11, 19-7, 19-12, 19-18

BHS, 22-15-16. See also BCC
use for clarity, 19-17

Bidirectional capability of 6820 PIA, 13-37-38
Binary machine language _programs, 1-2-3
Binary notation for masks, 4-3
Binary numbers, 3-49, 4-3, 7-8-10

use of% sign to designate, 3-49, 4-3
Binary rounding, 8-15
Binary search, 9-4
Binary-to-ASCII conversion example, 7-8-10
Binary-to-hexadecimal conversion table, 1-3
Bit-by-bit operations, 4-3
BIT, 13-31, 14-6,22-16-17
Bit length, 8-3-4, 8-6
Bit manipulation:

clearing bits, 4-4, 13-10, 13-22, 13-43, 15-6,
15-30, 22-7

complementing bits, 22-35. See also EOR
setting bits, 6-10, 13-10, 13-22, 13-43, 15-5, 15-13,

15-30, 22-56
testing bits, 13-13-14, 13-30-31, 15-8-9, 22-7

Bit numbering, 3-3, 3-18
Bit patterns for instructions, 1-2, 3-8, 3-18, 4-9, B-1
Bit rate (for TTY), 13-48
Bit rate generator, 12-15
Blank code (in ASCII), 6-5, 6-8
Blanking leading zeros, 6-7-8, 13-23-26
BLE, 5-13,22-17-18
BLO, 22-18. See also BCS

use for clarity, 19-17
Block. See array, data structures
BLS, 22-18-19

after CMP instruction, 4-6, 7-3,9-12, 19-12
BLT, 5-13, 22-19-20
BMI, 22-20

signed operations, 5-11
testing bit 6, 15-8-9
testing bit 7, 5-11, 5-15, 13-11, 15-8, 19-5

BNE, 22-20-21
checking for carry after INC, 8-15
comparing values, 4-5, 6-6
loop control, 5-6, 5-7, 19-22

Boldface type, 1-1
Bootstrap loader, 2-17
Borrow, 3-8, 4-5, 8-1, 8-6. See also Carry flag,

subtraction
Bottom-up design, 17-26
BPL, 22-21

signed operations, 5-11
testing bit 7, 5-11,13-11,13-14,13-39,13-47,15-9

BRA, 3-37-8, 5-15, 22-21-23
Brackets around addresses, 3-15, 3-26, 3-45
Branch instructions, 2-3, 3-36-3-38, 4-6-7. See

also relative addressing

xiii

Breakpoint, 19-2-5, 19-8

clearing, 19-4

correcting return address, 15-14, 19-3

example of use, 19-25-26

inserting, 19-3

precautions, 19-5

return address, decrementing of, 15-14, 19-3

setting, 19-4-5

software interrupt instructions, use of, 19-3-5

BRN, 22-23
BSR, 10-1, 10-7, 10-17, 22-23-24

Bubble sort, 9-10

Buffer, 9-5, 15-11, 15-19-20, 15-22-23

Buffered interrupts, 15-11, 15-19-20, 15-22-23

BVC, 22-25

BVS, 22-25

Byte disassembly example, 4-4-5

Byte-length data, 3-46

C flag. See Carry Flag
Calculating relative offsets, 4-6, 5-6, 5-9-10,

5-13, 5-15

Calculator chips,
Calendar time, 15-25-27

Call by name, 11-13

Call by value, 11-13

Call instruction. See BSR, JSR
Carriage return character, 6-2, 6-4

Carry (C) flag; 3-4, 3-5, 4-2, 4-3, 4-5, 5-8. 8-1, 8-6
adding to accumulator, 5-8

arithmetic use, 8-1, 8-3

clearing of, 8-3, 22-26

decimal adjust, 8-5, 8-6

definition, 3-4

effect of CMP, 4-5,9-12, 19-12

effect of MUL, 3-4, 22-52

equality case, 9-11, 19-12, 19-17

instructions with no effect, 3-5, 8-3, 22-34, 22-28

mverted borrow, 8-6

parallel/serial conversion, 13-52

position in CCR, 3-3

serial/parallel conversion, 13-47

setting of, 8-3, 13-51, 22-64

shifts, 4-3, 8-12

subtraction, 8-5-6

Case structure, 17-17, 17-18

CBA, 22-26

CCR. See condition code register
Centering data reception, 12-8, 13-30, 13-48

Changing the return address, 11-4, 11-5, 11-6, 11-8,19-3

Changing values in the stack, 15-13-15

Character codes, 6-1-2

Character manipulation, 6-1, 6-5, 6-8, 6-12

Character strings, entry of, 2-12, 6-8. See also FCC
directive

Checking an ordered list example, 9-3-4

Checklist, 19-10-11, 19-17-18, 19-22-24

Checksum, 5-15, 8-12

Circular shift. See ROL, ROR instructions
Classes of data for testing, 20-3

CLC, 3-44, 8-3, 22-26

Cleaning up the stack, 11-8, 11-11, 11-13

Clear condition codes, 22-8-9

Clearing bits, 4-4, 13-10, 13-22, 13-43, 15-6, 15-30, 22-7
Clearing breakpoints, 19-4

Clearing Carry flag, 8-3, 22-26

Clearing flags, 3-5, 8-3, 15-5, 15-7, 22-8-9. See also
ANDCC instruction

Clearing memory example, 4-4

Clearing 6820 PIA interrupt flags, 13-3, 13-7, 13-11,

13-39, 13-40, 15-8, 15-16, 15-17, 15-19, 15-24, 19-16

CLF, 15-5, 22-26

cu. 15-5, 22-26

CLIF, 15-5, 22-26

Clock interrupts, 15-24-24

CLR, 4-4, 5-8, 6-4, 13-8, 13-11, 22-27

CLV, 22-27

CMPA, B, 22-28-29

branch instructions, 4-6

comparison with SUB, 7-7

confusion in use, 19-12

direction, 19-13

effect on Carry flag, 4-5, 5-4, 19-12

effect on Zero flag, 4-5, 6-4, 19-12

input instruction, 13-11

signed numbers, 5-12

unsigned numbers, 4-5, 5-12, 19-12

CMPD, X, Y, U, S, 22-28, 22-29-30

checking an address register, 5-3, 7-10, 19-7

length of operation codes, 10-16
Code conversion, 7-1, 7-7

ASCll to binary, 7-10-11

ASCII to decimal, 7-7-8

ASCll to EBCDIC, 3-28-29

BCD to binary, 7-8

decimal to ASCll, 6-1

decimal to binary, 7-8

decimal to seven-segment, 7-3-5, 13-24-25,

18-11, 19-17, 19-20, 20-1

hexadecimal to ASCII, 7-2-4

Coding, !V-3, 17-2

COM, 22-30-31

Combining control information, 13-31-32

Commas in operand field, 3-45

Comments, 2-2, 2-15, 18-2-7

delimiters in 6809 assembler, 3-45

examples, 18-4-7

guidelines, 2-14-15, 18-2-4

questions that comments should answer, 18-5

Common-anode display, 13-22, 13-23

Common-cathode dipslay, 13-22, 13-23

Common programming errors, 19-11 -16

Communications with interrupt service routines
15-10-11, 15-18-19, 15-29-21

•

Comparison instructions. See CMPA CMPD
Compiler, 1-9, 1-10

'

Complementary binary form, 13-45

Computer program, 1-2

Condition code. See flag
Condition Code Register, 3-3, 15-5, 15-6, 15-14. See

also ANDCC, ORCC
bit assignments, 3-3

flags, 3-4-5

Conditional assembly, 2-12-13

Condition branch instructions, 4-7, 9-4, 19-12,

A-10-11

Consecutive structure, 17-16

Constant offset from base register, 3-17-23, 3-28,

5-12, 9-7, 9-8, 9-9, 15-14-15

comparison with accumulator offset, 3-28

from hardware stack pointer, 10-7, 15-14-15

short offset modes, 3-20,3-21-23,5-13

zero offset mode, 3-20, 3-21

Constant offset from base register
indirect, 3-25-27, 9-8-9, 10-17, 11-4

Constant offset from program counter, 3-23-25, 10-17

comparison with program relative addressing, 3-37
Control characters, 6-2, 6-4

Control information, 13-30-32

Control lines on 6820 PIA, 13-1, 13-3, 13-4, 13-6-8
use independent of parallel data port, 13-40,

13-43, 15-24

Control ports, 12-2-4

Control register:
in 6820 PIA, 13-3-10

in 6850 ACIA, 14-1, 14-3-5

Converters:
AID, 13-43-47
D/A, 13-40-43

microprocessor-compatible, 13-42

successive approximation, 13-44

Cost of redesign, 21-5

counter, 13-26-28

Counting down, 5-6, 22-38

Counting I bits, 6-10, 13-51
Credit verification terminal example. See also

verification terminal 16-9-13, 17-5-10,

17-13-14, 17-22-25,17-29-31.
Cross-assembler, 2-5

Cross-compiler, 1-13

Cross-reference, 2-16
Current value of location counter, 2-11-12, 3-49, 4-6

CWAI, 15-6, 15-17,22-31-22-32

D register. See Double accumulator
DAA, 22-32-33

after series of additions, 8-14

effect, 8-5

example programs, 8-4-6, 8-12-14, 8-16

hexadecimal to decimal conversion, 7-3
use after certain instructions, 8-5-6

DIA converter, 13-40-43

Darlington transistor, 13-22
Data accepted flag, 15-21

Data accepted signal, 13-9

Data-address confusion, 2-11,4-3, 19-13, 19-19

Data direction register, 13-1, 13-3, 13-6-7

addressing, 13-6

establishing directions, 13-7

DATA directive, 2-6-7, 2-10, 11-3. See also FCB,
FCC, FDB directives

Data flowchart, 17-4
Data ready flag, 14-4, 15-18

Data ready signal, 12-6, 13-8, 13-9

Data structures, 3-20, 3-25-26, 9-5-9, 17-2,

17-31-32. See also array, lookup table
design of, 17-31-32

selection, 17-32

use, 3-20, 3-25-26, 9-6-9, 17-31-32

Data transfer example, 4-1-2

Debouncing switches, 13-14-15

Debugging, IV-4, 19-1-27

assembler-related errors, 19-15-16

branches, 19-11

checklists, 19-10- II
code con version example, 19-1 7- 20

common programming errors, 19-11-15

definition, IV-4

examples, 19-17-26
interrupt-driven programs, 19-16

loops, 19-11

programming errors, 19-11- 15

review, 20-5

sorting example, 19-21-26

tools, 19-1, 19-2-10

Debugging examples, 19-17-26

DEC (decrement by I) instruction, 22-33-34

clearing bit 0, 15-12, 15-13, 15-30
effect on Carry flag (none), 8-6, 22-34

loop control, 5-5, 5-6, 22-38

Decimal accuracy, 8-3, 8-6

xiv

Decimal addition example, 8-4-6, 18-11-12
Decimal arithmetic, 8-1,8-4-6,8-12-15,8-16,

18-11-12

addition, 8-4-6, 18-11-12

rounding, 8-16
self-checking digit calculation, 8-12-15

subtraction, 8-5-6, 8-17

Decimal default in address field, 2-10, 3-48, 19-15

Decimal digits in ASCII, 6-1, 6-8

Decimal numbers:
accuracy, 8-3, 8-6
addition example, 8-4-6, 18-11-12

arithmetic, 8-1,8-4-6, 8-12-15,8-16, 18-11-12

comparison with ASCII numbers, 6-2, 6-8

counting, 8-6

decrement, 8-6

increment, 8-6, 8-16
rounding, 8-16

subtraction, 8-5-6,8-17

Decimal subtraction, 8-5-6, 8-17

Decimal to ASCII conversion, 6-1
Decimal to binary conversion example, 7-9
Decimal to hexadecimal conversion table, 1-3

Decimal to seven-segment conversion example:
debugging, 19-17-20

documentation, 18-11

program example, 7-3--6

subroutine, 13-26, 18-11

testing, 20-1
Decisions, 17-12, 17-14

Decoder, 7-1, 13-23-24, 13-26-27

Decoding commands, 9-3
Default values, 3-12, 3-13, 3-48, 3-49, 19-15

addressing modes, 3-12, 3-13, 3-49, 19-15

direct page, 3-12, 3-48

errors, 19-15
number base in address field, 2-10, 3-48, 19-15

Defensive programming, 2-3, 2-4, 2-7, 2-12, 2-15

Defining inputs, 16-1

Defining names, 2-7. See also EQU directive
Defining outputs, 16-2

Definition lists, 2-7, 18-8-9
Degenerate (trivial) cases, 9-11, 19-12, 19-24

Delay constant (for I ms delay), 12- l l, 12-12

Delay routines, 12-9-12, 13-6, 15-24-27

using real-time clock, 15-24-27

Delimiters in standard assembler, 2-2-3, 3-45, 6-8

rules for use, 2-2-3
Demultiplexer, 12-2, 12-3

DES, 22-34
Design decisions, limiting effects of, 17-12, 17-14

Design of programs, 17-1-32. See also program
design

DEX, 3-41, 6-5, 22-34
DEY, 22-34

Digital-to-analog (D/ A) converters, 13-40-43

Direct addressing. See also base page
direct addressing
base page, 3-11-13, 4-1, 4-2, 21-2

XV

definition, 3-6

execution diagrams, 3-11, 3-12, 3-13, 3-14

extended, 3-13-14
special meaning to 6809 manufacturers, 3-11

Direct memory access (DMA), 12-8
Direct page, use of, 3-12, 4-1, 4-2, 5-9, 21-2
Direct page (DP) register, 3-4, 3-11, 3-12, 3-40. 7-8

default value, 3-12, 3-48
effect of Reset, 3-40
loading of, 7-8, 22-36, 22-7 3
SETDP directive, 3-48

Directives, 2-1, 2-5-10, 2-12-14, 3-46-48. See
also pseudo-operations

Disabling interrupts, 15-2, 15-11-13, 15-14-15

Disassembly table, D-2-6
Displays, 13-20-29

multiple, I 3-22-29
multiplexing of, 13-26-29
seven-segment, 13-22-29

single, 13-20-22

Division, 8-1, 8-8-12
by power of 2, 8-1, 8-15

DMA, 12-8
DMA controller, 12-8
Do-forever structure, 17-17
Do-until structure, 17-16, 17-17
Do-until structure. 17-16, 17-17
Do-while structure, 17-16, 17-17, 17-19, 17-26

examples, 17-19
flowchart, 17-17

Documentation, 13-11, I 3-32, 8-1- 14

comments, 2-15. 18-2-7
definition, IV -4

flowcharts, 18-7
input/output routines, I 3-11
library forms, 18-9-12
memory maps, 18-7-8
package, 18-12-13
parameter and definition lists, 18-8-9
production software, 18-13
self-documenting programs, 18-1-2
status and control, 13-32
structured programs, 18-7

Dollar sign, 3-9. 3-48
Double accumulator, 3-3, 3-4. See also ADDD,
CMPD and SUBD instructions

clearing of, 5-8
errors in use, 19-15

instructions, 3-4, 3-10, 3-33-34, 4-8, 22-6, 22-69
organization, 3-4, 4-8
shifting, 8-12
use in MUL instruction, 7-8, 8-7

Double buffering of interrupts, 15-11, 15-20,
15-22-23

Double-byte shifts, 8-12
Double counting of switches, avoiding of, 13-15
Doubling a binary number, 4-3, 5-15

Doubling a der imal number, 8-14-15
Doubly linked lists, 9-9

Downward gro.vth of stack, 10-5-6, 11-2

DP register, 3 I, 3-11, 3-12, 7-8. See also
page register

Driver programs, 17-11. See also 110 driver
Dummy operations on 6820 PIA, 13-9-11, 15-9,

15-17. 15-21
Dump, 19-5-8
Dynamic allocation, I 0-17

E !lag, 3-5, 15-3-4, 15-6

meaning, 3-5, 15-4
position in CCR. 3-3
use, 15-6

EBCDIC character code, 3-28, 6-1, 6-10
Edge-sensitive interrupt (NMI), 15-7, 15-12

Editing strings of digits, 6-8
Effective address, 3-7, 3-14, 3-15, 4-9, 5-5-6, 6-5.

See also addressing modes, indexed
addressing modes, LEA instruction

8-bit summation example, 5-5-5-7, 18-10- II
Empty state, 9-9
Emulation, 20-2

in-circuit, 20-2

Enabling and disabling interrupts. 15-11-14, 15-17,

15-31, 19-15. See also CLF, CLI. CWAL SEF, SEI
automatic by CPU, 15-3
during a service routine, 15-14-15

errors, 19-16
instructions, 15-5-6, 15-17
restoring state after disable, 15-13
6820 PIA, 15-13-14, 15-30
6850 ACIA, 14-3-4, 15-29
when to disable, I 5-l I -12
when to enable, 15-12

Encoder, 13-14, 13-38
END directive, 2-9, 3-48

Endless loop instruction, 17-17, 19-3

Entire (E) flag, 3-5, I 5-4, I 5-6
Entire state of processor, 15-4-5,15-13-14

diagram, 15-5

indexed offsets, 15-14
ENTRY directive, 2-9
EOR, 5-16, 122-34-35
Equal elements, 9-11- 12

Equality, checking for, 4-5

EQUATE (EQU) directive, 2-7, 2-10

Error-correcting codes, 6-10, 12-8
Error-detecting codes, 6-10, 12-8

Error exit from a service routine, 15-14

Error handling, 16-3, 16-5, 16-8.16-12, 17-14

recovery, 17-14

Error messages, 2-16-17,19-15-16

Errors, 19-11-16
Even parity generation example, 6-9-10, 13-52

Examples:
format, Il-l
interrupts, 15-5

standard memory addresses, "Guidelines for
Examples" point (unnumbered) 7 under

"Guidelines for Examples"
subroutines, 10-3

Execution time:
delay routine, 12-11-12

division program, 8-12
indexed addressing modes, B-1
instructions, E-2-5
interrupt-related operation, 15-8
multiplication program, 8-8
reduction of, 21-4
searching methods, 9-5

EXG, 22-35-37
jump and link, 10-17-18

loading direct page register. 7-7, 22-36

register codes, 22-37
uses, 22-36

Expanding program stubs, 17-27-30

Expressions, 2-12, 3-50, 7-11
Extend addressing, 3-13-14

special meaning to 6809 manufacturers, 3-13
Extend indirect addressing, 3-14-16, 15-16

post byte value (9F hex), 3-1 S
EXTERNAL directive, 2-9
External reference, 2-9
Extra factor of 2 in relative address calculations,

3-36-37,4-6-7, 22-22

F flag, 3-5, 15-3-5, 15-15
position in CCR, 3-3

Factor of 6 in decimal addition, 8-5
Fast interrupt, 15-3-6, 15-10, 15-30

difference from regular interrupt, 15-6
during execution of CW AI instruction, 15-6

Fast interrupt disable (F) flag, 3-5, 15-3-5, 15-15
FCB directive, 3-46, 4-9, 7-6, 11-3-5, 11-7
FCC directive, 3-46-47, 6-8, 11-3
FOB directive, 3-46-47,11-3-5.11-7
Field structure, 2-1-2, 3-45
Fields in post-byte, 3-17-18, B-1
FIFO, 9-5

5-bit offset, 3-21-22, 5-13
5357 AID converter, 13-44-47

Finding non-blank character example, 6-5-6
FIRQ input, 15-3-6, 15-10, 15-30
Fixed format, 2-2, 6-5
Flags, 3-3-5,8-3. See also ANDCC, condition code

register, ORCC
bit assignments in CCR, 3-3
clearing, 3-5, 8-3, 22-8-9
effects of instructions, 3-4-5, A-3-19

setting, 3-5, 8-3, 22-55-56
Flexibility, 5-5, 9-6-7
Flowcharting, 17-2-10, 18-7

advantages, 17-2-3
data, 17-4
disadvantages, 17-3-4
general version, 17-4
limitations, 17-3-4
programmer's version, 17-4
switch and light system, 17-4-5
switch-based memory loader, 17-5-6
symbols, 17-3
use in documentation, 18-7
verification terminal, I 7-5-10

Forcing direct or extended addressing, 3-12-13, 3-49
Forcing 8-bit or 16-bit offsets, 3-49
Format for storing 16-bit data and addresses, 3-46,

4-8, I 0-5
FORTRAN, 1-8-10
FORTRAN-line (do) loops, 5-1-2, 17-16,19-12
Forward reference, 2-16
Framing, 13-30
Framing error, 13-48, 13-50, 14-5
Free format, 2-2, 6-5
Frequently used instructions, 3-1, 3-2

General parameter passing techniques, 11-3-13
General interrupt service routines, 15-30-31
Global variable, 2-14

H (half-carry) flag, 3-5, 8-5-6
effects of instructions, 8-5-6
need for, 8-5
position in CCR, 3-3

Half-carry flag. See H flag
Halt instruction. See CWAJ, SYNC instructions

Halving a decimal number, 8-15
Hand assembly, 1-6
Handshake

AID converter, 13-43-47
definition, 12-5
diagrams, 12-6-7
6820 PIA operating modes, 13-8-9
software equivalent, 15-11

X IIi

Hardware stack pointer, 3-4, 5-6, 10-3, 10-5-7, 10-
17,13-31-32,15-3-5, 15-13-IS.Seealsostack
pointer S

Hardware/software tradeoffs, 7-2, 12-9, 13-38,
13-52-53, 15-28, 21-5

Hashing, 9-3
Headings, 18-3
Hexadecimal conversion table, 1-3
Hexadecimal loader, 1-4-5
Hexadecimal programs, 1-3-5
Hexadecimal to ASCII conversion example, 7-2-3,

10-4-7
High-level language, 1-8-14
High-speed 110 devices, 12-2, 12-8
Hold in the stack, 11-8-11
Housekeeping directives, 2-5, 2-9-10
Human factors, 3-33, 16-3-4 .

Human interaction, 6-8, 16-3, 16-6. 16-8, 16-12

I flag, 3-5, 15-3, 15-5-6, 15-14
position in CCR, 3-3
saving and restoring, 15-13

Identifying a key by scanning, 13-32 to 13-38
If-then-else structure, 17-16, 17-19, 17-25

examples, 17-19
flowchart, 17-16

Illegal indexed addressing modes, 3-17, 3-35
Immediate addressing, 3-6. 3-9-11, 4-3, 4-9, 5-9

definition, 3-6
execution diagrams, 3-9-11
instructions lacking the mode, 3-11

Implied memory address. 3-20, 3-32. See also

autodecrement, autoincrement, zero offset
indexed addressing mode

Implied subtraction, 7-7. See also CMP instructions
INC, 22-37-38

checking for FF. 13-19
counting, 6-4. 22-38
effect on Carry flag, 8-6, 22-38
rounding, 8-15
setting bit 0, 15-13, 15-30
16-bit version, 8-15

In-circuit emulation, 20-2
Independence, 17-1,17-12,17-14
Index, 3-6, 3-20, 4-9-10, 7-4-5
Index calculations, 4-10, 8-7-8
Index register X, 3-4, 4-9. 5-6-7, 22-29

preference over Y, S, and U registers, 5-7, 21-3
Index register Y, 3-4, 5-6
Indexed addressing modes, 3-16-36

accumulator offset, 3-28-29
accumulator offset indirect, 3-29-31
autodecrement, 3-31 -34
autodecrement indirect, 3-34-36
autoincrement, 3-31-34
autoincrement indirect, 3-34-36
comparison with 6800 indexing, 3-40
constant offset from base register. 3-19-23
constant offset from program counter, 3-23-25
constant offset indirect, 3-25-28

xvii

extended indirect, 3-14-16
general description, 3-16-19
illegal modes, 3-17, 3-35
memory requirements, B-1
notation, 3-19
post-byte, 3-17-18, E-1
6800 indexing, comparison with, 3-40
summary, B-1
time requirements, B-1
unimplemented modes, 3-17

Indirect indexed addressing, 3-17, 3-25-27
Inefficiency of high-level languages, 1-11
Information-hiding principle, 17-14
Inherent addressing, 3-6, 3-8
Initial values in RAM, 2-9
Initializing variables, 5- l , 5-6, 6-4, 19-11-12
Input handshake, 12-5-6
Input/output

categories, 12-2
chips, 12-14-15
comparison to memory, 12-1
examples, 13-12-52, 14-5-6
instructions, 13-10-11
interrupt-driven examples, 15-15-30

1/0 device table, 3-29-31,3-34-35, 12-13-14
1/0 driver, 9-5
INS, 22-39
Inserting elements in linked lists, 9-7
Instruction execution times, C-2-5
Instruction set, 1-1, 3-1, 3-7, 3-38 , 22-1 , A-2
Instruction tables

execution times, C-2-5
extensions from 6800 instructions, 3-39, 3-43-44
frequently used, 3-2
generalizations of 6800 instructions, 3-43
identical to 6800 instructions, 3-39, 3-42
implementations of missing 6800 operation
codes, 3-44

memory usage, C-2-5
new instructions, 3-43-44
object codes in numerical order, D-2 -6
occasionally used, 3-2
operation code mnemonics, 3-39
post-bytes in numerical order, E-1
seldom used, 3-3
summary, 3-38-39, A-2-19

Instructions
bit patterns, 1-2, 3-18, 4-3
definition, 1-2-2
effects on flags, 3-4-5, A-3-19
execution times, C-2-5
extensions from 6800 instructions, 3-39, 3-43-44
frequently used, 3-2
generalizations of 6800 instructions, 3-43
identical to 6800 instructions, 3-39, 3-42
implementations of missing 6800 operation
codes, 3-44, 6-5, 22-1

input/output, 13-10-11
interrupt-related, 15-6-7
memory usage, C-2-5
new, 3-43-44
object codes in numerical order, D-2 to D-6
occasionally used, 3-2
operation code mnemonics, 3-39, C-2-5
recommended use, 3-1
seldom used, 3-3
summary, 3-38-39, A-2-19

Instructions that read and write memory, 13-11,
14-3, 14-5. 19-14

Interchanges, 9-11, 19-22-23
Intermediate carry flag. See Half-carry flag
Interpolation, 21-3
Interpreter, 1-12
Interrupt disable flag, 3-5, 15-3, 15-5-6, 15-13-14
Interrupt overhead, 15-15, 15-27
Interrupt-related instructions, 15-6-7
Interrupt response, 15-2-4
Interrupt service routines, 15-8-11, 15-13-33

communications with main program 15-10-11
debugging, 19-16
general versions, 15-30-31
keyboard, 15-17-20
printer, 15-2Q-23
real-time clock, 15-23-28
startup, 15-15-17
subroutine use, 15-13
teletypewriter, 15-28-30
transfer of control, 15-2

Interrupt vectors, 15-2, 15-4, 15-10
table, 15-10

Interrupts
ACIA (6850), 15-8
advantages, 15-1
breakpoints, 19-3
characteristics, 15-1-2
disabling, 15-2, 15-11-15
disadvantages, 15-3
enabling, 15-2,15-11-13,15-17
executing general subroutines, 15-13
initialization, 15-12-13
instructions, 15-5-6
nonmaskable, 15-2, 15-7
overhead, 15-15, 15-27
PIA (6820), 15-7-8
polling systems, 15-2, 15-8-9
priority systems, 15-2, 15-24, 15-30-31
response, 15-2-4
service routines, 15-8-11, 15-13-33
6809 system, 15-2-7
vectored systems, 15-2, 15-10

Inverse, 4-11. See also ones complement
Inverting decision logic, 19-12, 19-17, 19-20, 19-22
INX, 3-41, 3-44, 6-5, 19-13, 22-39
INY, 22-39
IRQ input, 15-3, 15-5, 15-10, 15-14-15
JMP, 3-11,5-14,9-13-14, 10-6, 19-15,22-39-40
JSR, 22-41-42

examp_les of, 10-6, 11-5, 11-10
execution time, I 0-7
function, 10-1
lack of immediate addressing, 3-11
operation, 10-5-6
return address, 10-5-6, 11-3-4

Jump and link instruction, 10-17-18, 22-36. See also

EXG instruction
Jump instructions. See also BRA, condition branch,

EXG, JMP, JSR, RTS, RTI, SWI, and TFR
differences in addressing, 9-4, 22-40

EXG instruction, 22-36
jump table, 9-2-4
lack of immediate addressing, 3-11
meaning, 2-3
TFR, 22-73

Jump table, 9-2-4, 22-40. See also case structure

Keyboard interface, 9-14, 13-8-9, 13-22-40
encoded keyboard, 13-8-9, 13-38-40
unencoded keyboard, 13-32-38

Keyboard interrupts, 15-17-20
Keyboard scan, I 3-34-38

Labels

choice of, 2-4
definition, 2-3, 4-7
field, 2-2-3
first character, 3-46
in jump instructions, 2-3-4
meaning, 2-3, 2-7, 2-9
reasons for use, 2-3, 2-4, 4-7
selection rules, 2-4
6809 assembler, 3-45-46
space after, 3-45
truncation, 2-4, 3-46
with assembler directives, 2-6-10, 3-48, 7-6

Lamp test, 13-23-25
Language level, choice of, 1-12-14
Latching, 2-1-3, 13-1, 13-39-40

by 6820 PIA, 13-1, 13-39-40
LBCC, 22-42
LBCS, 22-42
LBEQ, 22-42
LBG E, 22-42-43
LBGT, 22-43
LBHI, 22-43
LBHS, 22-43
LBLE, 22-43
LBLO, 22-44
LBLS, 22-44

LBLT, 22-44
LBMI, 22-44
LBNE, 22-44-45
LBPL, 22-45
LBRA, 5-10, 22-45-46
LBRN, 22-46
LBSR, 22-47
LBYC, 22-47
LBYS, 22-47
LDA,B, 4-1-2, 22-47-8

effects on flags, 5-11
execution diagrams, 3-29, 3-31, 3-35

LDD, 4-8, 22-47-49
LOS, 4-10, 10-3, 22-47

execution diagram, 3-11
LOU, 4-10, 9-7, 10-16, 11-5, 11-7, 22-47
LOX, 4-9-10, 5-6, 9-7, 9-15, 22-47
LOY, 4-10, 5-7, 9-7, 10-16, 22-47
LEA. See also indexed addressing modes,_6800

operation codes

addressing uses, 6-5, 11-4, 11-8, 19-3, 19-6,21-3, 22-50

arithmetic uses, 6-5, 8-J, 8-6,8-15, 11-8, 21-3, 22-51

cleaning up the stack, 10-17,11-8,11-11
description, 22-49-51
space allocation, 10-17, 11-8, 11-10, 19-6

LED, 13-20-29
control of, 13-20-21
interface, 13-20-21
turn-on time, 13-21

Length of registers, 3-3, 4-9
Letter offset, 7-3
Letters and numbers, confusing of, 2-4
Letters, seven-segment codes for, 13-23, 13-26
Library routines, 2-4, 10-1, 18-9-12
Lightface type, I-I

xviii

Limited state of processor, 15-3, 15-4, 15-14. See also

E flag, fast interrupt, RTI instruction

diagram, 15-4
indexed offsets, 15-14

Linear structure, 17-16
Link editor, 2-17
Link register, 10-17-18, 22-36. See also EXG

instruction

Linked lists, 9-7-9
Linking directives, 2-9
Linking loader, 2-17
List processing, 9-1-9
Loader program, 2 -I 7
Local variable, 2-14
Location counter, 2-8-9, 2-11-12, 3-49, 7-6
Logic analyzer, 19-9- I 0
Logical 110 device, 12-13-14
Logical shift, 4-4, 8-14-15, See also LSR
Long branch instructions, 3-37, 5-10, 22-42-4 7
Lookup tables

arithmetic applications, 4-8-II
code conversion, 3-28-29, 7-1, 7-4-6, 13-26
1/0 device assignment, 3-30 , 3-34, 12-13

jump, 9-12-14, 22-40
keyboard, 9-14, 13-37-38
reducing execution time, 21-4
saving memory, 21-3
tradeoffs involved, 4-10-I I

uses, 4-11
Loops, 5-1-4. See also do-while structure

debugging, 19-11
decreasing execution time, 5-14, 6-4, 6-6, 21-4

execution time, 5-1
flowcharts, 5-2-3
sections, 5-1
structures, 17-16-17,17-19,17-21-22, 17-26

LSL, 22-51. See also ASL instruction

LSR, 22-51
digit shift, 4-4
division by 2, 8-15
normalization, 4-4, 13-31
testing bit 0, 13-14, 13-17, 14-5

Machine-independence, 1-8-9
Mach1ne language, 1-1-5, 1-12
Macro, 2-13-14, 19-13
Macroassembler, 2-16
Maintenance, 13-43, IV -4, 18-13
Maintentancc manual, 18-13
Major changes in systems, 21-4-5
Majority logic, 12-8, 13-30
Manual mode, 13-8, 13-10, 13-43, 13-47
Manufacturer's mnemonics, 1-5
Mark state on teletypewriter line, 13-48-49
Mask, 4-3, 13-13, 13-14, 13-30-31, 13-35

by bit position, 13-14
notation, 4-3

Maskablc interrupt, 15-2-4
Masking example, 4-3-4
Master reset of 6850 A CIA, 14-3-5, 15-29
Matrix keyboard, 13-33-34
Maximum count in loops, need for, 6-4
Maximum value

example program 5-l 0 -· 12
subroutine, 10-10- II

Medium-speed 1/0 devices, 12-2, 12-5-8

Memory dump, 19-6-8
Memory map, 18-7-8

xix

Memory-mapped 1/0. 3-5, IJ-10-11
Memory operations, 4-3-4, 5-9. See also single-

operand instructions
Memory, special features of, 12-1
Memory/time tradeoiTs, 4-10-11. 21-4
Memory usage, decreasing, 21-2-3
Meta-assembler, 2-16
Microassemblcr, 2-16
1\"licroprocessor analyzer, 19-9-10
Microprocessor-compatible converters, IJ-42
Microprogramming, 2-16
Millisecond delay program 12-9-12
Minus sign, 3-19
Missing 6800 operation codes, 3-41, 3-44
Mnemonic. 1-4, 2-4-5

definition. 1-4
manufacturer's, 1-5
6809 set, 3-39
standard, 1-5

Mnemonic operation codes for 6809, 3-39
Modifying programs for your microcomputer, 10-3,

13-13, 15-16
Modular programming, 17-11-14

advantages, 17-11
disadvantages, 17-11-12
information-hiding principle, 17-14
principles, 17-12
review, 17-14
switch and light system, 17-12
switch-based memory loader, 17-13
vcrif1cation terminal, 17-IJ-14

Module, 17-11-12
Monitor programs, 1-5, 4-5, 7-3, 19-4

breakpoints, 19-4
interrupt handling, 15-16
return of control, 4-2. 15-6, 22-71
stack pointer, 10-3

Motorola standard assembler, 3-22, 3-45-50
MUL, 7-9, 8-7, 22-51-52

effect on flags, 22-52
Multibyte data, updating of. 15-12
Multidimensional arrays, 8-7-8
Multiple origins, reasons for, 3-47. See also ORG

directive
Multi-position switches, 9-14, 13-16-20
Multiple-precision arithmetic, 8-1-6
Multiple-precision binary addition example

commenting, 18-4-5
program example, 8-2-4
subroutine, 10-15-16, 11-6-8, 11-12-13

Multiplexing displays, 13-25-29
Multiplexing 1/0 devices, 12-2-5
Multiplication, 7-9, 8-1, 8-7-8

by power of 2, 8-1. 8-14-15
Multiplication example, 8-7-8
Multiplying by small decimal numbers, 7-9
N llag, 3-3, 3-5,4-5, 5-12, 5-15, 13-11, 13-31
Names, use and choice of, 2-4, 2-7, 2-10 , 18-2, 18-8

National 5357 AID converter, 13-44-47
NEG, 22-53-54
Negative clements example, 5-9-10
Negative flag, 3-5

BIT instruction, 13-31
meaning, 3-5, 4-5, 5-11
position in CCR, 3-3
signcu numbers, 5-12. 5-15
testing bit 7, 13-11
usc, 3-5, 13-11' IJ-31

Negative logic, 13-20, IJ-23
Negative numbers, 5-9-10
Nested subroutines, 10-6, 10-17-18
Nibble, 4-4
NMI input, 15-2-3, 15-7-8, 15-10, 15-12·
Nonmaskable interrupt input. See NMI input
NOP, 22-54-55
Normalization example, 5-14- 16
Number base, choice of, 2-11-12, 3-48-49, 4-3
Number sign, 3-9, 3-49, 4-3
Number systems, default choice, 3-48, 19-15
Number systems, identification of, 2-10, 3-48-49
Numbers and letters, confusing of, 2-4
Nybble, 4-4

Object code
alphabetical order, C-2- 5
definition, 1-2, 1-6
Jisassembly table, D-2-6
numerical order, D-2-6
post-bytes, 3-18, B-1, E-1

Object program, 1-2, 1-6
Occasionally used instructions, 3-2
Octal programs, 1-3
Offset. 3-16-17, 5-13
Ones complement, 4-11, 4-14, 22-30-31
Ones complement program. 4-11
One-pass assembler, 2-16
One-shot, 12-9
Operand field, 2-2, 2-10-12, 3-6, 3-45, 3-48-50
Operands, number of, 2-4-5
Operation code, 2-1-2. 2-4-6

alphabetical list for 6809, 3-39, C-2-5
numerical order, D-2-6

Operation interaction, 16-3, 16-6, 16-8, 16-12-13

OR, 22-55-56
use in setting bits, 6-10, 13-10, 13-22, 13-31,
13-43, 15-13-14, 15-30

ORCC, 3-5, 8-3, 13-52, 15-5, 22-55- 56
masks for setting individual flags, 22-56

Order of instruction execution, 5-7
Ordered list example, 9-4-5
ORIGIN (ORG) assembler directive, 2-8,3-47,4-10
Output control assembler directives, 2-9-10
Output handshake, 12-5, 12-7
Output ready signal, 12-7, 13-40
Overflow, 5-12
Overllow (V) llag, 3-3, 35)-5, 4-5, 5-12

definition, 3-5
position in CCR, 3-3
signeu numbers, 5-12

Overrun error, 13-52,14-2

P register. See condition code register, flags
Parallel I/O, 13-16, 13-22, 13-32, 15-17-23

Parallel interface Jevices, 12-14-15. See also 6820
Peripheral Interface Ad<tpter

Parallel interface standards, 12-14
Parallel/serial conversion. 13-48, 13-51-52
Parameter lists, 18-8-9
Parameters, 10-2, 10-7, 10-9, 10-11, 10-14, 10-16

general passing techniques, 10-2, 11-3-13
types, 11-14

Parentheses, 3-50
Parentheses around addresses, 5-6
Parity, 6-9-10, 12-8, 13-48, !3-52
Parity generation, 6-9-10. 12-8, 13-52
PASCAL, 1-8, I - l l

Passing parameters
argument lists. 11-J-!l

definition, 10-2
general methods, 11-3-I 3

in registers, 10-2, 10-7, 10-9, 10-11, 10-14, 11-3

in the stack, 10-2.10-7,11-8-13

Pattern comparison
program example, 6-11-13

subroutine, 10-12114

PCR notation, 3-19, 3-25, 3-49, I 0-17, 22-50

Pending interrupts, 15-8

Percentage sign, 3-49, 4-3

Peripheral interface adapter. See 6820 Peripheral
Interface Adapter

Peripheral ready signal, 12-5, 12-7, 13-8, 13-11, 14-4

Physical 1/0 device, 12-13

PIA. See 6820 Peripheral Interface Adapter
Plus sign, 3-19

Pointer, S-3, 5-6

Polling, 12-5, 13-11, 15-8-9

definition, 12-5
6820 P1As, 13-11, 15-8-9

of 6850 ACIAs, 15-8

Polling interrupts, 15-2, 15-9-10, 15-29

disadvantages, 15-9

Portability, 1-7, 1-9

Position. determination of. 3-23-24, 10-17, 22-51

Position-independent code, 3-23,10-2, 10-17, 22-51

Positrve logic, 7-4, 13-20. 13-23

Post-byte, 3-17-18, 3-40, 4-9, 5-13

bit definitions, 3-18
extended indirect addressing, 3-15

extra time and memory requirements, R-1

fields, 3-17-18
information contained in it, 3-17

list in numerical order, E-1

position in instruction, 3-17.3-18

purpose, 3-17
Post bytes, meanings in numerical order, E-1

Postincrement, 3-17

Power fail interrupt, 15-2, 15-7, 15-24

Precedence rules, 3-50
Predecremen t, 3-1 7

Prctix byte, 6-13

Preindexcd addre�sing, 3-17

Printer interrupts, 15-20-23

Priority interrupt controller (6828), 15-10

Priority interrupts, 15-2, 15-6, 15-9. 15-24, 15-31

Priority register, 15-2, 15-31

Problem definition. 16-1-14, 17-32-33
definition, IV-J

examples, 16-4-13

litctors, 16-1-4

review. 16-14, 17-33

switch and light system, 16-4-6

switch-based memory loader, 16-6-9

verirrcatinn terminal, 16-9-IJ

l'rncedure-orrented language. 1-8

Processing requirements, 16-2, 16-5, 16-lL 16-12

Production software. documentation of, 18-13

Program, 1-2

Program counter, 2-3, J-4, 4-6. 10-1-2, 1-5-7

determination of current value, 3-23.10-17,22-51

Program design, 17-1-34

delinition, JV-3, 17-1

flowcharting, 17-2-10

modular programming. 17-11-14

principles, 17-1-2

review, 17-32-33

structured programming, 17-15-26

top-down design, 17-26-JI

Program logic manual, 18-13
Program loops, 5-l- 3

debugging, 19-11, 19-17, 19-22

reducing execution time, 6-4, 21-4

time/memory tradeoffs. 21-2. 21-4

Program relative addressing, 3-23-25. 3-36-38

Program speed, increasing. 21-4

Program stub, 17-26-28

Programmable 1/0 devices, 12-14-15. See also

6820 Peripher<JI Interface Adapter
Programm<Jble timer, 12-9
Programmed 1/0, 15-1

Programmer's flowchart, 17-4

Programming mode of 6809 processor, 3-3

Programming time, division of, IV-3

Pseudo-operations, 2-1. 2-5-10, 2-12-14.

3-46-48, 11-5, 3-46-48, 11-5

definition, 2-1, 2-5

general description, 2-5-10, 2-12-14

mixing with instructions, 11-5

standard 6809 assembler, 3-46-48
PSH, 22-57-58

bit assignments for registers, 11-2-3

examples, 11-5, 11-10
operation, 11-1-J

order for storing registers, 11-2

passing parameters, 11-5, 11-8

reducing memory usage, 21-2

saving interrupt status, 15-13

saving registers, 10-9, 12-11

temporary storage, 9-12
PUL. 22-58-59

alternative that affects flags. 22-59

bit assignments for registers, 11-2-J

examples. 11-5-7.11-11
operation, 11-1-J

order for loading registers, 11-2

passing parameters, 11-5, 11-7, 11-11

replacement of RTS, 11-6, II-II, 22-59, 22-63

restorr ng interrupt stat us. 15-1 3

restoring registers, 10-9, 11-6, II-II, 12-11

temporary storage, 9-12

Pull order for registers, 11-2

Pushbutton, 13-12-16

Push order for registers, 11-2

Queue. 9-5-9

RAM, initiali1.ation of, 2-9, 19-11-12

Random test cases, 20-1, 20-J-4

Range
8-bit signed offset, 3-23, J-36, 4-6, 5-8

5-bit signed offset, 3-20, 5-12

offset from program counter, 3-36, 4-6, S-8-9

RDRF flag (in 6850 ACIAJ, 14-3-5
Read-only bits, 11-3, 13-7

Read-only memory, execution from, 2-9. 5-2, 11-3.
19-4, 19-15

argument lists, 11-3

breakpoints, 19-5

errors, 19-15

Read strobe from 6&20 PIA, 13-7-10

Read/write (1{/W) sign<JI, use in addressing 6850

ACIA, 14-1-2

XX

xxi

Real-time clock, 15-23-28
clock time, 15-25
definition, I 5-24
frequency, I 5-24
high-frequency, 15-24, 15-28
priority, I 5-24
service routines, 15-25
service time, 15-27-28
synchronization, 15-24

Receive routine, 13-48-51, 14-5, 15-28-30
Recovery from lethal errors, 17-14
Recursive subroutine, 10-3
Redesign of programs, IV -4, 21-1-6
Reentrant programs, 10-2

definition, 10-2
examples, 10-7,10-9, 10-11, 10-14,11-6-7, II-II
stack usage, I 0-17
standard subroutines, 15-31

Register addressing, 3-6, 3-8, I I -I- 2
Register designations after operation codes, 3-45
Register dump, 19-5-6
Registers, 3-3-4

coding in EXG, TFR instructions, 22-37
diagram, 3-3
indexed oll5ets in the stack, 15-14
order in the stack, 15-4-5, 15-14
preference in use, 21-3
pull order, I 1-2
push order, 11-2

Regular interrupt, 15-3, 15-4, 15-8, 15-15
Relative addressing, 3-6, 3-36-38, 4-6, 5-8
Relative offsets, calculation of, 4-6-7, 5-6-7,

5-9-10, 5-12, 5-15, 22-22-23
Relocatable programs, 3-36, 10-2, I 0-7, 10-11
Relocating loader, 2-3, 2-17, 10-2
Relocation constant, 2-3, 10-2
Reorganizing programs to save execution time, 5-14,

6-4, 6-6, 21-4
Repeat-until structure, 17-16
RESERVE assembler directive, 2-8-10. See also

RMB directive
Reset, 15-8-9

address, 3-4 7, 15-9
effect on flags, 15-2, 15-15
effect on interrupt system, 15-2-3, 15-12, 15-15
6820 PIA, 13-3, 13-39, 15-8, 15-15
6850 ACIA, 14-3-5
vector, 15-10

Resident assembler, 2-16
Resuming programs after a breakpoint, 19-3, 19-5
Return address, I 0-1-2, 10-5-7

adjustment after breakpoint, 19-3
adjustment past argument lists, 11-4-6, 11-8
changing in stack, 15-14-15
in user stack, 22-59
restoring by EXG, 10-18
restoring by PUL, 11-6, 11-11, 22-59, 22-63
restoring by RTI, 15-6, 22-61-62
restoring by RTS, 10-6
saving by CWAI, 15-6, 22-31
saving by EXG, 10-17-18.22-36
saving by interrupt response, 15-3-4
saving by JSR, I 0-5-7
saving by PSH, 22-59
saving by SWI, 15-6, 22-70-71
user stack, 22-59

Return instruction, 10-1. See also RTI, RTS
Returning control to the operating system, 15-6, 22-71

Revisions, documentation of, 18-3-4
RMB directive, 3-47
ROL, 22-59-60

double-length shifts, 8-12
serial 1/0, 13-48-49
testing bits 6 or 7, 13-14

Rollover, 13-38
ROM simulator, 20-2
ROR, 22-60-62

serial 1/0, 13-48-49
Rotate instructions. See ROL, ROR
Rounding

after M U L, 22-52
binary. 8-15
decimal, 8-16

RS-232 interface, 12-14
RTI, 15-6, 16-13, 15-17, 15-19, 21-3,22-61-62

reenabling interrupt status, 15-1
RTS, 22-62-63

changing return address, 11-4
effect, I 0- I - 2
execution time, I 0-7
multiple exits, 10-14
operation, 10-6
reducing execution time, 21-3
replacement by PUL, 11-6, II-II, 22-63

Run-time package, I-ll

S flag. See Negative flag, Sign flag
S register. See stack pointer S
Sampling inputs. 12-8, 13-30
Saving and restoring interrupt status, 15-13, 15-30
SBA, 22-63
SBC, 8-1, 22-63-64
Searching examples, 9-1-5
Searching methods, 9-4
SEC, 8-3. 22-64
SEF, 15-6, 22-65
Segments, labeling of, 7-3, 13-23
SEt, 15-6, 22-65
SElF, 15-6, 22-65
Seldom used instructions. 3-3
Self-assembler, 2-16
Self-checking numbers

program example, 8-12-15
testing, 20-4

Self-compiler, 1-11
Self-documenting programs, 18-1-2
Semaphore, 15-11
Separating status information, 13-30-31
Sequential execution of instructions, 1-2, 17-16, 19-14

Sequential structure, 17-16
Serial input/output, 13-48-52, 14-1-6, 15-28-30

interrupt-driven version, 15-28-30
LSI devices, 12-15, 13-52-53
order of transmitting bits, 13-48
6850 ACIA, 14-1-6
standard intefaces, 12-14
teletypewriter 1/0, 13-47-52
UARTs, 13-52

Serial interface devices, 12-15, 14-1-6. See also
6850 ACtA

Serial interface standards, 12-14
Serial output from 6820 PIA. 13-10, 13-43,13-47, 15-29

Serial to parallel con version, 13-48 , 13-52, 15-28

Set conditions codes, 3-5, 8-3, 13-52, 15-5, 22-55

SETDP assembler directive, 3-48
Setting bits, 6-10, 13-10, 13-43, 15-5, 15-30, 22-56

Setting breakpoints, 19-3-5
Selling directions in 6820 PIA, 13- l , 13-6-7
Selling !lags, 3-5, 8-3, 13-52, 15-5, 22-55-56

in the stack, 15-14. 15-15
Setting 6820 PIA status bits, 13-3-4, 13-7-9,

13-11, 13-38-39, 13-44, 15-8
Seven-segment code, 7-3-5. 13-22-24

conversion program, 7-3-5, 18- l l
decimal digits, 7-3, 13-25
letter and symbols, 13-26

Seven-segment displays, 7-3,7-5. 13-22-29, 18-11,
19-17-20, 2-10
labeling of segments, 13-23

7447 seven-segment decoder/driven, 13-23-24
74148 priority encoder, 13-17
SEV, 22-65
SEX, 22-65-66
Sharing of information (among modules), 17-12, 17-14

Shift instructions. See also ASL, ASR, LSR, ROL,
ROR instructions
double-length, 8-12
effects of, l 9-13

Shift left example, 4-2-3
Short data fields, processing of, 13-30-32
Short (5-bit) oi'L�et indexed addressing mode, 3-20. 5-

Short relative branches, 5-8
Sign extension, 5-12. See also SEX instruction
Sign (negative) llag, 3-3. 4-5. 5-12, 5-14, 13-11, 13-31

Signature analyzer, 16-3
Signed numbers, comparison of. 5-12
Signed offsets, 3-20, 3-23, 3-28-29, 3-36-37. 3-40,

4-6, 5-12, 22-2. See also A BX instruction

Signetics NE5018 D/A converter, 13-40-43
Simulator program 19-8-9
Single-bit errors, 6-10
Single-entry, single-exit structures, 17-15-16
Single-operand instructions, 3-8

accumulator, 3-8
application to memory, 4-3-4, 5-8
e)(ecution, 4-4
immediate addressing, lack of, 3-11
indexed addressing, 7-11
read-only memory or registers, 14-3, I 9-14-15
usc in 1/0, 13-11, 14-3, 19-14

Single-step mode, 19-2
example of use, 19-18-19
limitations, 19-2

16-bit addresses or data, storage of, 3-48, 4-8
i6-bit decrement in memory, 15-14, 19-3

16-bit increment in memory, 8-15
16-bit instructions, 3-10, 3-13-14,4-8,4-10

autodecrement, 3-33-34
base page direct addressing, J-11
double accumulator instructions. 4-8, 4-11. 5-8
extended direct addressing, 3-13
immediate addressing, 3-9-10
moving addresses, 9-6
operations on index registers and stack
pointers, 4-10
transfers, 7-8

16-bit ones complement example, 4-11
16-bit registers, 3-3-4, 4-8- I 0, 5-6, 10-16

choice of, 5-6, 10-16, 21-3
transfer to or from stack, 11-2, 22-57

16-bit shift, 8-12
16-bit summation example, 5-6-8
6502 compatibility. 3-45, 10-5
6522 Versatile Interface Adapter (VIA), 12-15

6551 Asynchronous Communications Interface
Adapter (ACIA), 12-15

6800 compatibility, 3-38-44
addressing modes, 3-40
differences, 3-41, 3-43
flags, 3-40. 22-50
indexing, 3-40
instructions. 3-41-44. 6-5. 8-3, 10-5. 22-1
object code, 3-3!1, 3-42
registers, 3-40
similarity, 3-38
stack pointer, 3-41. 10-5, 22-75

xxii

6800 operation codes, 3-41-44, 6-45, 8-3, 10-5,
22-1. See also CLCL, CLI, DEX, IN X. SEC, SEI

6801 compatibility, 3-44, 8-12, 22-3
6820 Peripheral Interface Adapter (PIA), 12-15,13-1

addresses, 13-3
automatic strobe mode, 13-7-10, 13-26-27,

13-29. 13-40, 13-43
B port drive, 13-21-22
bidirectional capability, use of. 13-37-38
block diagram, 13-2
clearing status bits, 13-3, 13-7, 13-11, 13-39 , 15-9
control lines, 13-3-4, 13-6-10
control register, 13-3-10
data direction register, 13-1, 13-3. 13-6-7
differences between port A and port B. 13-7. 13-21
disabling interrupts, 15-11-12, 15-30
document'ation problems, 13-11, 13-43
dummy operations, 13-9, 15-9, 15-17,15-21, 15-24

enabling interrupts, 15-12-13, 15-30
examples of initialization, 13-8-20

general description, 13-1
indexed offsets for registers. 13-3, 13-16
initialization, 13-6-10
internal addressing, 13-3
interrupts, 15-7-8,15-11-13
interrupt inputs, control of, 13-7, 15-7-8
latching, 134-1. 13-39-40
manual mode, 13-8, 13-10, 13-43, 13-47
output strobes, 13-7-10, 13-26-29, 13-43

pending interrupts, 15-8
polling, 15-9-10
read strobe, 13-7-10
registers, 13-1, 13-3
reset, 13-3, 13-39, 15-8
setting status bits, 13-3-4, 13-7-9
transferring data, 13-10-11
write strobe, 13-7, 13-9, 13-26-29, 13-43

6821 Peripheral Interface Adapter (PIA), 12-15. 13-1
6828 Priority Interrupt Controller, 15-10
6840 Programmable Timer, 15-24
6844 DMA Controller, 12-8
6846 Multifunction Support Device

(ROM/10/Timer), 12-9, 15-24
6850 Asynchronous Communications Interface

(ACIA), 12-15, 14-1-6
addressing, 14-1, 14-3
block diagram, 14-2
control register, 14-1, 14-3-5
features, 14-3-4
initialization, 14-5, 15-29
interrupt mode, 15-28-29
interrupts, I 5-8-9
master reset, 14-3-5, 15-29
polling
power-on reset, 14-5
read-only registers, 14-3

xxiii

receive routine, 14-5
register contents, 14-3 -·4
reset, 14-3-5, 15-29
status register, 14-3, 14-5
transmit routine, 14-6
write-only registers, 14-J-4

Slow 1/0 devices, 12-2-5
Software delay routines, 12-9-12, 13-46
Sort ware development

coding, IY-3
debugging, 19-1-27, 20-5
documentation, 18-1-14
tlowcharl, IV -2
measuring progress, IY-3
problem definition, 16-1-14
program design, 17-1-34
redesign, 21-1-6
stages, IY-1-4
testing, 20-1-6

Sort ware handshake, 15-11
Software/hardware tradeoff's, 7-1, 12-9, 13-38,

13-52-53, 15-27, 21-5
Software interrupt instructions, 22-70-71

availability of SWI2 lO end user, 15-6
br�akpoint, 19-3-5
debugging usc, 19-3-5
decrementing return address after breakpoint,

15-14, 19-J
effects, 15-6
reducing memory usage, 21-3
transferring control to operating system, 15-6, 22-71
trap, 15-6
uses, 15-6, 19-3-5,22-71
vectors, 15-10

Software simui<Hor, 19-8-9, 20-2
Sorting example

debugging, 19-21-26
program, 9-1 0-12
testing, 20-4

Sorting methods, 9-11-12
Source code, 1-6
Square brackets indicoting imlirection, 3-15, 3-45,3-49

Space state, 13-48, 13-49
Spaces in 6809 assembler statements, 3-45
Spaces in strings of characters, 6-5, 6-8
Speed, increasing of, 21-4
STA ,B, 3-11, 4-1-2, 22-66-67
Stack

changing values saved in, 15-13-15
interrupts, 15-3-5
parameter passing, 10-2, 10-7, 11-8-13
subroutine return addresses, 10-1, 10-5, 22-59
temporary storage, 9-12, I 0-9, I 0-17, 11-8, 13-31

Stack pointer, 3-J-4, 11-1-2
Stack pointerS, 3-4

argument lists, 11-3-8
contents, 10-6
difference from stack pointer U, 3-4, 22-58
indexed offsets for registers, 15-13-15
initialization, 10-J, 10-5
interrupts, 15-3-5
JSR instruction, I 0-5-7, 22-41-42
parameter passing, 10-2, 10-7, 11-8-13
return address, 10-6
RTI instruction, 10-6-7, 22-61-62
RTS instruction, 10-6-7,22-62-63
subroutine use, I 0-5-7

SWI instructions, 15-6, 15-10, 19-3-5,22-70-71

temporary storage, 9-12, 10-9,10-17,11-8,
13-3, 15-13, 15-19, 15-30

usual assignments, S-6
Stack pointer U, 3-3, 3-4

difference from stack pointerS, 3-4, 22-58
index register, 3-17,3-19,3-23,3-35,5-7,8-3, 19-6
passing parameters, 10-16,11-2, 11-5

-:__7, 11-11
subroutine linkages, 22-59

Stack values, changing, 15-13115
Standard mnemonics, 1-5
Standard 6809 assembler (from Motorola), 3-45-50

address field, 3-48-50
addressing mode notation, 3-49
arithmetic and logical expressions, 3-50
automatic optimization of constant offset
mode, 3-22

delimiters, 2-3, 3-45
field structure, 3-45
labels, 3-46, 3-48
pseudo-operations, 3-46-48

Start bit, 12-5, 13-48, 13-49
Start bit Interrupt, 15-29-30
Starting address of any array or table, 3-20, 3-28,

3-30, 4-9-10, 7-5-6, 8-7
Starting code, searching for, 13-30

Startup interrupt, 15-15-17
Statement, 2-1
Static allocation of temporary storage, 10-17
Status nag. See condition code register nags
Status information, 13-29-31

favored bit positions, 13-31
Status register

6809 CPU. See condition code register
6850 ACIA, 14-3, 14-5

STD<S,U,X,Y), 22-66-68
effects, 4-8
moving addresses, 9-6, I 1-4, 11-6, 11-8
two-byte operation codes, 10-16, 22-68

Stop bit, 12-5, 13-48, 13-52
Storage requirements

ASCII, 6-2, 6-8
BCD, 6-2, 6-8, 7-8

Stray interrupts, clearing of, 13-39,13-47,15-21
String comparison, 6-11-13, 10-12-14
String editing, 6-5-10
String length

program example, 6-3-4
subroutine, 10-7-9,11-4-6,11-8-11

Strings of characters, 6-1-16
Strobe, 12-5, 13-38
Strobe signal from 6820 PIA, 13-7, 13-9-10,

13-26-29, 13-40
Structured programming, 17-15-26, 18-7

advantages, 17-19
disadvantages, 17-20
review, 17-25
rules, 17-26
structures, 17-15-19
switch and light system, 17-21
switch-based memory loader, 17-21-22
terminators, 17-26
use in documentation, 18-7
verification terminal, 17-22-25
when to use, 17-20

Structured testing, 20-2-3
Structures. See data structures, structured programming
Stubs, 17-26-28
SUB, 7-7,8-5-6,8-17,22-68-69

SUBD. 4-14, 8-5, 22-68-69
Subroutine documentation, 10-3

examples, 10-5, 10-9, 10-11, 10-14, 10-16, 11-5,
11-7, 11-10, 11-13

library examples, 18-9-12
Subroutine linkages

hardware stack, 10-5-6, 22-41
index register, 10-17-18, 22-36
user stack, 22-59

SYNC, 15-6-7, 22-71

diagram, 15-7
Synchronizing with 1/0 devices, 12-5, 12-8,

13-29-30
Synchronizing with real-time clock, 15-23-24
Synchronous 110, 12-8
Syntax, 1-10

TAB, 22-72

xxiv

Subroutine library, 10-1, 18-9-12
Subroutines, 10-1-20,15-13,18-9-12

comparison with macros, 2-3

Table, lookup, 3-28-31, 4-8-11, 7-1, 7-4-6, 9-1,
9-3, 9-5, 12-13-14. See also lookup tables

Table of squares example, 4-8-II

delay, 12-10-12
documentation, 10-3, 18-9-12
errors in usc. 19-13
examples, 10-4-16,11-4-13,18-10-12
instructions, 10-1-2, 10-5-6
interrupt service routines. use by, 10-2, 15-13
library, 10-1, 18-9-12
linkages. 10-5-6, 10-17-18, 22-36, 22-41, 22-59
macros, comparison with, 2-3
nesting, I 0-17
parameters, I 0-2. 11-4
passing parameters, 10-2, 10-7, 11-3-13
position-independence, I 0-2, I 0-17
reducing execution time, 21-5
reducing memory usage, 21-2, 21-3
reentrancy, 10-2
relocatability, I 0-2
specifying parameters, 11-14
storage allocation, 10-17
types, 10-2

Successive approximation AID converter, 13-44
Summation example, 5-4-9, 18-10-11
SWI, 4-2. 15-6, 15-10, 19-3-5. 21-3-4,22-70-71.

See also software interrupt instructions
vector, 15-10

Switch and light system example;
error handling, 16-5-6
flowchart, 17-4-5
inputs, 16-4
modularization, 17-12
outputs, 16-5
problem definition, 16-4-6
structured program, 17-21

top-down design, I 7-27-28
Switch-based memory location example

error handling, 16-8
flowcharts, 17-5-6
inputs, 16-6, 16-8
modularization. 17-13
operating interaction, 16-8-9
outputs, 16-8
problem definition, 16-6-9
processing requirements, 16-8
structured program 17-21-22
top-down design, 17-28-29

Switch bounce, 13-14-15
SWI2, 22-70-71. See also soft ware interrupt

instructions
avoidance in packaged software, 22-71

vector, 15-10
SWI3, 22-70-71. See also software interrupt

instructions
vector, 15-1 0

Switches, 13-12-20
Symbol table, 2-7
Symbols for llowcharting, 17-3

TAP, 22-72
TBA, 22-72
TORE llag in 6850 ACIA, 14-3-4, 14-6
Teletypewriter data format, 13-49
Teletypewriter interface, 13-48-53, 14-1-6
Teletypewriter interrupt, 15-28-30
Teletypewriter output routine

commenting, 18-5-7
self-documentation, 18-1-2

Testing, 20-1-6
aids, 20-2
code conversion e11ample, 20-1
data, selection of, 20-3
definition, IV-4
debugging, relationship with, 20-1
examples, 20-1, 20-4
review, 20-5
rules, 20-2-4
self-checking numbers example, 20-5
sorting example, 20-4
special cases, 20-3

structured testing, 20-2-3
test data, selection of, 20-3
tools, 20-2

Testing bits, 13-13-14, 13-30-31, 15-8-9, 22-7
Testing examples, 20-1, 20-4
TFR, 22-72-73

direct page register, loading of, 7-7, 22-73
effects, 7-7
examples of use, 4-4, 7-7, 19-6
jump instruction, 22-73
lo<�ing direct page register, 7-7, 22-73
order of operands, 19-12
program counter, determination of current
value, 10-17

register codes, 22-77
restrictions, 7-7, 22-73
use-;, 22-73

Time/generality tradeoiTs, 11-3
Time budgets for delay routines, 12-11-12
Time constants, 12-11-12
Time/memory tradeolls, 4-10-11, 21-2-4
Time-wasting routines, 12-9-12. 13-49, 15-23-27
Timing loop,l 2-9-23, 13-49
Timing methods. 12-9-12

choice, 12-9
real-time clock, 15-23-27

Top-down design. 17-26-31
advantage�. 17-27
disadvantages. 17-27
procedure, 17-31
review, 17-JI
stubs, 17-26-28
switch and light system. 17-27-28
switch -based memory loader, 17-28-29
verilication terminal, 17-29-31

---··· ----- _ _,__

XXV

TAP, 22-74

Trace. 19-5
Transmi�sion errors, 12-8
Transparent delay routine, 12-10
Traps, 15-7. See al.so software interrupt instructions
Trial subtraction in division. 8-9
Trivial cases, 5-12, 9-3, 9-11, 19-12, 19-24.

20-1' 20-3

1 runcalion or labels, 2-4, 3-46
TST. 22-74-75

interrupt clearing., 15-9, 15-22
memory lesl, 5-l 0. 8-1 5
6800 version, difference from, 3-41
slaws checking, 13-1 I. 13-14, 19-5

TSX, 22-75
Two-byte operation codes, 3-10-11

comparison instructions, 7-11, 22-29
load instructions, 3-10-ll, 5-6, 6-\3, 10-J(i
long condiuonal branches, 5- l 0

min1111i1ing. USC, 2\-3

prelix byte, 6-13
store instructions, I 0-16

Two-dimensional arrays, X-7-8
Two-pass assembler ,2-16
Twos complement, 4-16
Twos complcmcrll o'crllow. 5-12. See also ovcrtlow

\lag.
TXS. 22-75

li register. See slack pointer ll
LART. 1.1·52-53. See also 6551 /\CIA, 6850 ACIA
Unconditional branches, 5-14. See also BRA. JMP,

LBKA tnstructions
Unsigned numbers, comparison or, 4-5-6,5-12
Unsigned offsets rn addressing. See ABX instruction
Until-do slrucwrc, 17-16-17
User stack in subroutine lrnkages, 22-59
User slack pointer. See stack pointer U

User's guide, 18-13

V (()vcrllow) tlag. 3-3, 3-5, 4-5. 5-12 . . <iee also over­
Jlow \lag

Validrty checks on ASCII characters, 7-8

Variable offsets in int.lexed addressing, 3-28-31.
See also accumulator offset addressing mode,
accumulator offset indirect addressing mode

Varied length of instructions. 1-6, 2-11, 4-6
Vector,"IS-2, 15-10

6X09 I able, 15-10
Vectored interrupts, 15-2, 15-10
Verilication terminal example

error handling, 16-12-13
\lowcharts, 17-5- I 0
inputs, 16-11
nwdularilation, 17-13-14
operator interactron, 16-12-13
outputs, 16-11-12
problem definition. 16-9-13
processing requirements, 16-12
st ructurcd program. 17-22-25
wp-down design. 17-29-31

WAI. 22-75. See also CWAI. SYNC instructions
While-do structure, 17-16, 17-17, 17-19
Word-length (16-hil) data. 3-46, 3-47. See also FDB

t.lireclive

Write strobe from 6820 PIA, 13-7, 13-9, 13-26-29,
13-43

X register. See index register X

Y regrsler. See index regist er Y

Z (Zero) flag, 3-5
131T. effect of, 13-31

carry recognition, 8-15. 13-19
CM P, ellccl of, 4-5, 6-4. 19-12
definition, 3-5
e4uality checkinkg, 4-5

L D. effect of. 5-I 0, 9-3
loop control. 5-5-6
position in CCR, 3-3
rounding, use in, 8-15
ST, ellcc1 of. 9-3

Zero oiTsel indexed addressing mode. 3-21-22. See
also constant offset indexed addressing mode

Zero offsel, om iss ion of, 3-19, 3-2 2

	Introductory Material
	Acknowledgements
	About the Author
	Contents
	Program Examples

	i. Fundamental Concepts
	1. Introduction to Assembly Language Programming
	A Computer Program
	High-Level Languages

	2. Assemblers
	Features of Assemblers
	Types of Assemblers
	Errors
	Loaders

	3. 6809 Machine Structure and Assembly Language
	6809 Registers and Flags
	6809 Addressing Modes
	Modes Which Do Not Specify Memory Locations
	Memory Addressing Modes
	Indexed Memory Addressing Modes
	Program Relative Addressing for Branches
	6809 Instruction Set
	6800/6809 Compatibility
	6801/6809 Compatibility
	6502/6809 Compatibility
	Motorola 6809 Assembler Conventions

	ii. Introductory Problems
	4. Beginning Programs
	Program Examples
	Problems

	5. Simple Program Loops
	Program Examples
	Problems

	6. Character-Coded Data
	Handling Data in ASCII
	Program Examples
	Problems

	7. Code Conversion
	Program Examples
	Problems

	8. Arithmetic Problems
	Program Examples
	Problems

	9. Tables and Lists
	Program Examples
	Problems

	iii. Advanced Topics
	10. Subroutines
	Program Examples
	Position-Independent Code
	Nested Subroutines
	Problems

	11. Parameter Passing Techniques
	The PSH and PUL Instructions
	General Parameter Passing Techniques
	Types of Parameters

	12. Input/Output Considerations
	I/O Device Categories
	Time Intervals
	Logical and Physical Devices
	Standard Interfaces
	6809 Input/Output Chips

	13. Using the 6820 Peripheral Interface Adapter (PIA)
	Initializing a PIA
	Using the PIA to Transfer Data
	Program Examples
	More Complex I/O Devices
	Problems

	14. Using the 6850 Asynchronous Communications Interface Adapter (ACIA)
	Program Examples

	15. Interrupts
	Characteristics of Interrupt Systems
	6809 Interrupt System
	6820 PIA Interrupts
	6850 ACIA Interrupts
	6809 Polling Interrupt Systems
	6809 Vectored Interrupt Systems
	Communications Between Main Program and Service Routines
	Enabling and Disabling Interrupts
	Changing Values in the Stack
	Interrupt Overhead
	Program Examples
	More General Service Routines
	Problems

	iv. Software Development
	16. Problem Definition
	Inputs
	Outputs
	Processing Section
	Error Handling
	Human Factors/Operator Interaction
	Examples
	Review

	17. Program Design
	Basic Principles
	Flowcharting
	Modular Programming
	Structured Programming
	Top-Down Design
	Designing Data Structures
	Review of Problem Definition and Program Design

	18. Documentation
	Self-Documenting Programs
	Comments
	Flowcharts as Documentation
	Structured Programs and Documentation
	Memory Maps
	Parameter and Definition Lists
	Library Routines
	Total Documentation

	19. Debugging
	Simple Debugging Tools
	Advanced Debugging Tools
	Debugging With Checklists
	Looking for Errors
	Examples

	20. Testing
	Selecting Test Data
	Examples
	Rules for Testing
	Conclusions

	21. Maintenance and Redesign
	Saving Memory
	Saving Execution Time
	Major Reorganization

	v. 6809 Instruction Set
	22. The Instruction Set

	Appendices
	A. Summary of the 6809 Instruction Set
	B. Summary of the 6809 Indexed and Indirect Addressing Modes
	C. 6809 Instruction Codes, Memory Requirements, and Execution Times
	D. 6809 Instruction Object Codes in Numerical Order
	E. 6809 Post Bytes in Numerical Order

	Index

