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Fundamental Concepts

This book describes assembly language programming. It assumes that you are
familiar with An Introduction to Microcomputers: Volume 1 — Basic Concepts
(Berkeley: Osborne/McGraw-Hill, 1980). Chapters 6 and 7 of that book are
especially relevant. This book does not discuss the general features of computers,
microcomputers, addressing methods, or instruction sets; you should refer to An
Introduction to Microcomputers: Volume 1 for that information.

The chapters in this section provide basic information on assembly language in
general and the 6809 in particular. Chapter 1 discusses the purpose of assembly
language and compares it with higher-level computer languages. Chapter 2 discusses as-
semblers and, briefly, loaders. Chapter 3 describes the architecture of the 6809
microprocessor, compares it with similar processors, and discusses important features of
Motorola’s 6809 assemblers.

HOW THIS BOOK HAS BEEN PRINTED

This book contains both boldface and lightface type. The material in lightface
type only expands on information presented in the previous boldface type. Thus you
can skip subject areas with which you are familiar by skipping the material in lightface
type. When you reach an unfamiliar subject, read both the material in boldface type and
the material in lightface type.
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Introduction to
Assembly Language Programming

A computer program is ultimately a series of numbers and therefore has very little
meaning to a human being. In this chapter we will discuss the levels of human-like
language in which a computer program may be expressed. We will further discuss the
reasons for and uses of assembly language, which is the subject of this book.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs that produce
defined actions during an instruction cycle. An instruction set is to a microprocessor
what a function table is to a logic device such as a gate, adder, or shift register. Of
course, the actions that the microprocessor performs in response to its instruction
inputs are far more complex than the actions that logic devices perform in response to
their inputs.

Binary Instructions

An instruction is a binary digit pattern — it must be available at the data
inputs to the microprocessor at the proper time in order to be interpreted as an
instruction. For example, when the 6809 microprocessor receives the 8-bit binary pat-
tern 01001111 as the input during an instruction fetch operation, the pattern means:

’Clear (put zero in) Accumulator A"’

Similarly, the pattern 10000110 means:
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The microprocessor (like any other computer) only recognizes binary patterns as
instructions or data; it does not recognize words or octal, decimal, or hexadecimal num-
bers.

A COMPUTER PROGRAM

A program is a series of instructions that causes a computer to perform a partic-
ular task.

Actually, a computer program includes more than instructions; it also contains
the data and memory addresses that the microprocessor needs to accomplish the tasks
defined by the instructions. Clearly, if the microprocessor is to perform an addition, it
must have two numbers to add and a place to put the result. The computer program
must determine the sources of the data and the destination of the result as well as the
operation to be performed.

All microprocessors execute instructions sequentially unless an instruction
changes the order of execution or halts the processor. That is, the processor gets its next
instruction from the next higher memory address unless the current instruction
specifically directs it to do otherwise.

Ultimately, every program is a set of binary numbers. For example, this is a
6809 program that adds the contents of memory locations 0060,, and 0061,, and
places the result in memory location 0062 :

10110110
00000000
01100000
10111011
00000000
01100001
10110111

00000000
01100010

This is a machine language, or object, program. If this program were entered into the
memory of a 6809-based microcomputer, the microcomputer would be able to execute it
directly.

THE BINARY PROGRAMMING PROBLEM

There are many difficulties associated with creating programs as object, or bin-
ary machine language, programs. These are some of the problems:

1. The programs are difficult to understand or debug. (Binary numbers all look
the same, particularly after you have looked at them for a few hours.)

2. The programs are slow to enter since you must set a front panel switch for
each bit and load memory one byte at a time.

3. The programs do not describe the task which you want the computer to per-
form in anything resembling a human-readable format.

4. The programs are long and tiresome to write.
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5. The programmer often makes careless errors that are very difficult to locate
and correct.

For example, the following version of the addition object program contains a
single bit error. Try to find it:

10110110
00000000
01100000
10111011
00000000
01110001
10110111
00000000
01100010
Although the computer handles binary numbers with ease, people do not. People
find binary programs long, tiresome, confusing, and meaningless. Eventually, a pro-
grammer may start remembering some of the binary codes, but such effort should be

spent more productively.

USING OCTAL OR HEXADECIMAL

We can improve the situation somewhat by writing instructions using octal or
hexadecimal numbers, rather than binary. We will use hexadecimal numbers in this
book because they are shorter, and because they are the standard for the microprocessor
industry. Table 1-1 defines the hexadecimal digits and their binary equivalents. The
6809 program to add two numbers now becomes:

At the very least, the hexadecimal version is shorter to write and not quite so tiring to
examine.

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivailent Equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 1
C 1100 12
D 1101 13
E 1110 14
F 111 15
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Errors are somewhat easier to find in a sequence of hexadecimal digits. The
erroneous version of the addition program, in hexadecimal form, becomes:

The mistake is far more obvious.

What do we do with this hexadecimal program? The microprocessor under-
stands only binary instruction codes. If your front panel has a hexadecimal keyboard
instead of bit switches, you can key the hexadecimal program directly into memory —
the keyboard logic translates the hexadecimal digits into binary numbers. But what if
your front panel has only bit switches? You can convert the hexadecimal digits to binary
by yourself, but this is a repetitive, tiresome task. People who attempt it make all sorts of
petty mistakes, such as looking at the wrong line, dropping a bit, or transposing a bit or a
digit. Besides, once we have converted our hexadecimal program we must still place the
bits in memory through the switches on the front panel.

Hexadecimal Loader

These repetitive, grueling tasks are, however, perfect jobs for a computer. The
computer never gets tired or bored and never makes silly mistakes. The idea then is to
write a program that accepts hexadecimal numbers, converts them into binary num-
bers, and places them in memory. This is a standard program provided with many
microcomputers; it is called a hexadecimal loader.

The hexadecimal loader is a program like any other. It occupies memory space. In
some systems, it resides in memory just long enough to load another program; in
others, it occupies a reserved, read-only section of memory. Your microcomputer may
not have bit switches on its front panel; it may not even have a front panel. This reflects
the machine designer’s decision that binary programming is not only impossibly tedious
but also wholly unnecessary. The hexadecimal loader in your system may be part of a
larger program called a monitor, which also provides a number of tools for program
debugging and analysis.

A hexadecimal loader certainly does not solve every programming problem. The
hexadecimal version of the program is still difficult to read or understand; for example,
it does not distinguish operations from data or addresses, nor does the program listing
provide any suggestion as to what the program does. What does B6 or 3F mean?
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore, the
codes will be entirely different for a different microprocessor and the program will
require a large amount of documentation.

INSTRUCTION CODE MNEMONICS

An obvious programming improvement is to assign a name to each instruction
code. The instruction code name is called a ‘““mnemonic’’ or memory jogger. The
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instruction mnemonic should describe, in a minimum number of characters, what the
instruction does.

Devising Mnemonics

In fact, all microprocessor manufacturers (they cannot remember hexadecimal
codes either) provide a set of mnemonics for the microprocessor instruction set. You do
not have to abide by the manufacturer’s mnemonics; there is nothing sacred about
them. However, they are standard for a given microprocessor, and therefore under-
stood by all users. These are the instruction codes that you will find in manuals, cards,
books, articles, and programs. The problem with selecting instruction mnemonics is that
not all instructions have ‘‘obvious’’ names. Some instructions do (for example, ADD,
AND, OR), others have obvious contractions (such as SUB for subtraction, XOR for
exclusive-OR), while still others have neither. The result is such mnemonics as WMP,
PCHL, and even SOB. Most manufacturers come up with some reasonable names and
some hopeless ones. However, users who devise their own mnemonics rarely do much
better.

Along with the instruction mnemonics, the manufacturer will usually assign
names to the CPU registers. As with the instruction names, some register names are
obvious (such as A for Accumulator) while others may have only historical significance.
Again, we will use the manufacturer’s suggestions simply to promote standardization.

Standard Mnemonics

There is a proposed standard set of assembly language mnemonics.! The
amount of use that it will receive is uncertain, but it should at least serve as a basis for
comparing instruction sets and for selecting mnemonics for future processors.

An Assembly Language Program

If we use standard 6809 instruction and register mnemonics, as defined by
Motorola, our 6809 addition program becomes:

LDA $0060
ADDA $0061
STA $0062

The program is still far from obvious, but at least some parts are comprehensible.
ADDA is a considerable improvement over BB. LDA and STA suggest loading and
storing the contents of an accumulator. We now see that some lines are operations and
others are data or addresses. Such a program is an assembly language program.

THE ASSEMBLER PROGRAM

How do we get the assembly language program into the computer? We have to
translate it, either into hexadecimal or into binary numbers. You can translate an as-
sembly language program by hand, instruction by instruction. This is called hand as-
sembly.
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The following table illustrates the hand assembly of the addition program:

Instruction Mnemomic Addressing Method Hexadecimal Equivalent
LOA extended direct B6
ADDA extended direct BB
STA extended direct B7

As with hexadecimal-to-binary conversion, hand assembly is a rote task which is
uninteresting, repetitive, and subject to numerous minor errors. Picking the wrong line,
transposing digits, omitting instructions, and misreading the codes are only a few of the
mistakes that you may make. Most microprocessors complicate the task even further by
having instructions with different lengths. Some instructions are one byte long while
others may be two to five bytes long. Some instructions require data in the second and
third bytes; others require memory addresses, register numbers, or who knows what?

Assembly is another rote task that we can assign to the microcomputer. The
microcomputer never makes any mistakes when translating codes; it always knows
how many bytes and what format each instruction requires. The program that does
this job is an ‘‘assembler.”” The assembler program translates a user program, or
‘“source’’ program written with mnemonics, into a machine language program, or
‘‘object’” program, which the microcomputer can execute. The assembler’s input is a
source program and its output is an object program.

An assembler is a program, just as the hexadecimal loader is. However, assem-
blers are more expensive, occupy more memory, and require more peripherals and
execution time than do hexadecimal loaders. While users may (and often do) write their
own loaders, few care to write their own assemblers.

Futhermore, assemblers have their own rules that you must learn. These
include the use of certain markers (such as spaces, commas, semicolons, or colons) in
appropriate places, correct spelling, the proper control of information, and perhaps even
the correct placement of names and numbers. These rules are usually simple and can be
learned quickly.

Additional Features of Assemblers

Early assemblers did little more than translate the mnemonic names of instruc-
tions and registers into their binary equivalents. However, most assemblers now pro-
vide such additional features as:

Allowing the user to assign names to memory locations, input and output
devices, and even sequences of instructions

Converting data or addresses from various number systems (for example,
decimal or hexadecimal) to binary and converting characters into their ASCII
or EBCDIC binary codes

Performing some arithmetic as part of the assembly process

Telling the loader program where in memory parts of the program or data
should be placed

Allowing the user to assign areas of memory as temporary data storage and to
place fixed data in areas of program memory
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+  Providing the information required to include standard programs from pro-
gram libraries, or programs written at some other time, in the current program

+ Allowing the user to control the format of the program listing and the input
and output devices employed

Choosing an Assembler

All of these features, of course, involve additional cost and memory. Microcom-
puters generally have much simpler assemblers than do larger computers, but the ten-
dency is always for the size of assemblers to increase. You will often have a choice of as-
semblers. The important criterion is not how many off-beat features the assembler has,
but rather how convenient it is to use in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE

The assembler, like the hexadecimal loader, does not solve all the problems of
programming. One problem is the tremendous gap between the microcomputer
instruction set and the tasks which the microcomputer is to perform. Computer
instructions tend to do things like add the contents of two registers, shift the contents of
the Accumulator one bit, or place a new value in the Program Counter. On the other
hand, a user generally wants a microcomputer to do something like check if an analog
reading has exceeded a threshold, look for and react to a particular command from a
teletypewriter, or activate a relay at the proper time. An assembly language programmer
must translate such tasks into a sequence of simple computer instructions. The transla-
tion can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you must have
detailed knowledge of the particular microcomputer that you are using. You must
know what registers and instructions the microcomputers has, precisely how the instruc-
tions affect the various registers, what addressing methods the computer uses, and a
mass of other information. None of this information is relevant to the task which the
microcomputer must ultimately perform.

Lack of Portability

In addition, assembly language programs are not portable. Each microcomputer
has its own assembly language which reflects its own architecture. An assembly
language program written for the 6809 will not run on a 6502, Z80, 8080, or 3870
microprocessor. For example, the addition program written for the 8080 would be:

LDA 60H
MOV B,A
LDA 61H
ADD B

STA 62H

The lack of portability not only means that you will not be able to use your assem-
bly language program on a different microcomputer, but also that you will not be able to
use any programs that were not specifically written for the microcomputer you are using.
This is a particular drawback for microcomputers, since these devices are new and few
assembly language programs exist for them. The result, too frequently, is that you are
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on your own. If you need a program to perform a particular task, you are not likely to
find it in the small program libraries that most manufacturers provide. Nor are you likely
to find it in an archive, journal article, or someone’s old program file. You will probably
have to write it yourself.

HIGH-LEVEL LANGUAGES

The solution to many of the difficulties associated with assembly language pro-
grams is to use, instead, ‘‘high-level’’ or ‘‘procedure-oriented’’ languages. Such
languages allow you to describe tasks in forms that are problem-oriented rather than
computer-oriented. Each statement in a high-level language performs a recognizable
function; it will generally correspond to many assembly language instructions. A
program called a compiler translates the high-level language source program into
object code or machine language instructions.

FORTRAN — A HIGH-LEVEL LANGUAGE

Many different high-level languages exist for different types of tasks. If, for
example, you can express what you want the computer to do in algebraic notation,
you can write your program in FORTRAN (Formula Translation Language), the
oldest and most widely used of the high-level languages. Now, if you want to add two
numbers, you just tell the computer:

'SUM = NUMB1 + NUMB2

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro-
gram or the equivalent assembly language program. Other high-level languages include
COBOL (for business applications), PASCAL (a language designed for structured pro-
gramming), PL/I (a combination of FORTRAN and COBOL), APL and BASIC (popu-
lar for time-sharing systems), and C (a systems-programming language developed at
Bell Telephone Laboratories).

ADVANTAGES OF HIGH-LEVEL LANGUAGES

Clearly, high-level languages make programs easier and faster to write. A com-
mon estimate is that a programmer can write a program about ten times as fast in a
high-level language as in assembly language.2-4 That is just writing the program; it
does not include problem definition, program design, debugging, testing, or documen-
tation, all of which become simpler and faster. The high-level language program is, for
instance, partly self-documenting. Even if you do not know FORTRAN, you probably
could tell what the statement illustrated above does.

Machine Independence

High-level languages solve many other problems associated with assembly
language programming. The high-level language has its own syntax (usually defined by
a national or international standard). The language does not mention the instruction
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set, registers, or other features of a particular computer. The compiler takes care of all
such details. Programmers can concentrate on their own tasks; they do not need a
detailed understanding of the underlying CPU architecture — for that matter, they do
not need to know anything about the computer they are programming.

Portability

Programs written in a high-level language are portable — at least, in theory.
They will run on any computer that has a standard compiler for that language.

At the same time, all previous programs written in a high-level language for prior
computers are available to you when programming a new computer. This can mean
thousands of programs in the case of a common language like FORTRAN or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES

If all the good things we have said about high-level languages are true — if you
can write programs faster and make them portable besides — why bother with as-
sembly languages? Who wants to worry about registers, instruction codes,
mnemonics, and all that garbage! As usual, there are disadvantages that balance the
advantages.

Syntax

One obvious problem is that, as with assembly language, you have to learn the
““rules” or ‘‘syntax’’ of any high-level language you want to use. A high-level
language has a fairly complicated set of rules. You will find that it takes a lot of time just
to get a program that is syntactically correct (and even then it probably will not do what
you want). A high-level computer language is like a foreign language. If you have talent,
you will get used to the rules and be able to turn out programs that the compiler will
accept. Still, learning the rules and trying to get the program accepted by the compiler
does not contribute directly to doing your job.

Here, for example, are some FORTRAN rules:

- Labels must be numbers placed in the first five card columns
+ Statements must start in column 7

« Integer variables must start with the letters I, J, K, L, M, or N

Cost of Compilers

Another obvious problem is that you need a compiler to translate programs writ-
ten in a high-level language into machine language. Compilers are expensive and use a
large amount of memory. While most assemblers occupy 2K to 16K bytes of memory
(1K = 1024), compilers occupy 4K to 64K bytes. So the amount of overhead involved
in using the compiler is rather large.
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Adapting Tasks to a Language

Furthermore, only some compilers will make the implementation of your task
simpler. FORTRAN, for example, is well-suited to problems that can be expressed as
algebraic formulas. If, however, your problem is controlling a printer, editing a string of
characters, or monitoring an alarm system, your problem cannot be easily expressed in
algebraic notation. In fact, formulating the solution in algebraic notation may be more
awkward and more difficult than formulating it in assembly language. The answer is, of
course, to use a more suitable high-level language. Languages specifically designed for
tasks such as those mentioned above do exist — they are called system implementation
languages. However, these languages are less widely used and standardized than
FORTRAN.

Inefficiency

High-level languages do not produce very efficient machine language programs.
The basic reason for this is that compilation is an automatic process which is riddled with
compromises to allow for many ranges of possibilities. The compiler works much like a
computerized language translator — sometimes the words are right but the sounds and
sentence structures are awkward. A simple compiler cannot know when a variable is no
longer being used and can be discarded, when a register should be used rather than a
memory location, or when variables have simple relationships. The experienced pro-
grammer can take advantage of shortcuts to shorten execution time or reduce memory
usage. A few compilers (known as optimizing compilers) can also do this, but such com-
pilers are much larger than regular compilers.

SUMMARY OF ADVANTAGES AND DISADVANTAGES

Advantages of High-Level Languages:

Easier to learn (and teach to others)

More convenient descriptions of tasks

Less time spent writing programs

Easier documentation

Standard syntax

Independence of the structure of a particular computer
Portability

Availability of library and other programs

Disadvantages of High-Level Languages:

Special rules

Extensive hardware and software support required

Orientation of common languages to algebraic or business problems
Inefficient programs

Difficulty of optimizing code to meet time and memory requirements
Inability to use special features of a computer conveniently
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HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS

Microprocessor users will encounter several special difficulties when using
high-level languages. Among these are:

Few high-level languages exist for microprocessors. This is particularly true
for processors that are new, relatively unpopular, or intended for simple con-
trol applications.

Few standard languages are widely available.

Compilers usually require a large amount of memory or even a completely
different computer.

Most microprocessor applications are not well-suited to high-level
languages.

Many microprocessor languages produce no object program. That is, they
translate the program and run it line by line — this is referred to as interpreting
rather than compiling — or they produce an output that requires special
systems software (a run-time package) to execute. Either approach may result
in programs that execute slowly and use a large amount of memory. BASIC
and PASCAL, the most commonly available high-level languages, generally
use one of these approaches.

* Memory costs are often critical in microprocessor applications.

The relatively small number of high-level languages for microcomputers is a
result of the short history of microprocessors and their origin in the semiconductor
industry, rather than in the computer industry. Among the high-level languages that are
most often available are BASICS, PASCAL¢ 7, FORTRAN, C?#, and the PL/I-type
languages such as PL/M?.

Many of the high-level languages that exist do not conform to recognized stan-
dards, so the microprocessor user cannot expect to gain much program portability,
access to program libraries, or use of previous experience or programs. The main advan-
tages remaining are the reduction in programming effort, easier documentation, and the
smaller amount of detailed understanding of the computer architecture that is necess-
ary.

Overhead for High-Level Languages

The overhead involved in using a high-level language with microprocessors is
considerable. Until very recently, microprocessors have been better suited to control
and slow interactive applications than to the character manipulation and language
analysis involved in compilation. Therefore, compilers for some microprocessors will
not run on a microprocessor-based system. Instead, they require a much larger com-
puter; that is, they are cross-compilers rather than self-compilers. A user must not only
bear the expense of the larger computer, but must also transfer the program from the
larger computer to the micro.

Some self-compilers are available. These compilers run on the microcomputer for
which they produce object code. Unfortunately, they usually require large amounts of
memory (16K or more), plus special supporting hardware and software.
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Unsuitability of High-Level Languages

High-level languages also are not generally well-suited to microprocessor applica-
tions. Most of the common languages were devised either to help solve scientific prob-
lems or to handle large-scale business data processing. Few microprocessor applications
fall in either of these areas. Most microprocessor applications involve sending data and
control information to output devices and receiving data and status information from
input devices. Often the control and status information consists of a few binary digits
with very precise hardware-related meanings. If you try to write a typical control pro-
gram in a high-level language, you may feel like someone who is trying to eat soup with
chopsticks. For tasks in such areas as test equipment, terminals, navigation systems,
signal processing, and business equipment, the high-level languages work much better
than they do in instrumentation, communications, peripherals, and automotive applica-
tions.

Application Areas for Language Levels

Applications better suited to high-level languages are those which require large
memories. If, as in a valve controller, electronic game, appliance controller, or small
instrument, the cost of a single memory chip is important, then the inefficient memory
use of high-level languages is intolerable. If, on the other hand, as in a terminal or test
equipment, the system has many thousands of bytes of memory anyway, this ineffi-
ciency is not as important. Clearly the size and volume of the product are important fac-
tors as well. A large program will greatly increase the advantages of high-level
languages. On the other hand, a high-volume application will mean that fixed software
development costs are not as important as memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?

Which language level you use depends on your particular application. Let us
briefly note some of the factors which may favor particular levels:

Applications for Machine Language:

Virtually no one programs in machine language because it wastes human time
and is difficult to document. An assembler costs very little and greatly reduces
programming time.

Applications for Assembly Language:
Short to moderate-sized programs
Applications where memory cost is a factor
Real-time control applications
Limited data processing
High-volume applications
Applications involving more input/output or control than computation

Applications for High-Level Language:

Long programs
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Low-volume applications

Applications where the amount of memory required is already very large
Applications involving more computation than input/output or control
Compatibility with similar applications using larger computers

Availability of specific programs in a high-level language which can be used in
the application

Other Considerations

Many other factors are also important, such as the availability of a large computer
for use in development, experience with particular languages, and compatibility with
other applications.

If hardware will ultimately be the largest cost in your application, or if speed is crit-
ical, you should favor assembly language. But be prepared to spend much extra time in
software development in exchange for lower memory costs and higher execution
speeds. If software will be the largest cost in your application, you should favor a high-
level language. But be prepared to spend the extra money required for the supporting
hardware and software.

Of course, no one except some theorists will object if you use both assembly and
high-level languages. You can write the program originally in a high-level language and
then patch some sections in assembly language.!0.- tt However, most users prefer not to
do this because it can create havoc in debugging, testing, and documentation.

FUTURE TRENDS IN LANGUAGE LEVELS
We expect the future will favor high-level languages for the following reasons:

Programs always add extra features and grow larger
Hardware and memory are becoming less expensive

+ Software and programmers are becoming more expensive
Memory chips are becoming available in larger sizes, at lower ‘‘per bit’’ cost,
so actual savings in chips are less likely
More suitable and more efficient high-level languages are being developed
More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any
more than it is for large computers. But longer programs, cheaper memory, and more
expensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level languages.

WHY THIS BOOK?

If the future favors high-level languages, why have a book on assembly language
programming? The reasons are:

1. Most industrial microcomputer users program in assembly language (almost
two thirds, according to a recent survey).
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2. Many microcomputer users will continue to program in assembly language
since they need the detailed control that it provides.

3. No suitable high-level language has yet become widely available or standard-
ized.

4. Many applications require the efficiency of assembly language.

5. An understanding of assembly language can help in evaluating high-level
languages.

6. Almost all microcomputer programmers ultimately find that they need
some knowledge of assembly language, most often to debug programs, write
I/0 routines, speed up or shorten critical sections of programs written in high-
level languages, utilize or modify operating system functions, and understand
other people’s programs.

The rest of this book will deal exclusively with assemblers and assembly language

programming. However, we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in your application.
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Assemblers

This chapter discusses the functions performed by assemblers, beginning with
features common to most assemblers and proceeding through more elaborate
capabilities such as macros and conditional assembly. You may wish to skim this chapter
for the present and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today’s assemblers do much more than translate
assembly language mnemonics into binary codes. But we will describe how an assem-
bler handles the translation of mnemonics before describing additional assembler
features. Finally we will explain how assemblers are used.

ASSEMBLY LANGUAGE FIELDS

Assembly language instructions (or ‘‘statements’’) are divided into a number
of ‘‘fields,”’ as shown in Table 2-1.

The operation code field is the only field which can never be empty; it always
contains either an instruction mnemonic or a directive to the assembler, sometimes
called a ‘‘pseudo-instruction,’ ‘‘pseudo-operation,’’ or ‘‘pseudo-op.”’

The operand or address field may contain an address or data, or it may be
blank.
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Table 2-1. The Fields of an Assembly Language Instruction

Label Operation Code Operand or
Field or Mnemonic Address Comment Field

Field Field

START LDA VAL1 LOAD FIRST NUMBER INTO A
ADDA VAL2 ADD SECOND NUMBER 7O A
STA SUM STORE SUM

NEXT ? ? NEXT INSTRUCTION

VAL1 RMB 1

VAL2 RMB 1

SUM RMB 1

The comment and label fields are optional. A programmer will assign a label to
a statement or add a comment as a personal convenience: namely, to make the pro-
gram easier to read and use.

Of course, the assembler must have some way of telling where one field ends
and another begins. Assemblers that use punched card input often require that each
field start in a specific card column. Thisis a ‘‘fixed format.’’ However, fixed formats are
inconvenient when the input medium is paper tape; fixed formats are also a nuisance to
programmers. The alternative is a ‘‘free format’’ where the fields may appear anywhere
on the line.

Delimiters

If the assembler cannot use the position on the line to tell the fields apart, it must
use something else. Most assemblers use a special symbol or ‘‘delimiter’’ at the
beginning or end of each field. The most common delimiter is the space character.
Commas, periods, semicolons, colons, slashes, question marks, and other characters
which would not otherwise be used in assembly language programs also may serve as
delimiters. Table 2-2 lists standard 6809 assembler delimiters.

You will have to exercise a little care with delimiters. Some assemblers are
fussy about extra spaces or the appearance of delimiters in comments or labels. A
well-written assembler will handle these minor problems, but many assemblers are
not well-written. Our recommendation is simple: avoid potential problems if you can.
The following rules will help:

« Do not use extra spaces, particularly after commas that separate operands.
« Do not use delimiter characters in names or labels.

- Include standard delimiters even if your assembler does not require them.
Then it will be more likely that your programs are in correct form for another
assembler.
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Table 2-2. Standard 6809 Assembler Delimiters

‘space’ Between label and operation code, between
operation code and address, and before
an entry in the comment field

Between operands in the address field
. Before an entire line of comment

Labels

The label field is the first field in an assembly language instruction; it may be
blank. If a label is present, the assembler defines the label as equivalent to the address
into which the first byte of the object code resulting from that instruction will be loaded.
You may subsequently use the label as an address or as data in another instruction’s
address field. The assembler will replace the label with the assigned value when creating
an object program.

Labels are most frequently used in Jump, Call, or Branch instructions. These
instructions place a new value in the Program Counter and so alter the normal sequen-
tial execution of instructions. JUMP 150, means *‘‘place the value 150, in the Program
Counter.”” The next instruction to be executed will be the one in memory location 150 .
The instruction JUMP START means ‘‘place the value assigned to the label START in
the Program Counter.”” The next instruction to be executed will be the one at the
address corresponding to the label START. Table 2-3 contains an example.

Why use a label? Here are some reasons:

A label makes a program location easier to find and remember.

The label can easily be moved, if required, to change or correct a program. The
assembler will automatically change all instructions that use the label when the
program is reassembled.

The assembler or loader can relocate the whole program by adding a constant
(a “‘relocation constant’’) to each address in which a label was used. Thus we
can move the program to allow for the insertion of other programs or simply to
rearrange memory.

The program is easier to use as a library program; that is, it is easier for some-
one else to take your program and add it to some totally different program.

You do not have to figure out memory addresses. Figuring out memory
addresses is particularly difficult with microprocessors which have instructions
that vary in length.

You should assign a label to any instruction that you might want to refer to later.

The next question is how to choose a label. The assembler often places some
restrictions on the number of characters (usually 5 or 6), the leading character (often
must be aletter), and the trailing characters (often must be letters, numbers, or one of a
few special characters). Beyond these restrictions, the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e., mnemonic
labels. Typical examples are ADDW in a routine that adds one word into a sum, SRETX
in a routine that searches for the ASCII character ETX, or NKEYS for alocation in data
memory that contains the number of key entries. Meaningful labels are easier to
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Table 2-3. Assigning and Using a Label

Assembly Language Program

START LOAD ACCUMULATOR

+ (MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed, the instruction JUMP
START causes the address of the instruction labeled START to be placed in the program
counter. That instruction will then be executed.

remember and contribute to program documentation. Some programmers use a stan-
dard format for labels, such as starting with L0000. These labels are self-sequencing
(you can skip a few numbers to permit insertions), but they do not help document the
program.

Some label selection rules will keep you out of trouble. We recommend the
following:

Do not use labels that are the same as operation codes or other mnemonics.
Most assemblers will not allow this usage; others will, but it is confusing.

Do not use labels that are longer than the assembler permits. Assemblers have
various truncation rules.

Avoid special characters (non-alphabetic and non-numeric) and lower-case
letters. Some assemblers will not permit them; others allow only certain ones.
The simplest practice is to stick to capital letters and numbers.

Start each label with a letter. Such labels are always acceptable.

Do not use labels that could be confused with each other. Avoid the letters I,
O, and Z and the numbers 0, 1, and 2. Also avoid things like XXXX and
XXXXX. There’s no sense in tempting fate and Murphy’s Law.

When you are not sure if a label is legal, do not use it. You will not get any real
benefit from discovering exactly what the assembler will accept.

These are recommendations, not rules. You do not have to follow them but don’t blame
us if you waste time on unnecessary problems.

ASSEMBLER OPERATION CODES (MNEMONICS)

The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents. The assembler performs this task using a fixed table much
as you would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It
must also somehow determine how many operands the instruction requires and what
type they are. This may be rather complex — some instructions (like a Halt) have no
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operands, others (like an Addition or a Jump instruction) have one, while still others
(like a transfer between registers or a multiple-bit shift) require two. Some instructions
may even allow alternatives; for example, some computers have instructions (like Shift
or Clear) which can either apply to the Accumulator or to a memory location. We will
not discuss how the assembler makes these distinctions; we will just note that it must do
So.

ASSEMBLER DIRECTIVES

Some assembly language instructions are not directly translated into machine
language instructions. These instructions are directives to the assembler; they assign
the program to certain areas in memory, define symbols, designate areas of RAM for
temporary data storage, place tables or other fixed data in memory, allow references to
other programs, and perform minor housekeeping functions.

To use these assembler directives or pseudo-operations a programmer places the
directive’s mnemonic in the operation code field, and, if the specified directive requires
it, an address or data in the address field.

The most common directives are:

DATA

EQUATE (=) or DEFINE
ORIGIN

RESERVE

Linking directives (used to connect separate programs) are:

ENTRY
EXTERNAL

Different assemblers use different names for those operations but their functions
are the same. Housekeeping directives include:

END
LIST
NAME
PAGE
SPACE
TITLE
PUNCH

We will discuss these pseudo-operations briefly, although their functions are
usually obvious.
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The DATA Directive

The DATA directive allows the programmer to enter fixed data into program
memory. This data may include:

Lookup tables

Code conversion tables
Messages

Synchronization patterns
Thresholds

Names

Coefficients for equations
Commands

Conversion factors
Weighting factors
Characteristic times or frequencies
Subroutine addresses

Key identifications

Test patterns

Character generation patterns
Identification patterns

Tax tables

Standard forms

Masking patterns

State transition tables

The DATA directive treats the data as a permanent part of the program.
The format of a DATA directive is usually quite simple. An instruction like:

DZCON DATA 12

will place the number 12 in the next available memory location and assign that loca-
tion the name DZCON. Every DATA directive usually has a label, unless it is one of a
series. The data and label may take any form that the assembler permits.

Most assemblers allow more elaborate DATA directives that handle a large
amount of data at one time, for example:

EMESS DATA 'ERROR'
SQRS DATA 1,4,9,156,25

A single directive may fill many bytes of program memory, timited perhaps by the
length of a line or by the restrictions of a particular assembler. Of course, you can always
overcome any restrictions by following one DATA directive with another:

MESSG DATA ‘NOW IS THE '
DATA 'TIME FOR ALL
DATA 'GOOD MEN '
DATA 'TO COME TO THE '
DATA 'AID OF THEIR '
DATA  'COUNTRY '
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Microprocessor assemblers typically have some variations of standard DATA direc-
tives. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers; DEFINE
WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses. Other
special directives may handle character-coded data.

The EQUATE (or DEFINE) Directive

The EQUATE directive allows the programmer to equate names with addresses
or data. This pseudo-operation is almost always given the mnemonic EQU or =. The
names may refer to device addresses, numeric data, starting addresses, fixed addresses,
etc.

The EQUATE directive assigns the numeric value in its operand field to the
label in its label field. Here are two examples:

TTY EQU 5
LAST EQU 5000

Most assemblers will allow you to define one label in terms of another, for example:

LAST EQU  FINAL
ST1 EQU  START+1

The label in the operand field must, of course, have been previously defined. Often, the
operand field may contain more complex expressions, as we shall see later. Double
name assignments (two names for the same data or address) may be useful in patching
together programs that use different names for the same variable (or different spellings
of what was supposed to be the same name).

Note that an EQU directive does not cause the assembler to place anything in
memory. The assembler simply enters an additional name into a table (called a
‘‘symbol table’’) which the assembler maintains. This table, unlike the mnemonic
table, must be in RAM since it varies with each program. The assembler always needs
some RAM to hold the symbol table; the more RAM it has, the more symbols it can
accept. This RAM is in addition to any that the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a parameter that
you might want to change or that has some meaning besides its ordinary numeric value.
We typically assign names to time constants, device addresses, masking patterns, con-
version factors, and the like. A name like DELAY, TTY, KBD, KROW, or OPEN not
only makes the parameter easier to change, but it also adds to program documentation.
We also assign names to memory locations that have special purposes; they may hold
data, mark the start of the program, or be available for intermediate storage.

What name do you use? The best rules are much the same as in the case of
labels, except that here meaningful names really count. Why not call the teletypewriter
TTY instead of X135, a bit time delay BTIME or BTDLY rather than WW, the number of
the ““GO” key on a keyboard GOKEY rather than HORSE? This advice seems
straightforward, but a surprising number of programmers do not follow it.

Where do you place the EQUATE directives? The best place is at the start of
the program, under appropriate comment headings such as /0 ADDRESSES, TEM-
PORARY STORAGE, TIME CONSTANTS, or PROGRAM LOCATIONS. This
makes the definitions easy to find if you want to change them. Furthermore, another
user will be able to look up all the definitions in one centralized place. Clearly this prac-
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the
subroutine.
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The ORIGIN Directive

The ORIGIN directive (almost always abbreviated ORG) allows the pro-
grammer to specify the memory locations where programs, subroutines, or data will
reside. Programs and data may be located in different areas of memory depending on
the memory configuration. Startup routines, interrupt service routines, and other
required programs may be scattered around memory at fixed or convenient addresses.

The assembler maintains a Location Counter (comparable to the computer’s
Program Counter) which contains the location in memory of the next instruction or
data item being processed. An ORG directive causes the Assembler to place a new
value in the Location Counter, much as a Jump instruction causes the CPU to place a
new value in the Program Counter. The output from the Assembler must not only con-
tain instructions and data, but must also indicate to the loader program where in
memory it should place the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the
following purposes:

Reset (startup) address

Interrupt service addresses

Trap (software interrupt) addresses

RAM storage

Memory stack

Main program

Subroutines

Memory addresses used for input/output devices or special functions

Still other ORIGIN statements may allow room for later insertions, place tables or data

in memory, or assign vacant RAM space for data buffers. Program and data memory in

microcomputers may occupy widely scattered addresses to simplify the hardware.
Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience is slight; we recommend the
inclusion of an ORG statement to avoid confusion.

The RESERVE Directive

The RESERVE directive allows the programmer to allocate RAM for various
purposes such as data tables, temporary storage, indirect addresses, a Stack, etc.

Using the RESERVE directive, you assign a name to the memory area and de-
clare the number of locations to be assigned. Here are some examples:

NOKEY RESERVE 1
TEMP RESERVE 50
VOLTG RESERVE 80
BUFR RESERVE 100

You can use the RESERVE directive to reserve memory locations in program memory
or in data memory; however, the RESERVE directive is more meaningful when applied
to data memory.
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In reality, all the RESERVE directive does is increase the assembler’s Location
Counter by the amount declared in the operand field. The assembler does not actually
produce any object code.

Note the following features of RESERVE:

1. The label of the RESERVE directive is assigned the value of the first
address reserved. For example, the pseudo-operation:

TEMP RESERVE 20

reserves 20 bytes of RAM and assigns the name TEMP to the address of the
first byte.

2. You must specify the number of locations to be reserved. There is no
default case.

3. Nodata is placedin the reserved locations. Any data that, by chance, may be
in these locations will be left there.

Some assemblers allow the programmer to specify initial values for the
RESERVE area in RAM. We strongly recommend that you do not use this feature; it
assumes that the program (along with the initial values) will be loaded from an external
device (e.g., paper tape or floppy disk) each time it is run. Microprocessor programs, on
the other hand, often reside in non-volatile ROM and start when power comes on. The
RAM in such situations does not retain its contents, nor is it reloaded. Therefore,
always include instruction sequences to initialize RAM in your program; this will insure
that initialization occurs every time the program is executed and not just during load
time.

Linking Directives

We often want statements in one program or subroutine to use names that are
defined in a different assembly. Such uses are called ‘‘external references’’; a special
linking program is necessary to actually fill in the values and determine if any names are
undefined or doubly defined.

The directive EXTERNAL, usually abbreviated EXT, signifies that the name
is defined elsewhere.

The directive ENTRY, usually abbreviated ENT, signifies that the name is
available for use elsewhere; that is, it is defined in this program.

The precise way in which linking directives are implemented varies greatly from
assembler to assembler. We will not refer to such directives again, but they are very
useful in actual applications.

Output Control Directives

There are various assembler directives that affect the operation of the assem-
bler and its program listing rather than the output program itself. Common house-
keeping directives include:

- END, which marks the end of the assembly language source program.

« LIST, which tells the Assembler to print the source program. Some assemblers
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allow such variations as NO LIST or LIST SYMBOL TABLE to avoid long,
repetitive listings.

NAME or TITLE, which prints a name at the top of each page of the listing.

PAGE or SPACE, which skips to the next page or next line, respectively, and
improves the appearance of the listing, making it easier to read.

PUNCH, which transfers subsequent object code to the paper tape punch. This
pseudo-operation may in some cases be the default option and therefore
unnecessary.

When to Use Labels

Users often wonder if or when they can assign a label to an assembler directive.
These are our recommendations:

All EQUATE directives must have labels; they are useless otherwise, since
the purpose of an EQUATE is to define its label.

DATA and RESERVE directives usually have labels. The label identifies the
first memory location used or assigned.

Other directives should not have labels. Some assemblers allow such labels,
but we recommend against their use because there is no standard way to
interpret them,

OPERANDS AND ADDRESSES

Most assemblers allow the programmer a lot of freedom in describing the con-
tents of the Operand or Address field. But remember that the assembler has built-in
names for registers and instructions and may have other built-in names. We will now
describe some common options for the operand field.

Decimal Numbers

Most assemblers assume all numbers to be decimal unless they are marked

otherwise. So:
ADD 100

means ‘‘add the contents of memory location 100,4 to the contents of the Accumula-
tor.”

Other Number Systems

Most assemblers will also accept binary, octal, or hexadecimal entries. But you
must identify these number systems in some way: for example, by preceding or
following the number with an identifying character or letter. Here are some common
identifiers:

- B or % for binary

« 0,@, Q, or C for octal (the letter O should be avoided because of the confusion
with zero)
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« H or $ for hexadecimal (or standard BCD)

= D for decimal. D may be omitted; it is the default case.

Assemblers generally require hexadecimal numbers to start with a digit (for example,
0A36 instead of A36) in order to distinguish between numbers and names or labels. It is
good practice to enter numbers in the base in which their meaningis the clearest: that is,
decimal constants in decimal; addresses and BCD numbers in hexadecimal; masking
patterns or bit outputs in binary if they are short, and in hexadecimal if they are long.

Names

Names can appear in the operand field; they will be treated as the data that
they represent. Remember, however, that there is a difference between operands and
addresses. In a 6809 assembly language program the sequence:

FIVE EQU 5
ADDA FIVE

will add the contents of memory location 5 (not necessarily the number 5) to the con-
tents of the accumulator. A sequence which adds in the number 5 itself would be
FIVE EQU S
ADDA #FIVE
The symbol # tells the assembler that the number represented by the name FIVE is the
value of the operand instead of its memory location.

The Location Counter

You can use the current value of the location counter, which is usually referred
to as * or $. This is useful mainly in Jump instructions; for example:

JUMP  *+6

causes a Jump to the memory location 6 bytes beyond the byte that contains the first
byte of the JUMP instruction.

} JUMP * + 6 code stored here

6 locations

Jump here

One reason to use this technique is to reduce the number of symbols in an assem-
bly language program. This may be necessary if the assembler can handle only a limited
number of symbols. Reducing the number of symbols may also decrease assembly time.
Such benefits are almost negligible, however, unless your program is extremely large or
your assembler rather primitive.

Most microprocessors have many two and three-byte instructions. Thus you will
have difficulty determining exactly how far apart two assembly language statements are.
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Using offsets from the location counter therefore frequently results in errors that you
can avoid if you use labels.

Character Codes

Most assemblers allow text to be entered as ASCII strings. Such strings may be
surrounded either with single or double quotation marks; strings may also use a begin-
ning or ending symbol such as A or C. A few assemblers also permit EBCDIC strings.

We recommend that you use character strings for all text. It improves the clarity
and readability of the program.

Arithmetic and Logical Expressions

Assemblers permit combinations of the data forms described above, connected
by arithmetic, logical, or special operators. These combinations are called expres-
sions. Almost all assemblers allow simple arithmetic expressions such as START + 1.
Some assemblers also permit multiplication, division, logical functions, shifts, etc. Note
that the assembler evaluates expressions at assembly time. Even though an expression
in the operand field may involve division, you may not be able to use division in the
logic of your own program — unless you write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them.
Complex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them
and add others here. In general, the user should strive for clarity and simplicity.
There is no payoff for being an expert in the intricacies of an assembler or in having the
most complex expression on the block. We suggest the following approach:

Use the clearest number system or character code for data.

Masks and BCD numbers in decimal, ASCII characters in octal, or ordinary
numerical constants in hexadecimal serve no purpose and therefore should
not be used.

Remember to distinguish data from addresses.
Don’t use offsets from the Location Counter.

Keep expressions simple and obvious. Don’t rely on obscure features of the
assembler.

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program,
depending on conditions existing at assembly time. This is called conditional assem-
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer
assemblers have limited capabilities for conditional assembly. A typical form is:

IF COND

- (CONDITIONAL PROGRAM)

ENDIF
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If the expression COND is true at assembly time, the instructions between IF and
ENDIF (two pseudo-operations) are included in the program.
Typical uses of conditional assembly are:

To include or exclude extra variables
To place diagnostics or special conditions in test runs

To allow data of various bit lengths

Unfortunately, conditional assembly tends to clutter programs and make them difficult
to read. Use conditional assembly only if it is necessary.

MACROS

You will often find that particular sequences of instructions occur many times in a
source program. Repeated instruction sequences may reflect the needs of your program
logic, or they may be compensating for deficiencies in your microprocessor’s instruction
set. You can avoid repeatedly writing out the same instruction sequence by using a
“macro.”

Macros allow you to assign a name to an instruction sequence. You then use
the macro name in your source program instead of the repeated instruction sequence.
The assembler will replace the macro name with the appropriate sequence of instruc-
tions. The shaded parts of Figure 2-1 illustrate the assembler’s treatment of a macro in
an example program. Do not bother trying to figure out what the program or the instruc-
tions do; just observe that the assembler expands the macro MACTI into the defined
sequence.

A macro resembles a subroutine because it is a shorthand reference to a fre-
quently used instruction sequence. However, macros are not the same as subroutines.
The code for a subroutine occurs once in a program, and program execution branches to
the subroutine. In contrast, the assembler replaces each occurrence of a macro name
with the specified sequence of instructions; therefore program execution does not
branch to a macro as it does to a subroutine. A macro name is a user-defined assembler
directive; it directs assembly rather than program execution.

Advantages of Macros:

Shorter source programs
Better program documentation

Use of debugged instruction sequences. Once the macro has been debugged,
you are sure of an error-free instruction sequence every time you use the
macro.

Easier changes. Change the macro definition and the assembler makes the
change for you every time the macro is used.

Inclusion of commands, keywords, or other computer instructions in the basic
instruction set. You can use macros to extend or clarify the instruction set.
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Assembler Input Assembier Output
Source Program Object Code Corresponding Mnemonics
MAC1 MACR (Macro definition)
CLRA
SUBA Y+
ASLA
ENDM (End of macro definition)
E6 9F 2025 LDB fOFFSET]
P : S A ABX
(Beginning of main program) EG 34 LDB . X
LDB [OFFSET) MAC1
ABX 4F CLRA
LDB X A0 A0 SUBA  ,Y+
MAC1 48 ASLA
MUL 3D MUL
STD RESLOC FD 2027 SIRD RESLOC
ROLB 59 ROLB
ADDB CB 01 ADDB
MAC1 MAC1
ADDD RESLOC 4F CLRA
STD RESLOC A0 suBa Y+
MAC1 ASLA
STA BYTE F3 2027 ADDD RESLOC
BCC ALTER FD 2027 STD RESLOC
MAC1
4F CLRA
A0 A0 SUBA JY+
48 ASLA
B7 2029 STA BYTE
24 0% BEE! ALTER

Figure 2-1. Expansion of a Macro by the Assembler
]

Disadvantages of Macros:

Since the macro is expanded every time it is used, memory space may be
wasted by the repetition of instruction sequences.

A single macro may create a lot of instructions.
Lack of standardization makes programs difficult to read and understand.
Possible effects on registers and flags may not be clearly described.

One problem is that variables used in a macro are only known within it (i.e., they are
local rather than global). This can often create a great deal of confusion without any gain
in return. You should be aware of this problem when using macros.!

COMMENTS

All assemblers allow you to place comments in a source program. Comments
have no effect on the object code, but they help you to read, understand, and document
the program. Good commenting is an essential part of writing computer programs;
programs without comments are very difficult to understand.

We will discuss commenting along with documentation in a later chapter, but
here are some guidelines:

+ Use comments to tell what application task the program is performing, not
how the microcomputer executes the instructions.
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Comments should say things like ‘IS TEMPERATURE ABOVE LIMIT?,”
“LINE FEED TO TTY,” or “EXAMINE LOAD SWITCH.”

Comments should not say things like ““ADD 1 TO ACCUMULATOR,”
“JUMP TO START,” or ““LOOK AT CARRY.” You should describe how
the program is affecting the system; internal effects on the CPU are seldom of
any interest.

Keep comments brief and to the point. Details should be available elsewhere
in the documentation.

Comment all key points.

Do not comment standard instructions or sequences that change counters or
pointers; pay special attention to instructions that may not have an obvious
meaning.

Do not use obscure abbreviations.
Make the comments neat and readable.

Comment all definitions, describing their purposes. Also mark all tables and
data storage areas.

Comment sections of the program as well as individual instructions.

Be consistent in your terminology. You can (should) be repetitive; you need
not consult a thesaurus.

Leave yourself notes at points that you find confusing: for example,
“REMEMBER CARRY WAS SET BY LAST INSTRUCTION.” If such
points get cleared up later in program development, you may drop these com-
ments in the final documentation.

A well-commented program is easy to use. You will recover the time spent in comment-
ing many times over. We will try to show good commenting style in the programming
examples, although we often over-comment for instructional purposes.

TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary
greatly. We will not try to describe all the existing types of assemblers; we will merely
define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer other than the one
for which it assembles object programs.

The computer on which the cross-assembler runs is typically a large computer
with extensive software support and fast peripherals — such as an IBM 360 or 370, a
Univac 1108, or a Burroughs 6700. The computer for which the cross-assembler assem-
bles programs is typically a micro like the 6809 or 8080. Most cross-assemblers are writ-
ten in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that runs on the com-
puter for which it assembles programs. The self-assembler will require some memory
and peripherals, and it may run quite slowly compared to a cross-assembler.
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A macroassembler is an assembler that allows you to define sequences of
instructions as macros.

A microassembler is an assembler used to write the microprograms which
define the instruction set of a computer. Microprogramming has nothing specifically
to do with programming microcomputers.2-3

A meta-assembler is an assembler that can handle many different instruction
sets. The user must define the particular instruction set being used.

A one-pass assembler is an assembler that goes through the assembly language
program only once. Such an assembler must have some way of resolving forward
references, for example, Jump instructions which use labels that have not yet been
defined.

A two-pass assembler is an assembler that goes through the assembly language
source program twice. The first time the assembler simply collects and defines all the
symbols; the second time it replaces the references with the actual definitions. A two-
pass assembler has no problems with forward references but may be quite slow if no
backup storage (like a floppy disk) is available; then the assembler must physically read
the program twice from a slow input medium (like a teletypewriter paper tape reader).
Most microprocessor-based assemblers require two passes.

ERRORS

Assemblers normally provide error messages, often consisting of a single coded
letter. Some typical errors are:

Undefined name (often a misspelling or an omitted definition)

Illegal character (such as a 2 in a binary number)

Illegal format (wrong delimiter or incorrect operands)

Invalid expression (for example, two operators in a row)

lllegal value (usually too large)

Missing operand

Double definition (two different values assigned to one name)

Illegal label (such as a label on a pseudo-operation that cannot have one)
Missing label

Undefined operation code.

In interpreting assembler errors, you must remember that the assembler may get on the
wrong track if it finds a stray letter, an extra space, or incorrect punctuation. Many as-
semblers will then proceed to misinterpret the succeeding instructions and produce
meaningless error messages. Always look at the first error very carefully; subsequent
ones may depend on it. Caution and consistent adherence to standard formats will elimi-
nate many annoying mistakes.
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LOADERS

The loader is the program which actually takes the output (object code) from
the assembler and places it in memory. Loaders range from the very simple to the very
complex. We will describe a few different types.

A “‘bootstrap loader’’ is a program that uses its own first few instructions to
load the rest of itself or another loader program into memory. The bootstrap loader
may be in ROM, or you may have to enter it into the computer memory using front
panel switches. The assembler may place a bootstrap loader at the start of the object pro-
gram that it produces.

A “‘relocating loader’’ can load programs anywhere in memory. It typically loads
each program into the memory space immediately following that used by the previous
program. The programs, however, must themselves be capable of being moved around
in this way; that is, they must be relocatable. An ‘‘absolute loader,’’ in contrast, will
always place the programs in the same area of memory.

A “‘linking loader”’ loads programs and subroutines that have been assembled
separately; it resolves cross-references — that is, instructions in one program that
refer to a label in another program. Object programs loaded by a linking loader must be
created by an assembler that allows external references. An alternative approach is to
separate the linking and loading functions and have the linking performed by a program
called a “‘link editor.”
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6809 Machine Structure
and Assembly Language

This chapter outlines the 6809 processor’s architecture and describes the syn-
tax rules of the Motorola assembler. Chapter 9 of An Introduction to Microcomputers:
Volume 2 — Some Real Microprocessors! describes the hardware aspects of the 6809
microprocessor, including its output signals and interfaces. This book considers the
6809 from the point of view of the assembly language programmer, to whom pins and
signals are irrelevant and microcomputers and minicomputers are essentially identical.
Later chapters of this book describe the 6809’s stack and interrupt system in more
detail.

Tables 3-1 through 3-3 divide the 6809 instruction set into instructions that are
frequently used (Table 3-1), occasionally used (Table 3-2), and seldom used (Table
3-3). If you are an experienced assembly language programmer, you will probably not
find this division important; you may even disagree with it. However, if you are a
novice, we recommend that you write your first programs using only the frequently
used instructions (Table 3-1). This restriction will help you overcome the obstacle of
learning both the entire 6809 instruction set and the basic methods of assembly
language programming at the same time. Once you have mastered the concepts of as-
sembly language programming, you should start using other instructions (Tables 3-2
and 3-3).
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Table 3-1. Frequently Used Instructions of the 6809

Operation Code

Meaning

ADC

ADD

AND

ASL or LSL
BCC or BHS
BCS or BLO
BEQ

BMI

BNE

BPL

BRA

BSR

CLR

CMP

DEC

INC

JSR

LD

LSR

PSH

PUL

ROL

ROR

RTS

ST

SuB

Add with Carry

Add

Logical AND

Arithmetic (Logical) Shift Left

Branch if Carry Clear (‘‘Higher or Same"’)
Branch if Carry Set (“'Lower’’)

Branch if Zero Set ("’Equal’’)

Branch if Sign (Negative) Set (“’"Minus’’)
Branch if Zero Clear ("‘Not Equal’’)
Branch if Sign (Negative) Ctear (""Plus’’)
Branch Always

Branch to Subroutine

Clear

Compare

Decrement by 1

Increment by 1

Jump to Subroutine

Load

Logical Shift Right

Push Data onto Stack

Pull Data from Stack

Rotate Left

Rotate Right

Return from Subroutine

Store

Subtract

Table 3-2. Occasionally Used Instructions of the 6809

Operation Code

Meaning

ANDCC
ASR
BGE
BGT
BHI
BIT
BLE
BLS
BLT
COM
DAA
EOR
EXG
JMP
LEA
MUL
NEG
NOP
OR
ORCC
RTI
SWi
TFR
TST

Logical AND Mask with Status Register (Clear Flags)
Arithmetic Shift Right

Branch if Greater Than or Equal
Branch if Greater Than

Branch if Higher

Bit Test (Logical AND)

Branch if Less Than or Equal
Branch if Lower or Same
Branch if Less Than

Ones Complement

Decimal Adjust Accumulator A
Exclusive OR

Exchange Registers

Jump

Load Effective Address
Multiply

Twos Complement (’Negate’’)
No Operation

Logical (Inclusive) OR

Logical OR Mask with Status Register (Set Flags)
Return from Interrupt

Software Interrupt

Transfer Register to Register
Test for Zero or Minus
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Table 3-3. Seldom Used Instructions of the 6809

Operation Code

Meaning

ABX
BRN
BVC
BVS
CWA|

SBC
SEX
SYNC

Add Accumulator B to Index Register X

Branch Never {No Operation)

Branch if Overflow Clear

Branch if Overflow Set

Clear Condition Code Register Bits and Wait
for Interrupt

Subtract with Carry (Borrow)

Sign Extend

Synchronize with Interrupt Line

6809 REGISTERS AND FLAGS

The 6809 microprocessor has two accumulators, a status (or ‘‘condition code’’)
register, two index registers, two stack pointers, a program counter, and a direct page
register. The following diagram summarizes the 6809 registers. Note that the index
registers, stack pointers, and program counter are 16 bits long, whereas the accumula-
tors, direct page register, and condition code register are eight bits long.

8 bits
8 bits
16 bits '
16 bits
16 bits
16 bits
16 bits
8 bits
8 bits

Accumulator A
Doubte Accumulator D
Accumulator B
Index Register X
Index Register Y
User Stack Pointer U
Hardware Stack Pointer S (or SP)
Program Counter PC

Direct Page Register DP

Condition Code Register CC

The 6809’s Condition Code register contains five status flags, two interrupt
control bits (one for the regular IRQ interrupt and one for the fast FIRQ interrupt), and
one bit used to differentiate between the regular and fast interrupts. The five status

flags are:

Carry/Borrow (C)
Overflow (O or V)

Zero (2)

Sign (S or N for Negative)
Half-Carry (H)

The flags occupy the following bit positions in the Condition Code register:

3 A e

Bit No.

Condition Code Register

E is the entire flag used to differentiate between regular and fast interrupts, F is the fast
interrupt mask bit, and I is the regular interrupt mask bit.
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6809 REGISTERS

The two accumulators, A and B, are both primary accumulators. The only
instructions that treat the accumulators differently are ABX (Add Accumulator B to
Index Register X), DAA (Decimal Adjust Accumulator A), and SEX (Sign Extend
Accumulator B into Accumulator A).

The two 8-bit Accumulators A and B can be referred to as a single 16-bit Double
Accumulator D. Within D, A contains the most significant bits and B the least signifi-
cant bits. The 6809 has special instructions for loading (LDD), storing (STD), adding
(ADDD), comparing (CMPD), and subtracting (SUBD) the Double Accumulator D.

Index Registers X and Y are typical microcomputer index registers, as de-
scribed in An Introduction to Microcomputers: Volume 1.2 The X register is preferred over
the Y register only because a few operation codes (such as CMP, LD, and ST) execute
more slowly when applied to Y than when applied to X.

Stack Pointer U is a cross between the typical microcomputer index register
and the typical microcomputer stack pointer as described in An [ntroduction to
Microcomputers: Volume 1. Registers may be pushed onto or pulled from the User Stack
(indexed by the User Stack Pointer). However, the processor does not employ the User
Stack to store subroutine return addresses or the status of interrupted tasks; the pro-
cessor uses only the Hardware Stack for those purposes.

The 6809 has a Stack implemented in memory and indexed by the Hardware
Stack Pointer S as described in Volume 1 of An Introduction to Microcomputers. The
instruction set allows S, as well as U, to be used as a data counter or index register.

Memory reference instructions make it easy to store the contents of either
stack pointer or either index register in read/write memory. By assigning some
memory locations on the base (direct) page as storage for these four address registers,
you can put them all to multiple use. Another easy storage method is pushing the
registers onto a stack.

The program counter is a typical program counter, as described in Volume 1 of
An Introduction to Microcomputers.

The Direct Page Register DP generalizes the concept of a base page as described
in An Introduction to Microcomputers: Volume [. This register provides the eight most
significant bits of a 16-bit address in the direct (base page) addressing mode. In most
microprocessors (including the 6800), the base page is always page zero. The 6809
maintains compatibility with this concept by clearing the Direct Page register on hard-
ware Reset. The Direct Page register allows the programmer to move the base page any-
where in memory and thus take advantage of short paged addresses without being
limited to the first 256 bytes of memory. Different programs can have different base
pages, thus both making it unnecessary to apportion page zero and reducing the chance
of interference.

6809 FLAGS

The Carry flag holds the carry from the most significant bit produced by
arithmetic operations or shifts. Like most microprocessors, the 6809 inverts the actual
carry after subtraction so that the Carry flag also acts as a Borrow. The 6809 multiplica-
tion instruction, MUL, affects the Carry flag in yet another way: Carry represents bit 7
of the 16-bit result. This makes rounding to an 8-bit result very simple.
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The Zero flag is standard. It is set to 1 when any operation produces a zero
result. [t is set to 0 when any operation produces a non-zero result.

The Sign (Negative) flag is standard. It takes on the value of the most signifi-
cant bit of any result. Thus, a Sign flag value of 1 identifies a negative result and a
Sign flag value of 0 identifies a positive result if the standard twos complement nota-
tion is being used. The Sign flag will be set or reset on the assumption that you are using
signed binary arithmetic. If you are not using signed binary arithmetic, you can ignore
the Sign flag or you can use it to identify the value of the most significant bit of the
result.

The Half-Carry flag holds any carry from bit 3 to 4 resulting from the execution
of an 8-bit addition instruction (ADC or ADD). The purpose of this flag is to simplify
Binary-Coded-Decimal (BCD) operations. This is the standard use of a Half-Carry flag
as described in An Introduction to Microcomputers: Volume [, Chapter 4 (the flag is re-
ferred to there as an ‘‘intermediate carry’’).

The Overflow flag represents standard arithmetic overflow as described in
Volume 1 of An Introduction to Microcomputers; that is, the flag is set when an
arithmetic result is greater in magnitude than can be represented in the register. A
processor implements this function by setting the overflow flag when the carry out of the
most significant bit is different from the carry out of the next most significant bit; that is,
an overflow is the exclusive-OR of the carries into and out of the sign bit. In the 6809,
logical operations clear the Overflow flag, as do loads and stores.

The I and F flags are standard interrupt disable or interrupt mask flags. When I or
F is 1, interrupts are disabled from the corresponding source (IRQ or FIRQ). When |
or F is 0, the corresponding interrupt is enabled.

The E (or Entire) flag differentiates between regular interrupts and fast inter-
rupts. E is set to 1 when any interrupt occurs that stacks the entire set of registers; E is
set to 0 when an FIRQ occurs, stacking cnly the program counter and Condition Code
register. The E flag thus allows proper unstacking of the registers by the RTI (return
from interrupt) instruction.

The flags do not change until the processor executes an instruction that
modifies them. Logical instructions, for example, do not affect the Carry or Half-Carry,

but they do affect the Sign, Zero, and Overflow flags. Any of the flags can be specifically -

set or cleared by means of an ORCC or ANDCC instruction with the appropriate mask.
You must use the bit positions shown earlier to create the mask; executing an ORCC
with alin a particular bit position will set a flag, while executingan ANDCC withaOina
particular bit position will clear a flag.

6809 literature refers to the Sign flag as a Negative flag and uses the symbol N for
it. We will follow this convention to be compatible with the literature and to avoid con-
fusion with the Hardware Stack Pointer (or S register). We will also follow the 6809
literature in referring to the Overflow flag by the symbol V (O leads to continual confu-
sion) and the Half-Carry flag (sometimes called an Auxiliary or Intermediate Carry) by
the symbol H. The 6809’s flags are set and reset as described for the hypothetical
microcomputer in An Introduction to Microcomputers: Volume 1.
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6809 ADDRESSING MODES

Assembly language instructions tell the processor what operation to perform
and what addresses to use in performing the operation — that is, where to find the
data to be operated upon. The part of an instruction that tells the processor what opera-
tion to perform is the ‘‘operation code.”” Appendix C lists the 6809 microprocessor’s
mnemonic operation codes and their numerical equivalents. The part of an instruction
that tells the processor what addresses to use is the “‘operand’’ or ‘‘address field.”” The
processor may use this part of an instruction to determine where to obtain the operands
or where to store the result.

GENERAL DESCRIPTION OF ADDRESSING MODES

There are many different ways to specify what addresses the processor is to
use. These ways are called ‘‘addressing modes.”” We will describe them generally
before discussing how the 6809 processor implements them. The following two modes
do not involve memory at all:

1. Inherent addressing means that the operation code alone tells the processor
what to do. Typical inherent addressing instructions are Halt, No Operation,
and instructions that use specific registers.

2. Register addressing means that only registers are involved in the operation.
Typical of such operations are moving data from one register to another and
exchanging registers.

Common addressing modes that involve memory are as follows:

3. Immediate addressing means that the operand is located immediately after
the operation code in program memory.

4. Direct addressing means that the address to be used follows the operation
code in program memory.

5. Indexed addressing means that the address to be used is the sum of a base
address and an index or offset.

6. Indirect addressing means that the address to be used is either in a register or
in memory. That is, the instruction tells the processor where the address is,
not where the data is.

7. Relative addressing means that the operand is located a certain distance from
the current position in the program.

Chapter 6 of Volume 1 of 4n Introduction to Microcomputers describes all these
addressing modes plus their common combinations.




6809 Machine Structure and Assembly Language 3-7

6809 Addressing Modes

The 6809 microprocessor has a powerful and versatile set of addressing modes.
The available modes are the following, listed in the order in which we will describe
them:

Inherent operand (instructions that require no addresses)

2. Registers as operands (instructions that use only register contents as
operands)

The other modes specify memory addresses; they are:

3. Immediate

Base page direct

Extended direct

Extended indirect

Constant offset from base register

Indirect with constant offset from base register
Accumulator offset from base register

10. Indirect with accumulator offset from base register
11.  Autoincrement or autodecrement

12. Indirect with autoincrement or autodecrement

N

13. Program relative for branches

EFFECTIVE ADDRESS

In describing how the processor executes these modes and how the programmer
uses them, we must often refer to the actual address that the processor ultimately
uses to perform the specified operation. We call that address the ‘‘effective address’’:
it is the place from which the processor obtains an operand or in which the processor
stores the result. In some modes (for example, immediate) the effective address is
simply the location immediately following the operation code. In other modes, deter-
mining the effective address may be complicated. The address may be part of the
instruction, the contents of a base register, or the contents of a pair of memory loca-
tions. Determining the effective address may involve computations, such as adding an
offset to a base register. Some of the addressing modes are difficult to understand, since
they involve sequences of operations that finally culminate in an effective address. We
will explain why these sequences are useful and we will describe typical cases from real
applications. You should try to trace each sequence, since the various addressing modes
are the Keys to writing programs that are both general and powerful. Remember, the
processor always determines the effective address correctly, no matter how complex the
required operations are.

In the following discussion, we will describe each addressing mode, explain at
least one of its common uses, present a diagram of how it is executed, and discuss a
specific example. All of these together should give you a picture of the power of the
6809 microprocessor.




3-8 6809 Assembly Language Programming

MODES WHICH DO NOT SPECIFY
MEMORY LOCATIONS

INHERENT ADDRESSING

In this mode, the processor knows from the operation code alone which
addresses to use. For example, the instruction ABX (Add Accumulator B to Index
Register X) tells the processor where to get both operands for the addition. Similarly,
the instructions DAA (Decimal Adjust Accumulator A), MUL (Multiply), and SEX
(Sign Extend) also tell the processor which registers to use. NOP (No Operation) and
SYNC (Synchronize to External Event) require no operands, whereas RTI (Return
from Interrupt), RTS (Return from Subroutine), and SWI (Software Interrupt) all force
the processor to use the Hardware Stack Pointer to move data to or from memory. In all
these instructions, the operation codes are complete by themselves; no further address-
ing information is necessary.

REGISTER ADDRESSING

Single-operand instructions can be applied to either Accumulator A or
Accumulator B; the accumulator to be used is specified in the operation mnemonic.
Typical examples are CLRB (Clear Accumulator B) and INCA (Increment Accumula-
tor A). One bit in the actual operation code selects the accumulator. The following
instructions fall in this category: ASL or LSL (Logical Shift Left), ASR (Arithmetic
Shift Right), CLR (Clear: Set to Zero), COM (Ones Complement), DEC (Decrement:
Subtract 1), INC (Increment: Add 1), LSR (Logical Shift Right), NEG (Negate: Twos
Complement), ROL (Rotate Left), ROR (Rotate Right), and TST (Test for Zero or
Minus).

The instructions TFR (Transfer Registers) and EXG (Exchange Registers)
must have two registers of the same size as operands. For example, EXG X,U causes
the processor to exchange the contents of Index Register X and the User Stack Pointer.
The byte following the operation code designates (in coded form) which registers
EXG or TFR is to use. We can illustrate these instructions as follows:

Memory

Operation Code | mmmm

1 2 mmmm + 1

For details on how the registers are coded, see the descriptions of EXG and TFR
in Chapter 22.

The instructions PSH (Store Data in Stack) and PUL (Load Data from Stack)
also require a second byte that designates which registers are to be stored or loaded.
These instructions, however, may load or store any number of user registers. Each bit
of the second byte represents a register; if the bit is set, the processor will store the cor-
responding register in the stack or load it from the stack. For details on how the register
addressing byte is organized, see the descriptions of the PSH and PUL instructions in
Chapters 11 and 22.
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MEMORY ADDRESSING MODES

IMMEDIATE ADDRESSING

In immediate addressing, the data follows immediately after the operation
code. That is, the effective address is simply the contents of the program counter after
the processor has fetched the operation code. We can illustrate this mode as follows:

Memory

Operation Code
Effective Address = peration mmmm

mmmm + Data mmmm + 1

In standard 6809 assembly language, we specify immediate addressing by pre-
ceding the operand with the # symbol. Instructions may require either 8-bit or 16-bit
immediate operands; 16-bit operands are stored with the most significant bits in the first
byte. For example, the 6809 assembler converts the statement

ADDA #S30
(# means ‘‘immediate addressing’’ and $ means ‘‘hexadecimal’’) into an ADD instruc-

tion that adds the value 30,, to Accumulator A. The following diagram illustrates the
execution of the instruction.

E F H N Z v C
Program
D{A X xx + Memory
X
Y 8B mmmm
U 30 mmmm + 1
S N mmmm + 2
PC mm mm mmmm + 2 mmmm + 3
(0]

Immediate Addressing
ADDA #$30
One-byte Operand

As a specific example, assume that Accumulator A contains B7,, initially. After the pro-
cessor executes ADDA #8330, the contents of Accumulator A will be B7,, + 30,, =
E7,¢. The processor increments its program counter twice, once after fetching the opera-
tion code and once after fetching the immediate data, 30,4 in this example.
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16-Bit Operations

Instructions that handle 16 bits at a time require a double-byte immediate
operand. For example, the instruction

ADDD #$1057
causes the processor to add the 16-bit value 1057, to the Double Accumulator D.

Remember, D consists of Accumulators A and B with A holding the high-order byte.
The following diagram shows how the processor executes the instruction.

E F H N Z V C
- "
|
- d
JA . Program
D _ Memory
ls Yy
X
Y - c3 mmmm
u 10 mmmm + 1
S 57 mmmm + 2
pPC mm mm mmmm + 3
DP

Immediate Addressing
ADDD #$1057
Two-byte Operand

As aspecific example, assume that the initial contents of the Double Accumulator
are 3A48 .. After the processor executes the instruction ADDD #8$1057, the contents
of the Double Accumulator will be 3A48,, + 1057, = 4A9F,,. The processor incre-
ments its program counter three times while executing the instruction, once after fetch-
ing the operation code and once after fetching each byte of the immediate operand.

Two-Byte Operation Codes

Some instructions require a two-byte operation code. Typical examples are
CMPD, CMPY, LDS, and LDY. Since these instructions also require a 16-bit
immediate operand, the immediate versions are four bytes long. For example, the
instruction

LDS #S$S3F2A

has a two-byte operation code (10 CE), followed by a 16-bit (two-byte) immediate
operand. We can illustrate the execution of this instruction as follows.
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E F H N 22 VvV C
A Program
D{ Memory
X
Y 10 mmmm
= CE mmmm + 1
e 3F mmmm + 2
PC mm mm mmmm + 4 2A mmmm + 3
DP

Immediate Addressing
LDS #%$3F2A
Two-byte Operation Code

Instructions that Lack an Immediate Mode

Some instructions do not make sense with immediate addressing.

1. Youcannot store the contents of a register in a number, so Store instructions
cannot use immediate addressing.

2. You cannot transfer control to a number, so Jump and Jump-to-Subroutine
instructions cannot use immediate addressing.

3. You cannot clear or shift a specific number, so single-operand instructions
cannot use immediate addressing.

You should refer to Appendix C or to your instruction set summary card if you are
not sure whether an instruction allows immediate addressing.

BASE PAGE DIRECT ADDRESSING

In this mode, the effective address is on the base or direct page as defined by the
contents of the direct page register. The low-order half of the address (that is, the
address on the direct page) follows the operation code in memory. We can illustrate
base page direct addressing as follows:

Memory

DP
Operation Code | mmmm

qq mmmm + 1

Effective Address qq

You should note that 6809 manufacturers usually refer to this mode as ‘‘direct,”
whereas Volume 1 of An Introduction to Microcomputers refers to it as ‘‘base page.”
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This mode provides a short, quick way to use temporary storage on the direct
page. [t is short and quick because the page number is in the direct page register on the
processor chip, thus saving a byte of program memory and a read cycle. Obviously, there
is an overall savings of time and memory only if the programmer rarely changes the con-
tents of the direct page register. Otherwise the instructions that load the direct page
register more than offset the savings from using it.

The standard 6809 assembler uses direct addressing whenever the mode is
available, no other mode is specified, and the address is on the direct page. The as-
sembler assumes that the direct page is page zero (thus maintaining compatibility with
the earlier 6800 microprocessor, which has no direct page register) unless told other-
wise; the programmer may specify a different direct page with a SETDP assembler
directive. The programmer may also force the assembler to use direct addressing by pre-
ceding an address with the symbol *‘<’’, but this is rarely necessary.

For example, the assembler converts the statement

ADDA #$530

into an ADD instruction that adds the contents of memory location pp30,, to
Accumulator A, where pp is the contents of the Direct Page register as shown in the

following diagram: Data
Memory
E F H N Z VvV C
vy pp30

A X X
D ! I
B

X
v Program
Memory
U
S
PC mm mm 98 mmmm
DP pp 30 mmmm + 1

mmmm + 2

mmmm + 3

Direct Addressing
ADDA $30

As a specific example, let us assume the initial contents of Accumulator A are
47,,, the contents of the Direct Page register are 2B,¢, and the contents of memory
address 2B30,, are 6A . After the processor executes the instruction, the sum in
Accumulator A will be 47, + (pp30,,) = 47,, + (2B30,,) = 47,, + 6A,, = Bl .. The
processor increments its program counter twice, once after fetching the operation code
and once after fetching the direct address.
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The direct address occupies only one byte even if the instruction (such as
ADDD, LDS, or STX) handles 16-bit operands. In that case, the processor uses the
addresses ppqq and ppqq + 1 to fetch or store the high-order and low-order bytes of the
data, respectively. Instructions such as LDY and STS require a two-byte operation code,
in which case the base page direct form occupies three bytes of program memory.

EXTENDED DIRECT ADDRESSING

In this mode, the effective address occupies the two bytes of program memory
immediately following the operation code. The high-order half of the address is in the
first byte; this is standard 6809 format. We can illustrate extended direct addressing as
follows:

Memory

Operation Code | mmmm

pp mmmm + 1

qq mmmm + 2

You should note that 6809 manufacturers usually refer to this mode as ‘‘extended,”’
whereas Volume 1 of An [ntroduction to Microcomputers refers to it as ‘‘direct’” or
““extended direct.”’

This mode allows the processor to access any specific memory location. Of course,
you need not use extended addressing for memory locations that are on the direct page,
since the base page direct mode is shorter and faster. However, extended addressing is
the usual approach for handling a fixed address that is not on the direct page. This
mode is often used in performing input and output, since the memory addresses
assigned to 1/0 devices are rarely on the direct page.

The standard 6809 assembler uses extended addressing whenever the mode is
available, no other mode is specified, and the address is not on the direct page. Thus
extended addressing is the general default mode. The programmer may force the assem-
bler to use extended addressing by preceding the address with the symbol *“>"", but this
is rarely needed.

For example, the assembler converts the statement

ADDA $1C48

into an ADD instruction that adds the contents of memory location 1C48,, to
Accumulator A as shown in the following diagram.
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Data
Memory
E F H N ¢ Vv C
( !
—_— d
Yy 1C48
A X X
D —_—
B
X
Program
Y Memory
U
S
PC mm mm 88 mmmm
DP 1C mmmm + 1
48 mmmm + 2
mmmm + 3
Extended Addressing
ADDA $1C48

As a specific example, assume the initial contents of Accumulator A are F4,, and
the contents of memory address 1C48,, are 3A,. After the processor executes the
instruction ADDA $1C48, the sum in Accumulator A will be F4,, + 3A,, = 2E (. The
processor increments its program counter three times, once after fetching the operation
code and once after fetching each byte of the direct address.

If the instruction (for instance, CMPX or SUBD) handles 16-bit operands, the
addresses used are ppqq and ppaq + 1. If the instruction (for example, CMPY) requires
a two-byte operation code, the extended direct form requires four bytes of program
memory.

EXTENDED INDIRECT ADDRESSING

In this mode, the effective address is located at the address in the two bytes of
program memory immediately following the operation code. That is, the instruction
tells the processor where to find the address, not what its value is. You may compare
indirect addressing to a treasure hunt in which one clue tells you where to look for the
next clue, not where to find the actual treasure. If, as shown in the next illustration, the
two bytes following the operation code contain pp (first byte) and qq (second byte), the
effective address is located in addresses ppqq (first byte) and ppqq + 1 (second byte). So
the effective address in the illustration is rrss.
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Memory

e _._.Code mmmm

pp mmmm + 1

ss ppaq + 1

Effective Address = rr ss

The important point here is to see what this added complication does for us,
besides provide some confusion. Indirection allows a program to use different effec-
tive addresses without being changed, since all the program contains is the location of
the effective address, not its value. Why is that useful? Assume, for example, that our
application involves printing some results, as most applications do. We write a single
routine that takes the results from memory and sends them to an output device. (The
6809 uses memory-mapped input/output, so an output device is addressed using
memory addresses.) However, sometimes those results must be sent to a printer (for
permanent records), while at other times the results are merely displayed (to the opera-
tor) or reported via a remote line (to a central computer). If our routine sends the
results using extended indirect addressing, it can send them to any output device. All
the main program must do is place the address of the output device in the specified
memory locations. The approach is the same as that of television commercials which tell
you to call the telephone number that will appear on your screen. The same commercial
can be used nationwide; all the local station does is display the correct local number.

In the standard 6809 assembler format, you specify extended indirect address-
ing by placing the address in square brackets: for example, [D58A]. The address is
always interpreted as a 16-bit value and always occupies two bytes of program
memory. Instructions that use extended indirect addressing require a post byte after
the operation code, and this post byte must contain 9F,,. We will discuss post bytes in
more detail as part of the description of the indexed addressing modes.

For example, the assembler converts the statement

ADDA [S$D58A]
into an ADD instruction that adds the contents of memory location rrss to Accumulator

A, where rr is the contents of address D58A |, and ss is the contents of address D58B;.
The following diagram illustrates the execution of the instruction.
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Data
Memory
Yy rrss
F
CCR X X X X X
43 D58A
Ss D588
A XX
D
B
X
Program
Y Memory
V)
]
PC mm mm AB mmmm
DP 9F mmmm + 1
DS mmmm + 2
8A mmmm + 3
Indirect Addressing
ADDA ($D58A!

As a specific example, let us assume the initial contents of Accumulator A are
1F,, and the contents of memory addresses D58A ¢, D5S8B,,, and 06E4,, are 06,,, E4,,
and 35, respectively. After the processor executes the instruction ADDA [$D58A], the
sum in Accumulator A will be 1F, + ((D58As):(D58B,)) = 1F, + (06E4)
= 1F,, + 35,, = 54,. The processor increments its program counter four times, once
after fetching the operation code, once after fetching the post byte, and once after fetch-
ing each byte of the indirect address. Clearly this instruction takes extra time to execute
(see Appendix B), since the processor must go through a complex sequence to obtain
the actual data.

INDEXED MEMORY ADDRESSING MODES

In all the indexed addressing modes, the processor uses a base register. This
register may be one of the two index registers, one of the two stack pointers, or the
program counter. The instruction tells the processor which base register to use,
whether to add an offset to the contents of the base register, where to obtain the offset
if one is necessary, whether to change the contents of the base register, and whether
to use the indexed address directly or indirectly. Volume 1 of An Introduction to
Microcomputers describes the use of base registers in detail; their use allows program-
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mers to handle data structures that are defined by a base address and to write position-
independent code in which the location of the program itself is defined only by a base
address.

OBJECT CODE POST BYTE

The 6809’s indexed and indirect addressing modes require that the operation
code be followed by a byte that differentiates among the various modes. We refer to
this extra byte as a ‘‘post byte.”’ Figure 3-1 shows the placement of the post byte in the
object code. Table 3-4 describes the meanings of the bit positions within the post byte. If
you wish more details, Appendix B contains a summary of the indexed modes and
Appendix E describes the meanings of all possible post bytes in numerical order.

Information in the Post Byte

Let us summarize the information contained in the post byte:

1. Which base register to use: Index Register X, Index Register Y, Stack
Pointer U, Stack Pointer S, or the program counter. Of course, extended
indirect addressing uses no base register at all.

2. Whether to add an offset to the base register.

3. Where to find the offset if it is necessary. The choices here are: within the
post byte itself, in the next one or two bytes of program memory, in
Accumulator A, in Accumulator B, or in Double Accumulator D.

4. Whether to change the base register’s contents. The choices here are to add
1 or 2 to the base register after using it (sometimes called *‘postincrement’’)
or to subtract 1 or 2 from the base register before using it (sometimes called
“‘predecrement’’).

5. Whether to use the address obtained so far directly or indirectly. That is,
whether to use the address to obtain the data or the address of the data. Using
an indexed address indirectly is often referred to as ‘‘preindexing’® or
““indirect indexed addressing.’’

Unimplemented and lllegal Indexed Modes

Not all combinations are implemented. For example, there is no mode that both
changes the base register and adds an offset. Nor are there modes that use the program
counter as a base register and also change the base register or obtain the offset from
within the post byte or from an accumulator. Furthermore, adding 1 to a base register
that is used indirectly or subtracting 1 from it is illegal. This is because the base register
must point to a 2-byte address, and adding 1 to it or subtracing 1 from it would therefore
cause it to point to the middle of an address. We will describe the valid forms and their
uses as we proceed.
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Memory
Operation Code 7 6 5 4 2 0 <=@—Bit No.
Post Byte
Offset 1
Offset 2
Addressing Mode Field
Indirect Field
(Sign bit when bit 7 = 0)
Register Field
Figure 3-1. 6809 Post Byte for Indexed and Indirect Addressing
Table 3-4. 6809 Post Byte Bit Assignments for Indexed and Indirect Addressing
8it Number
Addressing Mode
7 6 5 4 3 2 1 (0]
0 R R X X X X X 5-Bit Offset
1 R R 0 0 0 0 0 Autoincrement by One
1 R R | 0 0 0 1 Autoincrement by Two
1 R R 0 0 0 1 0 Autodecrement by One
1 R R ) 0 0 1 1 Auto Decrement by Two
1 R R | (o] 1 0 o Zero Offset
1 R R | 0 1 0 1 Accumulator B Offset
1 R R | 0 1 1 (0] Accumulator A Offset
1 R R | 1 0 0 o 8-Bit Offset
1 R R | 1 0 0 1 16-Bit Offset
1 R R ) 1 0 1 1 Accumulator D Offset
1 X X I 1 1 0 (6] Program Counter 8-Bit Offset
1 X X | 1 1 0 1 Program Counter 16-Bit Offset
1 X X 1 1 1 1 1 Extended Indirect
N —— —

Addressing Mode Field

Indirect Field | = 1 for indirect, | = O for
direct {Sign bit when bit 7 = 0)

Register Field
00 R

01

R

10 R

11

R

o onu

0nCc<Xx
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NOTATION FOR INDEXED ADDRESSING MODES

The standard 6809 assembler uses the following special notation in referring to
indexed addressing modes:

,R means that the 16-bit register R (X, Y, U, S, or PC) is to be used as the
base register.

OFFSET,R means that the number OFFSET is to be added to the contents
of base register R. A zero offset can be omitted unless the base register is the
program counter.

LABEL,PCR means that the program counter is to be used as the base
register and the offset is to be the distance from the location of the instruction
to the address LABEL. That is, the address LABEL is specified ‘‘program
counter relative.”

,R+ means that the 16-bit base register R (X, Y, U, or S) is to be incre-
mented (once for one plus sign, twice for two plus signs) after its contents are
used in determining the effective address.

,— R means that the 16-bit base register R (X, Y, U, or S) is to be decre-
mented (once for one minus sign, twice for two minus signs) before its con-
tents are used in determining the effective address.

Square brackets — [ | — around an indexed address indicate that it is to be
used indirectly.

CONSTANT OFFSET FROM BASE REGISTER

In this mode, the effective address is the sum of a fixed offset and the contents
of a base register. The base register can be any of the following: Index Register X,
Index Register Y, Stack Pointer U, Stack Pointer S, or the program counter. Since
the purpose of the method is different when the base register is the program counter, we
will discuss that option separately. The procedure for obtaining the effective address,
however, is always as shown in this diagram:

Memory
Base Register

Operation Code | mmmm
mmmm + 1

ss mmmm + 2

*.

Effective Address = ppqq + rrss

The offset follows the operation code, which includes the post byte, in program
memory. It is a constant since program memory generally does not change during
program execution. The contents of the base register may vary; the program can deter-
mine the values in the index registers and stack pointers, whereas the program counter
contents depend on the placement of the program.
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When used with an index register or stack pointer, this addressing mode allows
us to refer to a particular element in an array or list. For example, we may have a set
of ten temperature readings taken at different points in a tank; to change or display a
particular one, we must know where the set of readings starts (base address) and which
reading we want (index or offset). If, as is usual, we store the readings in successive
memory locations, we can find one by using a constant offset from the base.

Similarly, we may store a record in memory consisting of a person’s name,
address, identification number, age, and job classification. If we want to send notices of
change of wage rate to all people in a particular job classification, we can find the job
classification by specifying how far it is from the start of the record (for example, 97
bytes further). This is much like telling all the students who are taking an examination
to put their names on the top line, their class levels on the fifth line, and their dates of
birth on the tenth line. Each student locates the required lines relative to the top of his
or her form. So, in our records, the name might occupy the first 16 bytes, the address
the next 70, the identification number the next 9, and the age the next 2. We can locate
a particular field in a particular record (for example, employee # 4’s identification
number) by specifying the base address (in this case, where employee #4’s record
starts) and how far beyond that we must go for the desired field (in our example, 86
bytes to the identification number).

Short Constant Offset Modes

Although we have described situations in which the offset could be large, offsets
are usually small. We are more likely to want something that is a few locations away than
something that is thousands of locations away. So the 6809 microprocessor provides
special short modes to handle the cases where:

1. The offset is zero. We want to use the base register as an implied memory
address, as described extensively in An Introduction to Microcomputers:
Volume 1.

2. The offset is small enough to fit in the post byte. Since we need one bit to
indicate whether this case holds, and two bits to designate which index
register or stack pointer is the base register, the offset must fit in five bits. The
6809 microprocessor interprets these five bits (the least significant bits of the
post byte) as a sign (bit 4) and a 4-bit twos complement number (bits 0
through 3). Thus the range is —16,, (10000,) —~ _ 15, (01111,).

The advantages of these short modes are obvious: they save time and memory,
since no additional bytes are needed for the offset. Furthermore, if the offset is zero, the
processor does not have to go through the motions of adding it to the base.
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Zero Offset (No Offset)

As an example of the zero offset mode, the assembler converts the statement
ADDA ,X

into an ADD instruction that adds the contents of the address in Index Register X to
Accumulator A. The following diagram illustrates the execution of the instruction.

Data
Memory
E F
CCR X X
Yy ppaq
X Pp
Program
Y Memory
U
S
Pe mm mm AB mmmm
DP 84 mmmm + 1
mmmm + 2
Indexed Addressing mmmm + 3
AODA X
Zero Offset

The effective address here is simply the contents of Index Register X. If, for example,
Accumulator A contains B7,,, Index Register X contains 01E1,,, and memory address
01E1,, contains 15,, then after the processor executes ADDA ,X Accumulator A will
contain B7,, + ((X)) = B7,, + (01El,,) = B7,, + 15,, = CC,,. The processor incre-
ments its program counter twice, once after fetching the operation code and once after
fetching the post byte.

Five-Bit Offset

As an example of the short offset mode, the assembler converts the statement

ADDA -1,Y

into an ADD instruction that adds the contents of the address one less than that
specified by Index Register Y to Accumulator A. That is, the effective address is the
contents of Index Register Y minus 1. The following diagram illustrates the execution of
the instruction.
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Data
Memory
F H | N Z C
CCR X X
vy PPaq — 1
XX 4+ yy
A XX
D
B
X
Program
Y PP qq + Memory
U
S
PC mm mm mmmm + 2 AB mmmm
DP ’ 3F mmmm + 1

mmmm + 2

Indexed Addressing LT

ADDA -1Y
Short Offset

As a specific example, assume that Accumulator A contains 94,, Index Register
Y contains A048,,, and memory address A047,, contains 32,,. After the processor
executes the instruction ADDA -1,Y, Accumulator A will contain 94, + ((Y) — 1) =
94, + (A048,, — 1) =94,  + (A047,)) = 94,, + 32,, = C6,.

This mode takes longer for the processor to execute than the zero offset does
because of the address addition. That is, the processor must add the offset (-1 in this
case) to the contents of the base register (Index Register Y). What if the offset is zero?
The processor adds it in anyway, thus wasting some time. In 6809 assembler notation

the difference is between
ADDA , X

which tells the processor to use the zero offset mode, and

ADDA 0, X

which tells the processor to use the 5-bit offset mode with a value of zero. Obviously,
you should always use the first notation instead of the second because the first executes
faster: Both are legal, but the second has no advantage. Motorola’s 6809 assemblers
automatically optimize to the zero offset mode; thus, a Motorola assembler would
produce the same object code — AB 84 — for both ADDA ,X and ADDA 0,X. Not all
6809 assemblers have this desirable feature, however; you will save yourself poten-
tial trouble by using the special zero offset notation exclusively.

Larger Constant Offset Modes

If the offset is not zero or small enough to fit in the post byte, one or two extra
bytes of program memory beyond the post byte must be used to hold it. An 8-bit mode
and a 16-bit mode allow offsets of any length: Of course, the frequency of use goes
down as the length of the offset increases. Furthermore, the longer the offset, the
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more extra time and memory the instruction requires (see Appendix B). So we use the
longer modes as seldom as possible.
As an example of the 8-bit offset mode, the assembler converts the statement

ADDA $20,U

into an ADD instruction that adds the contents of the address 20,, beyond the address
in Stack Pointer U to Accumulator A. The 8-bit offset (20,,) is located immediately after
the post byte in program memory. The following diagram illustrates the execution of the
instruction.

Data
Memory
CCR X
\YY ppaq + 20
A X X
D
3]
X
Program
Y Memory
U pp aq +
S
PC mm mm AB mmmm
cs mmmm + 1
20 mmmm + 2

Indexed Addressing LT

ADDA $20,U
One-byte Offset

The effective address here is the contents of Stack Pointer U plus 20,,. The processor
interprets bit 7 of the offset as a sign and the remaining seven bits as a twos complement
number. Thus the range of the offset is —128 = 1000 0000, < offset < +127 =
0111 1111,. As a specific example, assume that Accumulator A contains 4D,,, Stack
Pointer U contains 054E,,, and memory address 056E,, contains 2A .. After the pro-
cessor executes ADDA $20,U Accumulator A will contain 4D,, + ((U) + 20,,) =
4D, + (054E,, + 20,,) = 4D, + (0S6E,)) = 4D, + 2A,, = 77y,.

The extension of this mode to a 16-bit offset occupying two bytes is obvious; we
will not discuss it further.

Constant Offset from the Program Counter

The modes that use a constant offset from the program counter help us write
position-independent code: that is, programs that work regardless of where they are
placed in memory. Such programs can be moved, without changes, to any available
memory locations and used with any combination of other programs. The easiest way to
make a program position-independent is for it to specify any addresses it uses relative to
its own position. How does a program know its own position? By looking at the contents
of the program counter. The idea here is the same as a repair manual that first orients
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the user properly (for example, by telling the person to face the equipment as shown in a
particular picture) and then refers to things as being ‘‘in back,”’ “‘in the top left-hand
corner,” or ‘‘fourth from the left in the bottom row.”” These descriptions are all relative
to the user’s position.

We can move an entire program along with its data if we refer to addresses relative
to the program counter. The idea here is to refer to data as being ‘20 locations from
where we are,’’ rather than at a particular address. If we then move everything, the rela-
tive positions of instructions and data remain the same, even though their absolute
addresses change. This is like telling someone that the dining car on a train is two cars
ahead, the relative positions of the cars remain the same, even though the entire train is
moving.

The 6809 microprocessor allows either an 8-bit or a 16-bit offset from the pro-
gram counter. No special zero or S-bit modes are provided, as with the index registers
and stack pointers. In fact, offsets from the program counter are likely to be large,
since data areas are usually separated from program areas. In the 8-bit offset, bit 7 is
the sign and bits 0 through 6 are a twos complement number. As an example of this
mode, let us discuss the execution of the instruction

ADDA $10,PC

which adds the contents of the address 13, beyond the initial value of the program
counter to Accumulator A. Why is the offset 13,¢, not 10,47 The reason is that the pro-
cessor fetches the entire 3-byte instruction (operation code, post byte, and 8-bit offset)
before calculating the effective address. Thus it has already added 3 to the program
counter by the time it uses that register for addressing. In the 16-bit offset mode, the
extra factor is 4 since the instruction occupies four bytes (operation code, post byte, and
16-bit offset). The following diagram illustrates the execution of the instruction ADDA
$10,PC.

. N Z V C_ Memory
s & i AB mmmm
8C mmmm + 1
10 | mmmm + 2
A X X
D{ —_— mmmm + 3
X
Y
U
S
PC mm mm

DP
Indexed Addressing

ADDA $10,PC
One-byte offset from Program Counter

The effective address here is the final contents of the program counter plus 10,,. As a
specific example, assume that Accumulator A contains CA |, the program counter con-
tains 7B09,,, and memory address 7B1C,, contains 05,,. After the processor executes
ADDA $10,PC Accumulator A will contain CA,, + ((PC) + 3 + 10,) =
CA\, + (7B09,, + 3 +10,) = CA |, + (7TB1C,)) = CA | + 05,, = CF,. The diagram
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and this example show clearly that the result does not depend on where the instruction
is located in program memory, as long as the instruction and the data are moved as a
unit. Here again, the extension to a 16-bit offset is obvious and we will not discuss it
further.

Program Counter Relative (PCR) Notation

The extra three or four bytes involved in calculating an offset from the program
counter are a nuisance, particularly if the offset is negative. Furthermore, if the opera-
tion code is two bytes long, the numbers become four or five since the instructions then
occupy an extra byte of program memory. We would like to have the assembler handle
this for us, since the procedure is simple to explain but difficult to perform correctly.
The standard 6809 assembler will calculate the program counter offset for you if you
designate the address as ‘‘program counter relative,”’ or PCR. For example, if you
write

ADDA LOCUS, PCR
the assembler will figure out the distance from the instruction to address LOCUS
(including the proper factor of three or four) and make that distance into an 8-bit or 16-
bit offset. This is the standard approach to writing position-independent 6809 code
efficiently.

INDIRECT WITH CONSTANT OFFSET FROM BASE REGISTER

We can add indirection to the constant-offset modes. The only change is that
there is no special S-bit mode with indirection — because the 5-bit offset occupies the
bit used to differentiate between non-indirect and indirect modes — so we must use the
8-bit mode instead. The process of determining the effective address becomes complex
here, since it involves an addition followed by two memory accesses. We can illustrate it

as follows:
Memory

Operation Code | mmmm

mmmm + 1

‘f Ss mmmm + 2
+ —_—

tt

uu

The indirection allows us to handle items in arrays, lists, or records which are
addresses rather than data. For example, a microcomputer might be monitoring data
from several remote stations. To each station, we assign a block of memory locations
that contain:

1. Station number
2. Interval between readings
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Address in which next reading will be stored

Minimum valid reading

Maximum valid reading

Starting address of routine that handles invalid readings
Number of readings taken since last report

© N L A

Number of readings per report
9. Address of output device on which report is printed
10. Starting address of routine that processes readings for a report

Some items in the block are data, whereas others (#3, #6, #9, and #10) are
addresses. The use of this block allows the operator to change any of the parameters
without affecting the overall program. The operator can vary the time interval between
readings (item #2), the data area used for temporary storage (item #3), the procedure
for handling invalid readings (item #6), or the output device on which the occasional re-
ports are printed (item #9). We can handle the data with non-indirect indexed address-
ing, whereas we must handle the addresses with indirect indexed addressing. For exam-
ple, if the next reading is in Accumulator A and the address in which that reading is to
be stored (item #3) occupies bytes 4 and 5 of the block, we can store the reading with

the sequence
LDX #BLOCK GET STARTING ADDRESS OF BLOCK
STA {4, X} STORE READING IN MEMORY
If later we want to take that reading (its address is item #3) and send it to the output

device (its address is item #9), we can use the sequence

LDX #BLOCK GET STARTING ADDRESS OF BLOCK
LDA f4,x] GET MOST RECENT READING
STA [ouT,X) REPORT MOST RECENT READING

Here OUT is the offset for item #9, the address of the output device.
As an example of the indirect indexed mode with constant offset, let us examine
the execution of the instruction

ADDA [5.X]

which adds to Accumulator A the contents of the address stored five bytes beyond the
address in Index Register X. That is, Index Register X is the base; the instruction adds 5
(the offset) to the base and uses the sum as an indirect address. This mode obviously
requires extra execution time (see Appendix B) because of the addition and the subse-
quent memory accesses. The following diagram illustrates the execution of the instruc-
tion.
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Indirect Indexed Addressing
ADDA [5.X]
Constant Offset from Index Register

As a specific example, let us assume that Accumulator A contains 1B, Index
Register X contains 0C33,,, memory address 0C38,, contains A0,,, memory address
0C39,, contains D2,,, and memory address AOD2,, contains 47,,. After the processor
executes the instruction ADDA [5,X], Accumulator A will contain
IB,, + (((X)+5):((X)+6)) = 1B,, + ((0C33,,+5):(0C33,,+6)) =
1B, + ((0C38,,):(0C39,,)) = 1B, + (AOD2,¢) = 1B, + 47, = 62¢.

The other indirect modes with a constant offset are:

Zero offset from an index register or stack pointer
16-bit offset from an index register or stack pointer
8-bit offset from the program counter

16-bit offset from the program counter

The processor executes all these similarly to the 8-bit offset mode described ear-
lier. Note that there is no special zero offset mode using the program counter. We can
use the PCR (program counter relative) notation to simplify the specification of rela-
tive addresses as we discussed previously.
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ACCUMULATOR OFFSET FROM BASE REGISTER

This mode allows the offset, as well as the base register contents, to vary. The
offset may be in either accumulator or in the double accumulator; the base register
may be either index register or either stack pointer. Note, however, that the base
register cannot be the program counter. As shown in the following illustration, the
instruction does not contain any address at all.

Memory

Operation Code | mmmm

Accumulator mmmm + 1

+

/

Effective Address = ppaq + rr

A common use of this mode is to access lookup tables. Let us assume, for exam-
ple, that we have a lookup table in memory that converts 8-bit ASCII character codes to
8-bit EBCDIC character codes. The table consists of EBCDIC codes, organized accord-
ing to the ASCII codes to which they correspond. For instance, the Oth entry is the
EBCDIC code corresponding to the ASCII code 0, the 15th entry is the EBCDIC code
corresponding to the ASCII code 15 (OF,,), and the 43rd entry is the EBCDIC code cor-
responding to the ASCII code 43 (2B,;). To convert an ASCII code to EBCDIC, we
need to know where the table starts (let’s call it address EBCDIC) and the value of the
ASCII code (let’s assume it is stored temporarily in address CHAR). Then we can use
the accumulator offset mode to fetch the EBCDIC code from the table. A typical pro-
gram is:

LDX #EBCDIC GET BASE ADDRESS OF EBCDIC CODE TABLE
LDB CHAR GET ASCII CODE (ELEMENT NUMBER)
LDA B,X GET CORRESPONDING EBCDIC CODE FROM TABLE

For more details on character codes, see Chapter 6 of this book and Chapter 3 of
Volume 1| of An Introduction to Microcomputers. For further discussions of lookup tables,
see Chapters 4, 7, and 8 of this book.

Note the difference between this mode and the constant offset modes. In this
mode, the offset is a variable. In the example, the ASCII code could have any value;
typically the microprocessor would be receiving a string of ASCII data from an input
device and converting it into a string of EBCDIC data for an output device. In the cons-
tant offset modes, the offset does not change. In our example of an employee record, a
person’s identification number or job classification is always located a specific number of
bytes from the start of the record.

As an example of the accumulator offset mode, let us consider the instruction

LDA B,X

which loads Accumulator A from the address obtained by adding Accumulator B and
Index Register X. The mode using Accumulator A for the offset clearly works the same
way; the double accumulator offset mode is similar except for the offset’s length. Note,
however, that the processor interprets the contents of a single accumulator as an 8-bit
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signed twos complement number. Thus the accumulator offset mode has a slightly
different effect than the ABX instruction, which interprets the contents of
Accumulator B as an 8-bit unsigned number. Accumulator offset addressing requires
extra time because the processor must add the offset and the base; it does not require
any extra memory since the offset is in an accumulator or double accumulator. The
double accumulator version is necessary when the table occupies more than 256 bytes.
The following diagram illustrates the execution of the LDA B,X instruction.

Data
Memory
E F H v C
CCR X X 0
xXx ppaqg + vy
A
D
B
X pp qq
Y - Program
Memory
U
S
PC mm mm A6 mmmm
op 85 mmmm + 1
mnmm + 2
Indexed Addressing | mmmm + 3
LDA B,X ‘
Accumulator Offset

As a specific example, let us assume Accumulator B contains 2B, (the ASCII
code for +), Index Register X contains C300,, (starting address of an ASCII-to-
EBCDIC conversion table), and memory address C32B,, contains 4E, (the EBCDIC
code for +). Then after the processor executes LDA B,X Accumulator A will contain
((X)+(B)) = (C300,,+2B,,) = (C32B,,) = 4E,;. We have converted an ASCII code
in Accumulator B into the corresponding EBCDIC code in Accumulator A. If you wish
to test this approach on othercharacters, use the character code tables in Appendix A of
An Introduction to Microcomputers: Volume 1.

INDIRECT WITH ACCUMULATOR OFFSET FROM BASE
REGISTER

We can add indirection to the accumulator offset mode to handle the case in
which the table contains addresses rather than data. For example, the table might
contain the actual addresses corresponding to numbered input and output devices.
The operator of the microcomputer-based system will ask the system to ‘‘read data
from device #4’’ or ‘‘print results on device 36.”” The microcomputer will use the
table to determine which addresses correspond to devices 4 and 6. This approach (see
Chapter 12 for further discussion) allows the operator to change I/0 devices by
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changing the table. For example, the operator could let device #6 be a CRT display for

atest run (thus showing test results without wasting paper), a printer for a run with local

output (thus providing a permanent record), and a modem for a run that must be re-

ported to central headquarters (thus sending the data over a communications link).
The procedure for reading data from a numbered input device is:

1. Load the starting address of the device table into an index register or stack
pointer.
2. Load the device number (a variable) into an accumulator.

3. Read the data from the address obtained from the device table using indirect
addressing with accumulator offset.

For example, if the starting address is IOTBL and the device number (assumed to
be even) is in memory address IODEV, a typical program is:

LDX #I0TBL GET BASE ADDRESS OF DEVICE TABLE
LDB IODEV GET I/0 DEVICE NUMBER
LDA [B,X] GET DATA FROM T7/0 DEVICE VIA TABLE

Remember, the elements in the table are 2-byte addresses and we want to transfer
data to or from those addresses, not to or from the table itself. The entries in the table
tell us where to send data or obtain data, not the value of the data as in the code con-
version example shown in the non-indirect case. Here again, the offset is a variable,
since the same program must be able to convert various device numbers into actual 1/0
addresses.

As an example of the indirect accumulator offset mode, we will discuss the

instruction
LDA [B,X]

which loads Accumulator A from the address starting at the address obtained by adding
Accumulator B and Index Register X. The next diagram illustrates the execution of the
instruction. The Accumulator A and double accumulator offsets are handled similarly,
so we will not describe them in detail. The double accumulator offset is used for tables
that exceed 256 bytes in length, a relatively infrequent situation. Clearly this mode
takes extra time (see Appendix B) because of the indirection. The processor must
calculate where the indirect address is and fetch the indirect address from memory
before it can actually execute the instruction. As with the non-indirect version, no
additional program memory is necessary since the offset is in an accumulator or double
accumulator.
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As a specific example, let us assume that Index Register X contains 03C6,, (the
starting address of the 1/0 device table), Accumulator B contains 04 (device #4), and
memory addresses 03CA |, and 03CB,, (which hold the address corresponding to device
#4) contain 80,, and 12, respectively. Let us further assume that the data currently at
address 8012, (the input device port) is 43,, (an ASCII C). Then after the processor
executes the instruction LDA [B,X] Accumulator A will contain
(((X) + B)):((X) + (B) + 1)) = ((03C6,, + 04,):(03C6,, + 05,)) =
((03CA,():(03CB,,)) = (8012,,) = 43, (ASCII C, the data from the input port). The
idea here is to use the table to determine where to find the data. The end result is that
Accumulator A contains the data read from input device #4, which is accessed through
memory address 8012, the corresponding entry in the device table.

AUTOINCREMENT AND AUTODECREMENT

In processing arrays, strings, or lists, we frequently want to process one byte
and then proceed to the next byte which is located at the next higher address (if we
are moving forward) or at the next lower address (if we are moving backwards). For
example, if we are printing a string of characters (a message such as WATCH OUT -
BOILER #6 IS REACHING CRITICAL TEMPERATURE), we must send the charac-
ters one by one to the printer (that is, first W, then A, then T, etc.). Similarly, if we are
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averaging a set of ten readings, we must add them together one by one (for instance,
start with zero, add the first reading, add the second reading, add the third reading, etc.)
and finally divide by 10.

Thus to handle one byte and move forward, we must:

= Reach the byte using the address in an index register or stack pointer.
« Add 1 to the index register or stack pointer to make it point to the next byte.

The effect is like the action of a typewriter, which both prints the character for the key
you press and moves the carriage along to the next position. Subtracting 1 from the
index register or stack pointer would correspond to backspacing the typewriter’s car-
riage. Unlike the typewriter, the computer does not prefer forward over backwards.
Autoincrementing and autodecrementing are the modes most like the indexed address-
ing described in Volume 1 of An Introduction to Microcomputers.

Variations of Autoincrement and Autodecrement

The 6809 offers different step sizes for autoincrementing and autodecrement-
ing. The base address may be:

Incremented by 1 after it is used.
Incremented by 2 after it is used.
Decremented by 1 before it is used.
Decremented by 2 before it is used.

The increment or decrement by 2 approach is useful when the array consists of 16-bit
data or addresses. The processor thus moves on to the next element automatically,
even though that element is located two bytes away from the current element. Applying
the increment after using the base but applying the decrement before using the base
maintains compatibility with the automatic use of the stack pointers (in JSR, PSH,
PUL, RTI, RTS, and SWl instructions and in interrupt responses). Any access/change-
pointer sequence could be implemented, but this is the most popular approach. All the
user must remember is to load the base register with the starting address of the array or
string for autoincrementing, but with the ending address plus 1 or 2 for autodecrement-
ing (because the first autodecrement will reduce the base register before using it).

This form of indexed addressing is really a variety of implied memory addressing,
since no offset is involved. Instructions using this mode take extra time (see Appendix
B), since the processor must update the pointer register as well as execute the instruc-
tion. Autoincrementing or autodecrementing is the simplest way to process arrays or
strings since it provides automatic updating of the implied memory address (or data
pointer) as part of instruction execution. See Chapters 5 and 6 for further discussion of
autoincrementing and autodecrementing.

Autoincrement with a Step of One

As one example, consider the instruction

ADDA , X+
This instruction adds to Accumulator A the contents of the address in Index Register X.
It also adds 1 to Index Register X, thus updating that address for the next operation in a

summation or averaging program. The following diagram shows how the processor
executes the instruction.
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As a specific example, assume that Accumulator A contains 03¢, Index Register
X contains 07E4,,, and memory location 07E4,, contains 05,. Then, after the processor
executes ADDA ,X+ Accumulator A will contain 03, + ((X)) = 03, + (07E4,,) =
03,, + 05,, = 08,. Furthermore, Index Register X will contain 07E4,; + 1 = 07ES .
Thus the instruction both adds an element to Accumulator A and updates Index
Register X so it points to the next element.

Autodecrement with a Step of Two

As an example of both autodecrementing and a step of 2, let us show how the pro-
cessor executes the instruction
ADDD ,--Y

This instruction adds to the double accumulator the contents of the address obtained by
subtracting 2 from Index Register Y. It also places the result of the subtraction back in
Index Register Y. Here the elements are 16 bits long, so a subtraction of 2 is necessary
toreach the next elementin the array. The step of 2 takes a little extratime (see Appen-
dix B). The processor, of course, has no preference between autoincrementing and
autodecrementing, since it lacks human or cultural preferences such as positive over
negative, forward over backwards, left-to-right over right-to-left, or top-to-bottom over
bottom-to-top. The following diagram illustrates the execution of the instruction.
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As a specific example, let us assume that the double accumulator contains 10E8,,, Index
Register Y contains 042D, and memory locations 042B,, and 042C,, contain 09,, and
5C,, respectively. Then, after the processor executes ADDD,— —Y the double
accumulator will contain 10E8,, + ((Y)—2):((Y)—1) = 10E8,, + (042B,,):(042C,,)
= 10E8,, + 095C,, = 1A44,,. Furthermore, Index Register Y will contain 042D, — 2
= 042B,,. Thus the instruction first updates Index Register Y and then adds the current
element to the double accumulator. The update by 2 is essential: decrement by 1 would
point Index Register Y to the least significant half of the current element.

INDIRECT WITH AUTOINCREMENT OR AUTODECREMENT

This addressing mode allows us to handle arrays of addresses. For example, we
have already described a table of /O device addresses in which an entry is the actual
address corresponding to a particular I/O device number. That is, entry 2 is the address
corresponding to I/0 device #2; by changing entry 2 (for instance, from a port that con-
trols a machine to a port that is connected to a video display) , we can change I/0 devices
and thus test the system, use the system as a remote terminal, or choose temporary or
hard-copy output without making any changes in the underlying program. Let us
assume that we want to fetch data from one device after another or test input devices
until we find one that has new data available. We can fetch data from the first input
device in a table INDEV with the sequence of instructions.

LDU # INDEV GET BASE ADDRESS OF INPUT DEVICE TABLE

LDA [, U++] GET DATA FROM DEVICE #0
After the processor executes these instructions, Accumulator A contains the data from
device 30 and Stack Pointer U points to the address corresponding to device #2. Thus
we can continue through the table of I/0 devices, incrementing the pointer by 2 after
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fetching data from a particular device. Obviously, we could equally well start two beyond
the end of the table and use autodecrementing by 2 to move through the table back-
wards.

Since an address always occupies two bytes of memory, incrementing or decre-
menting by 1 makes no sense; it would result in the processor picking up half of one
address and half of another. This mode is therefore not allowed with indirection, and the
assembler will give you an error message if you try to use it. The only valid options are:

1. Increment the base register by 2 after using it.
2. Decrement the base register by 2 before using it.

As an example, let us show how the processor executes the instruction
LDA [ ,U++]

This instruction loads Accumulator A from the address starting at the address in Stack
Pointer U. It also adds 2 to Stack Pointer U. Here Stack Pointer U points to an address;
that is, it tells the processor where the address is, not where the data is. The following
diagram illustrates the execution of the instruction:
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r ppaq
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A ppaq + 2
D s J—
X
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u (s]s) qq
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Indirect Indexed Addressing mmmm + 3
LDA [U++]
Autoincrement Register U

As a specific example, assume that Stack Pointer U contains 27EE,,, memory
address 27EE,, contains C0O,,, memory address 27EF, contains 07,,, and memory
address C007,, (the actual 1/0 port) contains 80,,. After the processor executes LDA
[LU+ +] Accumulator A will contain (((U)):((U)+1)) = ((27EE,):(27EF,,)) =
(C007,,) = 80,,. Furthermore, Stack Pointer U will contain 27EE,; + 2 = 27F0,,. Thus
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the instruction loads Accumulator A from an indirect address obtained from the table
and updates Stack Pointer U so it points to the next indirect address. Of course, this pro-
cess of picking up an indirect address from the table, loading the data from that
address, and updating the pointer takes many extra clock cycles (see Appendix B).
Note, however, that no extra bytes of program memory are needed, since no offset is
involved.

PROGRAM RELATIVE ADDRESSING FOR BRANCHES

Branch, Branch-on-Condition, and Branch-to-Subroutine instructions use only
program relative addressing in which the address value is the offset from the current
value of the program counter. Thus branches are specified by ‘‘how far from where we
are,”’ rather than by an actual destination address. This mode allows us to relocate an
entire program, since such a move does not change any relative addresses. Relative
branches are a key element in producing relocatable or position-independent code.
Furthermore, since most branches in programs are short, relative addressing allows
shorter addresses (usually eight bits), thus reducing memory usage.

The following illustration shows how the 6809 microprocessor executes relative
branch instructions. The value ppqq is the contents of the program counter after the
processor has fetched the entire branch instruction from memory. That instruction
includes an operation code (one or two bytes long) and an offset (one or two bytes
long).

Memory

Updated contents

of Program Counter = ppaq Operation Code 1

Operation Code: One or two bytes iong
Operation Code 2

aa

Offset (One or two bytes)
/ bb
+

insrtqri:::ion Destination if branch is not taken

ppaq + ; if branch is taken

The 6809 microprocessor has two forms of relative addressing: 8-bit offset and 16-bit
offset. In both forms, the value following the operation code specifies how many
memory locations to skip over from the end of the instruction. The offset is a twos com-
plement number, so the range for the 8-bit form is

—128 (=1000 0000, or 80,,) < offset < +127 (=0111 1111, or 7F,)
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Since the short relative branches themselves occupy two bytes of program
memory, the range from the start of the instruction is

—126 < offset < +129

We do not have to be concerned with this extra factor of 2 if we specify the actual
destination in the operand field. If, for example, we use the statement
BRA CHCNT
the assembler will figure how far away label CHCNT is (including the factor of 2) and
place that number in the offset. We will discuss calculating relative offsets in more detail
in Chapter 4.
As an example of how the processor executes relative branch instructions, con-

sider the instruction
BRA PLACEH

where PLACE is a nearby address. If the program counter contains mmmm originally,
the offset is the 8-bit twos complement form of PLACE — (mmmm + 2) = PLACE —
mmmm — 2. The next diagram illustrates the execution of the instruction. The 16-bit
offset form is similar, except that the offset occupies two bytes and the instructions
therefore occupy either three bytes (LBRA and LBSR) or four bytes (all long condi-
tional branches). The extra factor in the address calculation is then either 3 or 4, making
hand calculations even more awkward. As we mentioned above, the assembler will
perform the calculation for you if you specify the destination address as a label; you
will seldom need to calculate offsets by hand. The 16-bit offset provides access to any
location in memory, but is not commonly needed since few branches are long enough to
require its use. Another approach to providing relative addressing with branches is to
use the Jump or Jump-to-Subroutine instructions with the indexed addressing mode
thatinvolves an offset from the program counter. The non-indirect versions of these
instructions, however, take more time and memory than ordinary relative branches
and so are not used.

E F H N Z v C
A Program
D{ Memory
X 20 mmmm
Y - Offset mmmm + 1
U mmmm + 2
S
1
1
= by mm + offset
DP K mmmm + 2
PLACE + offset

Program Relative Addressing
BRA PLACE
Short Branch {Unconditional}
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As a specific example, assume that mmmm = C5Al,, and PLACE = CSBE.
The offset is CSBE,, — CS5A1l,, — 2 = 1D, — 2 = 1B,. After the processor executes
the instruction BRA PLACE, the contents of the program counter will be (initial PC) +
2 + offset = C5A1,, + 2 + 1B, = C5A3, + 1B, = C5BE,, = PLACE. Note that if
we move the entire program forward or backwards by a distance REL, the new offset is
(CSBE,; + REL) — (C5Al1,, + REL) — 2 = CSBE,, — C5Al,, — 2, the same as
before since the RELSs cancel out.

6809 INSTRUCTION SET

Table 3-5 lists the 6809’s instruction mnemonics, differentiating between those
that are also 6800 mnemonics and those that are new or have been modified. We will
discuss compatibility between the 6809 microprocessor and the 6800 microprocessor, as
well as compatibility between the 6809 and the 6801 microprocessors, in the next part of
this chapter. For a detailed description of the 6809 instruction set, see the last section
of this book. In Chapter 22, we discuss each instruction’s operation; refer to that
chapter when you need to understand how a particular instruction works. Appendix A
summarizes the available 6809 instructions, grouping them by function. This provides a
survey of the 6809’s capabilities, and will also be useful when you need a certain kind of
operation but are either unsure of the specific mnemonic or not yet familiar with what
instructions are available. The rest of the appendices serve as reference tables for
calculating program execution time and memory requirements, and for hand assembly
and disassembly; Appendix C also displays available addressing modes for each instruc-
tion.

Instructions often frighten microcomputer users who are new to programming.
Yet taken in isolation, the operations involved in the execution of a single instruction
are usually easy to follow. The purpose of the last section of this book is to isolate and
explain those operations. Furthermore, you need not attempt to understand all the
instructions at once. As you study each of the programs in this book you will learn
about the specific instructions involved.

Why are a microprocessor’s instructions referred to as an instruction ‘‘set?”’
Because the microprocessor designer selects the instruction complement with great
care; it must be easy to execute complex operations as a sequence of simple events, each
of which is represented by one instruction from a well-designed instruction “‘set.”

(X3

6800/6809 COMPATIBILITY

The 6809 microprocessor is an advanced version of the 6800 microprocessor,
produced by the same manufacturers. All assembly language programs written for
the 6800 microprocessor can also be assembled for the 6809 microprocessor. In fact,
object code produced for the 6800 microprocessor is very similar to that produced for
the 6809 microprocessor; in many cases, the processors have direct object code com-
patibility. The external support devices designed for use with the 6800 microprocessor
can all be used with the 6809 as well. Chapter 9 of An Introduction to Microcomputers:
Volume 2 discusses the hardware compatibility in more detail.
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{nstruction Source Instruction Source Instruction Source Instruction Source
Forms Forms Forms Forms
ABX BLS BLS DEC DECA OR ORA
ADC ADCA LBLS DECB ORB
ADCB BLT BLT DEC ORCC
ADD ADDA LBLT EOR EORA PSH PSHS1!
ADDB BMI BMI EORB PSHU
ADDD LBMI EXGR1 R22 PUL PULS12
AND ANDA BNE BNE INC INCA PULU
ANDB LBNE INCB ROL ROLA
ANDCC BPL BPL INC ROLB
ASL3 ASLA LBPL JMP ROL
ASLB BRA BRA JSR ROR®E RORA
ASL LBRA LD LDA10 RORB
ASR3. 6 ASRA BRN BRN LDB10 ROR
ASRB LBRN LDD RIT8
ASR BSR BSR LDS RTS
BCC BCC LBSR LOU sBC3 SBCA
LBCC BVC BVC LDX SBCB
BCS BCS LBVC LOY SEX
LBCS BVS BVS LEA LEAS ST STA10
BEQ BEQ LBVS LEAU STB10
LBEQ CLR CLRA LEAX STD
BGE BGE CLRB LEAY STS
LBGE CLR LSL3 LSLA STU
BGT BGT cMPp3 CMPA LSLB STX
LBGT CMPB LSL STY
BHI BHI CMPD LSR6 LSRA sus3 SUBA
LBHI CMPS LSRB suBsB
BHS BHS CMPU LSR SUBD
LBHS cMPX7 MUL4 swi9 SwWi
BIT BITA CMPY NEG3 NEGA SWI2
BITB COM COMA NEGB SWI3
BLE BLE COMB NEG SYNC
LBLE COM NOP TFR,R1,R22
BLO BRLO CWAI TSTS TSTA
LBLO DAA TSTB
TST
Notes:

1. Shading identifies additions or modifications to the 6800 instruction set. The unshaded instruc-

10.
1.
12.

tions are also 6800 instructions with the same operation codes except as noted below.

R1 and R2 may be any pair of 8-bit or 16-bit registers. The 8-bit registers are A, B, CC, and DP.
The 16-bit registers are D, X, Y, U, S, and PC.

The Half-Carry flag H is undefined after these instructions are executed.

This MUL affects the Zero flag, whereas 6801 M UL does not.

This instruction does not affect the Carry flag. On the 6800/6801/6802 it clears the C flag.
These do not affect the Overflow flag (V). On the 6800/6801/6802 they may.

This instruction correctly sets all flags. On the 6800/6802 it does not.

On the 6809, the Entire flag (E) is checked during RTI to determine how much to unstack — the
entire register complement or just the Condition Code Register and Return Address.

SWiI sets the F and | flags; SWI2 and SWI3 have no effect on F and |.
These instructions are implemented on the 6800 with slightly different mnemonics.
This instruction is implemented on the 6800 as PSH.

This instruction is implemented on 6800 as PUL.
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We will briefly describe and compare the 6809 and 6800 microprocessors with
regard to their registers, flags, addressing modes, and instruction sets. The processors
are similar, and the manufacturers clearly will encourage migration from the 6800 to the
6809. This description will help you see what problems you would encounter in going
from one CPU to the other.

REGISTERS

The 6800 register set is a subset of the 6809 register set. In addition to the 6800
registers — Condition Code, Accumulators A and B, Index Register X, and the Hard-
ware Stack Pointer — the 6809 has another index register (Y), another stack pointer
(User Stack Pointer or U register), and a direct page register. Also, the 6809 allows
references to the Double Accumulator D, which consists of Accumulator A and
Accumulator B, whereas the 6800 does not.

FLAGS

The 6800 and 6809 microprocessors have identical Sign, Zero, Overflow, Carry,
Half (or Auxiliary) Carry, and Interrupt Mask flags. The 6809 also has a Fast Inter-
rupt Mask flag (F) and an Entire flag (E) which are not implemented on the 6800,
since the 6800 has no Fast Interrupt Request input and always saves all of its registers in
response to an interrupt. Bit positions 6 and 7 in the 6800’s condition code register
always contain ones.

ADDRESSING MODES

The 6809 microprocessor has many more addressing modes than does the 6800.
The only indexed addressing mode that is implemented on the 6800 is the non-
indirect mode with an 8-bit unsigned offset from Index Register X. All other indexed
and indirect addressing modes are unique to the 6809. You should note that 6809
indexed instructions all require an extra (or post) byte that determines the addressing
mode. Thus an indexed instruction that required two bytes of code on a 6800
microprocessor will generally require three bytes on a 6809 microprocessor. However,
indexed addressing on the 6800 is most often used with an offset that is either zero or
less than 16; instructions with such small offsets can be implemented on the 6809
microprocessor using the special forms for zero offset or 5-bit signed offset, thus making
them again two bytes in length. You should also note that indexed offsets are signed in
the 6809 microprocessor (allowing them to be either positive or negative), whereas they
are unsigned in the 6800 microprocessor.

The direct addressing mode on the 6809 microprocessor differs from the direct
mode on the 6800 because the 6809 has a Direct Page register which provides the high-
order byte of the address. The 6800 microprocessor always sets the high-order byte of
the address to zero. Thus 6800 and 6809 direct addressing are the same only when the
6809’s Direct Page register contains zero. Compatibility is simplified by the fact that
hardware Reset clears the 6809 Direct Page register, so that it contains zero unless the
program explicitly changes it. Obviously, the 6809 direct mode is more powerful and
more general.
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INSTRUCTIONS

The 6800 instruction set is a subset of the 6809 instruction set. Many 6800 and
6809 instructions are identical (see Table 3-6). Some new 6809 instructions (see Table
3-7) are obvious additions to the 6800 set, required to handle the new 6809 registers.
Still other 6809 instructions are generalizations of 6800 instructions (see Table 3-8) or
entirely new (see Table 3-9).

Table 3-10 describes the implementation of 6800 instructions that no longer
exist on the 6809 microprocessor. Note that the 6809 assembler automatically trans-
lates these 6800 instructions into their 6809 equivalents. All these one-byte 6800
instructions require at least two bytes (and sometimes as many as four bytes) on the
6809. However, most of them are rarely used in 6800 programs. The only common 6800
instructions in Table 3-10 are PSH and PUL, which have been greatly generalized on the
6809 to handle its larger set of registers, and DEX and INX, which have become far less
important on the 6809 with the addition of autoincrementing and autodecrementing.

6800/6809 DIFFERENCES

You should note the following minor differences between the 6800 and 6809
instruction sets:

1. The 6809 regards Accumulators A and B as a Double Accumulator D, with A
as the high-order half. It therefore stacks and unstacks the accumulators
with B stacked first and removed last; this is the opposite order from that
implemented on the 6800 microprocessor.

2. The 6809’s hardware stack pointer contains the address of the last memory
location occupied by the stack, not the address of the next empty location as
in the 6800. Thus 6809 instructions that use the hardware stack pointer
always decrement it before storing data and increment it after loading data.
6800 instructions that use the stack pointer always decrement it after storing
data and increment it before loading data. Thus the hardware stack pointer on
the 6809 should be initialized to a value one larger than that used in a com-
parable 6800 program.

3. The 6800 instructions TSX (Transfer Stack Pointer to Index Register) and
TXS (Transfer Index Register to Stack Pointer) took account of the fact
that the 6800’s stack pointer contained the address one beyond the end of the
stack. This accounting involved an addition of 1 during TSX and a subtrac-
tion of 1 during TXS, thus moving to or from the last occupied address. The
6809 microprocessor does not require this awkward adjustment and
therefore does not implement it in instructions.

4. The 6809 TST instruction does not affect the Carry flag, whereas the 6800
TST instruction clears that flag.

5. The 6809 right shifts (ASR, LSR, ROR) do not affect the Overflow flag,
whereas the 6800 right shifts do.

6. The 6809 Half-Carry flag is undefined after subtraction, comparison, and
related instructions (NEG), whereas the 6800 Half-Carry flag is cleared after
such instructions.
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Table 3-6. Identical 6800/6809 Instructions

6800 Mnemonic 6809 Mnemonic Notes
ADCA/ADCB ADCA/ADCB
ADDA/ADDB ADDA/ADDB
ANDA/ANDB ANDA/ANDB
ASL ASL (also LSL) 1
ASR ASR 1
BCC BCC (also BHS)
BCS BCS (also BLO)
BEQ BEQ
BGE BGE
BGT BGT
BHI BHI
BIT BIT
BLE BLE
BLS BLS
BLT BLT
BMI BMI
BNE BNE
BPL BPL
BRA BRA
BSR BSR
BVC BVvC
BVS BVS
CLR CLR 1
CMPA/CMPB CMPA/CMPB
COM COM 1
CPX CMPX 3
DAA DAA
DEC DEC 1
EOR EOR
INC INC 1
JMP JMP 1
JSR JSR
LDAA/LDAB LDA/LDB
LDS LDS 2
LDX LDX 2
LSR LSR 1,3
NEG NEG 1
NOP NOP 2
ORAA/ORAB ORA/ORB
PSH PSHS 2, 4
PUL PULS 2,4
ROL ROL 1
ROR ROR 1,3
RTI RTI
RTS RTS
SBC SBC
STAA/STAB STA/STAB
STS STS 2
STX STX 2
SUBA/SUBB SUBA/SUBB
Swi Swi
TST TST 1.3
Note the minor differences in some of the mnemonics — namely, an extra A in LDAA, LDAB, ORAA,
ORAB, STAA, and STAB on the 6800, an extra S in PSHS and PULS on the 6809, and a slightly
different version of Compare Index Register X {CMPX on 6809, CPX on 6800).
Notes:
1. Direct addressing is available with this instruction on the 6809 only.
2. 68089 instruction has a different object code.
3. 68089 version has slightly different effects on flags.
4. 6809 Stack Pointer manipulation differs from that of the 6800. See the text for further information.
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7. The 6809 sets all flags properly after executing CMPX and similar instruc-
tions, whereas the 6800 sets only the Z flag properly after executing its CPX
instruction.

Clearly these differences will not affect most programs, unless they perform many
stack manipulations. There are slight differences in operations involving the Condition
Code register, since the 6800 always has ones in the two most significant bits of that
register, whereas the 6809 uses those bits for the Entire flag and the Fast Interrupt Mask
bit.

Table 3-7. 6809 Instruction Set Extensions to Handle Additional Registers

6809 Operation Comparable 6800 Operation
CMPY CPX
LDU LDS
LDY LDX
PSHU PSH
PULU PUL
STU STS
STY STX

Table 3-8. 6809 Generalizations of 6800 Instructions

6809 Operation Comparable 6800 Operations
ADDD ADDA, ADDB
ANDCC CLC, CLI, CLV
CMPD CMPA, CMPB
CMPS CPX
CMPU CPX
CWAI WAI
EXG TAB, TAP, TBA, TPA, TSX, TXS
LBCC (also LBHS) BCC
LBCS (also LBLO) BCS
LBEQ BEQ
LBGE BGE
LBGT BGT
LBHI BHI
LBLE BLE
LBLS BLS
LBLT BLT
LBMI BMI
LBNE BNE
LBPL BPL
LBRA BRA
LBSR BSR
LBVC BVC
LBVS BVS
LDD LDAA, LDAB
ORCC SEC, SEI, SEV
STD STAA, STAB
SUBD SUBA, SUBS
SWi2 SW
SWiI3 SwW
TFR TAB, TAP, TBA, TPA, TSX, TXS
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Table 3-9. New 6809 Instructions (Without 6800 Equivalents)

Instruction Mnemonic

ABX (Also implemented on 6801 microprocessor)
BRN

LBRN

LEA

SEX

SYNC (but similar to 6800 WAI)

Table 3-10. 6809 Implementations of Missing 6800 Instructions

6800 Instruction 6809 Equivalent

ABA PSHS B; ADDA ,S+

CBA PSHS B; CMPA ,S+

CLC ANDCC #% 11111110

CL! ANDCC #% 11101111

CLV ANDCC #% 11111101

DES LEAS -1,S

DEX LEAX ~1,X

INS LEAS 1,S

INX LEAX 1,X

PSHA PSHS A *

PSHB PSHS B *

PULA PULS A"

PULB PULS B *

SBA PSHS B; SUBA ,S+

SEC ORCC 3% 00000001

SEI ORCC #% 00010000

SEV ORCC #% 00000010

TAB TFR A,B; TSTA

TAP TFR A.CC

TBA TFR B,A; TSTA

TPA TFR CC.A

TSX TFR S, X

TXS TFR X,S

WAI CWA! #$FF or CWAI #3$EF to enable
regular interrupt {replaces CLI, WALI)

® 6809 Stack Pointer manipulation differs from that of the 6800. See the text for further information.

6801/6809 COMPATIBILITY

The 6801 microprocessor is a slightly improved version of the 6800
microprocessor that is manufactured by some of the same companies. The 6801
instruction set is almost the same as the 6800’s except that the 6801 has a multiplication
instruction and a ABX instruction (as on the 6809), as well as 16-bit shifts for the dou-
ble accumulator that are not implemented on either the 6800 or the 6809. The 6801, like
the 6809, does set the flags properly after CMPX (CPX). The only added difference is
that the 6801 multiply instruction (MUL) does not affect the Zero flag, whereas the
6809 MUL instruction does.
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6502/6809 COMPATIBILITY

The 6809 microprocessor is also similar to the 6502 and related
microprocessors, which are produced by a different group of manufacturers. For more
details on 6502 compatibility, see the discussions in Chapters 9 and 10 of An Introduction
to Microcomputers: Volume 2 and in Chapter 3 of 6502 Assembly Language Programming.

MOTOROLA 6809 ASSEMBLER CONVENTIONS

The standard 6809 assembler is available from 6809 manufacturers and on many
major time-sharing networks; it is also included in most development systems. Cross-
assembler versions are available for most large computers and many minicomputers.

ASSEMBLER FIELD DELIMITERS

The assembly language instructions have the standard field structure (see
Table 2-1). The required delimiters are:

1.

A space after a label. All labels must start in column 1 and all statements that
are not labeled must start with at least one space.

A space after the operation code. The accumulator, double accumulator, or
index register/stack pointer designation can be added to the operation code
without a space; for instance, ADDA for ‘“Add to Accumulator A,”” STD for
*‘Store Double Accumulator,”” and PSHU for ““Push Registers onto User
Stack.”

A comma between operands in the address field — that is, between an offset
value or register and a base register (X, Y, U, S, or PC). For example, ADDA
$35,X means that an indexed instruction is to be generated with an offset of
35,, from the value in Index Register X. A zero offset can be omitted unless
the base register is the program counter.

A comma in front of the symbols for autoincrementing or autodecrement-
ing. Forexample, LDA ,X+ tells the assembler to generate an indexed LDA
instruction which autoincrements Index Register X by 1. Similarly, ADDB
,— — U tells the assembler to generate an indexed ADDB instruction which
autodecrements Stack Pointer U by 2. This comma is similar to the one be-
tween operands (item 3 above), although no offset is allowed with autoincre-
menting or autodecrementing.

Square brackets — [ | — around addresses to be used indirectly.

A space before a comment that appears on the same line as an instruction,
and an asterisk before an entire line of comments.

Typical 6809 assembly language instructions are:

START LDA (1000, X1 CGET LENGTH
LDX TEMPR
WAT
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LABELS

Most versions of the assembler allow only six characters in labels and truncate
longer labels. The first character must be a letter or the special character period (.).
The assembler reserves certain names to refer to CPU registers; these names are A,
B, CC, D, DP, PC, PCR (program counter relative), S, U, X, and Y. The use of opera-
tion mnemonics as labels is often not allowed and is not good programming practice
anyway, because of the obvious confusion.

ASSEMBLER DIRECTIVES

The assembler has the following explicit pseudo-operations:

END End of Source Program

EQU Equate or Define Symbolic Name

FCB Form Constant Byte or Enter Byte-Length Data

FCC Form Constant Character String or Enter Character Data
FDB Form Double Byte Constant or Enter Word-Length Data
ORG Set (Location Counter to) Origin

RMB Reserve Memory Bytes or Allocate Storage

SETDP Set Direct Page Pseudo-Register

FCB, FCC, and FDB

FCB, FCC, and FDB are the data directives used to place constant data in pro-
gram memory — data such as tables, messages, and numerical factors — that is necess-
ary for the execution of the program but does not consist of instructions. FCB is used
for byte-length (8-bit) data, FCC for 7-bit ASCII characters (MSB of each byte is
zero), and FDB for word-length (16-bit) data or addresses. Note that FDB stores
word-length data in the standard 6800-6809 format with the high-order bits in the first
byte and the low-order bits in the following byte.

Examples:
ADDR FDB $31659

places the numbers 31,, and 65,, in the next two bytes of program memory and assigns
the name ADDR to the address of the first byte; thus (ADDR) = 31,,and (ADDR +
1) =65.

TCONV FCB 32
places the number 32 (20,,) in the next byte of program memory and assigns the name
TCONYV to the address of that byte.

ERROR FccC / ERROR/
places the 7-bit ASCII character representations of E, R, R, O, and R (hexadecimal 45,
52, 52, 4F, and 52) in the next five bytes of program memory and assigns the name
ERROR to the address of the first byte.

Any single character (not just /) may be used to surround the ASCII text. An

alternative is to specify the number of characters in the operand field. For example:

ERROR FCC 5, ERROR
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We will always use the first form shown (with the / character) for consistency.
OPERS FDB FADD, FSUB, FMUL, FDIV
places the addresses FADD, FSUB, FMUL, and FDIV in the next eight bytes of

memory and assigns the name OPERS to the address of the first byte. All addresses (and
16-bit data items) are stored with their high-order bits first.

RMB

RMB is the Reserve directive used to assign locations in memory for specific pur-
poses; it allocates a specified number of bytes.

EQU

EQU is the Equate or Define directive used to define names.

ORG

ORG is the standard Origin directive. 6809 assembly language programs usually
have several origins, which are used for the following purposes:

1. To specify the Reset, interrupt service, and software interrupt addresses.
These addresses must be placed in the highest memory addresses in the
system (FFF2,, through FFFF,().

2. To specify the starting addresses of the actual Reset, interrupt service, and
software interrupt routines. The routines themselves may be placed anywhere
in memory.

To specify the starting address of the main program.

To specify the starting address of subroutines.

To define areas of memory for data storage.

To define areas of memory for the Hardware and User Stacks.
To specify addresses used for I/0 ports and special functions.

A -

Examples:

RESET EQU $3800
ORG RESET

ORG SFFFE
FDB RESET

Note: $ means 'hexadecimal’.

This sequence places the Reset (or startup) instruction sequence in memory beginning
at address 3800,,, and places that address in the memory locations (addresses FFFE
and FFFF () from which the 6809 CPU retrieves the Reset address.

MATIN EQU scone
ORG  MAIN

This sequence specifies that the instructions following it are to be placed in memory
beginning at address C000,.
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END

END simply marks the end of the assembly language program.

SETDP

SETDP specifies which page of memory is to be treated as the direct page for
subsequent assembly. After a SETDP directive, the assembler will generate instruc-
tions using the direct addressing mode whenever an address is located on the specified
page. Ifthe programmer does not specify a direct page with a SETDP directive, the direct
page is assumed to be page 0 (the high-order byte of every address is zero) for 6800
compatibility. Note that SETDP does not generate the object code required to load the
Direct Page register; the programmer must place the required instructions (such as
LDA #DPAGE; TFR A,DP) in the source program.

Labels with Assembler Directives

The rules and recommendations for labels with 6809 pseudo-operations are as
follows:

1. Simple equates, such as MAIN EQU $C000, require labels since their purpose
is to define the meaning of those labels.

2. FCB, FCC, FDB, and RMB pseudo-operations usually have labels.

3. ORG, END, SETDP, and other housekeeping pseudo-operations should not
have labels, since the meanings of such labels are unclear.

ADDRESSES

The Motorola 6809 Assembler allows entries in the address field in any of the
following forms:

1. Decimal (the default case)

Example: 1247

A & symbol in front of the number is optional.
2. Hexadecimal (must start with $ or end with H)

le:
Example SCE00 er HCENOH

Note that you must place a zero in front of hexadecimal numbers that begin
with a letter (A through F), so that the assembler can distinguish them from
names, if you are using the format with a terminating H. We will use the *‘$”’
symbol to maintain compatibility with the 6800 assembler.

3. Octal (must start with @ or end with the letter O or Q)

Example: 1247 or 12470

We will use the ‘@’ format to maintain compatibility with the 6800 assem-
bler.
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Binary (must start with % or end with B)

Example: 300101 or 00101B

We will use the ““%’’ symbol to maintain compatibility with the 6800 assem-
bler.

ASCII (single character preceded by an apostrophe)

Example: 'y
As an offset from the current value of the location counter (*).

Example: *47
Relative to the current value of the location counter (DEST, PCR)

Example: LDA TABLE,PCR

The assembler will generate an indexed LDA instruction using the mode
based on a constant offset from the program counter. The value of the offset
will be the relative distance between TABLE and the current value of the
location counter. Note the difference between LDA TABLE,PCR and LDA
TABLE,PC: the latter generates an indexed LDA instruction with TABLE as
the value of the offset to be added to the program counter. The assembler au-
tomatically calculates the relative distance to the destination when the pro-
grammer uses the PCR notation.

Distinguishing Addressing Modes

The various 6809 addressing modes are distinguished as follows:

1.

Direct and Extended are the default modes. The assembler chooses direct
addressing if the address is on the page specified as the direct page. Remem-
ber that the direct page is page 0 unless a SETDP directive specifies otherwise.
You can force the asssembler to use direct addressing by preceding the
address with the ‘* <’ character and to use extended addressing by preceding
the address with the >’ character.

The symbol 3 precedes the data for immediate mode.

OFFSET,R specifies indexed non-indirect modes with offsets. R must be
one of the registers PC, S, U, X, or Y. You can force an 8-bit offset mode by
preceding the operand with the ‘“<’’ character and a 16-bit offset mode by
preceding the operand with the *“>’’ character. The assembler will automat-
ically choose the zero offset, 5-bit offset, or 8-bit offset mode if the mode is
available and the offset is the correct size.

The form DEST,PCR specifies the indexed mode that adds a constant
offset to the program counter, and furthermore directs the assembler to
calculate the offset as the relative distance to the address labeled DEST.
Square brackets enclose addresses to be used indirectly.

The symbol + or + + after the register name (S, U, X, or Y) specifies
autoincrementing, and — or — — before the register name (S, U, X, or Y)
specifies autodecrementing.
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Assembler Arithmetic and Logical Expressions

The assembler also allows expressions in the address field. These expressions
consist of numbers and names separated by the arithmetic operators +, —, *
(multiplication), or / (integer division), or the following special two-character opera-
tors:

N — exponentiation < — shift left

1. — logical AND 1> — shift right
I+ — logical (inclusive) OR L — rotate left
IX — logical Exclusive OR R — rotate right

The precedence of the various operators is as follows:

Expressions within parentheses are evaluated first.

2. Multiplication, division, and the two-character operators have precedence
over addition and subtraction.

3. Operators with the same precedence are evaluated from left to right.

All intermediate results are truncated to 16-bit integers and all fractional
results are dropped.

We recommend that you avoid expressions within address fields whenever
possible, since there are no standards for calculating such addresses. If you must com-
pute an address, comment any unclear expressions and be sure that the evaluation of
the expressions never produces a result which is too large for its ultimate use.

OTHER ASSEMBLER FEATURES

Most 6809 assemblers have additional features, including both macro and condi-
tional assembly capabilities. You should consult your particular assembler’s manual for
a description of how these features are implemented. We will not use any of these
features or refer to them again, although they can be quite convenient in many applica-
tions.
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Introductory Problems

The only way to learn assembly language programming is through experience.
The next six chapters of this book contain examples of simple programs that perform
actual microprocessor tasks. You should read each example carefully and try to
execute the program on a 6809-based microcomputer. Finally, you should work the
problems at the end of each chapter and run the resulting programs on your
microcomputer to ensure that you understand the material.

GENERAL FORMAT OF EXAMPLES

Each program example contains the following parts:

A title that describes the problem

A statement of purpose that describes the specific tasks the program performs
and the memory locations it uses

A sample problem with data and results

A flowchart if the program logic is complex

The source program or assembly language listing

The object program or hexadecimal machine language listing

Explanatory notes that discuss the instructions and methods used in the pro-
gram

You should use the examples as guides for solving the problems at the end of each
chapter. Be sure to run your solutions on a 6809-based microcomputer to ensure that
they work correctly.



Program Listing Format

We reproduce Program 4-1 below to illustrate the format for program listings
which we will use in this book. This is a common format for assembler output; it
shows the object code as well as the source code.

Memory Object

Address Code Source Program

—N— —

0000 96 40 LDA 540 GET DATA

0002 97 41 STA $41 TRANSFER TO NEW LOCATION
0004 3F SWI

The 4-digit number starting in the leftmost column of each line is the hexadecimal
address of the first byte of object code generated from the line of source code. For
example, in the second line 0002 is the address of the object code byte for STA (base
page direct addressing form). The digits following the address are the hexadecimal
object code for the instruction. Thus, in the second line, 97 41 is the object code for STA
$41, and the byte 97 is in location 0002. The byte 41 is in location 0003; we infer this
from the fact that it follows the byte in address 0002. The letters, numbers, and words
to the right of the object code are the assembly language fields which we described in
Chapter 2. These fields comprise the source program.

If you wish to assemble these examples on your microcomputer, key in the
source statements only; do not enter the addresses or object codes, since the assembler
program will generate them. You will also need to enter some assembler directives —
for example, to tell the assembler where to start program addresses. We may not show
all the necessary directives; the ones you use will be determined by your assembler and
the requirements of your microcomputer’s operating system.

If you wish to execute the program examples without assembling source code,
you can key the object code into the specified addresses. Before you do this, however,
make sure that you will not be trying to load areas of memory reserved for the monitor
or operating system. To avoid such problems, you may need to change addresses before
you load the programs. As we will discuss in the seventh guideline below, you may also
need to change the instruction at the end of the program.

Guidelines for Examples

We have used the following guidelines in constructing the examples:
Standard 6809 assembler notation as summarized in Chapter 3

Use of the clearest possible forms for expressing data and addresses. We use
hexadecimal numbers for memory addresses, instruction codes, and binary-
coded decimal (BCD) data, decimal for numeric constants; binary for logical
masks; and ASCII (American Standard Code for Information Interchange) for
characters

Emphasis on frequently used instructions and common programming tech-
niques

Drawing of problems from actual microprocessor applications in com-
munications, instrumentation, computers and peripherals, business equip-
ment, industrial and process control, and military systems

Extensive commenting for instructional purposes, often more than we would
typically include in actual programs




+ Emphasis on simple, clear structure, while still making programs as efficient
as possible within this guideline. The notes often describe more efficient pro-
cedures

+ Use of a standard set of memory addresses. Each program starts in memory
location 0000,,, uses memory addresses starting at 0040, for temporary data
storage, and ends with the SWIJ (Software Interrupt) instruction. If your
microcomputer has no monitor and no interrupts, you may prefer to end pro-
grams with an endless loop instruction such as

HERE BRA HERE

Some 6809-based microcomputers require a JMP or JSR instruction with a
specific destination address to return control to the monitor. You should con-
sult the User’s Manual for your microcomputer to determine the required
memory addresses and terminating instruction for your particular system.

= Use of base page direct memory addressing. This makes the object code pro-
gram even shorter and therefore easier to key into memory for testing

Trying the Examples

To test an example program on your microcomputer system, first place the
object program in memory. Your assembler program may do this automatically, or it
may create an object code file which a separate loader program must then place in
memory. Many of the example programs are so short that you can bypass the assembler
and simply key the object code into memory using your monitor facility or front panel.
Be sure to make any changes your system requires before entering the code; as we men-
tioned earlier, you may have to change addresses in the program or the terminating
instruction.

Once the program is in memory, put the test data in the appropriate locations.
Then run the program. After the program terminates, examine the result locations.
To test different sets of data, simply change the appropriate data locations before run-
ning the program again.

GUIDELINES FOR SOLVING PROBLEMS

Use the following guidelines in solving the problems at the end of each chapter.

1. Comment each program so that others can understand it. The comments
may be brief and ungrammatical; they should explain the purpose of an
instruction or a section of the program. Comments should not describe the
operation of instructions; that description is available in manuals. You do not
have to comment each statement or explain the obvious. You may follow the
format of the examples but provide less detail.

2. Emphasize clarity, simplicity, and good structure in programs. While pro-
grams should be efficient, do not worry about saving a single byte of program
memory or a few microseconds.

3. Make programs reasonably general. Do not confuse parameters (such as the
number of elements in an array) with fixed constants (such as @ or ASCJI C).

4. Load initial values for parameters from the memory area assigned for tem-



porary storage. Remember that microprocessor applications programs will
often execute from ROM or from protected RAM, so you will not be able to
vary parameters that are assigned values in the program. The more
parameters you can vary, the more likely the program is to be useful in a wide
range of tasks.

S. Use assembler notation as shown in the examples and defined in Chapter 3.

6. Use hexadecimal notation for addresses. Use the clearest possible form for
data.

7. If your microcomputer allows it, start all programs in memory address
0000 and use memory addresses starting with 0040,, for data and tempor-
ary storage. Otherwise, establish equivalent addresses for your microcom-
puter and use them consistently. Again, consult your user’s manual.

8. Use meaningful names for labels and variables — for example, SUM or
CHECK rather than X, Y, or Z.

9. Execute each program on your microcomputer. This is ultimately the only
way to verify that the program functions correctly. We have provided sample
data with each problem, but be sure that the program works for all special
cases.

FURTHER PROGRAMMING TIPS

We will now summarize some useful information that will help you in writing your
first programs.

Accumulator Operations

Almost all processing instructions (for example, Add, Subtract, AND, OR) use
the contents of an accumulator as one operand and place the result back in the same
accumulator. In most cases, you will load the initial data into an accumulator with LDA
or LDB. You will then store the result (from the same accumulator) with STA or STB.

The Direct Page (Base Page)

You can place data and addresses that you plan to use frequently on the direct
(base) page — that is, the page that the processor can access using the Direct Page
register. You can then utilize the short direct addressing mode, using one-byte
addresses, to reach that data. We assume in our examples that the direct page is page
zero, although you can change it easily enough. Remember, however, that the processor
initializes the Direct Page register to zero on machine reset, and the assembler assumes
the direct page to be page zero unless a SETDP pseudo-operation changes this assump-
tion explicitly.

6809 direct page addressing is a powerful programming tool. Instruction forms
with this addressing mode have shorter object codes and execute faster than those using
other memory addressing modes, and you can place the direct page anywhere in
memory (along 256-byte boundaries). However, there are disadvantages to using the
direct page. Direct page addressing is a type of absolute addressing; thus programs
which use it are limited since the addresses are fixed in the object code. Furthermore,
changing the direct page register in a program introduces a new source of potential



errors. The more complex the program or system, the more likely it is that program
execution might unexpectedly branch or return to a sequence that assumes the wrong
direct page. The 6809 designers intended the direct page to be a tool for program
optimization and operating system organization, and discourage its casual use in applica-
tions programs. (See the References section of Chapter 3 for further information.)

Memory Operations

Some instructions — shifts, clear, increment (add 1), decrement (subtract 1),
and ones or twos complement — can act directly on data in memory. Such instructions
allow you to bypass the user registers, but each executes more slowly than the equiva-
lent instruction that acts on a register. A memory operation is slower because the CPU
must load the data into a temporary register, perform the operation, and then store the
result back into memory. Therefore a sequence of operations on one memory location
will execute more slowly than the sequence which operates on the same data in a
register, even though the latter sequence must be two instructions (a load register and a
store back to memory) longer. Of course, for a single operation the one instruction that
operates directly on memory executes faster than the three instructions (load, operate,
store) required to obtain the same result through a register operation. Thus, operating
directly on memory is slower than register operation unless the register load and
store overhead eliminates the time savings resulting from register use.






4

Beginning Programs

This chapter contains some very elementary programs. They will introduce
some fundamental features of the 6809. In addition, these programs demonstrate some
primitive tasks that are common to assembly language programs for many different
applications.

PROGRAM EXAMPLES

4-1. 8-BIT DATA TRANSFER

Purpose: Move the contents of memory location 0040 to memory location 0041.

Sample Problem:

(0040) = BA
Result: (0041} = BA
Program 4-1:
0000 96 40 LDA 540 GET DATA
06002 97 41 STA $a1 TRANSFER TO NEW [LOCATION
0004 3F SWI

LDA (Load Accumulator A) and STA (Store Accumulator A) both need an
address to determine the memory location that the processor will use in loading or stor-
ing the data. In the example, we have used addresses on the direct page (or base page).
Remember that we are assuming the Direct Page register contains zero, so all addresses




4-2 6809 Assembly Language Programming

with zeros in their eight most significant bits are on the direct page. Therefore, we can
use the direct (or base page) forms of LDA and STA in which the instructions need only
specify the eight least significant bits of the memory address in the byte following the
operation code. We can omit the leading zeros just as we do in everyday conversation
(e.g., we say ‘‘sixty cents’’ rather than ‘‘zero dollars and sixty cents’). However,
remember that the addresses are really 0040, and 0041 .

Before you execute the example program, you will have to load the data into
memory location 0040,,. After you execute the program, you can see the result in
memory location 0041, (orin Accumulator A — why?).

We use SWI (Software Interrupt) to end all examples and return control to the
monitor. You may have to replace this instruction with whatever your microcomputer
requires.

4-2. 8-BIT ADDITION

Purpose: Add the contents of memory locations 0040 and 0041, and place the result in
memory location 0042.

Sample Problem:

{0040) 38
(0041) 2B
Resuit: (0042) 63
Program 4-2:

0000 96 40 LDA $40 GET FIRST OPERAND
0002 98B 41 ADDA S41 ADD SECOND OPERAND
0004 97 42 STA $42 STORE RESULT
0006 3F SWT

This program uses the direct (base page) forms of LDA, ADDA, and STA, since
we have placed all the addresses on the direct page. We will use direct page addressing
throughout this book, in order to make the example programs shorter and thus easier to
key into memory by hand.

ADDA affects the Carry flag, but LDA and STA do not. Only arithmetic and shift
instructions affect the Carry; logical and transfer instructions do not.

LDA and ADDA do not affect the contents of memory, but they do affect the
contents of Accumulator A. On the other hand, STA changes the contents of the
addressed memory location, but does not affect the contents of Accumulator A.

Before you execute this example program, you will have to load the two operands
into memory locations 0040, and 0041 .. After you execute the program, you can see
the result in memory location 0042, .. In a real application, some previous section of the
program would store the data in memory and a subsequent section would use the result.

4-3. SHIFT LEFT 1 BIT

Purpose: Shift the contents of memory location 0040 left one bit and place the result in
memory location 0041. Clear bit position 0.

Sample Problem:
(0040}

Result: (0041)

6F=0110 1111,
DE=1101 1110,

It
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Program 4-3:
0000 D6 40 LDB $40 GET DATA
0002 58 ASLB SHIFT LEFT
0003 D7 41 STB $41 STORE RESULT
0005 3F SWI

Unlike the two previous programs, this one uses Accumulator B. There is no com-
pelling reason for these preferences; we could use Accumulator A in this program, and
we could use Accumulator B in either of the previous programs. Accumulators A and B
are virtually interchangeable; most instructions can use either one. We will note a few
differences in later chapters.

ASLB shifts Accumulator B left one bit and clears the least significant bit position
(bit 0). The previous contents of bit position 7 go into the Carry flag. The result (includ-
ing the Carry flag) is twice the original data (why?).

We could also shift the contents of memory location 0040 left one bit with the
instruction ASL $40 and then move the result to memory location 0041. However, this
method would change the contents of memory location 0040 as well as the contents of
memory location 0041. How would you change the program to operate on a memory
location without changing the contents of location 0040?

Compare the bit patterns for instructions that use Accumulator A with those that
use Accumulator B. How do the bit patterns differ?' How does the processor know
whether to use Accumulator A or Accumulator B? Remember that two groups of
instructions use an accumulator: single-operand instructions such as shifts, clear, incre-
ment, and decrement; and double-operand instructions such as ADD, AND, and SUB.

4-4, MASK OFF MOST SIGNIFICANT FOUR BITS

Purpose: Place the least significant four bits of memory location 0040 in the least signifi-
cant four bits of memory location 0041. Clear the most significant four bits of
memory location 0041.

Sample Problem:

(0040) = 3D=0011 1101,
Result: (0041) = OD=0000 1101,
Program 4-4:
0000 96 40 LDA $40 GET DATA
0002 84  OF ANDA  #300001111 MASK OUT FOUR MSB'S
0004 97 41 STA $41 STORE RESULT
0006 3F SWI

The symbol # identifies an immediate operand, and % means binary constant in
standard 6809 assembler notation.

ANDA #%00001111 logically ANDs the contents of Accumulator A with the bi-
nary number 00001111 (OF]()), not the contents of memory location 000F. Immediate
addressing (indicated by # in the operand field) means that the instruction contains the
actual data, not its address.

We have written the mask (00001111) in binary to make its purpose clearer to the
reader. Binary masks are easier to understand than hexadecimal ones since the
microprocessor performs logical operations bit-by-bit rather than on digits or bytes.
The result, of course, does not depend on the programming notation. You should use
hexadecimal notation for long masks whenever the binary versions become cumber-
some. The comments should then explain the purpose of the masking operation.
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A logical AND instruction may be used to clear bits that are not meaningful.
For example, the four least significant bits of the data could be an input from a ten-posi-
tion switch or an output to a numeric display. Remember that logically ANDing a bit
with ‘0’ always produces a zero result, while logically ANDing a bit with ‘1’ does not
change its value.

4-5. CLEAR A MEMORY LOCATION

Purpose: Clear memory location 0040; that is, reset all the bits in location 0040 to zeros.

Program 4-5:
0000 OF 40 CLR $40 CLEAR MEMORY LOCATION 0040
0002 3F SWI

The CLR instruction can act directly on a memory location, without the need for a
user register. Of course, the processor does not really clear the memory location
directly; instead, it generates a zerointernally (using a register that the programmer can-
not access) and writes it into the specified memory location.

CLR always affects the status flags in the same way: it resets the Carry, Sign
(Negative), and Overflow flags, and sets the Zero flag.

The 6809 instruction set treats zero as a special number; no other value can be
loaded into a memory location as easily.

4-6. BYTE DISASSEMBLY

Purpose: Divide the contents of memory location 0040 into two 4-bit sections (some-
times called ‘‘nibbles” or ‘‘nybbles’’) and place the sections in the low-order
four bits of memory locations 0041 and 0042. Place the four most significant
bits of 0040 in 0041 and the four least significant bits of 0040 in 0042. Clear
the four most significant bits of both 0041 and 0042.

Sample Problem:

(0040) 3F
Result: (0041) 03
(0042) OF
Program 4-6:

2000 96 40 LDA $S40 GET DATA
0062 94 OF ANDA 4300001111 MASK OFF MSB'S
0004 97 a2 3ITA $42 STORE LSB'S
0006 96 40 I.DA 540 RELOAD DATA
00n8 44 LSRA SHIFT MSB'S TO LEAST
009 44 LSRA SIGNIFICANT POSITIONS
00N 44 LSRA AND CLEAR OTHER
0005 44 LSRA POSITIONS
nNo0C 97 41 STA $41 STORE MSB'S
N00L 3F SWI

Each execution of LSR shifts an accumulator or memory location right one posi-
tion, so four LSRs are required to shift four positions. LSR always clears the most sig-
nificant bit of the result (a so-called ‘‘logical shift’’), so four LSR As clear the four most
significant bits of Accumulator A.

Rewrite the program so that it saves a copy of the data in Accumulator B rather
than loading it twice. Use the instruction TFR A,B. This instruction moves the contents
of A to B without changing A. Which version do you prefer, and why?
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The monitor program in your microcomputer must contain a routine similar to
this example if it prints or displays the contents of memory locations in hexadecimal.
The outputdevice must receive the two hexadecimal digits separately in order to print
or display them separately.

4-7. FIND LARGER OF TWO NUMBERS

Purpose: Place the larger of the contents of memory locations 0040 and 0041 in memory
location 0042. Assume that memory locations 0040 and 0041 contain
unsigned binary numbers.

Sample Problems:

a. (0040) 3F
{0041) 28
Result: (0042) = 3F
b. (0040) 75
(0041) A8
Result: (0042) A8
Program 4-7:
0000 96 40 LDA $40 GET FIRST OPERAND
0002 91 11 CMPA  $41 IS SECOND OPERAND LARGER?
0004 24 02 BHS STRES
o0& 96 4l LDA $41 YES,GET SECOND OPERAND
n00s 97 42 STRES STA $42 STORE LARGER OPERAND
0n00A 3F SWI

The Compare Instruction and Status Flags

CMPA $41 subtracts the contents of memory location 0041 from the contents of
Accumulator A, but does not save the result anywhere. All the CMPA instruction does
is set the flags for branching; it leaves the value in Accumulator A unchanged, so that
value can be used for later comparisons or other operations.

CMPA affects the flags as follows:

I. TheCarry flag (C) is set to 1 if the unsigned subtraction requires a borrow and
to 0 if it does not.

2. The Zero flag (Z) is set to 1 if the resuit of the subtraction is zero and to 0 if it
is not.

3. The Sign flag (N) takes the value of the most significant bit of the result of the
subtraction.

4. The Overflow flag (V) is set to 1 if the subtraction causes twos complement
overflow and to 0 if it does not.

The following cases are particularly important since they are often used for
branching:

1. Z = 1ifthe operands are equal; Z = 0if the operands are not equal. Thus you
can use BEQ or BNE after a CMP instruction to check for equality.

2. C = 1 if the contents of the memory location are larger (in the unsigned
sense) than the contents of the accumulator; C = 0 if the contents of the
memory location are smaller than or equal to the contents of the accumulator.
Remember that CMPA calculates (A) — (M), where M is the selected
memory location. A borrow is necessary if (M) is larger.
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Thus you can use BLO, BHI, BLS, or BHS after a CMP instruction to compare
the magnitude of unsigned numbers. There are four branches so that you can put the
equality case on either side; that is, the options are:

a. (A) > (M) BHI, branch if (A) is higher (greater than (M)).

b. (A) > (M) BHS (BCC), branch if (A) is higher or same (greater than or equal
to (M)).

c. (A) < (M) BLS, branch if (A) is lower or same (less than or equal to (M)).

d. (A) < (M) BLO (BCS), branch if (A) is lower (less than (M)).

Calculating Relative Offsets

All 6809 conditional branch instructions use relative addressing; in this mode,
the destination is specified by how far it is from the current instruction. In the short
form, the second byte is an 8-bit twos complement number with a range of —128 (1000
0000,) to +127 (0111 1111,). The processor adds this number to the program counter
to calculate the destination; the result is

NEW PC = OLD PC + OFFSET + 2

where OLD PC is the original value of the program counter and the extra 2 comes from
the two bytes occupied by the branch instruction itself. Rearranging, we can calculate
the offset from the equation

OFFSET = NEW PC - OLD PC - 2

In our latest object program, for example, we have

OLD PC = 0004
NEW PC (destination) = 0008

So
OFFSET = 0008 - 0004 - 2 = 02

You can always get the same result by counting bytes. Start counting at 0 at the byte
immediately following the last byte of the branch instruction.

Calculating offsets is clearly a rather unpleasant task, unless you are very good at
binary or hexadecimal arithmetic or own a calculator (such as the Texas Instruments
Programmer) that performs arithmetic in different number systems. The calculations
are particularly troublesome if the branch is backwards — that is, the destination
address is smaller than the original program counter value plus two. Then you must deal
with negative binary or hexadecimal numbers: FF,  is —1, FE  is —2, and so on.
Counting bytes is very tedious, especially for long offsets.

The way to avoid calculating offsets is to let the assembler do it. You can, for
example, simply specify how far you want the branch to go by using an expression
containing the symbol *, which refers the assembler to the current value of the location

counter. Thus
BHS * ¢4

will produce a branch to the instruction four bytes further along. The assembler will take
care of the extra 2 automatically (that is, it will make the actual offset 2 instead of 4).
The problem with this approach is that 6809 instructions vary in length and thus it is
often difficult to determine the required numerical value. Furthermore, a much better
method of specifying offsets is available.



Beginning Programs 4-7

The better method is to assign a name (referred to as a ‘‘label’’) to the destina-
tion address. You can choose whatever name you want (see Chapter 2), but we will try
to choose names that have some mnemonic value. The assembler will determine the
actual address to which the label refers and will calculate offsets for any branches that
use the label. The use of labels not only makes the programmer’s job easier, but it also
makes programs easier to read and understand.

Conditional Branches

Conditional branches work as follows:

1. If the condition is true, the processor branches. That s, it places the destina-
tion address in the program counter and starts executing instructions at that
point.

2. If the condition is false, the processor continues its normal sequence as if
the branch instruction did nothing at all except advance the program counter.

In our latest source program, the choices are:

1. If (A) > (0041), NEW PC = OLD PC + OFFSET + 2 = 0004 + 02 + 2
= 0008 (We have named this location
with the label STRES.)

2. If (A) < (0041), NEW PC = OLD PC + 2 = 0004 +2
= 0006 (The location immediately
following the branch
instruction.)

Executing a 2-byte instruction advances the program counter by 2 regardless
of whether a branch occurs.
BHS causes a branch if (A) > (M). In terms of the flags, the branch condition is
C = 0, meaning (A) > (M).

4-8. 16-BIT ADDITION

Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit num-
ber in memory locations 0042 and 0043. The most significant bytes are in
memory locations 0040 and 0042. Store the result in memory locations 0044
and 0045, with the most significant byte in 0044,

Sample Problem:

(0040) 67

(0041) 2A

(0042) 14

(0043) - F8

Result: 672A + 14F8 = 7C22
(0044) 7C
(0045) = 22
Program 4-8:

0000 DC 40 LDD $40 GET FIRST 16-BIT NUMBER
0002 D3 42 ADDD $42 ADD SECOND 16-BIT NUMBER
0004 DD 44 STD $44 STORE 16-BIT RESULT

0006 3F SWI



4-8 6809 Assembly Language Programming

The Double Accumulator D consists of Accumulator A, which comprises the
high-order byte, and Accumulator B, used as the low-order byte. Be careful — D is
not a separate register; it is physically the same as A and B.

The 16-bit operations LDD, ADDD, and STD ail operate on two bytes of data.
For example, LDD $40 loads the contents of memory location 0040 into Accumulator A
and the contents of memory location 0041 into Accumulator B. ADDD $42 adds the
contents of memory location 0043 to Accumulator B and then adds the Carry from that
operation and the contents of memory location 0042 to Accumulator A. STD $44 stores
the contents of Accumulator A in memory location 0044 and the contents of Accumula-

tor B in memory location 0045.
The 6809 microprocessor actually performs most 16-bit operations eight bits (one

byte) at a time. The advantages of the 16-bit instructions are that they direct the pro-
cessor through two 8-bit operations instead of one, thus reducing the amount of time
spent fetching instructions as well as the amount of program memory that is required.

Remember that 16-bit data (and 16-bit addresses) always occupy two bytes of
memory, the one that is actually addressed and the next higher one. For example,
LDD $40 uses memory location 0041 as well as 0040.

The 6809 convention for storing 16-bit data (and 16-bit addresses) is to store the
eight most significant bits first (at the lower address). This convention seems natural,
but is the opposite of that used in most other microprocessors and minicomputers.

4-9. TABLE OF SQUARES

Purpose: Calculate the square of the contents of memory location 0041 from a table and
place the square in memory location 0042. Assume that memory location 0041
contains a number between 0 and 7 inclusive; that is, 0 < (0041) < 7. The
table occupies memory locations 0050 through 0057.

Hexadecimal Entry
Memory Address Hexadecimatl Decimal
0050 00 0 (02)
0051 o1 1 (12)
0052 04 4 (22)
0053 09 9 (32)
0054 10 16 (42)
0055 19 25 (52)
0056 24 36 (62
0057 31 49 (72)

Sample Problems:

a. (0041) 03
Result:  (0042) 09
b. (0041) - 06
Result: (0042) 24

Remember that the answer is a hexadecimal number.



Beginning Programs 4-9

Program 4-9:
0000 DA 41 LDB sS4 GET DATA
0no2 8k 0050 LDX 4350 GET BASE ADDRESS
0005 A6 35 LDA B,X GET SQUARE OF DATA
0007 97 4?2 STA $42 STORE SQUARE
0009 3F SWI
0050 ORG $50 TABLE OF SQUARES
0050 00 SQTAB FCB 0,1,4,9,16,25,34,49
0051 01
00n2 04
0053 09
0054 10
0055 19
0054 24
0057 il

The assembler directive FCB places the table of squares in memory locations 0050
through 0057. This block of data is essential for the proper execution of the program,
even though it does not consist of instructions. The object program may thus include
fixed data as well as executable instructions.

LDX # $50 loads Index Register X from the two bytes of memory immediately
following the operation code (addresses 0003 and 0004 in the object program). The pro-
cessor loads the contents of the first byte into the eight most significant bits of Index
Register X, and the contents of the second byte into the eight least significant bits of
Index Register X. Always remember that Index Registers X and Y, Stack Pointers S and
U, and the Double Accumulator D are all 16 bits long.

Indexed Addressing

The instruction LDA B,X loads Accumulator A from the address calculated by
adding the contents of Index Register X (the ‘‘base address’’ of the table) and the con-
tents of Accumulator B (the index of the element that we want). For example, if
memory location 0041 contains 03, then

(X) = 0050 (base address of the table of squares)
(B) = 03 (data)
The calculated or ‘‘effective’” address is
EA = (X) + (B) = 0053
Address 0053 contains the square of 3. The result of this procedure (called a ‘‘table
lookup’’) depends only on the organization of the table; it does not depend on the table
data value or on the function that the table represents.

As we discussed in Chapter 3, all indexed instructions require an extra object code
byte, called the ‘‘post byte,”” which selects from among the indexed addressing modes.
Our example uses the non-indirect mode with an offset in Accumulator B from the
indexable register R (referred to as accumulator indexed addressing). The binary form

IS:
1TRROO0101

We have chosen Index Register X, so RR = 00. See Table 3-4 and Appendix B for a
complete description of the indexed addressing modes and the assignment of bits in the
post bytes.

Indexing takes extra clock cycles whenever the processor must calculate the effec-
tive address. Adding Accumulator B to Index Register X takes one cycle beyond the
base amount required by any indexed instruction (four cycles for LDA). Appendix B
tells how many extra bytes of memory and extra clock cycles each of the indexed modes
requires.
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Operations on Registers X, Y, S, and U

The 6809 has a few special instructions that operate on the index registers and
stack pointers rather than on the accumulators. These are:

CMP(X/Y/S/U) — Compare Memory with Index Register or Stack
Pointer

LD(X/Y/S/U) Load Memory into Index Register or Stack
Pointer

LEA(X/Y/S/U) Load Effective Address into Index Register or
Stack Pointer

ST(X/Y/S/U) Store Index Register or Stack Pointer in
Memory

The index registers and stack pointers are primarily intended to hold memory addresses,
so there are no logical or arithmetic instructions for those registers. As we will see,
however, you can occasionally use LEA to perform some arithmetic.

Use of the ORIGIN Directive

The assembler directive ORG simply determines where the loader program will
place the next section of code when it is finally entered into the microcomputer’s
memory for execution. An ORG does not actually result in the generation of any object
code.

Arithmetic with Tables

The use of lookup tables is a simple but powerful approach to solving complex
arithmetic problems on microprocessors. The lookup table contains all the possible
answers to a problem, much as a table of sines or cosines contains all the possible
values of a particular function. This approach reduces an arithmetic problem to a prob-
lem of obtaining the correct answer from the table. To do that, we need two things: the
base (starting) address of the table and the position (called the ‘‘index’’) of the answer.
The address of the answer is the sum of the base address and the index.

The base address of a table is a fixed number. The index, however, is not, and we
need some way to determine it. In simple cases (such as our Table of Squares example),
we can organize the table so that the data itself is the index. In the example, the zeroth
entryin the table is zero squared, the first entry is one squared, and so on. In more com-
plex cases, where the input values are irregularly spaced or there are several data items
involved (for example, roots of a quadratic equation or number of permutations), we
must actually perform some computations (perhaps even involving another table) to
determine an index from the data.

The use of tables represents tradeoffs among programming time, execution
time, and memory usage. A table lookup executes faster than any but the simplest
calculations. For example, even the Table of Squares program executes faster than an
equivalent simple squaring program using the 6809 multiplication instruction MUL.
Tables can be faster and simpler to program than actual calculations since lookup pro-
cedures do not depend on the complexity of the function involved. Furthermore, since a
table lookup is fast-executing, it is unlikely to slow down a program intolerably, as a
complex calculation might, and thus is less likely than a calculation to require
reprogramming to save execution time. On the other hand, tables can occupy a large
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amount of memory if there are many possible input values. We can often reduce the
required amount of memory by limiting the accuracy of the results, scaling the input
data, or organizing the table cleverly.

Common uses of tables include the computation of transcendental and trig-
onometric functions, the linearization of inputs from thermocouples and other non-
linear devices, and code conversions.

4-10. 16-BIT ONES COMPLEMENT

Purpose: Place the ones complement of the 16-bit number in memory locations 0040
and 0041 in memory locations 0042 and 0043. The most significant bytes are
in locations 0040 and 0042.

Sample Problem:

(0040) 67

(0041) E2 % 0t10 0111 1110 0010,
Result: (0042) 17000 0001 1101,

(0043) 10§

The ones complement of a number is its logical inverse; that is, each 0 bit in the
number is replaced by a |1 and each 1 bit by a 0. The sum of a number and its ones com-
plement is therefore always a number in which all the bit positions contain 1s.

Program 4-10:

0000 DC 40 LDD $40 GET 16-BIT NUMBER

0002 43 COMA ONES COMPLEMENT M&B'S

0003 53 COMB ONES COMPLEMENT LSB'S

0004 DD 42 STD $42 STORE 15-BIT ONES COMPLEMENT
0006 3F SWI

Despite the 6809’s 16-bit instructions, you must use the 8-bit instructions to per-
form many arithmetic and logical operations. The 6809 instruction set does include
some common 16-bit operations, such as loading, adding, comparing, subtracting, and
storing, but other operations must be performed eight bits at a time.

Manage the accumulators with care; they can hold only one result at a time. If you
need an accumulator’s contents, be sure to save them before reloading the accumulator.

PROBLEMS

4-1. 16-BIT DATA TRANSFER

Purpose: Move the contents of memory location 0040 to memory location 0042 and the
contents of memory location 0041 to memory location 0043.

Sample Problem:

(0040) 3E
(0041) B7
Result: (0042) 3E

(0043) B7
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4-2. 8-BIT SUBTRACTION

Purpose: Subtract the contents of memory location 0041 from the contents of memory
location 0040. Place the result in memory location 0042.

Sample Problem:

(0040) = 77
(0041) = 39
Result: (0042) = 3E

4-3. SHIFT LEFT TWO BITS

Purpose: Shift the contents of memory location 0040 left two bits and place the result in
memory location 0041. Clear the two least significant bit positions.

Sample Problem:

(0040)
Result: (0041)

50=0101 1101,
74=0111 0100,

1]

4-4, MASK OFF LEAST SIGNIFICANT FOUR BITS

Purpose: Place the four most significant bits of memory location 0040 in memory loca-
tion 0041. Clear the four least significant bits of memory location 0041.

Sample Problem:

(0040) C4=1100 0100,
Result: (0041) = CO=1100 0000,

4-5. SET A MEMORY LOCATION TO ALL ONES

Purpose: Set all the bits of memory location 0040 to ones (FF, ).

4-6. BYTE ASSEMBLY

Purpose: Combine the four least significant bits of memory locations 0040 and 0041
into a byte and store the result in memory location 0042. Place the four least
significant bits of memory location 0040 in the four most significant bit posi-
tions of memory location 0042; place the four least significant bits of memory
location 0041 in the four least significant bit positions of memory location
0042.

Sample Problem:

(0040) = 6A=0110 1010,
(0041) = B3=1011 0011,
Result: (0042) = A3 =1010 0011,
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4-7. FIND SMALLER OF TWO NUMBERS

Purpose: Place the smaller of the contents of memory locations 0040 and 0041 in
memory location 0042. Assume that memory locations 0040 and 0041 con-
tain unsigned binary numbers.

Sample Problems:

a. (0040) 3F
(0041) 2B

Result: (0042) 2B

b. (0040) 75
(0041) A8

Result: (0042) 75

4-8. 24-BIT ADDITION

Purpose: Add the 24-bit number in memory locations 0040, 0041, and 0042 to the 24-
bit number in memory locations 0043, 0044, and 0045. The most significant
bytes are in memory locations 0040 and 0043, the least significant bytes in
memory locations 0042 and 0045. Store the result in memory locations 0046,
0047, and 0048 with the most significant byte in memory location 0046 and
the least significant byte in 0048.

Sample Problem:

(0040) 35
(0041) 67} 35672A
(0042) 2A
(0043) 51
(0044) A4} 51A4F8
(0045) F8

Result: (0046) 87
(0047) OC} 870C22
(0048) 22

4-9. SUM OF SQUARES

Purpose: Calculate the squares of the contents of memory locations 0040 and 0041 and
add them together. Place the result in memory location 0042. Assume that
memory locations 0040 and 0041 both contain numbers between 0 and 7
inclusive; that is, 0 < (0040) < 7 and 0 < (0041) < 7. Use the table of squares
from the example entitled Table of Squares.

Sample Problem:

(0040) = 03
(0041) = 06
Resuit: (0042) = 2D

thatis, 32 +62=9 + 36,9 = 45,0 =2D45
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4-10. 16-BIT TWOS COMPLEMENT

Purpose: Place the twos complement of the 16-bit number in memory locations 0040
and 0041 (most significant bits in 0040) in memory locations 0042 and 0043
(most significant bits in 0042). The twos complement of a number is the num-
ber that, when added to the original number, produces a result of zero; the
twos complement is also equal to the ones complement plus one, since the
sum of a number and its ones complement is all 1 bits.

Sample Problems:

(0040)
(0041)

(0042)
(0043)

(0040)
(0041)

(0042)
(0043)

gg} 0000 0000 0101
Z’;}nn 1111 1010
;gf 0111 0010 0000
gg} 1000 1110 0000

1000,
1000,
0000,

0000,

Since the sum of the original number and its twos complement is zero, we can
calculate the twos complement of x as 0 — x. Which approach (calculating the ones
complement and adding one, or subtracting from zero) results in a shorter and faster
program? Remember to use the SUBD instruction.

REFERENCES

1. L. A. Leventhal, ‘““Microprogramming,”’ Kilobaud, April 1977, pp. 120-23.
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Simple Program Loops

The program loop is the basic structure that forces the CPU to repeat a
sequence of instructions. Loops have four sections:

1. The initialization section, which establishes the starting values of counters,
pointers, indexes, and other variables.

2. The processing section, where the actual data manipulation occurs. This is
the section that does the work.

3. The loop control section, which updates counters and pointers for the next
iteration.
4. The concluding section, which analyzes and stores the results.

The computer performs Sections 1 and 4 only once, while it may perform Sections
2 and 3 many times. Therefore, the execution time of the loop depends mainly on the
execution time of Sections 2 and 3. Those sections should execute as quickly as possible,
while the execution times of Sections 1 and 4 have little effect on overall program speed.

Figures 5-1 and 5-2 contain two alternative flowcharts for a typical program
loop. Following the flowchart in Figure 5-1 results in the computer always executing
the processing section at least once. On the other hand, the computer may not execute
the processing section in Figure 5-2 at all. The order of operations in Figure 5-1 is
more natural, but the order in Figure 5-2 is often more efficient and eliminates the prob-
lem of the computer going through the processing sequence once even where there is no
data for it to handle.

The computer can use the loop structure to process large sets of data (usually
called ‘‘blocks’’ or ‘‘arrays’’). The simplest way to use one sequence of instructions
to handle a block of data is to have the program add 1 to its address register (usually
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Initialization
Section

Processing
Section

Loop Control
Section

Concluding
Section

The computer always executes the processing section at least once.

Figure 5-1. Flowchart of a Program Loop

an index register or stack pointer) after each iteration. Then the address register will
contain the address of the next element in the block when the computer repeats the
sequence of instructions. The computer can then handle blocks of any length with a
single program.

Indexed addressing is the key to processing blocks of data with the 6809
microprocessor, since that mode allows you to vary the actual address of the data (the
“effective address’’) by changing the contents of an address register. In immediate and
extended addressing modes, the instruction completely determines the effective
address; that address is therefore fixed if program memory is read-only. The direct page
mode shares this fixed address limitation even though a register determines part of the
effective address.

The 6809’s autoincrementing mode is particularly convenient for processing
arrays, since it automatically updates the address register for the next iteration. No
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Initialization
Section

Loop Control
Section
Yes
F
Processing Concluding
Section Section

The computer need not execute the processing section at all if it finds that there is nothing to be done.

Figure 5-2. An Alternative for a Program Loop

additional instruction is necessary. You can even have an automatic increment by 2 if
the array contains 16-bit data or addresses.

Although our examples show the processing of arrays with autoincrementing
(adding | or 2 after each iteration), the procedure is equally valid with autodecrement-
ing (subtracting 1 or 2 before each iteration). Most programmers find moving back-
wards through an array somewhat awkward and difficult to follow, but it is more effi-
cient in many situations. Clearly, the computer does not know backwards from forward.
The programmer, however, must remember that the 6809 increments an address
register after using it but decrements an address register before using it. This
difference affects initialization as follows:

1. When moving forward through an array (autoincrementing), start the address
register at the lowest address occupied by the array.

2. When moving backwards through an array (autodecrementing), start the
address register one step (1 or 2) beyond the highest address occupied by the
array.

You must also remember the difference between autoincrementing and

autodecrementing if you use a CMP instruction (CMPX, CMPY, CMPU, or CMPS) to
determine if an index register or stack pointer has reached a particular value.
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PROGRAM EXAMPLES

5-1. SUM OF DATA

Purpose: Calculate the sum of a series of numbers. The length of the series is in
memory location 0041 and the series begins in memory location 0042. Store
the sum in memory location 0040. Assume that the sum is an 8-bit number so
that you can ignore carries.

Sample Problem:

(0041)

(0042)
(0043)
(0044)

Result: (0040)

03

28
55
26

A3
28,5 + 5515 + 26,4

There are three entries in the sum, since (0041)=03

Flowchart:

SUM =0
POINTER = 0042
COUNT = (0041)

SUM =
SUM + (POINTER)

POINTER =
POINTER + 1
COUNT =
COUNT - 1

(0040) = SUM
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(POINTER) refers to the contents of the memory location addressed by
POINTER. Remember that on the 6809 and similar microprocessors, POINTER is a 16-
bit address, while (POINTER) is an 8-bit byte of data.

This flowchart has the same form as that in Figure 5-1; that is, the processing sec-
tion will execute at least once. What does this form assume about the data, specifically
the length of the series (called COUNT above)?

Program 5-1a:

0000 4F CLRA SUM = ZER@

0001 D6 41 LDB $41 COUNT = LENGTH OF ARRAY
0003 8E 0042 LDX #542 POINT TO START OF ARRAY
0006 AB 80 SUMD ADDA , X+ ADD NUMBER TO SuUM

0008 5A DECB

0009 26 FB BNE SUMD

0008 97 40 STA $40

000D 3F SWI

The initialization section of the program consists of the first three instructions,
which set the sum, counter, and data pointers to their starting values. LD X loads the
two bytes of memory into Index Register X: 00 and 42 from memory addresses 0004 and
0005 respectively.

The processing section of the program consists of the single instruction
ADDA ,X+ which adds the contents of the memory location addressed by Index
Register X to the contents of Accumulator A. This instruction does the real work of the
program. The effective address (that is, the address from which the CPU gets the data)
is given by the contents of Index Register X.

In the autoincrementing mode, the processor adds 1 to the contents of Index
Register X after using it to fetch the data. For example, in the first iteration, Index
Register X initially contains 0042. The execution of the instruction ADDA ,X + results
in the contents of memory location 0042 being added to Accumulator A, and Index
Register X being incremented by 1 to 0043.

The loop control section of the program consists of the single instruction DECB,
since the instruction ADDA ,X + updates the pointer automatically. DECB decrements
the counter that keeps track of how many iterations the computer has left to perform.

The instruction BNE causes a branch if the Zero flag is 0 (that is, if the result of
decrementing B was not zero). The offset is a twos complement number, determined by
the distance between the destination and the end of the instruction. In this case, the dis-
tance is from memory location 000B (the address following the end of the BNE instruc-
tion) to memory location 0006 (the destination). So the offset is:

ooos} _{ 0006
~000B§ ~ {+FFF5

FFEB_

The 8-bit offset mode (BNE rather than LBNE) requires only the two least significant
digits of the difference.

If the Zero flagis 1 (that is, if the result of decrementing B was zero), the processor
continues its normal sequence. Thus the result of executing BNE is:

{SUMD if the result of decrementing B is not zero
(PC) =

(PC) + 2 if the result of decrementing B is zero
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The extra 2, as usual, comes from the two bytes occupied by the BNE instruction itself.

Most programmers make computer loops count down rather than up so that
they can use the setting of the Zero flag as an exit condition. Remember that the Zero
flag is 1 if the most recent result was zero and 0 if that result was not zero. Rewrite the
program so that it loads Accumulator B with zero initially and increments it after each
iteration. Which approach is more efficient?

The order in which the processor executes instructions is often very important.
DECB must come immediately before BNE SUMD; otherwise, the intervening instruc-
tion(s) would probably change the Zero flag. The order of operations within instructions
may also be important. In the current program, we must initialize Index Register X to
0042, the lowest address in the array, since the processor increments Index Register X
after using its contents in the instruction ADDA ,X+. What initial value would be
necessary if the processor incremented Index Register X before using its contents?

Using Register Y

We could easily use Index Register Y, User Stack Pointer U, or Hardware
Stack Pointer S instead of Index Register X. The only difference is that LDS and LDY
require two-byte operation codes, so a program using one of those registers would
occupy one additional byte of memory and would take one extra clock cycle to execute.
For example, the following program uses Index Register Y.

Program 5-1b:

0000 4F CLRA SUM = ZERO

0001 D6 41 LDB $41 COUNT = LENGTH OF ARRAY
0003 108E 0042 LDY #3542 POINT TO START OF ARRAY
0007 AB AQD SUMD ADDA Y+ ADD NUMBER TO SUM

0009 5A DECB

000A 26 FB BNE SUMD

000C 97 40 STA $40

000E 3F SWI

In most applications, the slight differences in execution time and memory usage
between the two programs do not matter. However, you might as well use Index
Register X rather than Index Register Y when both are available, since programs that
use Index Register X will be a little shorter and faster. User Stack Pointer U can also be
utilized as an address register, but most programs leave Hardware Stack Pointer S
permanently assigned for use with subroutines and interrupts.

You should verify the hexadecimal value of the relative offset in the last program
example. Of course, the final test of any calculation of an offset is whether the program
runs correctly. If you must perform hexadecimal calculations frequently, you should use
a calculator such as the Texas Instruments Programmer.

5-2. 16-BIT SUM OF DATA

Purpose: Calculate the sum of a series of 8-bit numbers. The length of the series is in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight most significant bits
in 0040).



Sample Problem:

Flowchart:

Result:

(0042)

(0043)
(0044)
(0045)

(0040)
(0041)

03

cs
FA
96

SUMU =0
SUML =0
POINTER = 0043
COUNT = (0042)

[SUML =

SUML + (POINTER)
SUMU=
SUMU+CARRY

POINTER =
POINTER + 1
COUNT =
COUNT -1

(0040) = SUMU
(0041) = SUML

Simple Program Loops

5-7

SUMU and SUML are, respectively, the high-order and low-order bytes of the 16-

bit sum, SUM.

Program 5-2:

0000 4F
0001 SF
0002 8E
0005 EB
0007 89
0009 oA
000B 25
000D DD
000F 3F

0043
80

42
F8
40

SUMD

CLRA

CLRB

LDX #3543
ADDB , X+
ADCA  #0
DEC $42
BNE SUMD
STD $40

SWI

MSB'S OF SUM = ZERO
LSB'S OF SUM = ZERO
POINT TO START OF ARRAY

SUM = SUM + DATA
AND ADD IN CARRY
SAVE SUM
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This program has the same structure as the previous example. The only difference
is that this program must handle the high-order byte of the sum as well as the low-order
byte. The initialization section clears the full 16-bit sum and the processing section now
consists of two instructions: ADDB ,X + adds the 8-bit data to the low-order byte of the
sum and ADCA #0 adds the carry to the high-order byte.

The only new aspect is that the 16-bit sum occupies both accumulators. Thus we
use a memory location on the direct (base) page to hold the counter. Such memory
locations are often used as if they were additional registers, since the processor can
access them with faster and shorter instructions than those it uses to access other
locations.

The instruction ADCA #0 adds the carry and 0 to Accumulator A:

(A) = (A) + O + Carry

(A) + Carry

nn

The result is to leave A unchanged if the Carry flag is 0 and to increment A by 1 if the
Carry flag is 1.

The 6809 does not have a complete set of 16-bitinstructions. For example, there
is no Clear Double Accumulator instruction. We can use either the two instructions
CLRA, CLRB (requiring two bytes of memory and four clock cycles) or the immediate
instruction LDD #0 (requiring three bytes of memory and three clock cycles).
However, when a 16-bit instruction is available (for instance, STD $40), it uses less
time and memory than the two equivalent 8-bit instructions (in this case, STA $40, STB
$41).

A single instruction such as DEC $42 can decrement the contents of a memory
location by 1 without changing any registers. Such instructions do affect the flags,
however. Note that a memory location is not nearly as useful as an accumulator; there
are no instructions that perform general arithmetic or logical operations on data in a
memory location. For example, SUBA #3 subtracts 3 from Accumulator A; try to per-
form the same operation on the data in memory location 0042.

Long Conditional Branches

Short relative branches are limited to distances that can be specified in an 8-bit
signed offset. These limitations are 7F ; = 127, forward and 80, = 128, backwards
from the end of the branch instruction. Since short branches are two-byte instructions,
the distance from the start of the instruction must be in the range

-12640 < distance < +129,9

For longer distances, you must use the long form of the branches. A long condi-
tional branch uses the same mnemonic as its short equivalent, with an additional
“L’’ in front: for instance, LBCC instead of BCC. It requires a two-byte operation code
followed by a two-byte relative offset. However, the unconditional branch LBRA has a
one-byte operation code, although it still requires a two-byte offset. The long relative
branches provide access to any memory location in the normal 64K range. In actual
practice, most program branches are quite short and you will rarely need the long
forms.
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5-3. NUMBER OF NEGATIVE ELEMENTS

Purpose: Determine the number of negative elements (most significant bit contains 1)
in a block. The length of the block is in memory location 0041, and the block
itself starts in memory location 0042. Place the number of negative elements
in memory location 0040.

Sample Problem:

(0041) 06
(0042) 68
(004 3) F2
(0044) 87
(0045) 30
(0046) 59
(0047) 2A
Result: (0040) 02, since 0043 and 0044 contain

numbers with an MSB of 1

Flowchart:

NNEG = O
POINTER = 0042
COUNT = (0041)

NNEG = NNEG + 1

POINTER =
POINTER + 1

COUNT =
COUNT -1

(0040) = NNEG
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Like the previous flowchart, this one takes the form shown in Figure 5-1; thus it
assumes that the input value of COUNT will always be 1 or greater.

Program 5-3:
0000 8E 0042 LDX 4542 POINT TO FIRST NUMBER
0003 SF CLRB NUMBER OF NEGATIVES = ZERO
0004 A6 80 CHKNEG LDA X+ IS NEXT ELEMENT NEGATIVE?
0006 2A 01 BPL CHCNT
0008 5C INCB YES, ADD 1 TO # OF NEGATIVES
0009 0A 41 CHCNT DEC $41
000B 26  F7 BNE CHKNEG
000D D7 40 STB $40 SAVE NUMBER OF NEGATTVES
000F 3F SWI

LDA affects the Sign (N) and Zero (Z) flags. We can therefore immediately
determine if a number that has been loaded into an accumulator is negative or zero.

We could use the Test instruction (TST) to set the Sign flag without using
Accumulator A. Accumulator A would then be available to hold a counter. Rewrite the
example program to use TST; this instruction is often useful for determining if bit 7 of a
memory location is set or if the memory location contains zero.

BPL, Branch if Plus, causes a branch if the Sign flag is 0. The offset for BPL is
the distance from the end of the instruction to the destination. Here the distance is a
single byte; the result is that the processor skips the INCB instruction if the Sign flag
is 0.

The Sign flag simply reflects the value of bit 7 of the most recent result. If you
are using signed numbers, bit 7 is, in fact, the sign (0 for positive, | for negative); the
mnemonics for Branch if Sign = 1 (BMI) and Branch if Sign = 0 (BPL) assume that
you are using signed numbers. However, you can equally well use bit 7 for other pur-
poses, such as the status of peripherals or other one-bit data. You can still test bit 7 with
BMI or BPL; the mnemonics may no longer make sense, but the operations work. The
computer performs its operations without considering whether the user thinks they are
sensible or meaningful. The interpretation of the results is the programmer’s problem,
not the computer’s.

Negative signed numbers all have a most significant bit of 1 and thus are
actually larger, in the unsigned sense, than positive numbers.

5-4. MAXIMUM VALUE

Purpose: Find the largest element in a block of unsigned binary numbers. The length of
the block is in memory location 0041 and the block itself begins in memory
location 0042. Store the maximum (largest unsigned element) in memory
location 0040.

Sample Problem:

(0041) 05 Number of elements
(0042) 67
(0043) 79
(0044) 15
(0045) E3
(0046) 72
Result:  (0040) E3. since this is the largest of

the five unsigned numbers
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Flowchart:
COUNT = (0041)
POINTER = 0042
MAX =0
MAX = (POINTER)
POINTER =
POINTER + 1
COUNT =
COUNT - 1
(0040) = MAX
Program 5-4:
0000 D& 41 1.DB 541 COUNT = NUMBER OF ELEMENTS
0002 4F CLRA MAX = 0 (MINIMUM POSSIBLE)
0003 8E 0042 LDX 4542 POINT TO FIRST ENTRY
0006 Al 80 MAXM  CMPA  , X+ IS CURRENT ENTRY GREATER
* THAN MAX?
0008 24 Q2 BHS NOCHG
000A A6 1F LDA -1,X YES, REPLACE MAX WITH
* CURRENT ENTRY
000C 5A NOCHG DECB
000D 26  F7 BNE MAXM
000F 97 40 STA $40 SAVE MAXIMUM
0011 3F SWI

The first three instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest unsigned binary
number. If you make zero the initial estimate of the maximum, the program will set the
maximum to a larger value unless all the elements in the array are zeros.




5-12 6809 Assembly Language Programming

The instruction LDA —1,X uses the indexed addressing mode with a constant
offset. The offset of —1 is necessary because the autoincrementing in CMPA X+ has
added 1 to Index Register X. The object code uses the special 5-bit offset form (signified
by a 0in bit 7 of the post byte). In this form, the offset is a twos complement number in
the five least significant bits; bit 4 is thus the sign of the offset, and the processor auto-
matically extends (copies) that bit into the more significant positions before performing
the addition. The processor thus extends 11111, to 1111 1111,, an 8-bit number. This
form requires no additional bytes of memory (since the post byte contains the offset)
and only one additional clock cycle. The range of the offset is

=160 = 10000, < Offset < +15,5=01111,

The relative offsets in the branch instructions are:

1. BHS NOCHG

Destination address = 000C
- Address at end of instruction = 000A
02
2. BNE MAXM
Destination address = 0006 — 0006
- Address at end of instruction = 000F + FFF1
F7

The program works correctly if the array has two elements, but not if it has only one ele-
ment or none at all. Why? How could you eliminate this problem?

The instruction CMPA X+ affects the Carry flag as follows (ELEMENT is the
contents of the effective address and MAX is the contents of Accumulator A):

Carry = O if MAX > ELEMENT ('‘Higher or Same’’)
Carry = 1 if MAX < ELEMENT (" Lower’’)

If Carry = 0, the program branches to address NOCHG and does not replace the current
maximum. If Carry = |, the program replaces the maximum with the current element
using the instruction LDA —1,X.

The program does not work properly if the numbers are signed, because negative
numbers all appear to be larger than positive numbers. You must then use the Sign
(Negative) flag instead of the Carry in the comparison. However, you must also con-
sider the fact that twos complement overflow can affect the sign; that is, the magnitude
of a signed result could overflow into the sign bit. The 6809 has special branch instruc-
tions — BGT, BGE, BLE, and BLT — which perform the branches indicated by their
mnemonics after signed comparisons and handle twos complement overflow auto-
matically.

5-5. JUSTIFY A BINARY FRACTION

Purpose: Shift the contents of memory location 0040 until the most significant bit of the
number is 1. Store the result in memory location 0041 and the number of left
shifts required in memory location 0042. If the contents of memory location
0040 are 0, clear both 0041 and 0042.

The process is just like converting a number to a scientific notation; for example:

00057 =5.7 x 10-3




Sample Problems:

Flowchart:

Program b5-

0000
0001
0003
0005
0007
0008
0009
000B

000D

5a:

SF
96
27
2B
5C
a8
20
DD

3F

40

04

FA
41

Result:

Result:

Resuilt:

Resuit:

NSHFT = 0
NUMB = (0040)

(0040)

(0041)
(0042)

(0040)

(0041)
(0042)

(0040)

(0041)
(0042)

(0040)

(0041)
(0042)

Yes

Yes

Shift NUMB
left one bit
NSHFT =
NSHFT + 1
CLRB
LDA sS40
BEQ DONE
CHKMS BMI DONE
INCB
ASLA
BRA CHKMS

DONE STD

SWI

$41

22

88
02

01

80
07

cs

cs
00

00
00

Simple Program Loops

(0041) = NUMB
(0042) = NSHFT

NUMBER OF SHIFTS = ZERO

GET DATA

THROUGH IF DATA IS ZERO
THROUGH IF MSB OF DATA IS L
ADD 1 TO NUMBER OF SHIFTS
SHIFT DATA LEFT ONE BIT

SAVE JUSTIFIED DATA AND
NUMBER OF SHIFTG
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The relative offsets are:

1. BEQ DONE
Destination address = 0008
- Address at end of instruction = 0005
06
2. BMI DONE
Destination address = 0008
- Address at end of instruction = 0007
04
3. BRA CHKMS
Destination address = 0005 = 0005
Address at end of instruction = 000B = +FFF5

FA

ASL (Arithmetic Shift Left) shifts the contents of the specified accumulator or
memory location left one bit and clears the least significant bit. The most significant bit
ends up in the Carry flag and the old Carry value is lost. ASLA is equivalent to adding
Accumulator A to itself; the result is, of course, twice the original number (try it!).

BMI DONE causes a branch to address DONE if the Sign flag is 1. This condition
may mean that the result was a negative number, or it may just mean that the most sig-
nificant bit of that result was 1. The computer only performs the operations; the pro-
grammer must provide the interpretation.

BRA is an unconditional branch; that is, it always adds the offset to the program
counter. The 6809 also has the unconditional jump instruction JMP, which can use
direct (base page), extended, or indexed addressing. BRA, like the conditional branch
instructions, always uses relative addressing.

Reorganizing the Program

We can often reorganize programs to eliminate unconditional branches. The
reorganization usually makes the initial conditions less obvious, but may save a little
memory and some execution time, particularly if the processor repeats a loop many
times. For example, we can reorganize the justification program as follows.

Program 5-5b:

3000 SF CLRB NUMBER OF SHIFTS = 0
0001 96 40 LDA $40 GET DATA
0003 27 06 BEQ DONE THROUGH IF DATA IS ZERO
0005 5A DECB NUMBER OF SHIFTS = -1
00046 5C CHKMS  INCB ADD 1 TO NUMBER OF SHIFTS
0007 48 ASLA SHIFT DATA LEFT ONE BIT
0008 24 FC BCC CHKMS CONTINUE UNTIL CARRY BECOMES 1
000A 45 RORA THEN SHIFT DATA BACK ONCE
000B DB 41 DONE STD $41 SAVE JUSTIFIED DATA AND

& NUMBER OF SHIFTS
000D 3F SWIT

This version initializes the number of shifts to —1 and shifts the data until the
Carry becomes 1. Then it shifts the data back once since the last shift was not really
necessary. Show that this version is also correct. What are its advantages and disadvan-
tages as compared to the other version? You might wish to try some other organizations
to see how they compare in terms of execution time and memory usage.



Simple Program Loops 5-15

PROBLEMS

5-1. CHECKSUM OF DATA

Purpose: Calculate the checksum of a series of numbers. The length of the series is in
memory location 0041, and the series itself begins in memory location 0042.
Store the checksum in memory location 0040. The checksum is formed by
Exclusive-ORing all the numbers in the series together.

Such checksums are often used in paper tape and cassette systems to ensure that
the data has been read correctly. The calculated checksum is compared to the one stored
with the data — if the two checksums do not agree, the system will usually either indi-
cate an error to the operator or automatically read the data again.

Sample Problem:

(0041) 03

(0042) 28

(0043) 55

(0044) 26

Resuit: (0040} (0042) D (0043) D (0044)

28 D 55 D 26
0010 1000
0101t 0101
0111 1101
0010 0110
0101 1011
58

5-2. SUM OF 16-BIT DATA

Purpose: Calculate the sum of an array of 16-bit numbers. The length of the array is in
memory location 0042 and the array itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 with the eight most signifi-
cant bits in 0040. Each 16-bit number occupies two bytes of memory, with the
eight most significant bits first (in the lower address). Assume that the sum-
mation does not result in any carries (i.e., the sum is a 16-bit number).

Sample Problem:

(0042) 03 Length of the Array

:88:3 ﬁ?} 28F1, First Number in Array

:8822; ?2} 301A, Second Number in Array

{882;; gg} 4889, Third Number in Array
Resut: 100201 g:} A494 = 28F1 + 301A + 4889

Hint: Use the indexed addressing mode with autoincrementing by 2.
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5-3. NUMBER OF 2ERO, POSITIVE, AND
NEGATIVE NUMBERS

Purpose: Determine the number of zero, positive (most significant bit = 0 but entire
number not zero), and negative (most significant bit = 1) elements in a
block. The length of the block is in memory location 0043, and the block itself
starts in memory location 0044. Place the number of negative elements in
memory location 0040, the number of zero elements in memory location
0041, and the number of positive elements in memory location 0042.

Sample Problem:

(0043) = 06
(0044) = 68
(0045) F2
(0046) 87
(0047) 00
(0048) 59
(0049) 2A
Result: 2 negative, 1 zero, and 3 positive, so
{0040} 02
(0041) 01
(0042) 03

5-4. FIND MINIMUM

Purpose: Find the smallest element in a block of data. The length of the block is in
memory location 0041, and the block itself begins in memory location 0042.
Store the minimum in memory location 0040. Assume that the numbers in
the block are 8-bit unsigned binary numbers.

Sample Problem:

(0041) 05
(0042) 67
(0043) 79
(0044) 15
(0045) E3
(0046) 72
Result: (0040) 15, since this is the smallest of the

five unsigned numbers

5-5. COUNT 1 BITS

Purpose: Determine how many bits in memory location 0040 are ones and place the
result in memory location 0041.

Sample Problem:

(0040) = 38=0011 1011,
Resuit: {0041} = 05
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Character-Coded Data

Microprocessors often handle data which represents printed characters rather
than numeric quantities. Not only do keyboards, teletypewriters, communications
devices, displays, and computer terminals expect or provide character-coded data, but
many instruments, test systems, and controllers also require data in this form. ASCII
(American Standard Code for Information Interchange) is the most commonly used
code; others include Baudot (telegraph) and EBCDIC (Extended Binary-Coded-
Decimal Interchange Code).

Throughout this book, we will assume all of our character coded data to be
seven-bit ASCII, as shown in Table 6-1; the character code occupies the low-order
seven bits of the byte, and the most significant bit of the byte holds a 0.

HANDLING DATA IN ASCII

Here are some principles to remember when handling ASCII data:

1. The codes for the numbers and letters form ordered subsequences. Since the
codes for the numbers 0 through 9 are 30,4 through 39,,, you can convert a
decimal digit to the equivalent ASCII character (and ASCII to decimal) by
means of a simple additive factor: 30,, = ASCII 0. Since the codes for the
upper-case letters (41,, through 5A,,) are ordered alphabetically, you can
alphabetize strings by sorting them according to their numerical values.

2. The computer does not distinguish between printing and non-printing
characters. Only 1I/0 devices make that distinction.
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Table 6-1. Hexadecimal ASCII Character Codes

(0] 1 | 2 3 4]5]|6]7 Control Characters
E]
0 NUL DLEJSP 0 @ | P p | NUL Null DC1 Device control 1
1 soHDC1] ' 1 A |a]| a]|q | SOH Startof heading DC2 Device contro! 2
2 sTxDC2] " 2. B|R|b]r STX Start of text DC3 Device control 3
3 Jetxoc3|# 3 c|s|c|s | ETX Endof text DC4 Device control 4
4 EOTDCa4l $ 4 D | T|1dl]t EOT End of transmission NAK Negative acknowledge
5 |enaNak|] "5 EJu]e|u | ENQ Enguiry SYN Synchronous idle
6 SYN| & 6 Flv]f]v ACK Acknowledge ETB End of transmission block
7 BEL "ETB 7 G|w]g|w BEL Bell, or alarm CAN Cancel
8 BS CAN] ( 8 HIX|Inh]x BS Backspace EM End of medium
9 HT .EM ) 9 | \' i y HT Horizontal tabulation SUB  Substitute
A LF SuB| - J1l1z]i z | LF Line feed ESC Escape
B VT ESC K ( k { vT Vertical tabulation FS File separator
C IFF FS < L | | d FF Form feed GS Group separator
D CR GS = M|l Im]! CR Carriage return RS Record separator
E SO RS > N n|-—- 1 SO Shift out us Unit separator
F SI US 0 o |DEL] SI Shift in SP Space
- DLE Data link escape DEL  Delete
3. An ASCII 1/0 device handles data only in ASCII. For example, if you want

an ASCII printer to print the digit 7, you must send it 37,, as the data; 07, is
the ‘““bell”” character. Similarly, if an operator presses the ‘9’ key on an
ASCII keyboard, the input data will be 39,.; 09,, is the ‘‘horizontal tab”
character.

Many ASCII devices do not use the entire character set. For example,
devices may ignore meaningless control characters and may not print lower-
case letters.

ASCII control characters often have widely varying interpretations. Each
ASCII device typically uses control characters in a special way to provide
features such as cursor control on a CRT, and to allow software control of
characteristics such as rate of data transmission, print width, and line length.

Some widely used ASCII characters are:

0A ¢ line feed (LF)

0D, carriage return (CR)

20, space

3F, = question mark (?)

TF ¢ rubout or delete character (DEL)

Each ASCII character occupies eight bits. This allows a large character set
but is wasteful when only a few characters are actually being used. If, for
example, the data consists entirely of decimal numbers, the ASCII format
(allowing one digit per byte) requires twice as much storage, communications
capacity, and processing time as does the BCD format (allowing two digits per
byte).
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PROGRAM EXAMPLES

6-1. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a string of characters. The string starts in memory
location 0041; the end of the string is marked by an ASCII carriage return
character (‘CR’, 0D,,). Place the length of the string (excluding the carriage

return) into memory location 0040.

Sample Problems:

a.

Flowchart:

Program 6-1a:

0000
0001
0004

0006

0008
000A
000B
000D
000F

S5F
8E
86

Al

27
5C
20
D7
3F

(0041)
Result: (0040)
(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
Result: (0040)
0041
0D
*
80 CHKCR
*
03
F9
40 DONE

oD
00

52
41
54

45
52
oD

06

POINTER = 0041

since the beginning character is a carriage return

‘R’
‘A
T
‘N
E

‘R
CR

Yes

{0040) = LENGTH

LENGTH = 0
LENGTH =
LENGTH + 1
POINTER =
POINTER + 1
CLRB
LDX 4541
LDA #S0D
CMPA X+
BEQ DONE
INCB
BRA CHKCR
STB $40
SWI

STRING LENGTH = ZERO
POINT TO START OF STRING
GET ASCII CARRIAGE RETURN
(STRING TERMINATOR)
IS NEXT CHARACTER
A CARRIAGE RETURN?
YES, END OF STRING
NO, ADD 1 TO STRING LENGTH

SAVE STRING LENGTH
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As far as the computer is concerned, the carriage return (CR) is just another
character (0D,,). The fact that the carriage return causes the output device to per-
form a control function rather than print a symbol does not affect the computer.

The Compare instruction CMP performs a subtraction and sets the flags, but
does not change the contents of the accumulator. In Program 6-1a, CMPA leaves the
carriage return character in Accumulator A for later use. In this program, the CMPA

instruction affects the Zero flag as follows:
Z = 1 if the character in the string is a carriage return
Z = 0 if it is not a carriage return

The instruction INCB adds 1 to the string length counter in Accumulator B.
CLRB initializes this counter to zero before the loop begins. You must remember to
initialize variables before using them in a loop; failure to do so is acommon program-
ming error.

This loop does not terminate by decrementing a counter to zero. In fact, the com-
puter will simply continue examining characters until it finds a carriage return.
Obviously, this creates problems if the string, because of an error or omission, does not
contain a carriage return. It is good programming practice to place a maximum count
in a loop like this, even though it does not appear to be necessary. What happens if you
use the example program on a string that does not contain a carriage return?

Rearranging the Program

By rearranging the logic and changing the initial conditions, you can decrease
the execution time of the program. If we rearrange the flowchart so that the program
increments the string length before it checks for the carriage return, only one branch
instruction is necessary instead of two.

Flowchart:

POINTER = 0041
LENGTH = -1
LENGTH =

LENGTH + 1

Yes
S —

POINTER = ) =

POINTER + 1 (0040) = LENGTH
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Program 6-1b:

0000 C6b FF LDB #SFF STRING LENGTH = ~1
0002 8E 0041 LDX #5541 POINT TO START OF STRING
0005 86 0D LDA #S0D GET ASCII CARRIAGE RETURN

b (STRING TERMINATOR)
0007 5C CHKCR INCB ADD 1 TO STRING LENGTH
0008 Al 80 CMPA » X+ IS NEXT CHARACTER

* A CARRIAGE RETURN?
000A 26 FB BNE CHKCR NO, KEEP CHECKING
000C D7 40 STB $40 YES, SAVE STRING LENGTRH
000E 3F SWI

This program, like the previous one, has no provision for stopping if a maximum
string length is reached before a carriage return is found.

6-2. FIND FIRST NON-BLANK CHARACTER

Purpose: Search a string of ASCII characters for a non-blank character. The string starts
in memory location 0042. Place the address of the first non-blank character in
memory locations 0040 and 0041 (most significant bits in 0040).
A blank character is exactly the same as a space, and is referredtoas ‘ B’ or ‘SP’; a
blank character in ASCIl is 20 .

Sample Problem:

a. (0042) 37 7
Result: :883?: 2(2)} since memory location 0042 contains a non-blank character
b. (0042) 20 SP
(0043) 20 SP
(0044) 20 SP
(0045) 46 'F
(0046) 20 SP
Result: (0040) 00

(0041) 45} since the three previous memory locations all contain blanks

Flowchart:

POINTER = 0042

No

POINTER = (0040):(0041) =
POINTER + 1 POINTER
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Program 6-2:

0000 8E 0042 LDX #3842 POINT TO START OF STRING
0003 86 20 LDA #' GET ASCIT SPACE FOR COMPARISON
0005 Al 80 CHBLK CMPA » X+ IS CHARACTER AN ASCII SPACE?
0007 27 FC BEQ CHBLK YES, KEEP EXAMINING CHARS
0009 30 1F LEAX -1,X NO, MOVE POINTER BACK ONE
000B OF 40 STX $40 SAVE ADDRESS OF FIRST

* NON-BLANK CHARACTER
000D 3F SWI

Note the use of an apostrophe (’) or single quotation mark before an ASCII
character.

Looking for spaces in strings is a common task in microprocessor applications.
Programs often reduce storage requirements by removing spaces that only serve to
increase readability or fit data into particular formats. Storing and transmitting extra
space characters obviously wastes memory, communications capacity, and processor
time. However, operators find it easier to enter data and programs when the computer
accepts extra spaces; the entry is then said to be in free, rather than fixed, format. One
of the most popular uses of microcomputers is to convert data and commands between
the forms that are easy for people to handle and the forms that are most efficient for
computers and communications systems.

The LEA instruction has many uses in 6809 programming. This instruction
calculates an effective address using one of the indexed addressing modes (see
Chapter 22 for a complete description), but then simply places that address in an
index register or stack pointer rather than using it to transfer data. The effective
address is available for later use and need not be recalculated. This can save execution
time. Remember that instructions using most of the indexed addressing modes, particu-
larly the more complicated modes, require many additional clock cycles to execute.
Furthermore, the programmer can later use the effective address in any of the indexed
modes, thus providing additional levels of indirection and more flexibility.

LEA can perform many simple functions. For example, you can (as in Program
6-2) subtract 1 from Index Register X with the instruction

LEAX  -1,X
In this case, the processor first calculates the effective address by adding — 1 to the con-
tents of Index Register X. It then places that result back in Index Register X. A more
complex example is one that adds 8 to User Stack Pointer U and places the result in
Index Register Y the required instruction is

LEAY ],u
The earlier 6800 microprocessor had no autoincrementing or autodecrementing.
Instead, the instruction DEX subtracted 1 from Index Register X and INX added 1 to it.
The 6809 assembler will accept DEX and INX (as well as DEY, INY, DES, and INS)
and will generate the appropriate LEA instructions. The use of these operation codes
saves typing and makes programs somewhat clearer (and more familiar to 6800 pro-
grammers), but we will stick with the actual 6809 operation codes.

The autoincrement in CMPA ,X + provides us with a fast and simple way to step
to the next character. However, it is a bit of a nuisance once we have found the first non-
blank character, since it has then added | to the address that we want to save. We must
explicitly subtract the extra 1 with the instruction LEAX —1,X. This instruction would
not be necessary if we were working backwards instead of forward, since the 6809
autodecrements before using the address. As we noted earlier, however, you must start
the index register one beyond the end of the array when autodecrementing.
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6-3. REPLACE LEADING ZEROS WITH BLANKS

Purpose: Edit a string of numeric characters by replacing all leading zeros with blanks.
The string starts in memory location 004 1; assume that it consists entirely of
ASCII-coded decimal digits. Memory location 0040 contains the length of the
string in bytes.

Sample Problems:

a. (0040) 02 Length of the string in bytes
(0041) 36 ‘6’
(0042) 39 ‘9

The program leaves the string unchanged, since the leading digit is not zero

b. (0040) 08 Length of the string in bytes
(0041) 30 ‘O
(0042) 30 ‘0O
(0043) 38 ‘'8

Result: (0041)
(0042)

20 sp
20 SP

The program replaces the two leading zeros with ASCII spaces.
The printed result would be ** 8.."" instead of '008...."'

Flowchart:

COUNT = (0040)
POINTER = 0041

POINTER =
POINTER + 1
(POINTER - 1) =

SP (= 2016)
COUNT =
COUNT - 1
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Program 6-3:
0000 86 30 LDA $#'0 GET ASCII ZERO FOR COMPARISON
0002 C6 20 LDB #' GET ASCII SPACE FOR STORAGE
0004 8E 0041 LDX $s541 POINT TO START OF ARRAY
0007 Al 80 CHKZ  CMPA X+ IS LEADING DIGIT ZERO?
0009 26 06 BNE DONE NO, DONE
000B E7 1F STB -1,X YES, REPLACE ZERO WITH SPACE
000D 0A 40 DEC $40
000F 26 F6 BNE CHKZ
0011 3F DONE  SWI

Editing strings of decimal digits to improve their appearance is a common task
in microprocessor programs. Typical procedures include the removal of leading zeros,
justification, the addition of signs (+ or —) and other delimiters or symbols for units
(such as §, ¢ %, or #), and rounding. The program should print numbers in the form
that the user wants and expects; results like ‘“0006,”” ‘*$27.34382,”’ or *“135000000”’
are annoying and difficult to interpret.

This loop has two exits — one if the processor finds a non-zero digit and the other
if it works through the entire string. In an actual application, you would have to be care-
ful to leave one zero if all the digits in the string are zero. How would you modify the
program to do this?

We have assumed that the length of the string (the contents of location 0040) will
be greater than zero. What will happen if (0040) = 00 when the program starts execu-
tion?

The instruction STB -1, X places an ASCII space (20,,) in a memory location that
previously contained ASCII zero. Here again we need the offset of —~1 to make up for
the +1 that was added to Index Register X by the instruction CMPA X +.

We have assumed that all the digits in the string are in the ASCII form; that is, the
digits used are 30, through 39 ¢ rather than the ordinary decimal 0 to 9. Converting a
digit from BCD to ASCII is simply a matter of adding 30,, (ASCII zero), while convert-
ing from ASCII to decimal involves subtracting the same number.

You can place a single ASCII character in a 6809 assembly language program
by preceding it with an apostrophe (’). You can place a string of ASCII characters in
program memory by using the FCC (Form Constant Characters) directive on the 6809
assembler. There are two acceptable forms of this directive:

EMSG FCC 5, ERROR
EMSG FCC / ERROR/

In the first form, the user must specify the number of characters, followed by a comma
and the character string. In the second form, the user may place any single character
delimiter (we will always use /) at both ends of the string.

Each ASCII digit requires eight bits of storage, as compared to four bits for a
BCD digit. Therefore, ASCII is a relatively expensive format in which to store or
transmit numerical data.

6-4. ADD EVEN PARITY TO ASCIl CHARACTERS

Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string
is in memory location 0040 and the string itself begins in memory location
0041. Add even parity to each character by setting bit 7 if that makes the num-
ber of 1 bits in the byte even.
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Sample Probiem:

(0040) 06 Length of string
{0041) 31 =0011 0001
(0042) 32 =0011 0010
(0043) 33 =0011 0011
(0044) 34 =0011 0100
(0045) 35 =0011 0101
(0046) 36 =0011 0110
Result: (0041) B1 =1011 0001
(0042) B2 =1011 0010
(0043) 33 =0011 0011
(0044) B4 = 1011 0100
(0045) 35 =0011 0101
(0046) 36 =0011 0110

Flowchart:

POINTER = 0041
COUNT = (0040)

BIT COUNT =0
DATA = (POINTER) Set MSB of
POINTER = (POINTER —1) to 1
POINTER + 1
COUNT =
COUNT -1
BIT COUNT =

BIT COUNT + 1

“Shift DATA left one
bit arithmetically
(LSB = 0)
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Program 6-4:
0000 8E 0041 LDX $#s41 POINT TO START OF DATA BLOCK
0003 A6 80 GTBYTE LDA , X+ GET A BYTE OF DATA
0005 SF CLRB BIT COUNT = ZERO INITIALLY
0006 48 CHBIT ASLA SHIFT A DATA BIT TO CARRY
0007 C9 00 ADCB  #0 IF BIT IS 1, INCREMENT
* BIT COUNT
0009 4D TSTA KEEP COUNTING UNTIL
* DATA BECOMES ZERO
000A 26 FA BNE CHBIT
000C 54 LSRB DID DATA HAVE EVEN NUMBER
b OF '1' BITS?
000D 24 06 BCC NEXTE
000F A6 1F LDA -1,x NO, SET EVEN PARITY BIT
* IN DATA
0011 8A 80 ORA $310000000
0013 A7 1F STA -1,X
0015 DA 40 NEXTE DEC $40
0017 26 EA BNE GTBYTE
0019 3F SWI

Parity provides a simple means of checking for errors on noisy communications
lines. If the transmitter sends parity along with the actual data, the receiver can then
compare that parity with the parity of the data that it receives. If the two parities do not
agree, the receiver can request retransmission of the data. If there is a single bit in error,
the two parities will never agree, since the number of ‘I’ bits in the data will clearly
change from even to odd or odd to even. However, two wrong bits will just as obviously
result in the same parity as the original data. Thus we say that parity detects single but
not double bit errors. Of course, single bit errors are usually more common than are
double bit errors, so this is not a major drawback.

A more serious problem with parity is that it provides no way to correct errors.
An error in any bit position will produce the same change in parity, so the receiver can-
not determine which bit is wrong. More advanced coding techniques provide for error
correction as well as error detection. Parity, however, is easy to calculate and ade-
quate in situations in which retransmission of data is tolerable.

The procedure for calculating parity is to count the number of ‘1’ bits in each
byte of data. If that number is odd, the program sets the most significant bit (MSB)
of the data byte to 1 to make the parity even. An advantage of ASCII is that it leaves bit
7 of each byte for parity; EBCDIC does not, since it is an 8-bit code.

ASL clears the least significant bit of the accumulator or memory location that it is
shifting. Therefore, the result of a series of ASL instructions will eventually be zero,
regardless of the original data (try it!). The bit counting procedure in the example pro-
gram does not use a counter for termination since it stops as soon as all the remaining
data bits are zero. This procedure is simple and reduces execution time in most cases.

The program sets the MSB of the data byte to ‘1’ by logically ORing it with a pat-
tern that has a ‘1’ in its most significant bit and zeros elsewhere. Logically ORing a bit
with ‘1’ always produces aresultof ‘1’, while logically ORing a bit with ‘0’ leaves the
bit unchanged.
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6-5. PATTERN MATCH

Purpose: Compare two strings of ASCII characters to see if they are the same. The
length of the strings is in memory location 0041; one string starts in memory
location 0042 and the other in memory location 0052. If the two strings
match, clear memory location 0040; otherwise, set memory location 0040 to
all ones (FF,,).

Sample Problems:

a. (0041) 03 Number of characters in each string
(0042) 43 ‘C
(0043) 41 ‘A’
(0044) 54 ‘T’
(0052) 43 C
(0053) 41 ‘A’
(0054) 54 ‘T’
Result: (0040) 00, since the two strings are the same
b. (0041) 03 Number of characters in each string
(0042) 52 'R’
(0043) 41 A’
(0044) 54 ‘T’
(0052) 43 C
(0053) 41 A’
(0054) 54 ‘T’
Result: (0040) FF, since the first characters in the

strings differ

Note: The matching process ends as soon as the CPU finds a difference — the rest of the
strings need not be examined.

Program 6-5:
0000 86  FF LDA #SFF MARK = FF HEX FOR INEQUALITY
0002 97 40 STA $40
0004 8E 0042 LDX #542 POINTERl = START OF STRING 1
0007 108E 0052 LDY #6852 POINTER2 = START OF STRING 2
000B D6 41 LDB $41 COUNT = LENGTH OF STRINGS
000D A6 80 CHBYTE LDA S X+ GET A CHARACTER FROM STRING 1
000F Al A0 CMPA Y+ DOES IT MATCH WITH STRING 2?
0011 26 05 BNE DONE NO, DONE
0013 5A DECB
0014 26 F7 BNE CHBYTE  CHECK NEXT PAIR IF ANY LEFT
0016 OF 40 CLR $40 IF NONE ARE LEFT, MARK = 0

* FOR EQUALITY

0018 3F DONE  SWI

Matching strings of ASCII characters is an essential part of recognizing names
or commands, identifying variables or operation codes in assemblers and compilers,
accessing named files, and many other tasks.

Program 6-5 uses different index registers for the two strings, so they can be
located anywhere in memory. We could use a single index register if the two strings
were always located a constant distance apart. If that distance were DIST, the com-
parison procedure would be

CHBYTE LDA » X+
CMPA  DIST-1,X
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Program 6-5 autoincrements both Index Register X and Index Register Y. Note
that LDY requires a 2-byte operation code, while LDX requires only a l-byte code. In
fact, the operation code for LDY is the operation code for LDX preceded by the byte
10,,. The prefix byte 10,, apparently tells the 6809 processor that this instruction falls in
a special group and the next byte will actually describe the operation to be performed.

We could replace CLR $40 with INC $40 or STB $40 (why?). Which of these
alternatives executes faster? Which do you think is clearer?

Flowchart:

POINTER1 = 0042
POINTER2 = 0052
COUNT = (0041)
MARK = FF g

POINTER1 =
POINTER?® + 1

POINTER2 =
POINTER2 + 1

COUNT =
COUNT -1

MARK = 0O

{0040} = MARK
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PROBLEMS

6-1. LENGTH OF A TELETYPEWRITER MESSAGE

Purpose: Determine the length of an ASCII message. All characters are 7-bit ASCII
with MSB = 0. The string of characters in which the message is embedded
starts in memory location 0041. The message itself starts with an ASCII STX
character (02,,) and ends with ETX (03,,). Place the length of the message
(the number of characters between the STX and the ETX but including
neither) into memory location 0040.

Sample Problem:

(0041) 40
(0042) 02 STX
(0043) 47 ‘G’
(0044) 4F 'O’
(0045) 03 ETX
Result:  (0040) 02, since there are two characters between

the STX in location 0042 and ETX in
location 0045

6-2. FIND LAST NON-BLANK CHARACTER

Purpose: Search a string of ASCII characters for the last non-blank character. The string
starts in memory location 0042 and ends with a carriage return character
(0D,,). Place the address of the last non-blank character in memory locations
0040 and 0041 (most significant bits in 0040).

Sample Problems:

a. (0042) 37 7
(0043) OD CR
Result: (0040) 00} since the last (and only) non-blank
(0041) 42) character is in memory location 0042
b. (0042) 41 A’
(0043) 20 SP
(0044) 48 'H’
(0045) 41 ‘A’
(0046) 54 T’
(0047) 20 SP
(0048) 20 SP
(0049) OD CR
Result: (0040) 00

(0041) 46
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6-3. TRUNCATE DECIMAL STRING TO INTEGER FORM

Purpose: Edit a string of ASCII characters by replacing all digits to the right of the
decimal point with ASCII blanks (20,4). The string starts in memory location
0041 and is assumed to consist entirely of ASCII decimal digits and a possible
decimal point (2E,¢). The length of the string is in memory location 0040. If
no decimal point appears in the string, assume that the decimal point is
implicitly at the far right.

Sample Problems:

a. (0040) 04 Length of string
(0041) 37 7
(0042) 28
(0043) 3B ‘B’
(0044) 31 ‘1
Result: (0041) 37 ‘T
(0042) 2E
(0043) = 20 SP
(0044) - 20 SP
b. (0040) 03 Length of string
(0041) 36 '6°
(0042) 37 ‘T
(0043) 31 1

Result: Unchanged, as number is assumed to be 671

6-4. CHECK EVEN PARITY IN ASCIl CHARACTERS

Purpose: Check even parity in a string of ASCII characters. The length of the string is in
memory location 0041, and the string itself begins in memory location 0042. If
the parity of all the characters in the string is correct, clear memory location
0040; otherwise, place all ones (FF,¢) into memory location 0040.

Sample Problems:

a (0041) 03 Length of string
(0042) B1 =1011 0001
(0043) B2 =1011 0010
(0044) 33 =0011 0011
Result:  (0040) 00, since all the characters have even parity
b. (0041) 03 Length of string
(0042) B1 =1011 0001
(0043) B6 =1011 0110
(0044) 33 =0011 0011
Result: (0040) FF, since the character in memory location

0043 does not have even parity
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Purpose: Compare two strings of ASCII characters to see which is larger (that is, which
follows the other in alphabetical ordering). The length of the strings is in
memory location 0041; one string starts in memory location 0042 and the
other in memory location 0052. If the string starting in memory location 0042
is greater than or equal to the other string, clear memory location 0040; other-
wise, set memory location 0040 to all ones (FF,;).

Sample Problems:

a. (0041)

(0042)
(0043)
(0044)

(0052)
(0053)
(0054)

Result: (0040)

b. (0041)

(0042)
(0043)
(0044)

(0052)
(0053)
(0054)

Result: (0040)

(o3 (0041)

(0042)
(0043)
(0044)

(0052)
(0053)
(0054)

Result  (0040)

03

43
41
54

42
51
54

00,

03

43
41
54

43
41
54

00,

03
43

54

43
55
54

FF,

Length of each string

dpd 43q

since CAT is ‘larger’ than BAT

Length of each string

4xa 4xa

since the two strings are equal

Length of each string

4ca 430

since CUT is ‘larger’ than CAT
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Code Conversion

Code conversion is a continual problem in microcomputer applications. Peri-
pherals provide data in ASCII, BCD, or various special codes. The microcomputer
must convert the data into some standard form for processing. Output devices may
require data in ASCII, BCD, seven-segment, or other codes. Therefore, the
microcomputer must convert the results to the proper form after it completes the pro-

cessing.

There are several ways to approach code conversion:

1.

Some conversions can easily be handled by algorithms involving arithmetic
or logical functions. The program may, however, have to handle special cases
separately.

More complex conversions can be handled with lookup tables. The lookup
table method requires little programming and is easy to apply. However, the
table may occupy a large amount of memory if the range of input values is
large.

Hardware is readily available for some conversion tasks. Typical examples
are decoders for BCD to seven-segment conversion and Universal
Asynchronous Receiver/Transmitters (UARTs) for conversion between
parallel (ASCII) and serial (teletypewriter) formats.

In most applications, the program should do as much as possible of the code con-
version work. This approach reduces parts count and power dissipation, saves board
space, and increases reliability. Furthermore, most code conversions are easy to pro-
gram and require little execution time.
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PROGRAM EXAMPLES

7-1. HEXADECIMAL TO ASCII

Purpose: Convert the contents of memory location 0040 to an ASCII character.
Memory location 0040 contains a single hexadecimal digit (the four most sig-
nificant bits are zero). Store the ASCII character in memory location 0041.

Sample Problems:

a. (0040) ocC
Result: (0041) 43 ¢
b. {0040) 06
Result: (0041) 36 ‘6’
Program 7-1:
0000 96 40 LDA $40 GET DATA
0002 81 09 CMPA 49 IS DATA 9 OR LESS?
0004 23 02 BLS Ascz
0006 8B 07 ADDA  #'A-'9-1 NO, ADD OFFSET FOR LETTERS
0008 8B 30 ASCZ ADDA #'0 CONVERT DATA TO ASCII
000A 97 41 STA $41 STORE ASCII DATA
000C 3F SWI

The basic idea of this program is to add ASCII 0 (30,,) to all the hexadecimal
digits. This addition converts the digits O through 9 to ASCII correctly. However, the
letters A through F do not follow immediately after the digit 9 in the ASCII code;
instead, there is a break between the ASCII code for 9 (39,,) and the ASCII code for A
(41,,), so the conversion must add a further constant to the nondecimal digits (A, B,
C, D, E, and F) to account for the break. The first ADD instruction does this by adding
‘A — ‘9 — 1 to Accumulator A. Can you explain why the extra factor for letter digits
has the value ‘A — ‘9 — 1?

We have used the ASCII forms for the addition factors in the source program; a
single quotation mark (apostrophe) before a character indicates the ASCII equivalent.
We have also left the offset for the letters as an arithmetic expression to make its mean-
ing as clear as possible. The extra assembly time is a small price to pay for the great
increase in clarity. A routine like this is necessary in many applications; for example,
monitor programs must convert hexadecimal digits to their ASCII equivalents in order
to display the contents of memory locations in hexadecimal on an ASCII printer or CRT
display.

The following program, described by Allison!, provides a less obvious conver-
sion method that requires no conditional branches.

0000 96 40 LDA $40 GET HEX DIGIT

0002 8B 90 ADDA #3590 DECIMAL ADD 90 BCD

0004 19 DAA

0005 89 40 ADCA #3540 DECIMAL ADD 40 BCD + CARRY
0007 19 DAA

0008 97 41 STA $41

000A 3F SWI

Try this program on some hexadecimal digits. Can you explain why it works?
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Flowchart:

DATA = (0040)

DATA =
DATA + ASCIl A
- ASCII9 — 1
RESULT =

DATA + ASCIl O

(004 1) = RESULT

7-2. DECIMAL TO SEVEN-SEGMENT

Purpose: Convert the contents of memory location 004! to a seven-segment code in
memory location 0042. If memory location 0041 does not contain a single
decimal digit, clear memory location 0042.

Figure 7-1 illustrates the seven-segment display and our representation of it as a
binary code. The segments are usually assigned the letters a through g as shown in
Figure 7-1. We have organized the seven-segment code as shown: segment g is in bit
position 6, segment f in bit position 5, e in bit position 4, and so on. Bit position 7 is
always zero. The segment names are standard, but the assignment of segments to bit
positions is arbitrary; in actual applications, this assignment is a hardware function.

The table in Figure 7-1is a typical example of those used to convert decimal num-
bers to seven-segment code; it assumes positive logic, that is, | = on and 0 = off. Note
that the table uses 7D for 6 rather than the alternative 7C (top bar off) to avoid confu-
sion with lower-case b, and 6F for 9 rather than 67 (bottom bar off) for symmetry with
the 6.
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Sample Problems:

a. {0041) 03
Result: (0042) 4F
b. (004 1) 28
Result: {(0042) 00
Program 7-2:
0000 SF CLRB GET ERROR CODE
* TO BLANK DISPLAY
0001 96 41 LDA $41 GET DATA
0003 81 09 CMPA 49 1S DATA A DECIMAL DIGIT?
0005 22 05 BHI DONE NO, KEEP ERROR CODE
0007 8E 0020 LDX #SSEG YES, GET SEVEN-SEGMENT
* CODE FROM TABLE
000A E6 86 LDB A,X
000C D7 42 DONE STB $42
000E 3F SWI
*
0020 ORG $20
*
0020 3F SSEG FCB $3F,$06,55B,$4F,$66
0021 06
0022 5B
0023 4F
0024 66
0025 6D FCB $6D,$7D,5$07,$7F,$6F
0026 7D
0027 07
0028 7F
0029 6F

The program calculates the memory address of the seven-segment code by
adding an index — the digit to be converted — to the base address of the seven-seg-
ment code table. This procedure is known as a ‘‘table lookup.’’ The addition does not
require any explicit instructions, since the processor performs it automatically as part of
the calculation of the effective address in the indexed addressing mode. We have used
the accumulator indexed mode in which the effective address is the sum of Accumulator
A and Index Register X.

The assembler directive FCB (Form Constant Byte) places constant byte-length
data in program memory. Such data may include tables, headings, error messages, prim-
ing messages, format characters, thresholds, and mathematical constants. The label
attached to an FCB pseudo-operation is assigned the value of the address in which the
assembler places the first byte of data.

The assembler assigns the data from the FCB directive to consecutive memory
addresses, with no changes other than numerical conversions. One FCB directive can fill
many bytes of memory; all the programmer must do is separate the entries with com-
mas.

We have left some memory space between the program and the table to allow for
later additions and to emphasize that they need not be located consecutively. In fact, we
could place the table anywhere in memory.

Tables are a simple, fast, and convenient approach to code conversion problems
that are more complex than our hexadecimal-to-ASCII example. The required lookup
tables simply contain all the possible results organized by input value; that is, the first
entry is the code for the number zero and so on.

Seven-segment displays provide recognizable forms of the decimal digits and a
few letters and other characters. They are relatively inexpensive and easy to handle
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with 8-bit microprocessors. However, many people find seven-segment coded digits
somewhat difficult to read, although their widespread use in calculators and watches
has made them more familiar.

Flowchart:

DATA = (0041)
Yes
RESULT =
(SSEG + DATA) RESULT = 0

(0042) = RESULT

Note that the addition of base address (SSEG) and index (DATA) produces the
address that contains the answer.

Digit Code

3F
06
5B
4F
66 *

6D c

07
7F d
6F

CAONOOOHAWN-—-0

7 6 5 4 3 2 O <sg— Bit Number

Figure 7-1. Seven-Segment Arrangement
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7-3. ASCIl TO DECIMAL

Purpose: Convert the contents of memory location 0040 from an ASCII character to a
decimal digit and store the result in memory location 0041. If the contents of
memory location 0040 are not the ASCII representation of a decimal digit, set
the contents of memory location 0041 to FF .

Sample Problems:

a. (0040) 377
Result: (0041) 07
b. (0040) 55 an invalid code, since it is not an
ASCIl decimal digit
Result: (0041) = FF

Flowchart:

DATA = (0040)

Yes

Yes

RESULT =

DATA — ASCH O 32 SR

(0041) = RESULT
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Program 7-3:
0000 C6  FF LDB #SFF GET ERROR MARKER
0002 96 40 LDA $40 GET DATA
0004 80 30 SUBA  #'0 IS DATA BELOW ASCII ZERO?
0006 25 06 BLO DONE YES, NOT A DIGIT
0008 81 09 CMPA 49 IS DATA ABOVE ASCII NINE?
000A 22 02 BHI DONE YES, NOT A DIGIT
000C 1F 89 TFR A,B SAVE VALID DECIMAL DIGIT
000E D7 41 DONE  STB $41 SAVE DIGIT OR ERROR MARKER
0010 3F SWI

This program handles ASCII characters just like ordinary numbers. Since ASCII
assigns an ordered sequence of codes to the decimal digits, we can identify an ASCII
character as a digit by determining if it falls within the proper range of numerical
values. We could use the ASCII ordering similarly to determine if a character is in a par-
ticular group of letters or symbols, such as A through F. This approach assumes
detailed knowledge of a particular code and would not necessarily be valid for other
codes.

Subtracting ASCII 0 (30,,) from any ASCII decimal digit gives the decimal
value of that digit. An ASCII character is a decimal digit if its value lies between 30,
and 39,, (including the endpoints); how would you determine if an ASCII character is a
valid hexadecimal digit? ASCII-to-decimal conversion is necessary in applications in
which decimal data is entered from an ASCII device such as a teletypewriter or terminal.

The program performs one comparison — to the lower limit — with an actual
subtraction (SUBA #’0), since the subtraction is necessary for the ASCII-to-decimal
conversion. It performs the other comparison with an implied subtraction (CMPA #9)
to avoid destroying the possible decimal digit in Accumulator A. Implied subtractions
(CMP) are far more common than actual subtractions (SUB) in programs, since the
numerical value of the result is seldom of interest.

The instruction TFR can transfer the contents of any 8- or 16-bit register to any
other 8- or 16-bit register. TFR copies the source register into the destination register;
the source register is not changed. The only restriction is that the source and destina-
tion registers must be the same length (both eight bits long or both 16 bits long). TFR
instructions always require one byte besides the operation code; the high-order four bits

of that byte specify the source register and the low-order four bits specify the destination
~ register. See the description of TFR in Chapter 22 for more details.

One special use of TFR is to load the direct page register, since there is no LD
instruction for that register. A typical sequence that loads the direct page register with
the constant value PGNO is:

LDA #PGNO DIRECT PAGE = PGNO
TFR A,DP

An alternative to TFR is EXG (Exchange Registers). This instruction swaps
the source and destination registers, thus preserving both values. For example, the
following sequence will load the direct page register with the constant PGNO and save
the old direct page register in memory location OLDPG.

LDA #PGNO DIRECT PAGE = PGNO

EXG A,DP
STA OLDPG SAVE OLD DIRECT PAGE NUMBER
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7-4. BCD TO BINARY

Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary num-
ber in memory location 0042. The most significant BCD digit is in memory
location 0040.

Sample Problems:

a. (0040) 02
(0041) 09
Result: (0042) 1D4¢
b. (0040) 07
(0041) 01
Result: (0042) 4716
Program 7-4:
0000 96 40 LDA $40 GET MOST SIGNIFICANT DIGIT
0002 C6 OA LDB $#10 MULTIPLY BY 10
0004 3D MUL
0005 DB 41 ADDB $41 ADD LEAST SIGNIFICANT DIGIT
0007 D7 42 STB 642 STORE BINARY EQUIVALENT
0009 3F SWI

The MUL instruction performs an unsigned 8-bit by 8-bit multiplication of the
contents of Accumulators A and B; the result occupies the double accumulator D,
with the high-order byte in A.

In this case, we know that theresultis 90, or less, so only the low-order eight bits
of the product (in Accumulator B) are relevant.

Converting BCD entries to binary saves storage and simplifies calculations.
BCD numbers require about 20% more memory space than do binary numbers; for
example, representing the numbers 0 to 999 requires three BCD digits — 12 bits — but
only 10 bits in binary since 2'0 = 1024 & 1000.

Since MUL requires 11 clock cycles, it is sometimes faster to multiply by small
decimal numbers using repeated additions.2 The instruction ASLA multiplies the con-
tents of Accumulator A by 2, so multiplications by powers of 2 can be implemented as
arithmetic shifts.

7-5. BINARY NUMBER TO ASCII STRING

Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII
characters (each either ASCII 0 or ASCII 1) in memory locations 0042
through 0049. (Place the most significant bit in location 0042.)

Sample Problem:

(0041) D2 = 1101 0010
Resuit: (0042) 31 1

(0043) 31 1

(0044) 30 ‘O

(0045) 31 ‘1

(0046) 30 ‘O

(0047) 30 ‘O

(0048) 3T v

(0049) 30 ‘O



Flowchart:

Program 7-5:

0000

0002
0004
0007
0009
000A
oooc

Since the decimal digits form a sequence in ASCII, ASCII 1 = ASCII 0 + 1.

C6

96
8E
E7
48
24
6C

8C
26
3F

30
41
0042
80

02
1F

004A

CONV

COUNT

Code Conversion

DATA = (0041)
POINTER = 0042

I(POINTER) = ASCIl O
Shift DATA right
one bit

(POINTER) = ASCii 1

(= (POINTER) + 1)
POINTER =
POINTER + 1
LDB t'0 GET ASCII ZERO
TO STORE IN STRING
LDA $41 GET DATA
LDX #$42 POINT TO START OF ASCII STRING
STB X+ STORE ASCII ZERO IN STRING
LSLA IS BIT ACTUALLY 1?2
BCC COUNT
INC -1,X YES, MAKE STRING ELEMENT
INTO ASCII ONE
CMPX #S4A CHECK FOR END OF CONVERSION
BNE CONV

SWI

7-9

The CMP(X/Y/U/S/D) instructions compare 16-bit quantities. The flags are
set according to the result of the entire 16-bit subtraction, even though the
microprocessor actually performs it eight bits at a time. CMPX takes two cycles longer
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than CMPA or CMPB, while CMPD, CMPY, CMPS, and CMPU all require two-byte
operation codes and take three cycles longer than CMPA or CMPB.

Single-operand instructions like INC, DEC, COM, or ASL can all use any of
the indexed addressing modes. Be careful of the fact that such instructions affect
memory locations (the effective address), not the specified index register or stack
pointer (except through autoincrementing or autodecrementing). For example, CLR
,X+ clears the byte of memory located at the address in Index Register X (and
autoincrements X); it does not clear Index Register X.

Assembly-time arithmetic often comes in handy for performing address com-
parisons. If, for example, we established that the ASCII binary string started in the loca-
tion named BINSTR, the required comparison instruction would be:

COUNT CMPX #BINSTR+8

This form is clearer and easier to change than is an explicit address. Furthermore, the
programmer does not have to perform any hexadecimal arithmetic.

Binary-to-ASCII conversion is necessary if numbers are to be printed in binary
on an ASCII device. Binary outputs are helpful in debugging and testing when each
bit has a separate meaning; typical examples are inputs from a set of panel switches or
outputs to a set of LEDs. If the programmer can only obtain the value in some other
number system (such as octal or hexadecimal), he or she must perform an error-prone
hand conversion to check the bits.

PROBLEMS

7-1. ASCII TO HEXADECIMAL

Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and
store the result in memory location 0041. Assume that memory location 0040
contains the ASCII representation of a hexadecimal digit (7 bits with MSB 0).

Sample Problems:

a. {0040) 43 ‘C’
Result: {0041) oc

b. (0040) 36 ‘6
Result: (0041) 06

7-2. SEVEN-SEGMENT TO DECIMAL

Purpose: Convert the contents of memory location 0040 from a seven-segment code to
a decimal number in memory location 0041. If memory location 0040 does not
contain a valid seven-segment code, set memory location 0041 to FF,,. Use
the seven-segment table given in Figure 7-1 and try to match codes.
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Sample Problems:

a. (0040) 4F
Result: (0041) 03
b. (0040) 28
Result: (0041) FF

7-3. DECIMAL TO ASCIl

Purpose: Convert the contents of memory location 0040 from a decimal digit to an
ASCII character and store the result in memory location 0041. If the number
in memory location 0040 is not a decimal digit, set the contents of memory
location 0041 to an ASCII space (20,,).

Sample Problems:

a. (0040) 07
Result: (0041) 37 ‘7

b. (0040) 55
Result: (0041) 20 SP

7-4. BINARY TO BCD

Purpose: Convert the contents of memory location 0040 to two BCD digits in memory
locations 0041 and 0042 (most significant digit in 0041). The number in
memory location 0040 is unsigned and less than 100.

Sample Problems:

a. {0040) 1D
Result: (0041) 02

(0042) 09

b. (0040) 47
Result: (0041) 07

{0042) 01

7-5. ASCII STRING TO BINARY NUMBER

Purpose: Convert the eight ASCII characters in memory locations 0042 through 0049 to
an 8-bit binary number in memory location 0041 (the most significant bit is in
0042). Clear memory location 0040 if all the ASCII characters are either
ASCII 1 or ASCII 0 and set it to FF |, otherwise.
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Sample Problems:

a. (0042) 31 v
(0043) 31 1
(0044) 30 ‘O
(0045) 31 ‘1
(0046) 30 ‘O
(0047) 30 O
(0048) 31 ‘17
(0049) 30 ‘O
Result:  (0041) D2 =1101 0010
(0040) 00
b. Same as above except:
(0045) 37 ‘T
Result: (0040) FF

1. D. R. Allison, ‘“A Design Philosophy for Microcomputer Architectures,’’ Com-
puter, February 1977, pp. 35-41. This is an excellent article which we highly recom-

mend.

Other BCD-to-binary conversion methods are discussed in J. A. Tabb and M. L.
Roginsky, ‘‘Microprocessor Algorithms Make BCD-Binary Conversions Super-
fast,”” EDN, January 5, 1977, pp. 46-50, and in J. B. Peatman, Microcomputer-Based

Design, (New York: McGraw-Hill, 1977), pp. 400-406.
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Arithmetic Problems

Most arithmetic in microprocessor applications consists of multi-byte binary or
decimal manipulations. A decimal correction (decimal adjust) or some other means
for performing decimal arithmetic is frequently the only arithmetic instruction pro-
vided beyond binary addition and subtraction. The 6809 microprocessor represents a
significant advance over earlier devices in that, besides the operations mentioned, it
has instructions for 16-bit addition and subtraction, 8-bit unsigned multiplication,
and sign extension.

Multiple-precision binary arithmetic requires simple repetitions of the basic
single-byte instructions. The Carry flag transfers information between bytes. Add
with Carry and Subtract with Carry (Borrow) are the instructions that use the informa-
tion from the previous arithmetic operations. You must be careful to clear the Carry
before operating on the least significant bytes, since there ts obviously never any carry
into them or borrow from them.

Decimal arithmetic is a common enough task for microprocessors that most
have special instructions for this purpose. These instructions may either perform
decimal operations directly or correct the results of binary operations to the proper
decimal forms. Decimal arithmetic is essential in such applications as point-of-sale ter-
minals, calculators, check processors, order entry systems, and banking terminals. It is
necessary in other applications as well (such as instrumentation, test equipment, pro-
cess control, and industrial control) to allow input and output of data in the form
familiar to human operators.

The 6809 microprocessor has a multiplication instruction MUL that can easily
be extended to handle data that is more than 8 bits in length. You can implement
division as a series of subtractions and shifts much as you ordinarily perform long
division by hand. Double-byte operations are essential since division reduces the bit
length of the result. Of course, multiplying or dividing by a power of 2 is simple since
such operations can be implemented with an appropriate number of left or right
arithmetic shifts.
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PROGRAM EXAMPLES

8-1. MULTIPLE-PRECISION BINARY ADDITION

Purpose: Add two multi-byte binary numbers. The length of the numbers (in bytes) is
in memory location 0040, the numbers themselves start (least significant bits
first) in memory locations 0041 and 0051 respectively, and the sum replaces
the number starting in memory location 0041.

Sample Problem:

(0040) 04  Number of bytes in each number
(0041) c3
(‘ggi;; g‘; 2F5BA7C3,4 is first number
(0044) 2F
(0051) B8
:88:%; 3‘2 14DF35BB, ¢ is second number
(0054) 14

Resuit: (0041) 78
:ggig: 22 443ADD7B g is sum
(0044) 44

Flowchart:

COUNT = (0040)
POINTER1 = 0041
POINTER2 = 0051
CARRY =0

(POINTER1) =
(POINTER1) +
(POINTER2) +

(CARRY) (This step also produces new carry)

POINTER1 =
POINTER1 + 1

POINTER2 =
POINTER2 + 1

COUNT=COUNT -1
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Program 8-1:
0000 D6 40 LDB $40 COUNT=LENGTH OF NUMBER IN BYTES
0002 8E 0041 LDX #541 POINT TO LSB'S OF FIRST NUMBER
0005 108E 0051 LDY #4551 POINT TO LSB'S OF SECOND NUMBER
0009 1C FE ANDCC #%11111110 CLEAR CARRY TO START
000B A6 84 ADBYTE LDA , X GET BYTE FROM FIRST NUMBER
000D A9  AO ADCA  ,Y+ ADD BYTE FROM SECOND NUMBER
000F A7 80 STA ) X+ STORE RESULT IN FIRST NUMBER
0011 SA DECB
0012 26 F7 BNE ADBYTE CONTINUE UNTIL ALL BYTES ADDED
0014 3F SWI

Clearing and Setting Flags

The instruction ANDCC logically ANDs the next byte of program memory with
the condition code register, clearing those flags that are ANDed with ‘0’s and leaving
unchanged those flags that are ANDed with ‘1’s. ANDCC #%11111110 thus clears bit
0 of the condition code register (the Carry flag) and leaves the other bits unchanged.
The 6800 mnemonic for this operation is much clearer — CLC (CLEAR CARRY); of
course, the 6809 ANDCC is more general. The program must clear the carry since there
is never a carry into the least significant bytes.

The instruction ORCC is similar to ANDCC, except that it logically ORs the
next byte of program memory with the condition code register, setting those flags that
are ORed with ‘1’s and leaving unchanged those flags that are ORed with ‘0’s. ORCC
#%00000001 thus sets bit 0 of the condition code register (the Carry flag) and leaves the
other bits unchanged. As with ANDCC, the 6800 mnemonic is much clearer — SEC
(SET CARRY).

Add With Carry

The instruction ADC (ADD WITH CARRY) adds in the carry from the previous
byte. ADC is the only instruction in the loop that affects the Carry flag. Note, in particu-
lar, that instructions such as INC, DEC, and LEA perform counting and arithmetic
functions without affecting the Carry flag.

Positioning Data

This program uses two index registers so that the two numbers can be positioned
independently in memory. If we used a single index register, the numbers could be
located anywhere but would always have to be separated by a constant distance. We
could take advantage of the User Stack Pointer U to store the result in a third indepen-
dent set of memory locations. You might try modifying the program so that it stores the
sum starting in memory location 0061.

Decimal Accuracy in Binary Representation

This procedure can add binary numbers of any length. Ten bits correspond to
approximately three decimal digits since 2!®* = 1024=1000. So you can calculate the
number of bits required to give a certain accuracy in decimal digits from the formula:

Number of bits = {10 +~ 3) X Number of decimal digits

For example, twelve decimal digit accuracy requires:
12 X 10 + 3 = 40 bits




8-4 6809 Assembly Language Programming

One shortcoming of the 16-bit instruction ADDD is that it cannot be extended easily.
There is no 16-bit equivalent of the ADD WITH CARRY instruction.

8-2. DECIMAL ADDITION

Purpose: Add two multi-byte decimal (BCD) numbers. The length of the numbers (in
bytes) is in memory location 0040, the numbers themselves start (least sig-
nificant digits first) in memory locations 0041 and 0051 respectively, and the
sum replaces the number starting in memory location 0041.

Sample Problem:

(0040) = 04 Number of bytes in each number
(0041) = 85 I
(0042) 19 o
{0043) 70 ; 36701985 is first number
(0052) 34 ]
(0053) 66 , 12663459 is second number
Resuit: (0041) = 44 '
(0042) 54 ) )
(0043) 36 * 49365444 is decimal sum
(0044) = 49
that is, 36701985
+ 12663459
49365444

Flowchart:

COUNT = (0040)
POINTER1 = 0041
POINTER2 = 0051
Carry = 0O

(This step also
produces new carry)

POINTER1 =
POINTER1 + 1

POINTER2 =
POINTER2 + 1

COUNT=COUNT -1




Program 8-2:

0000 D6 40 LDB
0002 8E 0041 LDX
0005 108E 0051 LDY
0009 1C FE ANDCC
000B A6 84 ADDIGS LDA
000D A9 A0 ADCA
000F 19 DAA
0010 A7 80 STA
0012 5A DECB
0013 26 F6 BNE
0015 3F SWI

Arithmetic Problems 8-5

$40 COUNT=LENGTH OF NUMBERS IN BYTES

#3541 POINT TO LSB'S OF FIRST NUMBER

#9551 POINT TO LSB'S OF SECOND NUMBER

#%11111110 CLEAR CARRY TO START

X GET TWO DIGITS OF FIRST NUMBER

Y+ ADD TWO DIGITS OF SECOND NUMBER
DECIMAL CORRECTION

X+ STORE RESULT IN FIRST NUMBER

ADDIGS CONTINUE UNTIL ALL DIGITS ADDED

The Decimal Adjust Instruction

The Decimal Adjust (DAA) instruction uses the Carry (C) and Half-Carry (H)
flags to recognize and change the following situations in which binary and BCD addition

differ:

1.

The sum of two digits is between 10 and 15 inclusive. In this case, six must
be added to the sum to give the right result, e.g.,

0101
+ 1000

1101
+ 0110

0001 0011

(5)
(8)

(0)

(BCD 13, which is correct)

The sum of two digits is 16 or more. In this case, the result is a proper BCD
digit but six less than it should be, e.g.,

1000
+ 1001

0001 0001
+ 0110

00010111

(8)
9)

(BCD 11)

{BCD 17, which is correct)

An extra factor of 6 is necessary in both cases. However, the processor can recog-
nize Case 1 by determining that the sum is not a BCD digit, i.e., it is between 10 and 15
(or A and F hexadecimal). On the other hand, the processor must check the digit carry
(H for the lower digit, C for the upper digit) to recognize Case 2, since the result is a
valid BCD number. DA A is the only instruction that actually needs the H (Half-Carry)
flag. Note that DA A only operates on Accumulator A and only works correctly after an
ADDA or ADCA instruction.

You cannot use DAA after such instructions as:

1.

ADDD or SUBD, since neither affects the H flag. Correcting the result of
ADDD to decimal would obviously require three digit carry flags.

ASL, ASR, NEG, SBC, or SUBA (B), since all of these leave the H flag in
an undefined state. In particular, you can only perform decimal subtraction
in a rather roundabout way (see Problem 2 at the end of the chapter). This
approach involves transforming a subtraction operation into an addition
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operation; if, for example, X and Y are each two digits from a string of
decimal numbers, then

X -Y =X+ 99 -Y + BORROW

where BORROW is the borrow from the previous (less significant) digits.

Calculating 99—Y is simple, since any decimal number can be subtracted
from 99 without producing a borrow from either digit. You can then use DAA
to add X in decimal form. Note, however, that this operation produces a carry
if the result is positive but not if the result is negative. Thus the Carry has the
opposite meaning from its usual significance as a borrow in subtraction opera-
tions.

3. INC or DEC, since neither affects the Half-Carry or the Carry. You can,
however, perform a decimal increment of Accumulator A with the sequence:

ADDA #1 INCREMENT ACCUMULATOR
DAA RETAINING DECIMAL FORM

or a decimal decrement by adding 99 (hex or BCD):

ADDA #5599 DECREMENT ACCUMULATOR
DAA RETAINING DECIMAL FORM

The decimal increment produces a carry if the result is 100, while the decimal
decrement produces a carry unless the result is 99. Thus you can recognize
either a carry or a borrow by examining the Carry flag.

4. LEA, since it produces a 16-bit result and does not affect either the Half-
Carry flag or the Carry flag.

Binary and BCD Accuracy

The decimal addition procedure works for decimal (BCD) numbers of any length.
Since each decimal digit requires four bits, twelve-digit accuracy requires

12 X 4 = 48 bits

as compared to 40 bits using binary addition. This is six bytes instead of five, a 20%
increase.
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8-3. 8-BIT BY 16-BIT BINARY MULTIPLICATION

Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 16-bit
unsigned number in memory locations 0041 and 0042 (MSB’s in 0041). Place
the result in memory locations 0043, 0044, and 0045, with the MSB’s in 0043
and the LSB’s in 0045.

Sample Problems:

a. (0040) 03 multiplier
0041
:0042)) 82 } 0005 is muitiplicand
Resuit: (0043) 00
(0044) 00 0O0O0O0OF is product
(0045) OF
or in decimal: 3 X 5 = 15,
b. (0040) 64 multiplier
:882;; :7“5) } 7530 is multiplicand
Result: (0043) 2D
(0044) Cc6 2DC6CO is product
(0045) co

or in decimal: 100 x 30,000 = 3,000,000.

Program 8-3:
0000 96 40 LDA $40 GET MULTIPLIER
0002 D6 42 LDB $42 GET LSB'S OF MULTIPLICAND
0004 3D MUL MULTIPLY LSB'S
0005 DD 44 STD $44 SAVE PARTIAL PRODUCT
0007 96 40 LDA $40 GET MULTIPLIER
0009 D6 41 LDB $41 GET MSB'S OF MULTIPLICAND
000B 3D MUL MULTIPLY MSB'S
000C DB 44 ADDB $44 ADD LSB'S TO MSB'S
* OF PREVIOUS PARTIAL PRODUCT
000E 89 00 ADCA  #0 ADD CARRY TO MSB'S
0010 DD 43 STD $43 SAVE SUM OF PARTIAL PRODUCTS
0012 3F SWI

Extending the MUL instruction to handle longer operands works much like ordin-
ary long multiplication. You must be careful to align the partial products correctly before
adding them together. Each successive partial product is shifted 8 bits to the left from
the previous product. The ADCA 30 instruction provides a convenient way to handle
carries that may result from adding partial products.

Besides its obvious uses in calculators and point-of-sale terminals, multiplica-
tion is also a key part of almost all signal processing and control algorithms. The
speed at which a processor can perform multiplication determines its usefulness in
process control, adaptive control, signal detection, and signal analysis.

Multi-Dimensional Arrays

Another common use of multiplication is in locating elements in multi-dimen-
sional arrays. For example, if we have an array of sensor readings organized by remote
station number and sensor number, we generally refer to the reading from the 7th sen-
sor at station number 5 as R(5,7), where R is the name of the entire array. The usual
method of storing such an array is to start at address RBASE with R(0,0) and continue
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with R(0,1), R(0,2), etc. If there are 3 stations (0, 1, and 2) and 4 sensors at each sta-
tion (0, 1, 2, and 3), we keep the readings in the following memory locations:

Memory Location Reading
RBASE R(0,0)
RBASE + 1 R(0,1)
RBASE + 2 R(0,2)
RBASE + 3 R(0,3)
RBASE + 4 R(1,0)
RBASE + 5 R(1,1)
RBASE + 6 R(1,2)
RBASE + 7 R(1,3)
RBASE + 8 R(2,0)
RBASE + 9 R(2,1)
RBASE + 10 R(2,2)
RBASE + 11 R(2,3)

In general, if we know the station number I and the sensor number J, the reading
R(1,])) is located at address

RBASE + N X | + J

where N is the number of sensors at each station. Thus locating a particular reading in
order to update it, display it, or perform some mathematical operations on it requires a
multiplication. For example, the operator might want an instrument to print the current
reading of sensor #3 at station #2. To find that reading, the processor must calculate the
address

RBASE + 4 X 2 + 3 = RBASE + 11

Even more multiplications are necessary if the array has more dimensions. For
example, we might organize the sensors by station number, position in the X direction,
and position in the Y direction (each station thus has sensors at regular positions on a
two-dimensional surface). Now we can describe a reading R(2,3,1), which refers to the
reading of the sensor at station # 2, X position #3, and Y position #1. We can add even
more dimensions, such as vertical position, type of sensor, or time of reading. Each
added dimension means that the processor must perform more multiplications to locate
elements in the essentially one-dimensional memory.

Execution Time

This algorithm takes 54 clock cycles (or 27 microseconds if the clock is 2 MHz) to
multiply on a 6809 microprocessor. Higher speed would require additional hardware,
such as one of the multiplier chips described in the References at the end of this chapter.

8-4. BINARY DIVISION

Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041 (most
significant bits in 0040) by the 8-bit unsigned number in memory location
0042. The numbers are normalized so that 1) the most signicant bits of both
the dividend and the divisor are zero and 2) the number in memory location
0042 is greater than the number in memory location 0040, i.e., the quotient is
an 8-bit number. Store the remainder in memory location 0043 and the quo-
tient in memory location 0044,




Arithmetic Problems 8-9

Sample Problems:

a (0040) 00 o
(0041) 40 } 0040,¢ = 64 is dividend
(0042) 08  divisor
Result: (0043) 00 remainder
(0044) 08 quotient

that is, 64 ~ 8 = 8

b. (0040) 32 N
(0041) 6D } 326D,¢g = 12,909 is dividend
(0042) a7 71, isdivisor
Result: (0043) 3A 58,p is remainder
(0044) BS 181, is quotient

that is, 12,909 + 71 = 181 with a remainder of 58

Division Algorithm

You can perform division on the computer just as you would perform division
with pen and paper, i.e., using trial subtractions. Since the numbers are binary, the
only question is whether the bit in the quotientis 0 or I, i.e., whether the divisor can be
subtracted from what is left of the dividend. Each step in a binary division can be
reduced to the following operation:

If the divisor can be subtracted from the eight most significant bits of the dividend
without a borrow, the corresponding bit in the quotient is 1; otherwise, it is 0.

The only remaining problem is to line up the dividend and quotient properly.
You can do this by shifting the dividend and quotient logically left one bit before each
trial subtraction. The dividend and quotient can share a 16-bit register, since the pro-
cedure clears one bit of the dividend at the same time as it determines one bit of the
quotient.

The complete process for binary division is

STEP 1 — Initialization

QUOTIENT = 0O
COUNT =8

STEP 2 — Shift DIVIDEND and QUOTIENT to align them properly

DIVIDEND = 2 x DIVIDEND
QUOTIENT = 2 X QUOTIENT
STEP 3 — Perform trial SUBTRACTION. If no BORROW, add | to QUOTIENT

If 8 MSBs of DIVIDEND > DIVISOR then
MSBs of DIVIDEND = MSBs of DIVIDEND — DIVISOR
QUOTIENT = QUOTIENT + 1

STEP 4 — Decrement counter and check for zero

COUNT = COUNT -1
If COUNT = 0, GO TO STEP 2
REMAINDER = 8 MSBs of DIVIDEND

In the case of sample problem b, where the dividend is 326D, and the divisor is
47,,, the process works as follows.
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Initialization: After fifth iteration:
DIVIDEND 326D DIVIDEND 33A0
DIVISOR 47 DIVISOR 47
QUOTIENT 00 QUOTIENT 16
COUNT 00 COUNT 03
After first iteration of STEPS 2-4. Note After sixth iteration:
that the dwnc}end is shifted prior to the IVIEEND 2040
trial subtraction): DIVISOR a7
QUOTIENT 2D
DIVIDEND 1DDA COUNT 02
DIVISOR 47
QUOTIENT 01
COUNT 07
After second iteration of STEPS 2-4: After seventh iteration:
DIVIDEND 3884 DIVIDEND 40BO
DIVISOR 47 DIVISOR 47
QUOTIENT 02 QUOTIENT 5A
COUNT 06 COUNT 01
After third iteration: After eighth iteration:
DIVIDEND 3068 DIVIDEND 3A00
DIVISOR 47 DIVISOR 47
QUOTIENT 05 QUOTIENT B85
COUNT 05 COUNT 00

After fourth iteration:

DIVIDEND 19D0
DIVISOR 47
QUOTIENT oB
COUNT 04

So the quotient is BS and the remainder is 3A.
The MSBs of dividend and divisor are assumed to be zero to simplify calculations
(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in
the Carry). Problems that are not in this form must be simplified by removing parts of
the quotient that would overflow 8 bits. For example:
1024 40044 10046

—= =100,5+———
3 3 16

The last problem is now in the proper form. An extra division may be necessary.



Flowchart:

Program 8-4:

0000
0002
0004
0006
0007
0008
000A
000C

000E
000F
0011
0013
0015

08

40

42
42
43

F3
43

Arithmetic Preblems

DIVIDEND =
(0040):(0041)
DIVISOR = (0042)
COUNT = 8
QUOTIENT = O

DIVIDEND = 2 X
DIVIDEND
QUOTIENT = 2 x

QUOTIENT [ (shift both left 1 bit)

8 MSBs of
DIVIDEND =8 MSBs
of DIVIDEND —
DIVISOR
QUOTIENT =
QU TIENT + 1

COUNT =
COUNT -

(0043) =
8 MSB’s of
DIVIDEND =
REMAINDER
(0044)=QUOTIENT

LDA #8 COUNT=8
STA $43
LDD $40 GET DIVIDEND
DIVIDE ASLB SHIFT DIVIDEND, QUOTIENT
ROLA

8-11

CMPA $42 IS TRIAL SUBTRACTION SUCCESSFUL?

BCS CHKCNT

SUBA $42 YES, SUBTRACT AND SET BIT IN

k QUOTIENT
INCB
CHKCNT DEC $43
BNE DIVIDE
STD $43 STORE REMAINDER, QUOTIENT
SWI
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Many applications, such as calculators, terminals, communications error
checking, and control algorithms, involve division, but it is not nearly as common as
multiplication. This is why the 6809 instruction set includes a multiplication
instruction, but no division instruction. In particular, locating elements in multi-
dimensional arrays requires multiplication but not division.

The algorithm takes between 170 and 230 clock cycles to divide. That corresponds
to between 85 and 115 microseconds at a 6809 clock frequency of 2 MHz. The precise
time depends on how many times the trial subtraction succeeds, resulting in an actual
subtraction and the setting of bit 0 of the quotient. Other algorithms can reduce the
execution time somewhat, but 200 clock cycles will still be typical for a software division.
Higher speed requires additional hardware as described in the References at the end of
this chapter.

The instructions ASLB and ROLA together produce a 16-bit arithmetic left shift
of the Double Accumulator D. ASLB shifts bit 7 of Accumulator B into the Carry, and
ROLA picks it up and places it in bit 0 of Accumulator A. The 6801 microprocessor has
instructions that shift the Double Accumulator left logically (LSLD) and right logically
(LSRD).

Accumulators A and B hold both the dividend and the quotient. The quotient
simply replaces the dividend in Accumulator B as the dividend is shifted left logically.

8-5. SELF-CHECKING NUMBERS

Double Add Double Mod 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the
string (number of bytes) is in memory location 0041, and the string of digits
(2 in each byte) starts in memory location 0042. Calculate the checksum digit
by the Double Add Double Mod 10 technique! and store it in memory loca-

tion 0040.
The Double Add Double Mod 10 technique works as follows:

Clear the checksum to start.

Multiply the leading digit by two and add the result to the checksum.
Add the next digit to the checksum.

Continue the alternating process until you have used all the digits.
The least significant digit of the checksum is the self-checking digit.

N S

Self-Checking Numbers

Self-checking digits are commonly added to identification numbers on credit
cards, inventory tags, luggage, parcels, etc. when they are handled by computerized
systems. They may also be used in routing messages, identifying files, and other
applications. The purpose of the digits is to minimize entry errors such as transpos-
ing digits (69 instead of 96), shifting digits (7260 instead of 3726), missing digits by
one (65 instead of 64), etc. You can check the self-checking number automatically for
correctness upon entry and can eliminate many errors immediately.

The analysis of self-checking methods is quite complex. For example, a plain
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checksum will not find transposition errors (4 + 9 = 9 + 4). The Double Add Double
algorithm will find simple transposition errors (2 X 4 + 9 = 17 # 2 X 9 + 4), but will
miss some errors, such as transpositions across even numbers of digits (367 instead of
763). However, this method will find many common errors!' The value of a method
depends on what errors it will detect and on the probability of particular errors in an
application.
For example, if the string of digits is:
549321

the result will be:

Checksum =5 X 2 +4 4+ 9 X 2+3+2X2+1=40

Self-checking digit = O (least significant digit of checksum)

Note that an erroneous entry like 543921 would produce a different self-checking digit
(4), but erroneous entries like 049321 or 945321 would not be detected.

Sample Problems:

a. (0041) 03 Number of bytes
(0042) 36
(0043) 68
(0044) 51
Result: Checksum =3 X 2 +6+6 X2 +8+5X2+1=43
(0040) 03
b. (0041) 04 Number of bytes
(0042) 50
(0043) 29
(0044) 16
(0045) 83
Result: Checksum =5 X2 +0+2 X 2+4+9+1X2+6+8x2+3=50
(0040) 00
Program 8-5:
0000 8E 0042 LDX #5542 POINT TO START OF STRING
0003 OF 40 CLR $40 CHECKSUM=ZERO
0005 A6 84 CHKDG LDA s X GET NEXT 2 DIGITS OF DATA
0007 44 LSRA SHIFT OFF LEAST SIGNIFICANT
* DIGIT
0008 44 LSRA
0009 44 LSRA
000A 44 LSRA
000B 1F 89 TFR A,B COPY MOST SIGNIFICANT DIGIT
000D 9B 40 ADDA $40 ADD MSD TO CHECKSUM
000F 19 DAA RETAINING DECIMAL FORM
0010 97 40 STA $40
0012 1F 98 TFR B,A AND ADD MSD TO CHECKSUM AGAIN
0014 9B 40 ADDA $40
0016 19 DAA RETAINING DECIMAL FORM
0017 AB 80 ADDA » X+ ADD IN LEAST SIGNIFICANT DIGIT
0019 19 DAA RETAINING DECIMAL FORM
001A 97 40 STA $40
001C OA 41 DEC $41 CONTINUE UNTIL ALL DIGITS ADDED
001E 26 E5 BNE CHKDG
0020 84 OF ANDA #%00001111 SAVE LSD OF CHECKSUM
0022 97 40 STA $40

0024 3F SWI
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Flowchart:

CHECKSUM = 0
COUNT = (0041)
POINTER = 0042

4 =
MSD=(POINTER)+16
LSD = (POINTER)
AND 00001111,
CHECKSUM =
CHECKSUM +
2 XM +

POINTER =
POINTER + 1
COUNT =
COUNT -1

(0040) =
CHECKSUM AND
00001111,

Four logical right shifts move the most significant digit to the least significant bit
positions. There is no reason to mask out the most significant digit before adding the
least significant digit, since we do not care what happens to the most significant digit of
the checksum anyway.

A decimal adjust (DAA) must follow each addition to produce the proper
decimal result. A single DAA after a series of additions will not work (try it!).
Remember that DAA only operates on Accumulator A.

There is no problem with carries from the various decimal sums, since the
algorithm only uses the least significant digit of the checksum anyway.

Doubling and Halving Decimal Numbers

You can double a decimal number in Accumulator A by adding it to itself and
then performing a decimal correction. The following sequence uses memory location
0040 for temporary storage:

STA S40
ADDA 340 DOUBLE NUMBER (ADD IT TO ITSELF)
DAA

SWI
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You cannot use ASL A, because it leaves the Half-Carry flag undefined. Only
ADCA, ADCB, ADDA, and ADDB set the Half-Carry flag correctly.

You can divide a decimal number by 2 simply by shifting it right logically and
then subtracting 3 from any digit that has a value of 8 or larger (since 10 BCD is 16,).
The following program divides a decimal number in memory location 0040 by 2 and
places the result in memory location 0041.

LDA $40 GET DECIMAL NUMBER

LSRA DIVIDE BY 2 IN BINARY

TFR A,B MOVE QUOTIENT TO B FOR TESTING

ANDB #S$OF MASK OFF MSD

CMPB #8 IS LSD 8 OR MORE?

BLO DONE

SUBA #3 YES, SUBTRACT 3 FROM LSD FOR DECIMAL
DONE STA $41 STORE RESULT

SWI

Try this program (and the method) on the decimal numbers 28, 30, and 37. Do
you understand why it works?

Binary Rounding

Rounding numbers is simple, regardless of whether they are binary or decimal.
You can round a binary number as follows:

If the most significant bit to be dropped is 1, add 1 to the remaining bits. Other-
wise, do not change the remaining bits.

This rule works because 1 is halfway between 0 and 10 in binary, much as 5 is halfway in
decimal (0.5 decimal = 0.1 binary).

So the following program will round a 16-bit_number in memory locations 0040
and 0041 (MSB’s in 0040) to an 8-bit number in memory location 0040:

TST $41 IS MSB OF EXTRA BYTE 1?
BPL DONE
INC $40 YES, ROUND UP

DONE SWI

The TST instruction sets the flags according to the contents of the specified
accumulator or memory location (by subtracting zero from those contents), thus allow-
ing you to change the flags without using any registers or changing any values.

If the number is longer than 16 bits, the rounding must ripple through the other
bytes as needed. Of course, the only time the rounding affects the more significant bytes
is when it causes a carry. Since incrementing a memory location with INC does not affect
the Carry flag, we can only recognize a carry by checking to see if the result of INC is
zero. The following program increments a 16-bit number in memory locations 0040 and
0041 (MSB’s in 0040).

INC $41 ADD 1 TO LSB'S
BNE DONE
INC $40 AND CARRY TO MSB'S IF NECESSARY

DONE SWI

An alternative for 16-bit numbers is to use an index register as in:

LDX $40 GET 16-BIT DATA
LEAX 1,X INCREMENT IT BY 1
STX $40 STORE INCREMENTED DATA

This approach is more general, since the step size can have any value.
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Decimal Rounding

Decimal rounding is a bit more difficult, because the crossover point is now
BCD S0 and the rounding must produce a decimal result. The rule is:

If the most significant digit to be dropped is 5 or more, add 1 to the remaining

digits.

The following program will round a four-digit BCD number in memory locations
0040 and 0041 (MSD’s in 0040) to a two-digit BCD number in memory location 0040.

LDA $41 IS BYTE TO BE DROPPED 50 OR MORF?
CMPA #S50

BLO DONE

LDA $40 YES, ADD 1 TO MSD'S

ADDA  #1 KEEPING THEM IN DECIMAL FORM

DAA

STA $40

DONE SWI

Remember that you cannot use INC to add | because INC does not affect the
Half-Carry flag (which could have any value). As in the binary case, rounding longer
numbers requires that the carries ripple through the more significant digits as needed.

PROBLEMS

8-1. MULTIPLE-PRECISION BINARY SUBTRACTION

Purpose: Subtract one multi-byte binary number from another. The length of the num-
bers (in bytes) is in memory location 0040, the numbers themselves start
(least significant bits first) in memory locations 0041 and 0051 respectively,
and the difference replaces the number starting in memory location 0041.
Subtract the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) 04 Number of bytes
(0041) c3 '
:883%; 2; 2F5BA7C3, g is minuend
(0044) 2F ‘
(0051) B8 '
:882:23; 13);? 14DF35B8, 4 is subtrahend
(0054) 14 ‘

Result:  (0041) 0B l
:883:23; ;(2: ‘ 1A7C720B,g is difference
(0044) 1A

8-2. DECIMAL SUBTRACTION

Purpose: Subtract one multi-byte decimal (BCD) number from another. The length of
the numbers (in bytes) is in memory location 0040, the numbers themselves
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start (least significant digits first) in memory locations 0041 and 0051 respec-
tively, and the difference replaces the number starting in memory location
0041. Subtract the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) 04 Number of bytes
(0041) 85 '
4 19
§884§: 70 s 36701985 i1s minuend
(0044) 36
(0051) 59 )
tgggg; gg ‘ 12663459 is subtrahend
(0054) 12
Result: (0041) 26 )
(0042) 85 . ) .
(0043) 03 ‘ 24038526 is decimal difference
(0044) 24

Hint: Remember that X — Y = X + 99 — Y + BORROW

where X and Y are each two digits from the decimal strings and BORROW is the borrow
from the less significant digits. The right-hand side of this equation has an extra factor of
100, but that factor has no effect on a two-digit number. Note, however, that the opera-
tions on the right-hand side produce an overall carry if X — Y + BORROW is positive
but not if it is negative or zero.

8-3. 16-BIT BY 16-BIT BINARY MULTIPLICATION

Purpose:Multiply the 16-bit unsigned number in memory locations 0040 and 0041
(MSB’s in 0040) by the 16-bit unsigned number in memory locations 0042 and
0043 (MSB’s in 0042). Store the result in memory locations 0044 through
0047, with the most significant bits in memory location 0044,

Sample Problems:

a. (0040) 00 ; . o
(0041) 03 0003 is multlpher
(0042) 00 ) o
(0043) 05 z» 0005 is multiplicand

Result: (0044) 00 )

(0045) 00 _
(0046) 00 ‘ 0000O0OQOF is product
(0047) OF

or in decimal: 3 X 5 = 15.

b. (0040) 27 _ -
(0041) 10 ; 2710 is multiplier
{0042) 75 } ) o
(0043) 30 7530 is multiplicand

Resuit: (0044) 11 )

(0045) E1 )
(0046) A3 ‘ 11E1A300 is pl’OdUCt
(0047) 00

or in decimal: 10,000 X 30,000 = 300.000,000.
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8-4. SIGNED BINARY DIVISION

Purpose: Divide the 16-bit signed number in memory locations 0040 and 0041 (most
significant bits in 0040) by the 8-bit signed number in memory location 0042.
The numbers are normalized so that the magnitude of memory location 0042 is
greater than the magnitude of memory location 0040. Store the quotient
(signed) in memory location 0044 and the remainder (always positive) in
memory location 0043.

Sample Problems:

a. (0040) FF - :
(0041) co } dividend is —64,
(0042) 08 divisor
Result: (0043) 00 remainder
(0044) F8 quotient is —8

or in decimal: —64 ~ 8 = —8.

b. (0040) ED - .
(0041) 93 } dividend is =4.717,
(0042) 47 divisoris 71
Result: (0043) 28 remainder is +40 ¢
(0044) BD quotientis =67 1

Thatis, —4,717 =+ 71 = —67 with a remainder of +40.

Hint: Determine the sign of the result, perform an unsigned division, and finally
adjust the quotient and remainder to the proper forms.

8-5. SELF-CHECKING NUMBERS ALIGNED 1, 3, 7 MOD 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the string
of digits (number of bytes) is in memory location 0041, the string of digits (2
per byte) starts in memory location 0042. Calculate the checksum digit by the
Aligned 1, 3, 7 Mod 10 method and store it in memory location 0040.

The Aligned 1, 3, 7 Mod 10 technique works as follows:

Clear the checksum to start.

Add the leading digit to the checksum.

Multiply the next digit by 3 and add the result to the checksum.
Multiply the next digit by 7 and add the result to the checksum.
Continue the process (Steps 2-4) until you have used all the digits.
The self-checking digit is the least significant digit of the checksum.

A U A W N -
P

For example, if the string of digits is:
549321

the result will be:

Checksum =54+ 3 X4 +7 X9 +3+3Xx2+7X1=296
Self-checking digit = 6




Arithmetic Problems 8-19

Sample Problems:

l.

a (0041) 03 Number of bytes
(0042) 36
(0043) 68
(0044) 51

Result Checksum =3 +3 X6 +7 X6+8+3 X5+7 x1=293

(0040) 03

b. (0041) 04 Number of bytes
(0042) 50
(0043) 29
(0044) 16
(0045) 83

EL4 Result Checksum =5 +3 X0+ 7 X2+9+3X1+7x6+8+3Xx3=290
(0045) 00

Hint: Notethat7 =2 X 3+ 1and3 =2 X 1+ 1, sotheformulaM,; =2 X M,_; + 1 can be used to calculate

the next multiplying factor.
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Tables and Lists

Tables and lists are two of the basic data structures used with all computers.
We have already seen tables used to perform code conversions and arithmetic. Tables
may also be used to identify or respond to commands and instructions, linearize data,
provide access to files or records, define the meaning of keys or switches, and choose
among alternate programs. Lists are usually less structured than tables. Lists may
record tasks that the processor must perform, messages or data that the processor
must record, or conditions that have changed or should be monitored. Tables are a
simple way of making decisions or solving problems, since no computations or logical
functions are necessary. The task, then, reduces to organizing the table so that the
proper entry is easy to find. Lists allow the execution of sequences of tasks, the prepara-
tion of sets of results, and the construction of interrelated data (or data bases). Problems
include how to add elements to a list and remove elements from it.

PROGRAM EXAMPLES

9-1. ADD ENTRY TO LIST

Purpose: Add the contents of memory location 0040 to a list if it is not already present
in the list. The length of the list is in memory location 0041 and the list itself
begins in memory location 0042.
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Sample Problems:
a. (0040)
(0041)

(0042)
(0043)
(0044)
(0045)

Result: (0041)
(0046)

68 Entry to be added
04 Length of list

37 First element in list
61
38
1D

05 New length
68

The entry 6B is added to the list, since it is not already there. The length of the list is

increased by 1.
b. (0040)
(0041)

(0042)
(0043)
(0044)
(0045)

68 Entry to be added
04 Length of list

37 First element in list
68
38
1D

Resuit: No change, since the entry (6B) is already in the list {in memory location 0043)

Flowchart:

ENTRY = (0040)
COUNT = (0041)
POINTER = 0042

POINTER =
POINTER + 1
COUNT =
COUNT -1

(POINTER) = ENTRY
(0041) = (0041)
+1
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Program 9-1:
0000 8E 0042 LDX #542 POINT TO START OF LIST
0003 D6 41 LDB $41 COUNT = LENGTH OF LIST
0005 96 40 LDA $40 GET ENTRY
0007 Al 80 SRLST CMPA X+ IS ENTRY = ELEMENT IN LIST?
0009 27 07 BEQ DONE YES, DONE
0008 5A DECB ALL ENTRIES EXAMINED?
000C 26 F9 BNE SRLST NO, KEEP LOOKING
000E A7 84 STA ) X YES, ADD ENTRY TO LIST
0010 0C 41 INC $41 ADD 1 TO LIST LENGTH
0012 3F DONE  SWI

Clearly, this method of adding elements is very inefficient if the list is long. We
could improve the procedure by limiting the search to part of the list or by ordering the
list. We could limit the search by using the, entry to get a starting point in the list. This
method is called ‘“hashing,’ and is much like selecting a starting page in a dictionary or
directory on the basis of the first letter in an entry.! We could order the list by numerical
value. The search could then end when the list values went beyond the entry (larger or
smaller, depending on the ordering technique used). A new entry would have to be
inserted properly, and all the other entries would have to be moved down in the list.

The program could be restructured to use two tables. One table could provide a
starting point in the other table; for example, the search point could be based on the
most or least significant 4-bit digit in the entry.

The program does not work if the length of the list could be zero (what happens?).
We could avoid this problem by checking the length initially. The initialization pro-
cedure would then be:

LDB $41 COUNT = LENSTH OF LIST
BEQ ADELM ADD ENTRY TO LISGT I¥ LENGTH IS ZERO
ADELM STA . X YES, ADD ENTRY TO LIST

Unlike some other processors, the 6809’s Zero flag is affected by simple data transfer
instructions such as LD (load) and ST (store).

If each entry were more than one byte in length, a pattern-matching program
would be necessary. The program would have to proceed to the next entry if a match
failed; that is, skip over the last part of the current entry once a mismatch was found.

9-2. CHECK AN ORDERED LIST

Purpose: Check the contents of memory location 0041 to see if it is in an ordered list.
The length of the list is in memory location 0042; the list itself begins in
memory location 0043 and consists of unsigned binary numbers in increasing
order. If the contents of location 0041 are in the list, clear memory location
0040; otherwise, set memory location 0040 to FF .

Sample Problems:

a. (0041) 68 Entry to be added
(0042) 04 Length of list
(0043) 37 First element in list
(0044) 55
(0045) 7D
(0046) A1l

Result: (0040) FF, since 6B is not in the list
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b. (0041) 68 Entry to be added
(0042) 04 Length of list
(0043) 37 First element in list
(0044) 55
(0045) 68
(0046) A1l
Result: (0040} 00, since 6B is in the list

Flowchart:

ENTRY = (0041)
POINTER = 0043
COUNT = (0042)

MARK = O
POINTER =
POINTER + 1
COUNT = MARK = FFyg
COUNT -1
(0040) = MARK

The searching process is a bit different here since the elements are ordered. Once
we find an element larger than the entry, the search is over, since subsequent elements
will be even larger. You may want to try an example to convince yourself that the pro-
cedure works. Note that an element larger than the entry is indicated by a comparison
that produces a borrow (that is, Carry = 1).

As in the previous problem, a table or other method that could choose a good
starting point would speed up the search. One method would be to start in the middle
and determine which half of the list the entry was in, then divide the half into halves,
etc. This method is called a binary search, since it divides the remaining part of the list in
half each time.2.3
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Program 9-2:

0000 OF 40 CLR $40 MARK ELEMENT AS IN LIST

0002 8E 0043 LDX $543 POINT TO START OF LIST

0005 D6 42 LDB $42 COUNT = LENGTH OF LIST

0007 96 41 LDA $41 GET ENTRY

0009 Al 80 SRLST CMPA X+ IS ENTRY EQUAL TO ELEMENT?

000B 27 07 BEQ DONE YES, DONE

000D 25 03 BCS NOTIN ENTRY NOT IN LIST IF ELEMENT
* IS LARGER

000F 5A DECB ALL ELEMENTS EXAMINED?

0010 26 F7 BNE SRLST

0012 03 40 NOTIN COM $40 YES, MARK ELEMENT AS NOT IN

0014 3F DONE  SWI LIST

This algorithm is a bit slower than the one in Program 9-1 because of the extra
conditional jump (BCS NOTIN). The average execution time for this simple search
technique increases linearly with the length of the list, while the average execution time
for a binary search increases logarithmically. For example, if the length of the list is
doubled, the simple technique takes twice as long on the average, while the binary
search method only requires one extra iteration.

9-3. REMOVE ELEMENT FROM QUEUE

Purpose: Memory locations 0042 and 0043 contain the address of the head of the queue
(MSBs in 0042). Place the address of the first element (head) of a queue into
memory locations 0040 and 0041 (MSBs in 0040) and update the queue to
remove the element. Each element in the queue is two bytes long and contains
the address of the next two-byte element in the queue. The last element in the
queue contains zero to indicate that there is no next element.

Queues are used to store data in the order in which it will be used, or tasks in
the order in which they will be executed. The queue is a first-in, first-out data struc-
ture; i.e., elements are removed from the queue in the same order in which they were
entered. Operating systems place tasks in queues so that they will be executed in the
proper order. I/0 drivers transfer data to or from queues so that it will be transmitted or
handled in the proper order. Buffers may be queued so that the next available one can
easily be found and those that are released can easily be added to the available storage.
Queues may also be used to link requests for storage, timing, or I/0 so that they can be
satisfied in the correct order.

In real applications, each element in the queue will typically contain a large
amount of information or storage space besides the address required to link the ele-
ment to the next one.

Sample Problems:

a. (0042) 00
(0043) 46

(0046) 00
(0047) 4D

}
}
(004D) 00;
|
}

Address of first element in queue
Address of second element in queue
End of queue

(004E) 00

Result: (0040} 00
(0041) 46

(0042) 00
(0043) 4D

Address of element removed from queue

Address of new first element in queue
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b. (0042) OOIE .
(0043) oof -MPty queve
Result: (0040) OO}N ' . able f
(004.” 00 0 eilement avaliable from queue
Flowchart:
POINTER =
(0042):(0043)
(0040):(0041) =
POINTER
{0042) = (POINTER)
(0043) =
(POINTER + 1)
Program 9-3:
0000 9E 42 LDX $42 GET ADDRESS OF HEAD OF QUEUE
0002 9F 40 STX $40 REMOVE HEAD OF QUEUE
0004 27 04 BEQ DONE DONE IF QUEUE WAS EMPTY
0006 AE 84 LDX , X GET ADDRESS FROM NEXT ELEMENT
0008 9F 42 STX $42 MOVE NEXT ELEMENT TO HEAD OF
* QUEUE
000A 3F DONE  SWI

The 16-bit instructions LDX, LDY, LDU, STX, STY, and STU are very useful
for moving addresses from one place to another. LDX, LDY, and LDU load the index
register or stack pointer with the contents of the effective address and the next sequen-
tizl address, thus allowing the loading of a 16-bit address with a single instruction. STX,
STY, and STU similarly store a 16-bit address in memory. The addresses that are loaded
or stored can later be used to fetch individual data items or addresses from a data struc-
ture.

Using Data Structures

The various indexed and indirect addressing modes allow us to use data struc-
tures in a very flexible way. If, for example, Index Register X contains the starting
address of a block of information, we can refer to elements in the block with constant
offsets. For example, the instruction

LDA  $20,X

loads Accumulator A from the address that is 20, bytes from the start of the block. The
elements in the block may themselves be addresses; for example, the instruction

LDB [$14,X]




Tables and Lists 9-7

loads Accumulator B from the address that is stored 14, and 15, bytes from the start of

the block.

How would we use such data structures? For example, we might want a piece of
test equipment to execute a series of tests as specified by the operator. Using entries
from a control panel, we will make up a queue of blocks of information, one for each test
that the operator will eventually want to run. Each block of information contains:

The starting address of the next block (or 0 if there is no next block).
The starting address of the test program.

The address of the input device (e.g., keyboard, card reader, or communica-
tions line) from which data will be read during the test.

The address of the output device (e.g., printer, CRT terminal, or communica-
tions line) to which the results will be sent as the test is run.

The number of times the test will be repeated.
The starting address of the data area to be used for storing temporary data.

A flag that indicates whether failing a test should preclude continuing to the
next test.

Clearly the block could contain even more information if there were more options
for the operator to specify while setting up the test sequence. Note that some elements
in the block contain data, others contain addresses, while still others may be 1-bit flags.

Note what we mean by flexibility in this example. Some of the procedures that the
operator can easily implement are:

1.

Run the same test with different sets of [/O devices. A trial run might use data
from a local keyboard and send the results to the CRT, while a production run
might use data from a remote communications line and produce a permanent
record on a printer.

Execute tests in any order, just by changing the order in the queue.

Place temporary data in an area where it can easily be displayed or retrieved by
a debugging program.

Make alternative decisions as to whether tests should be continued, errors
should be reported, or procedures should be repeated. Here again, trial or
debugging runs may use one option, while production runs use another.
Delete or insert tests merely by changing the links which connect a test to its
successor. The operator can thus correct errors or make changes without
reentering the entire list of tests.

For example, assume that the operator enters the sequence TEST 1, TEST 2,
TEST 4, and TEST 5, accidentally omitting TEST 3. The blocks are linked as follows:

Block 1 (for TEST 1) contains the starting address for block 2 (for TEST 2).
Block 2 (for TEST 2) contains the starting address for block 3 (for TEST 4).
Block 3 (for TEST 4) contains the starting address for block 4 (for TEST 5).

Block 4 (for TEST 5) contains a link address of zero to indicate that it is the last
block.

To insert TEST 3 between TEST 2 and TEST 4 merely involves the following

changes.
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Block 2 (for TEST 2) must now contain the starting address for block 5 (for TEST

3).

Block 5 (for TEST 3) must contain the starting address for block 3 (for TEST 4).

No other changes are necessary and no blocks have to be moved. Note how much
simpler it is to insert or delete using linked lists, rather than lists that are stored in con-
secutive memory locations. There is no problem of moving elements up or down so as to
remove or create empty spaces.

In our example, the blocks are organized as follows:

Byte Number Contents

MSBs of starting address of next block
LSBs of starting address of next block
MSBs of starting address of test program
LSBs of starting address of test program
MSBs of input device address

LSBs of input device address

MSBs of output device address

LSBs of output device address

Number of test repetitions

MSBs of starting address of data area
LSBs of starting address of data area
Flag for continuation

S OLAVNOTRWN =O

—_

If Index Register X contains the starting address of the block, some typical pro-
cedures are:

1.

3.

Get a byte of data from the input device and place it in byte 6 of the data
area.

LDA [4,X] GET INPUT DATA
LDY 9,X GET ADDRESS OF DATA AREA
STA 6,Y PLACE INPUT DATA IN DATA AREA

We need indirect addressing here since the block contains the address of the
input device, not the actual input data.

Get a byte of data from byte 3 of the data area and send it to the output
device.

LDY 9,X GET ADDREsE QF DATA AREA
LDA 3,Y GET A BYTE OF DATA
STA [6,X] V' SEND DATA TO OUTPUT DEVICE

The indirect addressing allows us to use the address of the output device from
the block. We could move that address to an index register or stack pointer if
we needed it repeatedly.

Decrement the number of test repetitions by 1.

DEC 8,X REDUCE NUMBFR OF REPETITIONS BY 1

Queuing can handle lists that are not in sequential memory locations. Each ele-
ment in the queue must contain the address of the next element. Such lists allow the
programmer to handle data or tasks in the proper order, change variables or I/O devices,
or fill in definitions in a program. Queuing requires extra storage as compared to
sequential lists, but elements are far easier to add, delete, or insert.

Doubly Linked Lists

Sometimes you may want to maintain links in both directions. Then each ele-
ment in the queue must contain the addresses of both the preceding and the following
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elements.45 Such doubly linked lists allow you to easily retrace your steps (e.g., repeat
the previous task if an error occurs in the current one) or access elements from either
end (e.g., allowing you to remove or change the last two elements without having to go
through the entire queue). The data structure may then be used in either a first-in,
first-out manner or in a last-in, first-out manner, depending on whether new ele-
ments are added to the head or to the tail. How would you change the example program
so that memory locations 0044 and 0045 contain the address of the last element (tail) of
the queue?

Empty Queue

If there are no elements in the queue, the program clears memory locations 0040
and 0041. A program that requests an element from the queue must check those
memory locations to see if its request has been satisfied (i.e., if there was anything in the
queue). Can you suggest other ways to indicate whether the queue is empty?

9-4. 8-BIT SORT

Purpose: Sort an array of unsigned 8-bit binary numbers into descending order. The
length of the array is in memory location 0041 and the array itself begins in
memory location 0042.

Sample Problem:

(0041) 06 Length of array
(0042) 2A First element of array
(0043) B5
(0044) 60
(0045) 3F
(0046) D1
(0047) 19
Result: (0042) D1 Largest element of array
(0043) B5
(0044) 60
(0045} 3F
(0046) 2A
(0047) 19 Smallest element of array

Simple Sorting Algorithm

A simple sorting technique works as follows:

Step 1. Set a flag INTER.

Step 2. Examine each consecutive pair of numbers in the array. If any are out
of order, exchange them and clear INTER.

Step 3. If INTER = 0 after the entire array has been examined, return to
Step 1.

INTER will be cleared if any consecutive pair of numbers is out of order.
Therefore, if INTER = 1 at the end of a pass through the entire array, the array is in
proper order.

This sorting method is referred to as a ‘‘bubble sort.”’ It is an easy algorithm to
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implement. However, other sorting techniques should be considered when sorting
long lists where speed is important_6-8

The technique operates as follows in a simple case. Let us assume that we want to
sort an array into descending order; the array has four elements — 12, 03, 15, 08.

Ist Iteration:

Step 1. INTER =1

Step 2. Final order of the array is:
12
15
08
03
since the second pair (03, 15) is exchanged and so is the third pair (03,
08). INTER = 0.

2nd Iteration:

Step 1. INTER =1

Step 2. Final order of the array is:
15
12
08
03
since the first pair (12, 15) is exchanged. INTER = 0.

3rd Iteration:

Step 1. INTER = 1

Step 2. The elements are already in order, so no exchanges are necessary and
INTER remains 1.

This approach always requires one extra iteration to ensure that the elements are
in the proper order. No exchanges are performed in the last iteration, so it does not
really accomplish anything. Tracing through the examples shows that many of the
comparisons are wasted and even repetitive. Thus the method could be improved
greatly, particularly if the number of elements is in the thousands or millions, as it
commonly is in large data processing applications. New sorting techniques are an
important area of current research.’

Program 9-4;
0000 86 01 SORT  LDA $1 INTERCHANGE FLAG = 1
0002 97 40 STA $40
0004 96 41 LDA $41 ADJUST ARRAY LENGTH TO NUMBER OF
0006 4A DECA PAIRS
0007 8E 0042 LDX #$42 POINT TO START OF ARRAY
000A E6 80 PASS  LDB X+ IS PAIR OF ELEMENTS IN ORDER?
000C E1 84 CMPB X
000E 24  OC BCC COUNT YES, TRY NEXT PAIR
0010 OF 40 CLR $40 NO,CLEAR INTERCHANGE FLAG
0012 34 02 PSHS A SAVE ARRAY COUNTER
0014 A6 84 LDA . X INTERCHANGE ELEMENTS IF OUT OF
0016 E7 84 STB /X ORDER
0018 A7 1F STA -1,X
001A 35 02 PULS A RESTORE ARRAY COUNTER

001C 4A COUNT DECA
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001D 26 EB BNE PASS CHECK FOR COMPLETED PASS
001F 0D 40 TST $40 WERE ALL ELEMENTS IN ORDER?
0021 27 DD BEQ SORT NO, GO THROUGH ARRAY AGAIN
0023 3F SWI

The case where two elements in the array are equal is very important. The pro-
gram should not perform an interchange in that case since that interchange would be
performed in every pass. The result would be that every pass would set the interchange
flag, thus producing an endless loop. The program compares the elements in the
specified order so that the Carry flag is cleared if the elements are already arranged cor-
rectly. Remember that comparing two equal values always clears the Carry flag since the
Carry is a borrow after subtractions or comparisons.

Since the 6809 has a complete set of unsigned conditional branches (BHI, BHS,
BLO, BLS), we could perform the comparison in either direction. The sequence

LDB 1,X IS PAIR OF HLEMENTS IN ORDEKR?
CMPB X+
BLS COUNT
is equivalent to the one in the example program. We must use BLS rather than BLO
(BCS) to force a branch if the elements are equal.

Before starting each sorting pass, we must be careful to reinitialize the index and
the interchange flag.

The program must reduce the counter by 1 initially since the number of consecu-
tive pairs is one less than the number of elements (the last element having no suc-
cessor).

This program does not work properly if there are fewer than two elements in the
array. How could you handle this degenerate case?

Flowchart:

INTER = ]
COUNT = (0041)-1
POINTER = 0042

TEMP = (POINTER)

(POINTER) =
(POINTER) + 1)

(POINTER + 1) =

INTER = 0 TEMP

=

POINTER =
POINTER + 1
COUNT =
COUNT -1
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Other Sorting Methods

There are many sorting algorithms that vary widely in efficiency. References 2, 7,
and 8 describe some of these.

We have chosen to use the Hardware Stack for temporary storage in this problem;
the advantage of this approach is that it does not tie up a specific memory address.
Chapter 10 discusses the 6809's Hardware Stack in more detail. Of course, we could
easily substitute a fixed memory location, such as 003F. Note the use of the special
operation codes PSH for Store Registers in Stack and PUL for Load Registers from
Stack, as opposed to the standard ST and LD.

9-5. USING AN ORDERED JUMP TABLE

Purpose: Use the contents of memory location 0042 as an index to a jump table starting
in memory location 0043. Each entry in the jump table contains a 16-bit
address with the MSBs in the first byte. The program should transfer control
to the address with the appropriate index; that is, if theindex is 6, the program
should jump to address entry 36 in the table. Assume that the table has fewer
than 128 entries.

Sample Problem:

(0042) 02 Index for jump table
(0043) 00 o
(0044) = 40} Zeroth element in jump table
{0045) OO} Fi | - bl
(0046) 50f First element in jump table
a7
((8848; (5)2} Second element in jump table
(0049) 00 . o
(004A) 58} Third element in jump table
Result:  (PC) 0054 since that is entry 32 (starting from zero)

in the jump table. The next instruction to be
executed will be the one located at that address.

Flowchart:

INDEX =
(0042) x 2

JELEM =
BASE + INDEX

(PC) =
(JELEM):
(JELEM + 1)

The last box in the flowchart results in a transfer of control to the address obtained
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from the table. No ending block is necessary. Such transfers do not bother the processor
at all, but you may want to add special notes to your flowchart and program documenta-
tion so that the sequence does not appear to be a ‘*dead-end street’’ to the reader.

Program 9-5:
0000 96 42 LDA $42 GET INDEX
0002 48 ASLA DOUBLE INDEX FOR 2-BYTE ENTRIES
0003 8E 0043 LDX #543 GET BASE ADDRESS OF JUMP TABLE
0006 6E 96 JMP [a,X] TRANSFER CONTROL TO JUMP TABLE

i ENTRY

When you run this program, be sure to place some executable code (such as an
SWI1 instruction) at each address to which control could be transferred. Otherwise the
processor will never get back to the monitor program.

Jump Tables

Jump tables are very useful in situations where the processor must select one of
several routines for execution. Such situations arise in decoding commands (entered,
for example, from a control keyboard), selecting test programs, choosing alternative
methods or units, or selecting an 1/0 configuration. For example, a 4-position switch
on the front of an instrument or test system may select among the remote, self-test, au-
tomatic, or manual modes of operation. The processor reads the switch and selects the
appropriate routine from a jump table as follows:

LDA SWITCH READ SWITCH POSTTION

ASLA DOUBLE IND:EX FOR 2-BYTE ENTRIES
LDX #MODES GET BASE ANDRESS OF JUMP TABLE
JMP [a,X]

The jump table is organized as follows:

Address Contents
MODES MSBs of starting address of REMOTE routine
MODES + 1 LSBs of starting address of REMOTE routine
MODES + 2 MSBs of starting address of SELF-TEST routine
MODES + 3 LSBs of starting address of SELF-TEST routine
MGDES + 4 MSBs of starting address of AUTOMATIC routine
MODES + 5 LSBs of starting address of AUTOMATIC routine
MODES + 6 MSBs of starting address of MANUAL routine
MODES + 7 LSBs of starting address of MANUAL routine

The jump table replaces a series of conditional jump operations. The program
that accesses the jump table could be used to access several different tables merely by
changing the starting address.

The data must be multiplied by 2 to give the correct index since each entry in the
jump table is a 16-bit address that occupies two bytes of memory. The instruction JMP
[A,X] uses an indirect mode in which the destination is the address stored at the
specified location rather than the location itself. The procedure is as follows:

1. Add the contents of Accumulator A and Index Register X.
2. Use that address to fetch the new value for the program counter.

JMP A, X would actually place the sum of Accumulator A and Index Register X in
the program counter. JMP is an unconditional jump that allows direct (including base-

page) or indexed addressing, as compared to BRA and LBRA which require relative
addressing.
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No terminating instruction such as SWI is necessary, since JMP A, X transfers
control to the address obtained from the jump table. References 10 and 11 contain addi-
tional examples of the use of jump tables.

The program assumes that the jump table contains fewer than 128 entries (why?).
How could you change the program to allow longer tables?

Jump and Branch Instructions

The terminology used in describing jump and branch instructions can be con-
fusing. A jump instruction using direct addressing loads the specified address into
the program counter; the result is more like the outcome of an LDX instruction using
immediate addressing than it is like one using direct addressing. A jump instruction
using one of the indirect modes works like other instructions (such as LDX or STX)
using the corresponding non-indirect mode. For example,

1. JMP $A000 transfers control to address A000,,. That is, (PC) = A000,.

On the other hand, LDX $A000 loads Index Register X from addresses
A000,,and A001,,. Thatis (X) = (A000,,):(A001,,). )

2. JMP Y transfers control to the address in Index Register Y. That is, (PC) =
(Y).

On the other hand, LDX Y loads Index Register X starting at the address in
Index Register Y. That is, (X) = ((Y)):((Y)+1).

However, the instruction JMP [,Y] transfers control to the address reached
indirectly through Index Register Y. That is, (PC) = ((Y)):((Y) + 1).

PROBLEMS

9-1. REMOVE ENTRY FROM LIST

Purpose: Remove the byte in memory location 0040 from a list if it is present. The
length of the list is in memory location 0041 and the list itself begins in
memory location 0042. Move the entries below the one removed up one posi-
tion and reduce the length of the list by 1.

Sample Problems:

a. (0040) 68 Entry to be removed from list
(0041) 04 Length of list
(0042) 37 First element in list
(0043) 61
(0044) 28
(0045) 1D

Result: No change, since the entry is not in the list

b. (0040) 68 Entry to be removed from list
(0041) 04 Length of list
(0042} 37 First element in list
(0043) 68
{0044) 28

(0045) 1D



Resutt: (0041)

(0043)
(0044)

The entry is removed from the list and the elements below it are moved up one

03

28
10

Tables and Lists

Length of list reduced by 1

Other elements in list moved up one position

position. The length of the list is reduced by 1.

9-2. ADD ENTRY TO ORDERED LIST

Purpose: Place the byte in memory location 0041 in an ordered list if it is not already
there. The length of the list is in memory location 0042; the list itself begins in
memory location 0043 and consists of unsigned binary numbers in increasing
order. Place the new entry in the correct position in the list, adjust the ele-

ments below it down, and increase the length of the list by 1.

Sample Problems:
a (0041)
(0042)

(0043)
{0044)
(0045)
(0046)

Result: (0042)
(0045)

(0046)
(0047)

b. (0041)
(0042)

(0043)
(0044)
(0045)
(0046)

6B
04

37
55
7D
A1

05
6B

70
Al

6B
04

37
55
6B
A1l

Entry to be added to list
Length of list

First element in list

Length of list increased by 1
Entry placed in list

Other elements in the list moved down one position

Entry to be added to list
Length of list

First element in list

Result: No change, since the entry is already in the list

9-3. ADD ELEMENT TO QUEUE

Purpose: Add the address in memory locations 0040 and 0041 (MSBs in 0040) to a
queue. The address of the first element of the queue is in memory locations
0042 and 0043 (MSBs in 0042). Each element in the queue contains either the
address of the next element in the queue or zero if there is no next element;
all addresses are 16 bits long with the most significant bits in the first byte of
the element. The new element goes at the end (tail) of the queue; its address
will be in the element that was at the end of the queue and it will contain zero

to indicate that it is now the end of the queue.

Sample Problem:
(0040)
(0041)

(0042)
(0043)

(0046)
(0047)

00
4D

00
46

00
00

} New element to be added to queue
} Pointer to head of queve

} Last element in queue




9-16 6809 Assembly Language Programming

Result:  (0046) 00 .
(0047) 40} Old last element points to new last element
(004D) OO} New last element in queue
(004E) 00

How would you add an element to the queue if memory locations 0044 and 0045
contain the address of the tail of the queue (or last element) ?

9-4. 16-BIT SORT

Purpose: Sort an array of unsigned 16-bit binary numbers into descending order. The
length of the array is in memory location 0040 and the array itself begins in
memory location 0041. Each 16-bit number is stored with the most significant
bits in the first byte.

Sample Problem:

(0040) 03  Length of fist

(0041) 19 ) o

(0042) D1 } 19D1 First element in list

(0043) 3F }

(0044) 60 3F60 Second element

(0045) BS} .

(0046) 2A B52A hird element
Result. (00a1) 5 Largest element

(0042) 2A 9

(0043) 3F

(0044) 60

(0045) 19}

(0046) D1 Smallest element

9-5. USING A JUMP TABLE WITH A KEY

Purpose: Use the contents of memory location 0042 as the key to a jump table starting
in memory location 0043. Each entry in the jump table contains an 8-bit key
value followed by a 16-bit address (MSBs in first byte) to which the program
should transfer control if the key is equal to that key value.

Sample Problem:

(0042) 38 Key value for search

(0043) 32 Key value for first entry

(0044) 00 .

(0045) 4C$ 004C Jump address for first entry

(0046) 35 Key value for second entry

0047 00

:0048; 50} 0050 Jump address for second entry

(0049) 38 Key value for third entry

004A

iOOdB)) (5)2} 0054 Jump address for third entry
Result:  (PC) 0054, since that address corresponds to key value 38

Note: Be sure to place some executable code (such as an SWI instruction) at each
address to which the program could transfer control, so that the processor will get back
to the monitor correctly.
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11.

Tables and Lists 9-17

REFERENCES

J. Hemenway and E. Teja. ‘‘EDN Software Tutorial: Hash Coding,”’ EDN, Septem-
ber 20, 1979, pp. 108-10.

D. Knuth. The Art of Computer Programming, Volume I11: Searching and Sorting,
Addison-Wesley, Reading, Mass., 1978.

D. Knuth. ‘‘Algorithms,”’ Scientific American, April 1977, pp. 63-80.

K. J. Thurber and P. C. Patton. Data Structures and Computer Architecture, Lex-
ington Books, Lexington, Mass., 1977.

J. Hemenway and E. Teja. ‘‘Data Structures — Part 1,” EDN, March 5, 1979, pp.
89-92. “‘Data Structures — Part 2,”> EDN, May 5, 1979, pp. 113-16.

See Reference 2.

B. W. Kernighan and P. J. Plauger. The Elements of Programming Style, McGraw-
Hill, New York, 1978.

K. A. Schember and J. R. Rumsey ‘‘Minimal Storage Sorting and Searching Tech-
niques for RAM Applications,’” Computer, June 1977, pp. 92-100.

“‘Sorting 30 Times Faster with DPS,”’ Daramation, February 1978, pp. 200-03.

L. A. Leventhal. ‘“Cut Your Processor’s Computation Time,”’ Electronic Design,
August 16, 1977, pp. 82-89.

J. B. Peatman. Microcomputer-Based Design, McGraw-Hill, New York, 1977,
Chapter .7.







Advanced Topics

The following chapters will discuss more advanced areas of assembly language
programming. Chapters 10 and 11 deal with subroutines, an important aspect of all
levels of programming. Chapter 10 defines and gives examples of subroutines, while
Chapter 11 discusses 6809 implementations of important parameter passing techniques.
The following three chapters cover input and output, a microprocessor’s contact with
the outside world. In Chapter 12 we discuss time delays and different types of periph-
erals. Chapter 13 deals with the 6820 Peripheral Interface Adapter, a popular parallel
1/0 device for Motorola processors, and gives examples of basic program tasks for that
device. Chapter 14 illustrates basic routines for a serial interface device, the 6850
Asynchronous Communications Interface Adapter. Chapter 15 treats the important and
often confusing topic of interrupts.
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Subroutines

None of the examples that we have shown so far is typically a program all by
itself. Most real programs perform a series of tasks, many of which may be the same
or may be common to several different programs. We need a way to formulate these
tasks once and make the formulations conveniently available both in different parts
of the current program and in other programs.

Subroutine Library

The standard method is to write subroutines that perform particular tasks. The
resulting sequences of instructions can be written once, tested once, and then used
repeatedly. They can form a subroutine library that provides documented solutions to
common problems.

Subroutine Instructions

Most microprocessors have special instructions for transferring control to
subroutines and restoring control to the main program. We often refer to the special
instruction that transfers control to a subroutine as Call, Jump-to-Subroutine, Jump and
Mark Place, or Jump and Link. The special instruction that restores control to the main
program is usually called Return.

On the 6809 microprocessor, the Jump-to-Subroutine (JSR) or Branch-to-
Subroutine (BSR or LBSR) instructions save the old value of the Program Counter in
the hardware stack before placing the starting address of the subroutine in the Pro-
gram Counter; the Return from Subroutine (RTS) instruction gets the old value from
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the Stack and puts it back in the Program Counter. The effect is to transfer program
control, first to the subroutine and then back to the main program. Clearly the
subroutine may itself transfer control to a subroutine, and so on.

Parameters

In order to be really useful, a subroutine must be general. A routine that can per-
form only a specialized task, such as looking for a particular letter in an input string of
fixed length, will not be very useful. If, on the other hand, the subroutine can look for
any letter in strings of any length, it will be far more helpful. We call the data or
addresses that the subroutine allows to vary ‘‘parameters.’’ An important part of writ-
ing subroutines is deciding which variables should be parameters.

One problem is transferring the parameters to the subroutine; this process is
called passing parameters. The simplest method is for the main program to place the
parameters into registers. Then the subroutine can simply assume that the
parameters are there. Of course, this technique is limited by the number of registers
available. The parameters may, however, be addresses as well as data. For example, a
sorting routine could begin with Index Register X containing the starting address of the
array. Such 6809 features as indirect addressing, indexed addressing using the Stack
Pointers, the ability to push and pop entire sets of registers with one instruction, the
availability of both the user and the Hardware Stack Pointer, and the LEA instruction
provide far more powerful and more general ways of passing parameters. The main
program can place the parameters in the Stack and the subroutine can easily access
them, utilize the Stack for temporary storage, and place the results back in the Stack.
The only problems are keeping track of the return address (and not changing it) and
cleaning the Stack of unwanted data. The two stack pointers and the LEA instruction are
particularly helpful in stack management, as we shall show in Chapter 11. In that chapter
we will also describe more general approaches to passing parameters.

Types of Subroutines

Sometimes a subroutine must have special characteristics. A subroutine is
relocatable if it can be placed anywhere in memory. You can use such a subroutine
easily, regardless of other programs or the arrangement of the memory. A relocating
loader is necessary to place the program in memory properly; the loader will start the
program after other programs and will add the starting address or relocation constant
to all addresses in the program. Position-independent code does not require a relocat-
ing loader — all addresses are expressed relative to the program counter’s current
value. We will discuss the writing of strictly relocatable or position-independent code
later in this chapter.

A subroutine is reentrant if it can be interrupted and called by the interrupting
program and still give the correct results for both the interrupting and interrupted
programs. Reentrancy is important for standard subroutines in an interrupt-based
system. Otherwise the interrupt service routines cannot use the standard subroutines
without causing errors. Microprocessor subroutines are easy to make reentrant since the
Call instruction uses the Stack and that procedure is automatically reentrant. The only
remaining requirement is that the subroutine use the registers and Stack rather than
fixed memory locations for temporary storage. This is a bit awkward, but usually can be
done if necessary.
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A subroutine is recursive if it calls itself. Such a subroutine clearly must also be
reentrant. However, recursive subroutines are uncommon in microprocessor applica-
tions.

Subroutine Documentation

Most programs consist of a main program and several subroutines. This is
advantageous because you can use proven routines and debug and test the other
subroutines separately. You must, however, be careful to use the subroutines pro-
perly and remember their exact effects on registers and memory locations.

Subroutine listings must provide enough information so that users need not
examine the subroutine’s internal structure. Among the necessary specifications are:

A description of the purpose of the subroutine

A list of input and output parameters

Registers and memory locations used

A sample case, perhaps including a sample calling sequence.

The subroutine will be easy to use if you follow these guidelines.

Hardware Stack

The following examples all reserve an area of memory for the hardware stack.
We have arbitrarily started the hardware stack at address 00FF by initializing the
Stack Pointer to 0100 . If your microcomputer establishes a Stack area, you may use it
instead and you will not need an initial LDS instruction. If you wish to establish your
own stack area, remember to save and restore the monitor’s Stack Pointer (in two
specified RAM locations) in order to produce a proper return at the end of your main
program.

PROGRAM EXAMPLES

10-1. CONVERTING HEXADECIMAL TO ASCII

Purpose: Convert the contents of Accumulator A from a hexadecimal digit to an ASCII
character. Assume that the original contents of Accumulator A are a valid
hexadecimal digit.

Sample Problems:

a. (A) oc
Result: (A) 43 °C’
b. (A) 06

Result: (A) 36 ‘6’
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Flowchart:

(A)=(A)+ ASCIl A-
ASCI 9 -1

(A) = (A) + ASCIi O

Program 10-1:

The calling program starts the Stack at memory location 00FF, gets the data from
memory location 0040, calls the conversion subroutine, and stores the result in memory
location 0041.

0000 ORG $0000

0000 10CE 0100 LDS #3100 START STACK AT MEMORY LOCATION
L OOFF

0004 96 40 LDA $40 GET HEXADECIMAL DATA

0006 BD 0020 JSR ASDEC CONVERT DATA TO ASCII

0009 97 41 STA $41 STORE RESULT

000B 3F SWI

The subroutine converts the hexadecimal data to ASCII.

0020 ORG $0020

0020 81 09 ASDEC CMPA $9 IS DATA A DECIMAL DIGIT?

0022 23 02 BLS ASCZ

0024 8B 07 ADDA $'A-'9-1 NO, ADD EXTRA OFFSET FOR
* LETTERS

0026 88 30 ASCzZ ADDA +'0 CONVERT DATA TO ASCII BY

0028 39 RTS ADDING ZERO

Subroutine Documentation:
*
*SUBROUTINE ASDEC
*

*PURPOSE: ASDEC CONVERTS A HEXADECIMAL
* DIGIT IN ACCUMULATOR A TO AN

* ASCII DIGIT IN ACCUMULATOR A

*

*INITIAL CONDITIONS: HEXADECIMAL DIGIT IN A
*

*FINAL CONDITIONS: ASCII CHARACTER IN A
*

*REGISTERS AFFECTED: A, FLAGS

*

*SAMPLE CASE

*  INITIAL CONDITIONS: 6 IN ACCUMULATOR A
*  FINAL CONDITIONS: ASCII & (HEX 34)

* IN ACCUMULATOR A
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The 6809 Stack grows downward (toward lower addresses); the Stack Pointer
always contains the address of the last occupied location, rather than the next empty
one as on some other microprocessors (including the 6800 and 6502). This means you
must initialize the Stack Pointer to a value one higher than the largest address in the
Stack area (e.g., initializing the Stack Pointer to 0100,, means that the largest address in
the Stack area will be 00FF ).

JSR Instruction

The Jump to Subroutine instruction places the starting address of the
subroutine (0020) in the Program Counter and saves the current value of the program
counter (the address immediately following the JSR instruction) in the hardware
stack. The procedure is:

STEP 1 Decrement Stack Pointer, save LSB’s of current
Program Counter in Stack.

STEP 2 Decrement Stack Pointer, save MSB’s of current
Program Counter in Stack.

STEP 3 Place starting address of subroutine in Program
Counter.

The 6809 always decrements the Stack Pointer before storing a byte of data, so the
procedure is the same as in the autodecrement addressing mode. Although the pro-
cessor stores the LSB’s of the current program counter first, the address ends up in the
usual 6809 form (MSB’s at the lower address) since the Stack is growing down (toward
lower addresses).

The overall effect of JSR is:

((s)-1) (PCL)
((s)-2) (PCH)
(S) () -2
(PC) EA

where PCH and PCL are the most and least significant bytes of the Program Counter,
respectively, S is the Hardware Stack Pointer, and EA is the effective address for the
JSR instruction. Since the processor has fetched the entire JSR instruction, the program
counter contains the address of the following byte.

In our example, the effect of JSR ASDEC is:

(OOFF) 09
} Return address
(OOFE) 00
(S) OOFE
(PC) 0020

The only difference between JSR and JMP is that JSR ‘‘remembers’’ where it
came from, thus providing for the resumption of the main program. The processor
keeps a record in the hardware stack, much as one might jot down a starting point on a
piece of paper. The advantages of using the stack are that it is ordered and expanda-
ble; subroutines can themselves call subroutines and so on without destroying any of
the return addresses or restoring them in the wrong order. The latest return address is
always at the top of the hardware stack, with the others under it in the order in which
they will be used.



10-6 6809 Assembly Language Pregramming

RTS Instruction

The Return from Subroutine (RTS) instruction retrieves the return address
from the Stack (loading the top two bytes) and places that address back in the Pro-
gram Counter. The procedure is:

STEP | Load top byte from the stack into the MSB’s of
the Program Counter, increment Stack Pointer.
STEP 2 Load top byte from the stack into the LSB’s

of the Program Counter, increment Stack Pointer.

The 6809 microprocessor always increments the Stack Pointer after loading a byte
of data, so the procedure is the same as in the autoincrement addressing mode. RTS bal-
ances JSR, much as a right parenthesis balances a left parenthesis. The actions of RTS,
however, are automatic, it simply takes the top two bytes in the hardware stack and
places them in the Program Counter. The programmer must ensure that those top two
bytes contain a legitimate return address; the processor does not examine them.

The overall effect of RTS is:

(PCH) ((s)
(PCL) (s) + 1)
(S) (S) + 2

In our example, RTS has the following effects:

(PC) (OOFE):(OOFF} = 0009
(S) 0100

Parameters and Subroutine Characteristics

This subroutine has a single parameter and produces a single result. An accumula-
tor is the obvious place to put both the parameter and the result.

The calling program consists of three steps: placing the data in the Accumulator,
calling the subroutine, and storing the result. The overall initialization program must
also load the Hardware Stack Pointer with the appropriate address.

This subroutine is reentrant since it uses no data memory; it is relocatable since
the address ASCZ is relative. The use of BSR (Branch-to-Subroutine) rather than JSR
would make the calling program relocatable as well.

The Jump-to-Subroutine instruction results in the execution of four or five
instructions, taking 12 or 14 clock cycles. A subroutine call may take a long time even
though it appears to be a single instruction in the program. Calling a subroutine always
involves some overhead as well, since both the Jump-to-Subroutine and the Return-
from-Subroutine instructions take time. In fact, a JSR takes 4 clock cycles longer than
the corresponding JMP (with the same addressing mode) because JSR must save the
current Program Counter in the RAM stack; RTS always takes 5 clock cycles.

If you use the stack for passing parameters, remember that Jump or Branch to
Subroutine always saves the return address at the top of the stack. You can refer to the
parameters using indexed addressing with offsets of 2 or more from the Hardware Stack
Pointer (the return address occupies the addresses with offsets 0 and 1).
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10-2. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a siring of ASCII characters. The starting address of
the string is in Index Register X. The end of the string is marked by a carriage
return character (‘CR’,0D,,) . Place the length of the string (excluding the car-
riage return) in Accumulator B.

Sample Problems:

a.

Flowchart:

Program 10-2:

Result:

Result:

0043 Starting address of string

0043 Starting address of string

(X)

(0043) 52 'R

(0044) 41 A’

(0045) 54 ‘T’

(0046) 48 'H’

(0047) 45 'F’

(0048) 52 ‘R’

(0049) 0D CR
(8) 06
(X)

(0043) 0D CR
(8) 00
POINTER = (X)

COUNT =0
Yes
COUNT =
COUNT + 1
POINTER =
POINTER + 1

End

The calling program starts the Stack at memory location O0OFF, gets the starting
address of the string from memory locations 0040 and 0041, calls the string length
subroutine, and stores the result in memory location 0042.

0000
0000

0004
0006
0009
000B

10CE 0100
9E 40
BD 0020
D7 42
3F

ORG
LDS

LDX
JSR
STB
SWI

$0000
4#$100

$40
STLEN
$42

START STACK AT MEMORY LOCATION
OOFF

GET STARTING ADDRESS OF STRING

DETERMINE LENGTH OF STRING

STORE STRING LENGTH
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The subroutine determines the length of the string of ASCII characters and places
the length in Accumulator B.

0020 ORG $0020

0020 C6 FF STLEN LDB ASFF STRING LENGTH = -1

0022 86 0D LDA #S0D GET ASCII CARRIAGE RETURN TO
L COMPARE

0024 SC CHKCR INCB ADD 1 TO STRING LENGTH

0025 Al 80 CMPA P X4+ IS NEXT CHARACTER A CARRIAGE
* RETURN?

0027 26 FB BNE CHKCR NO, KEEP LOOKING

0029 39 RTS

Subroutine Documentation:

*SUBROUTINE STLEN
*

*PURPOSE: STLEN DETERMINES THE LENGTH
* OF A STRING (NUMBER OF CHARACTERS

L BEFORE A CARRIAGE RETURN)
*

*INITIAL CONDITIONS: STARTING ADDRESS

& OF STRING IN INDEX REGISTER X
*

*FINAL CONDITIONS: NUMBER OF CHARACTERS IN B
*

*REGISTERS AFFECTED: A,B,X,FLAGS
*

*SAMPLE CASE

* INITIAL CONDITIONS: (X) = 0042

* (0042) = 4D, (00431 = 41, (0044) 4E, (0045) 2D
* FINAL CONDITIONS: (B) = 03

This subroutine has a single parameter which is an address; Index Register X is
the obvious place to put it. The result is returned in Accumulator B.

The calling program consists of three steps: placing the starting address of the
string in Index Register X, calling the subroutine, and storing the result in memory. The
overall initialization must also load the Hardware Stack Pointer with the appropriate
value.

The subroutine is reentrant, since it does not use any fixed memory addresses for
storage.

The subroutine changes Accumulator A as well as Accumulator B and Index
Register X. The programmer must be aware that calling this subroutine destroys the
contents of Accumulator A, even though it does not contain a parameter. The
subroutine documentation must specify which registers are affected in order to avoid
unforeseen side effects.

An alternative approach would be for the subroutine to save and restore the
original contents of Accumulator A. The instruction PSHS A would save those con-
tents initially and the instruction PULS A would restore them before the return. This
approach takes extra time and memory, but makes the subroutine easier to use since it
does not produce as many incidental changes. We could save and restore the condition
code register as well by using the instructions PSHS A,CC and PULS A,CC.

If the terminating character were not always an ASCII carriage return, we
could make that character into another parameter. Then the calling program would
have to place the terminating character in Accumulator A before calling the
subroutine.
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10-3. MAXIMUM VALUE

Purpose: Find the largest element in an array of unsigned binary numbers. The length
of the array (number of bytes) is in Accumulator B and the starting address of
the array is in Index Register X. The maximum value is returned in
Accumulator A.

Sample Problem:

(B) 05 Length of array (number of bytes)
(X) 0043 Starting address of array
(0043) 67
(0044) 79
(0045) 15
(0046) E3
(0047) 72
Result: (A) E3, since this is the largest of the five unsigned

numbers in the array

Flowchart:

COUNT = (B}
POINTER = (X)
MAX =0

MAX = (POINTER)

POINTER =
POINTER + 1

COUNT =
COUNT -1

(A) = MAX
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Program 10-3:

The calling program starts the Stack at memory location 00FF, sets the starting
address of the array to 0043, gets the length of the array from memory location 0040,
calls the maximum subroutine, and stores the maximum value in memory location
0041,

0000 ORG $0000

0000 10CE 0100 LDS #50100 START STACK AT MEMORY LOCATION
b 00FF

0004 8E 0043 LDX #3543 GET STARTING ADDRESS OF ARRAY

0007 D6 40 LDB $40 GET LENGTH OF ARRAY

0009 BD 0020 JSR MAXM FIND MAXIMUM VALUE

000C 97 41 STA $41 SAVE MAXIMUM VALUE IN MEMORY

000E 3F SWI

The subroutine determines the maximum value in the array.

0020 ORG $0020

0020 4F MAXM CLRA MAXIMUM = ZERO (MINIMUM POSSIBLE
b VALUE)

0021 Al 80 CHKE CMPA s X+ IS CURRENT ENTRY GREATER THAN
L MAXIMUM?

0023 24 02 BCC NOCHG

0025 A6 1F LDA -1,X YES, REPLACE MAXIMUM WITH
ko CURRENT ENTRY

0027 5A NOCHG DECB

0028 26 F7 BNE CHKE

002A 39 RTS

Subroutine Documentation:

*SUBROUTINE MAXM
*

*PURPOSE: MAXM DETERMINES THE MAXIMUM VALUE IN AN ARRAY' OF

* UNSIGNED BINARY NUMBERS
*

*INITIAL CONDITIONS: STARTING ADDRESS OF ARRAY IN INDEX REGISTER

* X, LENGTH OF ARRAY (NUMBER OF BYTES) IN ACZCUMULATOR B
*

*FINAL CONDITIONS: MAXIMUM VALUE IN ACCUMULATOR A
*

*REGISTERS AFFECTED: A,B,X,FLAGS
*

*SAMPLE CASE:

* INITIAL CONDITIONS: 0043 IN INDEX REGISTER X, 03 IN
* ACCUMULATOR B, (0043) = 35, (0044) = 44, (0045) = 0D

* RESULT: (A) = 45

This subroutine has two parameters — an address and a number. Accumulator B
is used to pass the number and Index Register X to pass the address. The result is a
single number that is returned in Accumulator A.

The calling program must place the starting address of the array in Index Register
X and the length of the array in Accumulator B before transferring control to the
subroutine.

The subroutine is reentrant since it uses no fixed memory addresses and relocata-
ble since it uses only relative branches.

We could retain the original contents of the condition code register by using the
instructions PSHS CC and PULS CC.

This subroutine has some incidental effects: it changes the address in Index
Register X (the final value is one beyond the last address in the array because of the
autoincrementing) and it returns with zero in Accumulator B.
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10-4. PATTERN MATCH

Purpose: Compare two strings of ASCII characters to see if they are the same. The
length of the strings is in Accumulator B. The starting address of one string is
in Index Register X and the starting address of the other string is in Index

Register Y. If the two strings match, clear Accumulator B; otherwise, set
Accumulator Bto FF .

Sample Problems:

a. (8) 03 Length of strings
(x) 0046 Starting address of string # 1
(v) 0050 Starting address of string #2
(0046) 43 (o}
(0047) 41 ‘A
(0048) 54 T
(0050) 43 ‘C
(0051) a1 ‘A
(0052) - 54 T
Result: (B) 00 since the strings are the same
b. (X} 0046 Starting address of #1
(v) 0050 Starting address of string #2
(0046) 52 ‘R’
(0047) 41 ‘A
(0048) 54 T
(0050) 43 'C’
(0051) 41 ‘A
(0052) 54 ‘T
Result: 8) FF since the first characters differ

Program 10-4:

The calling program starts the Stack at memory location O0OFF, sets the two start-
ing addresses (Index Registers X and Y) to 0046 and 0050 respectively, gets the length
of the string from memory location 0041, calls the pattern match subroutine, and places
the result in memory location 0040.

0000 ORG $0000
0000 10CE 0100 LDsS #50100 START STACK AT MEMORY LOCATION
b O00FF
0004 8E 0046 LDX #S46 GET STARTING ADDRESS OF STRING 1
0007 108E 0050 LDY $#$50 GET STARTING ADDRESS OF STRING 2
000B D6 41 LDB $41 GET LENGTH OF STRINGS
000D BD 0020 JSR PMTCH COMPARE STRINGS
0010 D7 40 STB $40 SAVE MATCH INDICATOR
0012 3F SWI

The subroutine determines if the two strings are the same.

0020 ORG $0020

0020 A6 80 PMTCH LDA » X+ GET A CHARACTER FROM STRING 1

0022 Al A0 CMPA Y+ IS THERE A MATCH WITH STRING 2?

0024 26 04 BNE NOMCH NO, DONE

0026 5A DECB ALL CHARACTERS CHECKED?

0027 26 F7 BNE PMTCH NO, CONTINUE

0029 39 RTS YES, RETURN WITH INDICATOR =
& 2ERO

002A C6 FF NOMCH LDB #SFF NO MATCH, INDICATOR = FF HEX

RTS
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Flowchart:

POINTER1 = (X)
POINTER2 = (Y)
COUNT = (B)
No
POINTER1 =
POINTER1 + 1
POINTER2 =
POINTER2 + 1
COUNT=COUNT -1
MARK 0 MARK = FFyg

Subroutine Documentation:

*SURRNYTINE PMTCH

.

*PURPOSE: PMTCH DETERMINES IF TWO STRINGS ARE IDENTICAL

*

*INITIAL CONDITIONS: STARTING ADDRESSES OF STRINGS
* REGISTERS X AND Y, LENGTH OF STRINGS (IN BYTES)

* ACCUMULATOR B
*

*FINAL CONDITIONS: ZERO IN ACCUMULATOR B IF STRINGS MATCH,

* FF IN ACCUMULATOR B OTHERWISE
*

*REGISTERS AFFECTED: A,B,X,Y,FLAGS
*

*SAMPLE CASE:

b INITIAL CONDITIONS: (X) = 0046, (Y) = 0050,

* (00468) = 36, (0047) = 39

L (0050) = 35, (N0OS51) = 39

* RESULT: (B) = 00 SINCE THE STRINGS ARE IDENTICAL

This subroutine, like the preceding examples, changes all the flags. You should
generally assume that a subroutine call changes the flags unless it is specifically stated
otherwise. If the main program needs the old flag values (for later checking), it must
save them in the Stack (using PSHS CC) before calling the subroutine, and restore them

afterward (using PULS CC).
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This subroutine has three parameters — two starting addresses and the length of
the strings. Two index registers (X and Y) are used for the starting addresses;
Accumulator B is used for both the length of the strings and for the result. The
subroutine changes Accumulator A incidentally.

The subroutine is reentrant, since it uses no fixed addresses.

Obviously, subroutines become far more complicated as soon as the number of
parameters exceeds the number of registers. Using the registers is convenient, but it
lacks generality; as soon as the number of parameters becomes large, you must use an
entirely different approach.

Note that the subroutine has two exit points (i.e., two RTS instructions). This cre-
ates no problems, since either RTS terminates the subroutine and transfers control back
to the main program.

10-5. MULTIPLE-PRECISION ADDITION

Purpose: Add two multi-byte binary numbers. The length of the numbers (in bytes) is
in Accumulator B, the starting addresses of the numbers are in Index
Registers X and Y, and the starting address of the result is in the User Stack
Pointer U. All the numbers begin with the least significant bits.

Sample Problem:

(B) 04 Length of numbers in bytes
(X) 0048 Starting address of first number
() 004C Starting address of second number
L) 0050 Starting address of result
(0048) C3
(0049) A7 L.
F5B
(004A) 58 2 A7C3,g is first number
(0048) 2F
(004C) B8
(004D) 35 .
(004E) DF 14DF35B8, g is second number
(004F) 14
Result: (0050) 78
(0051) DD
(0052) 3A 443ADD7B, g is sum
(0053) 44

Program 10-5:

The calling program starts the Stack at memory location 00FF, sets the starting
addresses of the various numbers to 0048, 004C, and 0050, respectively, gets the length
of the numbers (in bytes) from memory location 0040, and calls the multiple-precision
addition subroutine.

0000 ORG $0000

0000 10CE 0100 LDS #50100 START STACK AT MEMORY LOCATION
* 00FF

0004 8E 0048 LDX 4548 GET STARTING ADDRESS OF FIRST
* NUMBER

0007 108E 004C LDY #s4C GET STARTING ADDRESS OF SECOND
* NUMBER

000B CE 0050 LDU #$50 GET STARTING ADDRESS OF SUM

000E D6 40 LDB $40 GET LENGTH OF NUMBERS (IN BYTES)

0010 BD 0020 JSR MPADD PERFORM MULTIPLE-PRECISION
* ADDITION

0013 3F SWI
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Flowchart:

POINTER1 = (X)
POINTER2 = (Y)
POINTER3 = (U)
COUNT = (B)
CARRY =0
(POINTER3) =
. (POINTER1) +
h | .
This step also produces a new carry (POINTER2) +
CARRY
PCINTER1 =
POINTERT + 1
POINTER2 =
POINTER2 + 1
POINTER3 =
POINTER3 + 1
COUNT = COUNT
-1

The subroutine performs multiple-precision binary addition.

0020 ORG $0020

0020 1C FE MPADD ANDCC #%11111110 CLEAR CARRY TO START
0022 A5 80 ADBYTE LDA , X+ GET BYTE FROM FIRST NUMBER
0024 A9 AO ADCA Y+ ADD BYTE FROM SECOND NUMBER
0026 A7 Cco STA U+ STORE RESULT

0028 5SA DECB ALL BYTES ADDED?

0029 26 F7 BNE ADBYTE NO, -CONTINUE

002B 39 RTS

Subroutine Documentation:

*SUBROUTINE MPADD
*

*PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS
*

*INITIAL CONDITIONS: STARTING ADDRESSES OF NUMBERS (LSB'S) IN

* INDEX REGISTERS X AND Y, STARTING ADDRESS OF SuM IN USER

* STACK POINTER U, LENGTH OF NUMBERS (IN BYTES) IN ACCUMULATOR B
*

*REGISTERS AFFECTED: A,B,X,Y,U,FLAGS

*

*SAMPLE CASE:

* INITIAL CONDITIONS: (X) = 0048, (Y) = 004C, (uU) = 0050,

* (B) = 02, (0048) = C3, (0049) = A7, (004C) = BB, (004D) = 35
* RESULT: (0050) = 7B, (0051) = DD

*

This subroutine has four parameters — three addresses and the length of the
numbers. We use Index Register X, Index Register Y, User Stack Pointer U, and
Accumulator B to pass them; no results are returned. User Stack Pointer U is really just
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an extra index register. It is, in fact, somewhat more useful than Index Register Y since
LDU and STU execute faster than LDY and STY. The reason for this difference is that
LDU and STU require 1-byte operation codes, while LDY and STY require 2-byte
operation codes. Note, however, that CMPU requires a 2-byte operation code, so U is
slightly inferior to X. A further advantage of U which we will discuss shortly is the
availability of the PSHU and PULU instructions, which can transfer an entire set of
registers to or from the User Stack.

POSITION-INDEPENDENT CODE

Position-independent routines can be placed anywhere in memory without
using a relocating loader and can be used with any combination of other programs.
The keys to writing position-independent code are:

1. Use relative branches (BSR, LBSR, BRA, LBRA), rather than JSR or JMP.

2. Refer to variables by means of the indexed addressing modes that use a
constant offset from the Program Counter. Remember that the assembler
will calculate a relative offset for you if you specify the address as DEST, PCR.

Thus the instruction
LDA RDATA, PCR

will load Accumulator A from the relative address RDATA. You can use the
indirect version to access data through addresses that are stored relatively.

3. Use the Hardware Stack for temporary storage. You can assign five Stack
locations for temporary storage by subtracting five from the Hardware Stack
Pointer with the instruction

LEAS S0

You can then refer to these locations with indexed offsets and finally discard
them with the instruction
LEAS 5,5

Note that such temporary storage locations are only allocated when the routine is
actually executed (referred to as dynamic allocation); they need not be permanently
assigned as fixed memory locations must be (referred to as static allocation). This use of
the Hardware Stack for temporary storage also promotes reentrancy, since Stack loca-
tions are saved automatically when routines are interrupted or suspended.

If necessary, you can always determine the current value of the Program Counter

by means of an instruction like
TFR PC, X

which saves its absolute value (the address of the byte following the TFR instruction) in
Index Register X. The program can thereby calculate its actual location in memory.
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NESTED SUBROUTINES

The BSR and JSR instructions allow the nesting of subroutines, since subse-
quent subroutine calls will place their return addresses on top of the previous return
addresses. No addresses are ever lost and an RTS instruction always returns control to
the instruction just after the most recent BSR or JSR.

Jump and Link

We can use other methods to call one level of subroutine. For example, the

instruction
EXG X, pC

loads the Program Counter with the previous contents of Index Register X and Index
Register X with the previous contents of the Program Counter. This is equivalent to
transferring control to the address in Index Register X, while saving the return address
in that index register. However, this approach does not allow nesting, since Index
Register X can only hold a single return address. Furthermore, it ties up Index Register
X and makes the program rather difficult to follow. If you use this approach, remember
that the instruction
EXG X, PC

at the end of the subroutine will transfer control back to the main program (as long as
you have not disturbed Index Register X) and will save the address immediately follow-
ing the EXG instruction in Index Register X. This approach is often referred to as
jump-and-link, since it uses Index Register X as the link back to the main program.

PROBLEMS

Note that you are to write both a calling program for the sample problem and a
properly documented subroutine.

10-1. CONVERT ASCIl TO HEXADECIMAL

Purpose: Convert the contents of Accumulator A from the ASCII representation of a
hexadecimal digit to the actual digit. Place the result in Accumulator A.

Sample Problems:

a. (A) 43 ‘C’
Result: (A) oc
b. (A) 36 ‘6’

Resuit: {(A) 06
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10-2. LENGTH OF A TELETYPEWRITER MESSAGE

Purpose: Determine the length of an ASCII-coded teletypewriter message. The starting
address of the string of characters in which the message is embedded is in
Index Register X. The message itself starts with an ASCII STX character
(02,¢) and ends with ASCII ETX (03,,). Place the length of the message (the
number of characters between the STX and the ETX) in Accumulator B.

Sample Problem:

(X) 0044 Starting address of string
(0044) 49
(0045) 02 STX
(0046) 47 G
(0047) 4F 'O’
(0048) 03 ETX
Result (B) 02 since there are 2 characters between the ASCII

STX and the ASCIl ETX.

10-3. MINIMUM VALUE

Pupose: Find the smallest element in an array of 8-bit unsigned binary numbers. The
length of the array (number of bytes) is in Accumulator B and the starting
address of the array is in Index Register X. The minimum value is returned in
Accumulator A.

Sample Problem:

(B) 05 Length of array (number of bytes)
(X) 0043 Starting address of array

(0043) 67

(0044) 79

(0045) 15

(0046) E3

(0047) 73

Result: (A) 15 since this is the smallest of the five

unsigned numbers.

10-4. STRING COMPARISON

Purpose: Compare two strings of ASCII characters to see which is larger (i.e., which
follows the other in “alphabetical’ ordering). The length of the strings is in
Accumulator B. The starting address of string 1 is in Index Register X and the
starting address of string 2 is in Index Register Y. If string 1 is larger than or
equal tostring 2, clear Accumulator B; otherwise, set Accumulator B to FF .

Sample Problems:

a. (B) 03 Length of strings

(X) 0046 Starting address of string #1
[\ 4] 004A Starting address of string 32

(0046) 43 ‘cC’

(0047) 41 ‘A

(0048) 54 T

(004A) 42 ‘B’

(004B) 41 ‘A’

(004C) 54 T

Result: (B) 00 since CAT is “larger’’ than BAT
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b. (B) 03 Length of strings

(X) 0046 Starting address of string 31
(Y) 004A Starting address of string #2

(0046) 44 Cc

(0047) 41 ‘A’

(0048) 54 T

(004A) 44 ‘C’

(004B) 41 ‘A

(004C) 54 ‘T

Result: (B) 00 since the two strings are the same
c (B) 03 Length of strings

(X) 0046 Starting address of string #1
(Y) 004A Starting address of string #2

(0046) 43 ‘'C’

(0047) 41 ‘A

(0048) 54 T

(004A) 43 ‘C’

(004B) 55 v

(004C) 54 T

Result: (B) FF since CUT is “larger’’ than CAT

10-5. DECIMAL SUBTRACTION

Purpose: Subtract one multi-digit decimal (BCD) number from another. The length of
the numbers (in bytes) is in Accumutator B and the starting addresses of the numbers
are in Index Registers X and Y. Subtract the number with the starting address in Index
Register Y from the one with the starting address in Index Register X. The starting
address of the result is in the user Stack Pointer U. All the numbers begin with the least
significant digits. The sign of the result is returned in Accumulator B — zero if the result
is positive, FF if it is negative.

Sample Problem:

(B) 04 Length of numbers in bytes
(x} 0048 Starting address of minuend
(Y) = 004C Starting address of subtrahend
{L) 0050 Starting address of difference

(0048) 85

(0049) 19 . .

(004A) 70 36701985 is minuend

(004B) 36

(004C) 59

(004D) 34 % 12663459 is subtrahend

(004E) 66

(004F) 12

Result: (B) 00 Positive resuit

(0050) 26

(0051) 85 . . .

(0052) 03 24038526 is decimat difference

(0053) 24
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Parameter Passing Techniques

In Chapter 10 we defined and briefly discussed parameters and the problem of
transferring parameters to subroutines. The examples in Chapter 10 passed parameters
through the 6809 registers; however, in this chapter we will describe other, more
general methods for passing parameters. Since these parameter passing techniques
make use of the 6809 stacks and stack pointers, we will first discuss the important
stack manipulation instructions PSH and PUL.

THE PSH AND PUL INSTRUCTIONS

We have briefly mentioned the PSH and PUL instructions without fully explor-
ing them. These instructions allow the programmer to transfer sets of registers to and
from the User Stack or the Hardware Stack. Typical uses are to transfer parameters
to the Stack, transfer results from the Stack, and load or store a set of registers with
one instruction.

Each PSH or PUL instruction requires 2 bytes of program memory, one for the
operation code and one to specify the list of registers that will be transferred to or
from the Stack (either the User Stack or the Hardware Stack). The bits in the second
byte of data determine whether particular registers will (if the assigned bit is 1) or will
not (if the assigned bit is 0) be transferred to or from the Stack. Figure 11-1 shows how
the bits are assigned and the order in which registers are pushed (stored on the stack) or
pulled (loaded from the stack). Note that neither Stack Pointer can be stored in or
loaded from its own stack; saving a Stack Pointer in its own stack would be like saving
the key to a locked safe in the safe itself. The push order is, of course, the opposite of the
pull order.
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-t Pull Order
7 6 S5 4 3 2 0 Bit Number

= o4

Push Order

Bit position 6 represents U for PULS and PSHS, S for PULU and PSHU.

Figure 11-1. Assignment of Bits and Orders for PSH and PUL Instructions

The Stack grows downward, so the first registers pushed will end up at the
highest addresses and the first registers pulled will come from the lowest addresses.
16-bit registers are pushed least significant byte first and pulled most significant
byte first, thus maintaining compatibility with the standard 6809 method for storing 16-
bit addresses or data. The 6809’s Stack Pointers are decremented before each byte is
stored and incremented after each byte is loaded.

The result is that registers are pushed into either stack as follows:

Immediate data Result if bit is 1 Stack with entire
bit position register set pushed
7 SP—SP - 2
STACK—PC T
6 SP—SP — 2 Last byte pushed quq -12=
STACK—U or S A final SP contents
5 SP—SP - 2 B
4 SP—SP - 2 oo
STACK—X XH
3 SP—SP - 1 P
STACK—DP YH
2 SP—SP - 1 yL
1 SP—SP -1
STACK—A Mporst,
0 SP—SP - 1 SGCH
STACK—CC First byte pushed PCL
ppag =

initial SP contents

The description of PSH in Chapter 22 illustrates
the result of stacking just two registers.

SP represents either the Hardware Stack Pointer (PSHS) or the User Stack Pointer
(PSHU). Either PSH instruction can save any, all, any subset, or none of the user
registers except its own pointer. The assembly language programmer simply provides a
list of registers (in any order) in the operand field. The order in which registers are saved
is a function of the hardware, not of the order in which the programmer specifies them.
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The PULS or PULU instruction pulls the registers from the stack in the following
order:

Immediate data Result if bitis 1 Stack with entire register
bit position set to be pulled
0 CC—STACK
SP- SP + 1 First byt lled cC
1 A—STACK LA AT el
SP~SP + 1 A initial SP contents
2 B—STACK B
SP—SP + 1 DP
3 DP—STACK XH
SP—SP + 1 -
4 X—STACK
SP—SP + 2 YH
5 Y—STACK YL
SP—SP + 2 UH or SH
6 U or S—STACK UL or SL
SP—SP + 2
7 PC—STACK cH
SP—SP + 2 Last byte pulled PCL
ppaq + 12 =

final SP contents

The description of PUL in Chapter 22 illustrates
the result of unstacking just three registers.

PSH and PUL are particularly convenient when the entire state of a task must be
saved or restored because the task has been suspended, preempted, or newly activated.

GENERAL PARAMETER PASSING TECHNIQUES'*

The registers often provide a fast, convenient way of passing parameters to
subroutines and returning results. The limitations of this method are that it cannot be
expanded beyond the number of registers, it often results in unforeseen side effects, and
it lacks generality. The tradeoff here is between fast execution time and a more general
approach. Such a tradeoff is common in computer applications at all levels; general
approaches are easy to learn, consistent, and can be automated through the use of
compilers and other systems programs. On the other hand, approaches that take
advantage of the specific features of a particular task require less time and memory.
The choice of one approach or the other depends on your application, but you should
take the general approach (saving programming time and simplifying documentation
and maintenance) unless time or memory constraints force you to do otherwise.

There are two general approaches to passing parameters:

1. Place the parameters (or arguments) immediately after the subroutine call.
2. Transfer the parameters and results on the Hardware Stack.

The first approach is convenient when the parameters are constants for a par-
ticular subroutine call, while the second approach is more general and is usually the
choice made in writing interpreters, compilers, operating systems, and other systems
programs.
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USING

ARGUMENT LISTS

In the first approach, the programmer follows each subroutine call with an
appropriate list of parameters. The list itself must consist of constants if the program is
to execute from ROM, although the constants may be the addresses of variable data or
arrays. The programmer must implement this approach as follows:

1.

11-1a.

Purpose:

Use the DATA directives to store the parameters in program memory. For
the 6809 assembler, the directives are FCB for byte-length data, FDB for 16-
bit data or addresses, and FCC for character data.

Access the data by means of the return address that the JSR or BSR instruc-
tion stores at the top of the Hardware Stack. The return address will actually
be the starting address of the list of parameters. You can access the first ele-
ment of the list indirectly with an instruction like

LDA [,sl

or you can load the starting address into an Index Register (U, for example)
with an instruction like
LEAU r,S]

Adjust the return address so that it points to the next executable instruc-
tion. That is, add the length of the parameter list to the actual return address
so that the processor does not accidentally try to execute the subroutine
parameters. If the return address is in the User Stack Pointer U and the
parameters occupy 5 bytes of program memory, the sequence

LEAU 5,U MOVE RETURN ADDRESS PAST PARAMETERS
STU 'S SAVE ADJUSTED RETURN ADDRESS IN STACK
RS

will return control to the next executable instruction.

EXAMPLES

LENGTH OF A STRING OF CHARACTERS

Determine the length of a string of ASCII characters. The terminating
character and the starting address of the string follow the subroutine call. The
length of the string (excluding the terminating character) is returned in
Accumulator B. No other registers are affected.

Sample Problems:

a. The subroutine call is followed by:

FCB $0D TERMINATING CHARACTER
FDB $43 STARTING ADDRESS OF STRING
(0043) 52 ‘R’
(0044) 41 ‘A
(0045) 54 T
(0046) 48 ‘H
(0047) 45 'E’
(0048) 52 ‘R’
(0049) aD CR

Result: (8) 06
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b. The subroutine call is followed by:

FCB S0D TERMINATING CHARACTER
FDB $43 STARTING ADDRESS OF STRING
(0oa3) = 0D CR
Result: (8) = 00

1-1a:

calling program starts the Stack at memory location 00FF, calls the string

length subroutine (specifying the terminator and starting address in the next three
bytes), and stores the result in memory location 0042.

0000
0000

0004
0007
0008
000A
000C

0020
0020
0022
0024
0026
0028
0029
0028B
002D

002F

ORG $0000
10CE 0100 LDS #5100 START STACK AT MEMORY LOCATION
b OOFF
BD 0020 JSR STLEN DETERMINE STRING LENGTH
0D FCB $0D STRING TERMINATOR
0043 FDB $43 STARTING ADDRESS OF STRING
D7 42 STB $42 SAVE STRING LENGTH
3F SWI
*
*
ORG $0020
34 53 STLEN PSHS u,X,A,CC SAVE REGISTERS
EE 66 LDU 6,5 ACCESS PARAMETER LIST
37 12 PULU A,X GET STRING TERMINATOR,
Cé6 FF LDB #SFF STARTING ADDRESS
5C CHKTRM INCB ADD 1 TO STRING LENGTH
Al 80 CMPA + X+ IS NEXT CHARACTER A TERMINATOR?
26 FB BNE CHKTRM NO, KEEP LOOKING
EF 66 STU 6,S MOVE RETURN ADDRESS PAST
* PARAMETER LIST
35 D3 PULS PC,U,X,A,CC RESTORE REGISTERS AND
= RETURN

Subroutine Documentation:

The
and assem

*SUBROUTINE STLEN
*

*PURPOSE: STLEN DETERMINES THE LENGTH OF A STRING (NUMBER OF
* CHARACTERS PRECEDING A TERMINATOR)

*

*INITIAL CONDITIONS: TERMINATOR IN BYTE IMMEDIATELY FOLLOWING
* SUBROUTINE CALL, STARTING ADDRESS OF STRING IN NEXT TWO

*  BYTES (MSB'S IN FIRST BYTE)

*

*FINAL CONDITIONS: NUMBER OF CHARACTERS IN B
*

*REGISTERS AFFECTED: B

*

*SAMPLE CASE:

* INITIAL CONDITIONS: TERMINATOR = 0D, STARTING ADDRESS = 0042
kd (0042) = 4D, (0043) = 41, (0044) = 4E, (N045) = 0D

* FINAL CONDITIONS: (B) = 03

*

*TYPICAL CALL:

* JSR STLEN

* FCB TERM TERMINATOR

L FDB START STARTING ADDRESS OF STRING

*

parameters follow the subroutine call in memory. We are mixing instructions

bler directives, a practice that is acceptable as long as the processor never acci-

dentally executes anything that is not an instruction. The result of the JSR instruction is:




11-6 6809 Assembly Language Programming

((S)-1) = (OOFF)—(PCL) = 07
((S)-2) = (0OOFE)—(PCH) = 00
(S)—(S) — 2 = OOFE

The subroutine begins by storing all the incidental registers that it uses in the
Stack with PSHS. The result is:

((S)~-1) = (0OOFD)—(UL)
((S)=2) = (0OOFC)-—(UH)

((S)-3) = (00FB)—(XL)
((S)-4) = (OOFA)—(XH)
((S)-5) = (OOF9)—(A)

((S)-6) = (00F8)—(CC)

(S)—(S) — 6 = OOFE — 6 = OOF8

Now the instruction LDU 6,S loads the return address from memory locations
00FE and OOFF into the User Stack Pointer.

(U) —((S)+6):((S)+7) = (OOF8+6):(00F8+7) = (OOFE):(00FF) = 0007

The instruction PULU A,X loads the parameters into Accumulator A (the ter-
minating character) and Index Register X. Note that the order of the parameters is criti-
cal — it must be the same as the pulling order of PULU.

(A)— ((U)) = (0007) = OD
(XH)—((U) + 1) = (0008) = 00

(XL)—=((U) + 2) = (0009) = 43
(U)—(U) + 3 = 000A

Not only does PULU load all the parameters into the registers, but it also adjusts
the return address to the end of the parameter list.
After the length of the string has been determined in the same way as before, the
instruction STU 6.S saves the adjusted return address in the Hardware Stack.
((S) + 6) = (OOF8 + 6) = (OOFE)—(UH) = 00
((S) + 7) = (OOF8 + 7) = (OOFF)—(UL) = OA
Finally PULS PC,X,U,A,CC restores all the registers and transfers control back to
the main program. No RTS instruction is necessary.

(CC)—((S)) = (0OF8)
(A)—((S)+1) = (OOF9)

(XH)—((S)+2) = (OOFA)
(XL)—((S)+3) = (OOFB)
(UH)—((S)+4) = (0OFC)
(UL)—((S)+5) = (OOFD)

(PCH)—((S)+6) = (OOFE) = 00
(PCLI—((S)+7) = (OOFF) = 0A
(S)—(S) + 8 = OOF8 + 8 = 0100
Obviously the programming here is a great deal more complex and harder to
understand than in the earlier version, Program 10-2. However, this version is
reentrant, general, has no incidental side effects, and allows simple variation of the
starting address and terminating character in different calls. Other parameters that we
could add easily include a limiting number of characters (the maximum number that the
routine will examine), an error exit (in the event that the processor does not find a ter-
minating character), a starting character, and a memory address in which to store the
result. You might try to expand the routine in a general way to include some or all of
these parameters.
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11-2a. MULTIPLE-PRECISION ADDITION

Purpose: Add two multi-byte binary numbers. The starting addresses of the numbers
and the result, as well as the length of the numbers in bytes, follow the
subroutine call. No registers or flags are affected.

Sample Problem:

Program 11-2a:

The subroutine call is followed by:

Result:

FCB
FDB
FDB
FDB

(0048)
(0049)
(004A)
(0048)

(004C)
(004D)
(004E)
(004F)

(0050)
(0051)
{0052)
(0053)

4 LENGTH OF STRINGS (IN BYTES)
$48 ADDRESS OF LSB'S OF 1ST NUMBER
$4cC ADDRESS OF LSB'S OF 2ND NUMBER
50 ADDRESS OF LSB'S OF SUM

C3

A7 7 .

58 2F5BA7C3, ¢ is first number

2F

88

g? 14DF35B8,¢ is second number

14

78

DD _

3A 443ADD78B,¢g is sum

44

The calling program starts the Stack at memory location O0FF and calls the multi-
ple-precision addition subroutine, specifying the length (in bytes) and the starting
addresses of the operands and sum in the next seven bytes.

0000
0000

0004

0007
0008
000A

000C
000E

0020
0020
0022
0024

0026
0028
002A
002C
002E
0030
0031
0033
0035
0037
0039

10CE 0100
BD 0020
04
0048
004cC
0050
3F
34 77
EE 69
37 34
EE C4
1C FE
A6 80
A9 A0
A7 co
5A
26 F7
EE 69
33 47
EF 69
35 F7

MPADD

ADBYTE

ORG
LDS

JSR

FCB
FDB
FDB

FDB
SWI

ORG
PSHS
LDU
PULU

LDU
ANDCC
LDA
ADCA
STA
DECB
BNE
LDU
LEAU
STU
PULS

$0000

#5100 START STACK AT MEMORY LOCATION
OOFF

MPADD PERFORM MULTIPLE-PRECISION
ADDITION

4 LENGTH OF STRINGS (IN BYTES)

sas ADDRESS OF LSB'S OF FIRST NUMBER

$4cC ADDRESS OF LSB'S OF SECOND
NUMBER

$50 ADDRESS OF LSB'S OF SUM

$0020

X,Y,U,A,B,CC SAVE ALL REGISTERS

9,S ACCESS PARAMETER LIST

X,Y,B GET LENGTH, ADDRESSES OF
OPERANDS

U GET ADDRESS OF SUM

#%11111110 CLEAR CARRY TO START

» X+ GET BYTE FROM FIRST NUMBER

Y4 ADD BYTE FROM SECOND NUMBER

U+ STORE RESULT

ALL BYTES ADDED?

ADBYTE NO, CONTINUE

9,S ADJUST RETURN ADDRESS PAST

7,0 ARGUMENT LIST

9,8

pC,U,Y,X,B,A,CC RESTORE REGISTERS AND
RETURN
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Subroutine Documentation:

*SUBROUTINE MPADD
*

*PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS

*

*INITIAL CONDITIONS: SUBROUTINE CALL IS FOLLOWED BY LENGTH OF

* STRINGS (IN BYTES), STARTING ADDRESSES OF LSB'S OF OPERANDS,
* AND STARTING ADDRESS OF LSB'S OF SUM

*

*REGISTERS AFFECTED: NONE

*

*SAMPLE CASE:

* INITIAL CONDITIONS: LENGTH = 02, OPERAND ADDRESSES = 0048 AND

L] oo4c,

ki ADDRESS OF SUM = 0050

ki (0048) = C3, (0049) = A7, (004C)y = B8, (004D) = 35

* RESULT: (0050) = 7B, (0051) = DD (A7C3 + 35BR = DD7B)

*

*TYPICAL CALL:

L JSR MPADD

& FCB LNGTH LENGTH OF STRINGS (IN BYTES)

* FDB OPERI STARTING ADDRESS (LSB'S) OF OPERAND 1
b FDB OPER2 STARTING ADDRESS (LSB'S) OF OPERAND 2
b FDB SUM STARTING ADDRESS (LSB'S) OF SUM

The only new problem here is that we cannot pull U from its own stack and we are
very reluctant to change S (since it is used automatically in interrupts as we shall see in
Chapter 15). So we must tiptoe around this limitation, retaining reentrancy as follows:

1.

PULU X,Y,B loads the length of the numbers into Accumulator B and the
starting addresses of the operands into Index Registers X and Y, respectively.

LDU ,U loads the starting address of the result into the User Stack Pointer U.
The ending sequence

LDU 9,S
LEAU 7,U
STU 9,S

adds 7 to the return address stored in the Stack, so that it now points to the
address immediately following the list of arguments.

PASSING PARAMETERS ON THE STACK

In the second approach, all parameters and results are passed in the Hardware
Stack. Here the parameters can be variables, since they are placed in RAM, not in ROM.
The programmer must implement this approach as follows:

1.

2.

Use the LEAS instruction to decrement the Hardware Stack Pointer to
leave room for results on the Hardware Stack.

Use the PSHS instruction to save all the parameters on the Hardware
Stack.

Access the parameters by means of indexed offsets from the Hardware
Stack Pointer, remembering that JSR or BSR places the return address at the
top of the Stack. The User Stack Pointer can be used to remove many
parameters at once.

Access the results by means of indexed offsets from the Hardware Stack
Pointer. Again, the User Stack Pointer can be used to store many results at
one time.

Clean up the stack after returning from the subroutine, so that the
parameters are removed and the results are handled appropriately.
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11-1b. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a string of ASCII characters. The starting address of
the string and the terminating character are placed in the Hardware Stack. The
length of the string (excluding the terminating character) is returned at the
top of the Hardware Stack. No registers are affected.

Sample Problems:

a. The subroutine call occurs with the top of the Hardware Stack containing:

oD String terminator
00 MSBs of starting address of string
43 LSBs of starting address of string
empty byte "Hole'” for length of string

(0043) 52 ‘R

(0044) 41 ‘A

(0045) 54 ‘T

(0046) 48 ‘H

(0047) 45 'E

(0048) 52 ‘R

{0049) oD CR

Result: The top of the Hardware Stack contains:

oD String terminator
00 MSBs of starting address of string
43 LSBs of starting address of string
06 Length of string (in bytes)

b. The subroutine call occurs with the top of the Hardware Stack containing:

oD String terminator
00 MSBs of starting address of string
43 LSBs of starting address of string

empty byte "Hole’’ for length of string

{0043) = OD CR
Result: The top of the Hardware Stack contains:

oD String terminator
00 MSBs of starting address of string
43 LSBs of starting address of string
00 Length of string (in bytes)

Program 11-1b:

The calling program starts the stack at memory location 00FF, leaves an empty
byte on the stack for the string length, stores the terminator and starting address on the
stack, calls the string length subroutine, removes the parameters from the stack (by
incrementing the Hardware Stack Pointer), loads the string length from the stack, and
stores the string length in memory location 0042.

0000 ORG $0000

0000 10CE 0100 LDS #5100 START STACK AT MEMORY LOCATION
b 0OFF

0004 32 7F LEAS -1,S LEAVE ROOM FOR LENGTH OF STRING

0006 86 0D LDA #S0D GET TERMINATOR

0008 8E 0043 LDX #3543 GET STARTING ADDRESS OF STRING

000B 34 12 PSHS A, X SAVE PARAMETERS IN HARDWARE

e STACK
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000D BD 0020 JSR STLEN DETERMINE STRING LENGTH
0010 32 63 LEAS 3,8 REMOVE PARAMETERS FROM STACK
0012 35 02 PULS A GET STRING LENGTH FROM STACK
0014 97 42 STA $42 SAVE STRING LENGTH
0016 3F SWI

*

*
0020 ORG $0020
0020 34 57 STLEN PSHS v,x,B,A,CC SAVE REGISTERS
0022 33 69 LEAU 9,8 ACCESS PARAMETER LIST IN STACK
0024 37 12 PULU A,X GET STRING TERMINATOR,

* STARTING ADDRESS
0026 C6 FF LDB #SFF STRING LENGTH = -1
0028 5C CHKTRM INCB ADD 1 TO STRING LENGTH
0029 Al 80 CMPA X+ IS NEXT CHARACTER A TERMINATOR?
002B 26 FB BNE CHKTRM NO, KEEP LOOKING
002D E7 c4 STB U SAVE STRING LENGTH IN STACK
002F 35 D7 PULS pC,Xx,U,B,A,CC RESTORE REGISTERS AND

bt RETURN

Subroutine Documentation:

*

*SUBROUTINE STLEN
*

*PURPOSE: STLEN DETERMINES THE LENGTH OF A STRING (NUMBER OF

* CHARACTERS PRECEDING A TERMINATOR)

*

*INITIAL CONDITIONS: TERMINATOR ON TOP OF STACK, FOLLOWED BY

* STARTING ADDRESS OF STRING AND AN EMPTY BYTE FOR THE STRING
* LENGTH

*

*FINAL CONDITIONS: STRING LENGTH ON STACK UNDER PARAMETERS
*

*REGISTERS AFFECTED: NONE

*

*SAMPLE CASE:

b INITIAL CONDITIONS: TERMINATOR = 0D, STARTING ADDRESS = 0042
b (0042) = 4D, (0043) = 41, (0044) = 4E, (0045) = 0D

* FINAL CONDITIONS: STRING LENGTH = 03

*

*TYPICAL CALL:
*

b LEAS -1,S LEAVE EMPTY BYTE FOR LENGTH OF STRING
b LDA # TERM STRING TERMINATOR

* LDX #START STARTING ADDRESS OF STRING

L PSHS A,X SAVE PARAMETERS IN STACK

L JSR STLEN DETERMINE STRING LENGTH

*

Here the idea is to leave space for the results on the stack, store the parameters on
top of that space, call the subroutine, save the registers, use the parameters to calculate
the results, save the results on the Stack, restore the registers, return to the main pro-
gram, clear the parameters from the stack by increasing the Stack Pointer, and remove
the results from the top of the stack.

LEAS —1,S leaves one location in the Stack for the length of the string. The result
IS {S)—IS) - 1 = 0100 - 1 = OOFF

The processor does not store anything in the extra stack location.

PSHS A, X stores the parameters in the Hardware Stack. The result is:

((S)—1) = (0OFE)—(XL) = 43
((S)-2) = (0OFD)—(XH) = 00
({S)-3) = (00fFC)—I(A) = OD

(8)—(S} — 3 = OOFC
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JSR STLEN transfers control to the subroutine and saves the return address
(0010) at the top of the Stack. The result is:

((S)-1) = (0OFB)—(PCL) = 10
((S)-2) = (0OOFA)—(PCH) = 00
(S)—(S) — 2 = OOFC - 2 = OOFA

PSHS U,X,B,A,CC saves all the incidental registers in the Hardware Stack. The

result is:

{(S)=1) = (OOF9)—(UL)
((S)-2) = (OOF8)—(UH)

((S)-3) = (00F7)—(XL)
((S)-4) = (O0F6)—(XH)
((S)-5) = (OOF5)—(B)
((S)-6) = (OOF4)—(A)

((S)-7) = (OOF3)—(CC)
(S)—(S) - 7 = OOFA - 7 = OOF3
LEAU 9,S loads the User Stack Pointer with the starting address of the list of

parameters.
(U)—(S) + 9 = OOF3 + 9 = OOFC

PULU A, X loads the parameters into Accumulator A (the terminating character)
and Index Register X (the starting address of the string).

(A)—((U)) = (0OOFC) = OD
(XH)—((U)+1) = (OOFD) = 00
(XL)—((U)+2) = (OOFE) = 43
(U)—(U) + 3 = OOFC + 3 = OOFF

STB ,U stores the length of the string in the ‘‘hole’’ in the stack.
((U)) = (OOFF)—(B)

PULS PC,X,U,B,A,CC restores all the incidental registers and transfers control
back to the main program.

(CC)—((S) = (OOF3)
(A)—((S)+1) = (OOF4)
(B)—((S)+2) = (OOF5)

(XH)—((S)+3) = (00F6)
(XL)—((S)+4) = (00F7)
(UH)—((S)+5) = (OOF8)
(UL)—((3)+6) = (OOF9)
(PCH)—((S)+7) = (OOFA) = 00
(PCL)—((S)+8) = (0OFB) = 10

(S)—(S)+9 = OOF3 + 9 = OOFC

Back in the main program, LEAS 3,S cleans the stack, essentially removing all the

parameters.
(S)—(S)+3 = OOFC + 3 = OOFF

Finally PULS A removes the result (the length of the string) from the Hardware
Stack.

(A)—((S)) = (OOFF)
(S)—(S)+1 = OOFF + 1 = 0100

Here again the programming is more complex and harder to understand than in
our initial simple version, but this version is also reentrant, general, has no incidental
side effects, and allows simple variation of parameters and generalization.
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11-2b. MULTIPLE-PRECISION ADDITION

Purpose: Add two multi-byte binary numbers. The starting addresses of the numbers
and the result, as well as the length of the numbers in bytes, are on the Hard-
ware Stack. The starting address of the result ends up at the top of the Hard-
ware Stack. No registers or flags are affected.

Sample Problem:

The subroutine call occurs with the top of the Hardware Stack containing:

Result:

Program 11-2b:

(0048)
(0049)
(004A)
(004B)

(0o4cC)
(004D)
(004E)
(004F)

(0050)
(0051)
(0052)
(0053)

04

00
48

00
4C

00
50

C3
A7
5B
2F

= B8
35
DF
14

7B
DD
3A
44

N’ N N

Length of strings (in bytes)

Starting address of operand 1

Starting address of operand 2

Starting address of sum

2F5BA7C3 4 is first number

14DF35B8,¢ is second number

443ADD78,¢ is sum

The Hardware Stack is unchanged.

The calling program starts the stack at memory location 00FF, stores the starting
addresses of the strings and the length in the stack, calls the multiple-precision addition
subroutine, removes the parameters from the stack (by increasing the Hardware Stack
Pointer), loads the starting address of the sum from the stack, and stores the starting
address in memory locations 0040 and 0041.

0000
0000

0004
0007

000A
000E
0010

0012

10CE 0100
CE 0050
8E 0048
108E 004C
86 04

34 72

BD 0020

ORG
LDS

LDU
LDX

LDY
LDA
PSHS

JSR

$0000
#3100

#3550
#3548

#s4cC
#4
U,Y.X,A

MPADD

START STACK AT MEMORY LOCATION
OOFF

GET STARTING ADDRESS OF RESULT

GET STARTING ADDRESSES OF
OPERANDS

GET LENGTH OF STRINGS

SAVE PARAMETERS IN HARDWARE
STACK

PERFORM MULTIPLE-PRECISION
ADDITION



0015
0017
0019
ool

0020
0020
0022
0024

0026
0028
002A
002C
002E
0030
0031
0033

32
35
9F
3F

34
37
EE
Ah
A9
A7
5A

35

65
10
40

LEAS
PULS
STX
SWI

ORG
MPADD PSHS

LEAU

PULU

LDU
ANDCC
ADBYTE LDA
ADCA
STA
DECB
BNE
PULS

Subroutine Documentation:

1.

*

*SUBROUTINE MPADD

*

*PURPOSE:

*

*INITIAL
STACK,

*
*
*

CONDITIONS:

*REGISTERS AFFECTED: NONE

*

*SAMPLE CASE:

5,8

$40

$0020

Parameter Passing Techniques 11-13

REMOVE PARAMETERS FROM STACK
GET ADDRESS OF RESULT
SAVE ADDRESS OF RESULT IN MEMORY

u,Y,Xx,B,A,CC SAVE REGISTERS

11,S
X,Y,B

U

ACCESS PARAMETER LIST IN STACK

GET LENGTH, ADDRESSES OF
OPERANDS

GET STARTING ADDRESS OF RESULT

#%11111110 CLEAR CARRY TO START

» X+
y Y+
, U+

ADBYTE
pPC,U,Y,X,B,A,CC RESTORE REGISTERS AND

GET BYTE FROM FIRST NUMBER
ADD BYTE FROM SECOND NUMBER
STORE RESULT
ALL BYTES ADDED?

NO, CONTINUE

RETURN

MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS

LENGTH OF STRINGS (IN BYTES) ON TOP OF
FOLLOWED BY STARTING ADDRESSES OF LSB'S OF OPERANDS
AND STARTING ADDRESS OF LSB'S OF SUM

* INITIAL CONDITIONS: LENGTH = 02, OPERAND ADDRESSES = 0048
* AND 004C,

* ADDRESS OF SUM = 0050

* (0048) = C3, (0049) = A7, (004C) = B8, (004D) = 35

* RESULT: (0050) = 7B, (0051) = DD (A7C3 + 35B8 = DD7B)

*

*TYPICAL CALL:

* LDX  #OPER1 STARTING ADDRESS (LSB'S) OF OPERAND 1
* LDY  #OPER?2 STARTING ADDRESS (LSB'S) OF OPERAND 2
* LDU #SUM STARTING ADDRESS (LSB'S) OF SUM

* LDA  #LENGTH LENGTH OF STRINGS (IN BYTES)

* PSHS U,Y,X,A  SAVE PARAMETERS IN HARDWARE STACK

* JSR  MPADD PERFORM MULTIPLE-PRECISION ADDITION

*

TYPES OF PARAMETERS

Regardless of our approach to passing parameters, we can specify the
parameters in a variety of ways. For example, we can:

Place the actual values in the parameter list. We can use immediate
addressing or DATA directives and retrieve the data, if necessary, by using
indexed offsets. This method is sometimes referred to as call-by-value, since
only the values of the parameters are of concern.

Place the addresses of the parameters in the parameter list. We can use
address-length registers or retrieve the data by using the indexed indirect
modes. This method is sometimes referred to as call-by-name, since we are
concerned with the locations of the parameters as well as their values.
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Input/Output

There are two problems in the design of input/output routines: one is how to
interface peripherals to the computer and transfer data, status, and control signals;
the other is how to address I/0 devices so that the CPU can select a particular one for
a data transfer. Clearly, the first problem is both more complex and more interesting.
We will therefore discuss the interfacing of peripherals here and leave addressing to a
more hardware-oriented book.

I/0 AND MEMORY

In theory, the transfer of data to or from an I/O device is similar to the transfer
of data to or from memory. In fact, we can consider the memory as just another 1/0
device. The memory is, however, special for the following reasons:

1. It operates at almost the same speed as the processor.

2. It uses the same type of signals as the CPU. The only circuits usually needed
to interface the memory to the CPU are drivers, receivers, and level transla-
tors.

3. It requires no special formats or any control signals besides a Read/Write
pulse.

4. It automatically latches data sent to it.

S. Its word length is the same as the computer’s.

Most I/0 devices do not have such convenient features. They may operate at
speeds much slower than the processor; for example, a teletypewriter can transfer only
10 characters per second, while a slow processor can transfer 10,000 characters per sec-
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ond. The range of speeds is also very wide — sensors may provide one reading per
minute, while video displays or floppy disks may transfer 250,000 bits per second.
Furthermore, 1/0 devices may require continuous signals (motors or thermometers),
currents rather than voltages (teletypewriters), or voltages at far different levels than
the signals used by the processor (gas-discharge displays). I/0O devices may also require
special formats, protocols, or control signals. Their word lengths may be much shorter
or much longer than the word length of the computer. These variations make the
design of I/0 routines difficult and mean that each peripheral presents its own
special interfacing problem.

/0 DEVICE CATEGORIES

We may, however, provide a general description of devices and interfacing
methods. We may roughly separate devices into three categories, based on their data
rates:

1. Slow devices that change state no more than once per second. Changing
their states typically requires milliseconds or longer. Such devices include
lighted displays, switches, relays, and many mechanical sensors and actua-
tors.

2. Medium-speed devices that transfer data at rates of 1 to 10,000 bits per sec-
ond. Such devices include keyboards, printers, card readers, paper tape
readers and punches, cassettes, ordinary communications lines, and many
analog data acquisition systems.

3. High-speed devices that transfer data at rates of over 10,000 bits per sec-
ond. Such devices include magnetic tapes, magnetic disks, high-speed line
printers, high-speed communications lines, and video displays.

INTERFACING SLOW DEVICES

The interfacing of slow devices is simple. Few control signals are necessary
unless the devices are multiplexed, that is, several are handled from one port, as
shownin Figures 12-1to 12-4. Inputdata from slow devices need not be latched, since it
remains stable for a long time interval. Output data must, of course, be latched. The
only problems with input are transitions that occur while the computer is reading the
data. One-shots, cross coupled latches, or software delay routines can smooth the transi-
tions.

A single port can handle several slow devices. Figure 12-1 shows a demultiplexer
that automatically directs the next output data to the next device by counting output
operations. Figure 12-2 shows a control port that provides select inputs to a demulti-
plexer. The data outputs here can come in any order, but an additional output instruc-
tion is necessary to change the state of the control port. Qutput demultiplexers are com-
monly used to drive several displays from the same output port. Figures 12-3 and 12-4
show the same alternatives for an input multiplexer.

Note the differences between input and output with slow devices.

1. Input data need not be latched since the input device holds the data for an
enormous length of time by computer standards. Output data must be latched
since the output device will not respond to data that is present for only a few
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Data Bus

Port
Selection
Logic

Output
Port

Strobe

Clock

Counter

Data
Inputs

Demultiplexer

Select
Inputs

The Counter controls where the Demultiplexer sends the data.

Data Outputs O

Data Outputs

Data Outputs 2

Data Outputs 3

Figure 12-1. An Output Demultiplexer Controlled by a Counter

Data Bus

Data
Port

Control
Port

Data
Inputs

Demultiplexer

Select
Inputs

|pata Outputs O

Data Outputs

Data Outputs 2

Data Outputs 3

The CPU sends control information to the Control Port; that port then determines where the

Demultiplexer sends the data

Figure 12-2. An Output Demultiplexer Controlled by a Port
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Data Inputs O
Data Bus Input Data
Port Outputs
Inputs
Enable
Port
Selection Multiplexer
Logic Data Inputs 2
Clock
S Select
Counter Inputs inputs 3

The Counter controls which input the Multiplexer routes to the Input Port.

Figure 12-3. An Input Multiplexer Controlled by a Counter

Data Inputs O
Input Data Data
Data Bus ———— Port Outputs
Data Inputs
Multiplexer
Inputs 2
Output Control Select
Data Bus —————— Port inputs Data Inputs 3

The control information which the CPU sends to the Control Port (with an output operation)
determines which input the Multiplexer routes to the Data Port.

Figure 12-4. An Input Multiplexer Controlled by a Port
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CPU clock cycles. Remember that the CPU is constantly using its data bus to
perform ordinary memory transfers.

2. Input transitions cause problems because of their duration; brief output
transitions cause no problems because the output devices (or the observers)
react slowly.

3. The major constraints on input are reaction time and responsiveness; the
major constraints on output are response time and observability.

INTERFACING MEDIUM-SPEED DEVICES

Medium-speed devices must be synchronized in some way to the processor
clock. The CPU cannot simply treat these devices as if they held their data forever or
could receive data at any time. Instead, the CPU must be able to determine when a
device has new input data or is ready to receive output data. It must also have a way of
telling a device that new output data is available or that the previous input data has been
accepted. Note that the peripheral may be or contain another processor.

Handshake

The standard unclocked procedure is the handshake. Here the sender indicates
the availability of data to the receiver and transfers the data; the receiver completes
the handshake by acknowledging the receipt of the data. The receiver may control the
situation by initially requesting the data or by indicating its readiness to accept data; the
sender then sends the data and completes the handshake by indicating that data is
available. In either case, the sender knows that the transfer has been completed suc-
cessfully and the receiver knows when new data is available. The handshake procedure
can operate at any speed, since the sender and receiver (not the clock) control the
sequence of events.

Figures 12-5 and 12-6 show typical input and output operations using the
handshake method. The procedure whereby the CPU checks the readiness of the pe-
ripheral before transferring data is called ‘‘polling.”” Clearly, polling can occupy a large
amount of processor time if there are many I/0 devices. There are several ways of pro-
viding the handshake signals. Among these are:

Separate dedicated I/0 lines. The processor may handle these as additional
1/0 ports or through special lines or interrupts. The 6809 microprocessor does
not have special serial 1/0 lines, but the 6820 and 6821 Peripheral Interface
Adapters (or programmable parallel interface chips) do.

Special patterns on the I/0 lines. These may be single start and stop bits or
entire characters or groups of characters. The patterns must be easy to dis-
tinguish from background noise or inactive states.

Strobe

We often call a separate 1/0 line that indicates the availability of data or the
occurrence of a transfer a ‘‘strobe.’’ A strobe may, for example, clock data into a latch
or fetch data from a buffer.
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Input
Acknowledge
Data Bus Data
CPU ks Peripheral
Section
Data Ready
a. Peripheral provides data and Data Ready signal to computer I/O section.
Input
’Acknowledge
Data Bus Data
cPU s Peripheral
Section

Data Ready

b. CPU reads Data Ready signal from I/O section ({this may be a hardware connection, eg. interrupt).

Input
Acknowledge

Data Bus . Data
Peripheral
CPU Section eriphera
Data Ready
c. CPU reads data from I/O section.
Input
Data Bus Data
1/0 .
CPU X Peripheral
Section —_—
Data Ready

d. CPU sends Input Acknowiedge signal to I/O section which then provides Input Acknowledge
signal to Peripheral {this may be a hardware connection).

Figure 12-5. An Input Handshake
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Data Bus
1/0

cPu Section

Output

Data

Ready

a. Peripheral provides Peripheral Ready signal to computer I/O section.

Data B
ata Bus /0

cPU Section

Output
Ready

Data

Peripheral

Ready

Peripheral

Peripheral

b. CPU reads Peripheral Ready signal from I/O section (this may be a hardware c