EightBit/LR35902/inc/LR35902.h
Adrian.Conlon c9bf24d1fa Tidy up register and static method access.
Signed-off-by: Adrian.Conlon <adrian.conlon@arup.com>
2017-06-19 13:53:00 +01:00

173 lines
3.5 KiB
C++

#pragma once
#include <cstdint>
#include "IntelProcessor.h"
#include "Bus.h"
#include "Signal.h"
namespace EightBit {
class LR35902 : public IntelProcessor {
public:
enum StatusBits {
ZF = Bit7,
NF = Bit6,
HC = Bit5,
CF = Bit4,
};
LR35902(Bus& memory);
Signal<LR35902> ExecutingInstruction;
void stop() { m_stopped = true; }
void start() { m_stopped = false; }
bool stopped() const { return m_stopped; }
bool& IME() { return m_ime; }
void di();
void ei();
int interrupt(uint8_t value);
int execute(uint8_t opcode);
int step();
// Mutable access to processor!!
virtual register16_t& AF() override {
m_accumulatorFlag.low &= 0xf0;
return m_accumulatorFlag;
}
virtual register16_t& BC() override {
return m_registers[BC_IDX];
}
virtual register16_t& DE() override {
return m_registers[DE_IDX];
}
virtual register16_t& HL() override {
return m_registers[HL_IDX];
}
virtual void reset();
virtual void initialise();
private:
enum { BC_IDX, DE_IDX, HL_IDX };
std::array<register16_t, 3> m_registers;
register16_t m_accumulatorFlag;
bool m_ime;
bool m_prefixCB;
bool m_stopped;
int fetchExecute() {
return execute(fetchByte());
}
uint8_t& R(int r) {
switch (r) {
case 0:
return B();
case 1:
return C();
case 2:
return D();
case 3:
return E();
case 4:
return H();
case 5:
return L();
case 6:
m_memory.ADDRESS() = HL();
return m_memory.reference();
case 7:
return A();
}
throw std::logic_error("Unhandled registry mechanism");
}
register16_t& RP(int rp) {
switch (rp) {
case 3:
return SP();
default:
return m_registers[rp];
}
}
register16_t& RP2(int rp) {
switch (rp) {
case 3:
return AF();
default:
return m_registers[rp];
}
}
static void adjustHalfCarryAdd(uint8_t& f, uint8_t before, uint8_t value, int calculation) {
setFlag(f, HC, calculateHalfCarryAdd(before, value, calculation));
}
static void adjustHalfCarrySub(uint8_t& f, uint8_t before, uint8_t value, int calculation) {
setFlag(f, HC, calculateHalfCarrySub(before, value, calculation));
}
void executeCB(int x, int y, int z, int p, int q);
void executeOther(int x, int y, int z, int p, int q);
static void adjustZero(uint8_t& f, uint8_t value);
static void postIncrement(uint8_t& f, uint8_t value);
static void postDecrement(uint8_t& f, uint8_t value);
void reti();
bool jrConditionalFlag(int flag);
bool returnConditionalFlag(int flag);
bool jumpConditionalFlag(int flag);
bool callConditionalFlag(int flag);
void sbc(register16_t& operand, register16_t value);
void adc(register16_t& operand, register16_t value);
void add(register16_t& operand, register16_t value);
void add(uint8_t& operand, uint8_t value, int carry = 0);
void adc(uint8_t& operand, uint8_t value);
void sub(uint8_t& operand, uint8_t value, int carry = 0);
void sbc(uint8_t& operand, uint8_t value);
void andr(uint8_t& operand, uint8_t value);
void xorr(uint8_t& operand, uint8_t value);
void orr(uint8_t& operand, uint8_t value);
void compare(uint8_t value);
void rlc(uint8_t& operand);
void rrc(uint8_t& operand);
void rl(uint8_t& operand);
void rr(uint8_t& operand);
void sla(uint8_t& operand);
void sra(uint8_t& operand);
void srl(uint8_t& operand);
void bit(int n, uint8_t& operand);
void res(int n, uint8_t& operand);
void set(int nit, uint8_t& operand);
void daa();
void scf();
void ccf();
void cpl();
void swap(uint8_t& operand);
};
}