EightBit/Z80/inc/Z80.h
Adrian.Conlon d8977d32d3 More MEMPTR clarifications.
This time to avoid temporary variables, in a similar manner to Z80 hardware.

Signed-off-by: Adrian.Conlon <adrian.conlon@gmail.com>
2017-06-07 22:54:55 +01:00

453 lines
10 KiB
C++

#pragma once
#include <cstdint>
#include "Processor.h"
#include "InputOutput.h"
namespace EightBit {
class Z80 : public Processor {
public:
enum StatusBits {
SF = Bit7,
ZF = Bit6,
YF = Bit5,
HC = Bit4,
XF = Bit3,
PF = Bit2,
VF = Bit2,
NF = Bit1,
CF = Bit0,
};
Z80(Memory& memory, InputOutput& ports);
Signal<Z80> ExecutingInstruction;
void disableInterrupts();
void enableInterrupts();
int interruptMaskable(uint8_t value) { return interrupt(true, value); }
int interruptMaskable() { return interruptMaskable(0); }
int interruptNonMaskable() { return interrupt(false, 0); }
int interrupt(bool maskable, uint8_t value);
int execute(uint8_t opcode);
int step();
bool getM1() const { return m1; }
// Mutable access to processor!!
register16_t& AF() {
return m_accumulatorFlags[m_accumulatorFlagsSet];
}
uint8_t& A() { return AF().high; }
uint8_t& F() { return AF().low; }
register16_t& BC() {
return m_registers[m_registerSet][BC_IDX];
}
uint8_t& B() { return BC().high; }
uint8_t& C() { return BC().low; }
register16_t& DE() {
return m_registers[m_registerSet][DE_IDX];
}
uint8_t& D() { return DE().high; }
uint8_t& E() { return DE().low; }
register16_t& HL() {
return m_registers[m_registerSet][HL_IDX];
}
uint8_t& H() { return HL().high; }
uint8_t& L() { return HL().low; }
register16_t& IX() { return m_ix; }
uint8_t& IXH() { return IX().high; }
uint8_t& IXL() { return IX().low; }
register16_t& IY() { return m_iy; }
uint8_t& IYH() { return IY().high; }
uint8_t& IYL() { return IY().low; }
uint8_t& REFRESH() { return m_refresh; }
uint8_t& IV() { return iv; }
int& IM() { return m_interruptMode; }
bool& IFF1() { return m_iff1; }
bool& IFF2() { return m_iff2; }
register16_t& MEMPTR() { return m_memptr; }
bool& M1() { return m1; }
void exx() {
m_registerSet ^= 1;
}
void exxAF() {
m_accumulatorFlagsSet = !m_accumulatorFlagsSet;
}
virtual void reset();
virtual void initialise();
private:
InputOutput& m_ports;
enum { BC_IDX, DE_IDX, HL_IDX };
std::array<std::array<register16_t, 3>, 2> m_registers;
int m_registerSet;
std::array<register16_t, 2> m_accumulatorFlags;
int m_accumulatorFlagsSet;
register16_t m_ix;
register16_t m_iy;
uint8_t m_refresh;
uint8_t iv;
int m_interruptMode;
bool m_iff1;
bool m_iff2;
register16_t m_memptr;
bool m1;
bool m_prefixCB;
bool m_prefixDD;
bool m_prefixED;
bool m_prefixFD;
int8_t m_displacement;
std::array<bool, 8> m_halfCarryTableAdd = { { false, false, true, false, true, false, true, true } };
std::array<bool, 8> m_halfCarryTableSub = { { false, true, true, true, false, false, false, true } };
void fetchWord() {
Processor::fetchWord(MEMPTR());
}
int fetchExecute() {
M1() = true;
return execute(fetchByteExecute());
}
uint8_t fetchByteExecute() {
if (!getM1())
throw std::logic_error("M1 cannot be high");
return fetchByte();
}
uint8_t fetchByteData() {
if (getM1())
throw std::logic_error("M1 cannot be low");
return fetchByte();
}
void incrementRefresh() {
auto incremented = ((REFRESH() & Mask7) + 1) & Mask7;
REFRESH() = (REFRESH() & Bit7) | incremented;
}
void clearFlag(int flag) { F() &= ~flag; }
void setFlag(int flag) { F() |= flag; }
void setFlag(int flag, int condition) { setFlag(flag, condition != 0); }
void setFlag(int flag, uint32_t condition) { setFlag(flag, condition != 0); }
void setFlag(int flag, bool condition) { condition ? setFlag(flag) : clearFlag(flag); }
void clearFlag(int flag, int condition) { clearFlag(flag, condition != 0); }
void clearFlag(int flag, uint32_t condition) { clearFlag(flag, condition != 0); }
void clearFlag(int flag, bool condition) { condition ? clearFlag(flag) : setFlag(flag); }
uint8_t& DISPLACED() {
if (!(m_prefixDD || m_prefixFD))
throw std::logic_error("Unprefixed indexed displacement requested");
m_memory.ADDRESS().word = MEMPTR().word = (m_prefixDD ? IX() : IY()).word + m_displacement;
return m_memory.reference();
}
uint8_t& R(int r) {
switch (r) {
case 0:
return B();
case 1:
return C();
case 2:
return D();
case 3:
return E();
case 4:
return ALT_HL().high;
case 5:
return ALT_HL().low;
case 6:
if (m_prefixDD || m_prefixFD) {
m_displacement = fetchByteData();
return DISPLACED();
}
m_memory.ADDRESS() = HL();
return m_memory.reference();
case 7:
return A();
}
throw std::logic_error("Unhandled registry mechanism");
}
uint8_t& R2(int r) {
switch (r) {
case 0:
return B();
case 1:
return C();
case 2:
return D();
case 3:
return E();
case 4:
return H();
case 5:
return L();
case 6:
m_memory.ADDRESS() = HL();
return m_memory.reference();
case 7:
return A();
}
throw std::logic_error("Unhandled registry mechanism");
}
register16_t& RP(int rp) {
switch (rp) {
case 3:
return sp;
case HL_IDX:
return ALT_HL();
default:
return m_registers[m_registerSet][rp];
}
}
register16_t& ALT_HL() {
if (m_prefixDD)
return IX();
else if (m_prefixFD)
return IY();
return HL();
}
register16_t& RP2(int rp) {
switch (rp) {
case 3:
return AF();
case HL_IDX:
return ALT_HL();
default:
return m_registers[m_registerSet][rp];
}
}
uint8_t getViaMemptr() {
m_memory.ADDRESS() = MEMPTR();
MEMPTR().word++;
return m_memory.reference();
}
void setViaMemptr(uint8_t value) {
m_memory.ADDRESS() = MEMPTR();
MEMPTR().word++;
m_memory.reference() = value;
MEMPTR().high = value;
}
void getWordViaMemptr(register16_t& value) {
m_memory.ADDRESS() = MEMPTR();
MEMPTR().word++;
value.low = m_memory.reference();
m_memory.ADDRESS().word++;
value.high = m_memory.reference();
}
void setWordViaMemptr(register16_t value) {
m_memory.ADDRESS() = MEMPTR();
MEMPTR().word++;
m_memory.reference() = value.low;
m_memory.ADDRESS().word++;
m_memory.reference() = value.high;
}
void addViaMemptr(register16_t& hl, register16_t operand) {
MEMPTR().word = hl.word + 1;
add(hl, operand);
}
void sbcViaMemptr(register16_t& hl, register16_t operand) {
MEMPTR().word = hl.word + 1;
sbc(hl, operand);
}
void adcViaMemptr(register16_t& hl, register16_t operand) {
MEMPTR().word = hl.word + 1;
adc(hl, operand);
}
int buildHalfCarryIndex(uint8_t before, uint8_t value, int calculation) {
return ((before & 0x88) >> 1) | ((value & 0x88) >> 2) | ((calculation & 0x88) >> 3);
}
void adjustHalfCarryAdd(uint8_t before, uint8_t value, int calculation) {
auto index = buildHalfCarryIndex(before, value, calculation);
setFlag(HC, m_halfCarryTableAdd[index & 0x7]);
}
void adjustHalfCarrySub(uint8_t before, uint8_t value, int calculation) {
auto index = buildHalfCarryIndex(before, value, calculation);
setFlag(HC, m_halfCarryTableSub[index & 0x7]);
}
void adjustOverflowAdd(uint8_t before, uint8_t value, uint8_t calculation) {
adjustOverflowAdd(before & SF, value & SF, calculation & SF);
}
void adjustOverflowAdd(int beforeNegative, int valueNegative, int afterNegative) {
auto overflow = (beforeNegative == valueNegative) && (beforeNegative != afterNegative);
setFlag(VF, overflow);
}
void adjustOverflowSub(uint8_t before, uint8_t value, uint8_t calculation) {
adjustOverflowSub(before & SF, value & SF, calculation & SF);
}
void adjustOverflowSub(int beforeNegative, int valueNegative, int afterNegative) {
auto overflow = (beforeNegative != valueNegative) && (beforeNegative != afterNegative);
setFlag(VF, overflow);
}
void executeCB(int x, int y, int z, int p, int q);
void executeED(int x, int y, int z, int p, int q);
void executeOther(int x, int y, int z, int p, int q);
void adjustSign(uint8_t value);
void adjustZero(uint8_t value);
void adjustParity(uint8_t value);
void adjustSZ(uint8_t value);
void adjustSZP(uint8_t value);
void adjustXY(uint8_t value);
void adjustSZPXY(uint8_t value);
void adjustSZXY(uint8_t value);
void postIncrement(uint8_t value);
void postDecrement(uint8_t value);
void restart(uint8_t address);
void jrConditional(int conditional);
void jrConditionalFlag(int flag);
void ret();
void retn();
void reti();
void returnConditional(int condition);
void returnConditionalFlag(int flag);
void jumpConditional(int condition);
void jumpConditionalFlag(int flag);
void call();
void callConditional(int condition);
void callConditionalFlag(int flag);
void sbc(register16_t& operand, register16_t value);
void adc(register16_t& operand, register16_t value);
void add(register16_t& operand, register16_t value);
void add(uint8_t& operand, uint8_t value, int carry = 0);
void adc(uint8_t& operand, uint8_t value);
void sub(uint8_t& operand, uint8_t value, int carry = 0);
void sbc(uint8_t& operand, uint8_t value);
void andr(uint8_t& operand, uint8_t value);
void xorr(uint8_t& operand, uint8_t value);
void orr(uint8_t& operand, uint8_t value);
void compare(uint8_t value);
void rlca();
void rrca();
void rla();
void rra();
void rlc(uint8_t& operand);
void rrc(uint8_t& operand);
void rl(uint8_t& operand);
void rr(uint8_t& operand);
void sla(uint8_t& operand);
void sra(uint8_t& operand);
void sll(uint8_t& operand);
void srl(uint8_t& operand);
void bit(int n, uint8_t& operand);
void res(int n, uint8_t& operand);
void set(int nit, uint8_t& operand);
void daa();
void scf();
void ccf();
void cpl();
void xhtl(register16_t& operand);
void xhtl();
void blockCompare();
void cpi();
void cpir();
void cpd();
void cpdr();
void blockLoad(register16_t source, register16_t destination);
void ldi();
void ldir();
void ldd();
void lddr();
void ini();
void inir();
void ind();
void indr();
void blockOut();
void outi();
void otir();
void outd();
void otdr();
void neg();
void rrd();
void rld();
void writePort() {
m_ports.write(m_memory.ADDRESS().low, m_memory.DATA());
}
void readPort() {
m_memory.placeDATA(m_ports.read(m_memory.ADDRESS().low));
}
};
}