Port of EightBit library to .Net (unworking!)

Signed-off-by: Adrian Conlon <Adrian.conlon@gmail.com>
This commit is contained in:
Adrian Conlon 2019-02-02 15:12:51 +00:00
parent d693218618
commit 9a06b1743f
53 changed files with 16224 additions and 0 deletions

65
EightBit.sln Normal file
View File

@ -0,0 +1,65 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 15
VisualStudioVersion = 15.0.28307.329
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "EightBit", "EightBit\EightBit.csproj", "{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "M6502", "M6502\M6502.csproj", "{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Test_M6502", "Test_M6502\Test_M6502.csproj", "{854EDE2F-B54D-425C-8F68-EDA68BDC797E}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Debug|x64 = Debug|x64
Debug|x86 = Debug|x86
Release|Any CPU = Release|Any CPU
Release|x64 = Release|x64
Release|x86 = Release|x86
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Debug|Any CPU.Build.0 = Debug|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Debug|x64.ActiveCfg = Debug|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Debug|x64.Build.0 = Debug|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Debug|x86.ActiveCfg = Debug|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Debug|x86.Build.0 = Debug|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Release|Any CPU.ActiveCfg = Release|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Release|Any CPU.Build.0 = Release|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Release|x64.ActiveCfg = Release|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Release|x64.Build.0 = Release|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Release|x86.ActiveCfg = Release|Any CPU
{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}.Release|x86.Build.0 = Release|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Debug|Any CPU.Build.0 = Debug|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Debug|x64.ActiveCfg = Debug|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Debug|x64.Build.0 = Debug|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Debug|x86.ActiveCfg = Debug|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Debug|x86.Build.0 = Debug|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Release|Any CPU.ActiveCfg = Release|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Release|Any CPU.Build.0 = Release|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Release|x64.ActiveCfg = Release|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Release|x64.Build.0 = Release|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Release|x86.ActiveCfg = Release|Any CPU
{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}.Release|x86.Build.0 = Release|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Debug|Any CPU.Build.0 = Debug|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Debug|x64.ActiveCfg = Debug|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Debug|x64.Build.0 = Debug|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Debug|x86.ActiveCfg = Debug|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Debug|x86.Build.0 = Debug|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Release|Any CPU.ActiveCfg = Release|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Release|Any CPU.Build.0 = Release|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Release|x64.ActiveCfg = Release|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Release|x64.Build.0 = Release|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Release|x86.ActiveCfg = Release|Any CPU
{854EDE2F-B54D-425C-8F68-EDA68BDC797E}.Release|x86.Build.0 = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
SolutionGuid = {E120AD0F-5939-4F8B-B454-7920E565FA7E}
EndGlobalSection
EndGlobal

7
EightBit/AccessLevel.cs Normal file
View File

@ -0,0 +1,7 @@
namespace EightBit
{
public enum AccessLevel
{
Unknown, ReadOnly, WriteOnly, ReadWrite
}
}

View File

@ -0,0 +1,73 @@
namespace EightBit
{
public abstract class BigEndianProcessor : Processor
{
protected BigEndianProcessor(Bus memory)
: base(memory)
{
}
public override Register16 PeekWord(Register16 address)
{
var high = Bus.Peek(address);
var low = Bus.Peek(++address);
return new Register16(low, high);
}
public override void PokeWord(Register16 address, Register16 value)
{
Bus.Poke(address, value.High);
Bus.Poke(++address, value.Low);
}
protected override Register16 FetchWord()
{
var high = FetchByte();
var low = FetchByte();
return new Register16(low, high);
}
protected override Register16 GetWord()
{
var high = BusRead();
++Bus.Address.Word;
var low = BusRead();
return new Register16(low, high);
}
protected override Register16 GetWordPaged(byte page, byte offset)
{
var high = GetBytePaged(page, offset);
++Bus.Address.Low;
var low = BusRead();
return new Register16(low, high);
}
protected override Register16 PopWord()
{
var high = Pop();
var low = Pop();
return new Register16(low, high);
}
protected override void PushWord(Register16 value)
{
Push(value.Low);
Push(value.High);
}
protected override void SetWord(Register16 value)
{
BusWrite(value.High);
++Bus.Address.Word;
BusWrite(value.Low);
}
protected override void SetWordPaged(byte page, byte offset, Register16 value)
{
SetBytePaged(page, offset, value.High);
++Bus.Address.Low;
BusWrite(value.Low);
}
}
}

26
EightBit/Bits.cs Normal file
View File

@ -0,0 +1,26 @@
using System;
namespace EightBit
{
[Flags]
public enum Bits
{
Bit0 = 1,
Bit1 = Bit0 << 1,
Bit2 = Bit1 << 1,
Bit3 = Bit2 << 1,
Bit4 = Bit3 << 1,
Bit5 = Bit4 << 1,
Bit6 = Bit5 << 1,
Bit7 = Bit6 << 1,
Bit8 = Bit7 << 1,
Bit9 = Bit8 << 1,
Bit10 = Bit9 << 1,
Bit11 = Bit10 << 1,
Bit12 = Bit11 << 1,
Bit13 = Bit12 << 1,
Bit14 = Bit13 << 1,
Bit15 = Bit14 << 1,
Bit16 = Bit15 << 1
}
}

109
EightBit/Bus.cs Normal file
View File

@ -0,0 +1,109 @@
namespace EightBit
{
using System;
abstract public class Bus : IMapper
{
private byte data;
private Register16 address = new Register16();
public event EventHandler<EventArgs> WritingByte;
public event EventHandler<EventArgs> WrittenByte;
public event EventHandler<EventArgs> ReadingByte;
public event EventHandler<EventArgs> ReadByte;
public byte Data
{
get { return data; }
set { data = value; }
}
public Register16 Address
{
get { return address; }
}
public abstract MemoryMapping Mapping(Register16 absolute);
public byte Peek() => Reference();
public byte Peek(Register16 absolute) => Reference(absolute);
public byte Peek(ushort absolute) => Peek(Chip.LowByte(absolute), Chip.HighByte(absolute));
public byte Peek(byte low, byte high) => Reference(new Register16(low, high));
public void Poke(byte value) => Reference() = value;
public void Poke(Register16 absolute, byte value) => Reference(absolute) = value;
public byte Poke(ushort absolute, byte value) => Poke(Chip.LowByte(absolute), Chip.HighByte(absolute), value);
public byte Poke(byte low, byte high, byte value) => Reference(new Register16(low, high)) = value;
public byte Read()
{
OnReadingByte();
var returned = Data = Reference();
OnReadByte();
return returned;
}
public byte Read(Register16 absolute)
{
Address.Word = absolute.Word;
return Read();
}
public void Write()
{
OnWritingByte();
Reference() = Data;
OnWrittenByte();
}
public void Write(byte value)
{
Data = value;
Write();
}
public void Write(Register16 absolute, byte value)
{
Address.Word = absolute.Word;
Write(value);
}
public virtual void RaisePOWER() {}
public virtual void LowerPOWER() {}
public abstract void Initialize();
protected virtual void OnWritingByte() => WritingByte?.Invoke(this, EventArgs.Empty);
protected virtual void OnWrittenByte() => WrittenByte?.Invoke(this, EventArgs.Empty);
protected virtual void OnReadingByte() => ReadingByte?.Invoke(this, EventArgs.Empty);
protected virtual void OnReadByte() => ReadByte?.Invoke(this, EventArgs.Empty);
protected ref byte Reference(Register16 absolute)
{
var mapped = Mapping(absolute);
var offset = (ushort)((absolute - mapped.Begin) & mapped.Mask);
if (mapped.Access == AccessLevel.ReadOnly)
{
Data = mapped.Memory.Peek(offset);
return ref data;
}
return ref mapped.Memory.Reference(offset);
}
protected ref byte Reference() => ref Reference(Address);
protected ref byte Reference(ushort absolute) => ref Reference(Chip.LowByte(absolute), Chip.HighByte(absolute));
protected ref byte Reference(byte low, byte high)
{
Address.Low = low;
Address.High = high;
return ref Reference();
}
//[[nodiscard]] static std::map<uint16_t, std::vector<uint8_t>> parseHexFile(std::string path);
//void loadHexFile(std::string path);
}
}

42
EightBit/Chip.cs Normal file
View File

@ -0,0 +1,42 @@
namespace EightBit
{
public class Chip : Device
{
protected Chip() { }
public static void ClearFlag(ref byte f, byte flag) => f &= (byte)~flag;
public static void SetFlag(ref byte f, byte flag) => f |= flag;
public static void SetFlag(ref byte f, byte flag, int condition) => SetFlag(ref f, flag, condition != 0);
public static void SetFlag(ref byte f, byte flag, bool condition)
{
if (condition)
SetFlag(ref f, flag);
else
ClearFlag(ref f, flag);
}
public static void ClearFlag(ref byte f, byte flag, int condition) => ClearFlag(ref f, flag, condition == 0);
public static void ClearFlag(ref byte f, byte flag, bool condition) => SetFlag(ref f, flag, !condition);
public static int HighByte(int value) => LowByte(value >> 8);
public static byte HighByte(ushort value) => (byte)LowByte((int)value);
public static int LowByte(int value) => value & (int)Mask.Mask8;
public static byte LowByte(ushort value) => (byte)LowByte((int)value);
public static int PromoteByte(int value) => value << 8;
public static ushort PromoteByte(byte value) => (ushort)PromoteByte((int)value);
public static int DemoteByte(int value) => HighByte(value);
public static byte DemoteByte(ushort value) => (byte)HighByte((int)value);
public static int HighNibble(byte value) => value >> 4;
public static int LowNibble(byte value) => value & 0xf;
public static int HigherNibble(byte value) => value & 0xf0;
public static int LowerNibble(byte value) => LowNibble(value);
public static int PromoteNibble(byte value) => value << 4;
public static int DemoteNibble(byte value) => HighNibble(value);
}
}

31
EightBit/ClockedChip.cs Normal file
View File

@ -0,0 +1,31 @@
namespace EightBit
{
using System;
public class ClockedChip : Chip
{
private int cycles;
protected ClockedChip() { }
public int Cycles { get => cycles; protected set => cycles = value; }
public event EventHandler<EventArgs> Ticked;
public void Tick(int extra)
{
for (int i = 0; i < extra; ++i)
Tick();
}
public void Tick()
{
++Cycles;
OnTicked();
}
protected virtual void OnTicked() => Ticked?.Invoke(this, EventArgs.Empty);
protected void ResetCycles() => Cycles = 0;
}
}

40
EightBit/Device.cs Normal file
View File

@ -0,0 +1,40 @@
namespace EightBit
{
using System;
public class Device
{
private PinLevel powerLine;
protected Device() { }
public event EventHandler<EventArgs> RaisingPOWER;
public event EventHandler<EventArgs> RaisedPOWER;
public event EventHandler<EventArgs> LoweringPOWER;
public event EventHandler<EventArgs> LoweredPOWER;
public ref PinLevel POWER() { return ref powerLine; }
public bool Powered => POWER().Raised();
public virtual void RaisePOWER()
{
OnRaisingPOWER();
POWER().Raise();
OnRaisedPOWER();
}
public virtual void LowerPOWER()
{
OnLoweringPOWER();
POWER().Lower();
OnLoweredPOWER();
}
protected virtual void OnRaisingPOWER() => RaisingPOWER?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedPOWER() => RaisedPOWER?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringPOWER() => LoweringPOWER?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredPOWER() => LoweredPOWER?.Invoke(this, EventArgs.Empty);
}
}

76
EightBit/EightBit.csproj Normal file
View File

@ -0,0 +1,76 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props" Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props')" />
<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
<ProjectGuid>{6EBF8857-62A3-4EF4-AF21-C1844031D7E4}</ProjectGuid>
<OutputType>Library</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>EightBit</RootNamespace>
<AssemblyName>EightBit</AssemblyName>
<TargetFrameworkVersion>v4.7.2</TargetFrameworkVersion>
<FileAlignment>512</FileAlignment>
<Deterministic>true</Deterministic>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
<LangVersion>latest</LangVersion>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>
<OutputPath>bin\Release\</OutputPath>
<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
</PropertyGroup>
<PropertyGroup>
<SignAssembly>true</SignAssembly>
</PropertyGroup>
<ItemGroup>
<Reference Include="System" />
<Reference Include="System.Core" />
<Reference Include="System.Xml.Linq" />
<Reference Include="System.Data.DataSetExtensions" />
<Reference Include="Microsoft.CSharp" />
<Reference Include="System.Data" />
<Reference Include="System.Net.Http" />
<Reference Include="System.Xml" />
</ItemGroup>
<ItemGroup>
<Compile Include="AccessLevel.cs" />
<Compile Include="BigEndianProcessor.cs" />
<Compile Include="Bits.cs" />
<Compile Include="Bus.cs" />
<Compile Include="Chip.cs" />
<Compile Include="ClockedChip.cs" />
<Compile Include="Device.cs" />
<Compile Include="GlobalSuppressions.cs" />
<Compile Include="IntelOpCodeDecoded.cs" />
<Compile Include="Memory.cs" />
<Compile Include="InputOutput.cs" />
<Compile Include="IntelProcessor.cs" />
<Compile Include="LittleEndianProcessor.cs" />
<Compile Include="Mapper.cs" />
<Compile Include="Mask.cs" />
<Compile Include="MemoryMapping.cs" />
<Compile Include="PinLevel.cs" />
<Compile Include="PinLevelExtensions.cs" />
<Compile Include="PortEventArgs.cs" />
<Compile Include="Processor.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<Compile Include="Ram.cs" />
<Compile Include="Register16.cs" />
<Compile Include="Rom.cs" />
<Compile Include="UnusedMemory.cs" />
</ItemGroup>
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
</Project>

Binary file not shown.

50
EightBit/InputOutput.cs Normal file
View File

@ -0,0 +1,50 @@
namespace EightBit
{
using System;
public sealed class InputOutput
{
private byte[] input;
private byte[] output;
public InputOutput()
{
input = new byte[0x100];
output = new byte[0x100];
}
public event EventHandler<PortEventArgs> ReadingPort;
public event EventHandler<PortEventArgs> ReadPort;
public event EventHandler<PortEventArgs> WritingPort;
public event EventHandler<PortEventArgs> WrittenPort;
byte Read(byte port) { return ReadInputPort(port); }
void Write(byte port, byte value) { WriteOutputPort(port, value); }
byte ReadInputPort(byte port)
{
OnReadingPort(port);
var value = input[port];
OnReadPort(port);
return value;
}
void WriteInputPort(byte port, byte value) => input[port] = value;
byte ReadOutputPort(byte port) => output[port];
void WriteOutputPort(byte port, byte value)
{
OnWritingPort(port);
output[port] = value;
OnWrittenPort(port);
}
private void OnReadingPort(byte port) => ReadingPort?.Invoke(this, new PortEventArgs(port));
private void OnReadPort(byte port) => ReadPort?.Invoke(this, new PortEventArgs(port));
private void OnWritingPort(byte port) => WritingPort?.Invoke(this, new PortEventArgs(port));
private void OnWrittenPort(byte port) => WrittenPort?.Invoke(this, new PortEventArgs(port));
}
}

View File

@ -0,0 +1,21 @@
namespace EightBit
{
class IntelOpCodeDecoded
{
public int x;
public int y;
public int z;
public int p;
public int q;
public IntelOpCodeDecoded() { }
public IntelOpCodeDecoded(byte opcode) {
x = (opcode & 0b11000000) >> 6; // 0 - 3
y = (opcode & 0b00111000) >> 3; // 0 - 7
z = (opcode & 0b00000111); // 0 - 7
p = (y & 0b110) >> 1; // 0 - 3
q = (y & 1); // 0 - 1
}
}
}

165
EightBit/IntelProcessor.cs Normal file
View File

@ -0,0 +1,165 @@
namespace EightBit
{
using System;
public abstract class IntelProcessor : LittleEndianProcessor
{
private readonly IntelOpCodeDecoded[] decodedOpCodes;
private Register16 sp;
private Register16 memptr;
private PinLevel haltLine;
protected IntelProcessor(Bus bus)
: base(bus)
{
decodedOpCodes = new IntelOpCodeDecoded[0x100];
sp = new Register16((ushort)Mask.Mask16);
memptr = new Register16();
for (int i = 0; i < 0x100; ++i)
decodedOpCodes[i] = new IntelOpCodeDecoded((byte)i);
}
public event EventHandler<EventArgs> RaisingHALT;
public event EventHandler<EventArgs> RaisedHALT;
public event EventHandler<EventArgs> LoweringHALT;
public event EventHandler<EventArgs> LoweredHALT;
public ref PinLevel HALT() { return ref haltLine; }
protected bool Halted => HALT().Lowered();
public Register16 SP { get => sp; set => sp = value; }
public Register16 MEMPTR { get => memptr; set => memptr = value; }
public abstract Register16 AF { get; set; }
public byte A { get { return AF.High; } set { AF.High = value; } }
public byte F { get { return AF.Low; } set { AF.Low = value; } }
public abstract Register16 BC { get; set; }
public byte B { get { return BC.High; } set { BC.High = value; } }
public byte C { get { return BC.Low; } set { BC.Low = value; } }
public abstract Register16 DE { get; set; }
public byte D { get { return DE.High; } set { DE.High = value; } }
public byte E { get { return DE.Low; } set { DE.Low = value; } }
public abstract Register16 HL { get; set; }
public byte H { get { return HL.High; } set { HL.High = value; } }
public byte L { get { return HL.Low; } set { HL.Low = value; } }
public override void RaisePOWER()
{
base.RaisePOWER();
RaiseHALT();
SP = AF = BC = DE = HL = new Register16((ushort)Mask.Mask16);
}
public virtual void RaiseHALT()
{
OnRaisingHALT();
HALT().Raise();
OnRaisedHALT();
}
public virtual void LowerHALT()
{
OnLoweringHALT();
HALT().Lower();
OnLoweredHALT();
}
protected virtual void OnRaisingHALT() => RaisingHALT?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedHALT() => RaisedHALT?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringHALT() => LoweringHALT?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredHALT() => LoweredHALT?.Invoke(this, EventArgs.Empty);
protected override void HandleRESET()
{
base.HandleRESET();
PC.Word = 0;
}
protected sealed override void Push(byte value) => Bus.Write(--SP, value);
protected sealed override byte Pop() => Bus.Read(SP++);
protected sealed override Register16 GetWord()
{
var returned = base.GetWord();
MEMPTR = Bus.Address;
return returned;
}
protected sealed override void SetWord(Register16 value)
{
base.SetWord(value);
MEMPTR = Bus.Address;
}
//
protected void Restart(byte address)
{
MEMPTR.Low = address;
MEMPTR.High = 0;
Call(MEMPTR);
}
protected bool CallConditional(bool condition)
{
MEMPTR = FetchWord();
if (condition)
Call(MEMPTR);
return condition;
}
protected bool JumpConditional(bool condition)
{
MEMPTR = FetchWord();
if (condition)
Jump(MEMPTR);
return condition;
}
protected bool ReturnConditional(bool condition)
{
if (condition)
Return();
return condition;
}
protected void JumpRelative(sbyte offset)
{
MEMPTR.Word = (ushort)(PC.Word + offset);
Jump(MEMPTR);
}
protected bool JumpRelativeConditional(bool condition)
{
var offset = (sbyte)FetchByte();
if (condition)
JumpRelative(offset);
return condition;
}
protected override sealed void Return()
{
base.Return();
MEMPTR = PC;
}
protected void Halt()
{
--PC;
LowerHALT();
}
protected void Proceed()
{
++PC;
RaiseHALT();
}
}
}

View File

@ -0,0 +1,83 @@
using System;
namespace EightBit
{
public abstract class LittleEndianProcessor : Processor
{
protected LittleEndianProcessor(Bus memory)
: base(memory)
{
}
public override Register16 PeekWord(Register16 address)
{
var low = Bus.Peek(address);
var high = Bus.Peek(++address);
return new Register16(low, high);
}
public override void PokeWord(Register16 address, Register16 value)
{
if (value == null)
throw new ArgumentNullException(nameof(value));
Bus.Poke(address, value.Low);
Bus.Poke(++address, value.High);
}
protected override Register16 FetchWord()
{
var low = FetchByte();
var high = FetchByte();
return new Register16(low, high);
}
protected override Register16 GetWord()
{
var low = BusRead();
++Bus.Address.Word;
var high = BusRead();
return new Register16(low, high);
}
protected override Register16 GetWordPaged(byte page, byte offset)
{
var low = GetBytePaged(page, offset);
++Bus.Address.Low;
var high = BusRead();
return new Register16(low, high);
}
protected override Register16 PopWord()
{
var low = Pop();
var high = Pop();
return new Register16(low, high);
}
protected override void PushWord(Register16 value)
{
if (value == null)
throw new ArgumentNullException(nameof(value));
Push(value.High);
Push(value.Low);
}
protected override void SetWord(Register16 value)
{
if (value == null)
throw new ArgumentNullException(nameof(value));
BusWrite(value.Low);
++Bus.Address.Word;
BusWrite(value.High);
}
protected override void SetWordPaged(byte page, byte offset, Register16 value)
{
if (value == null)
throw new ArgumentNullException(nameof(value));
SetBytePaged(page, offset, value.Low);
++Bus.Address.Low;
BusWrite(value.High);
}
}
}

7
EightBit/Mapper.cs Normal file
View File

@ -0,0 +1,7 @@
namespace EightBit
{
public interface IMapper
{
MemoryMapping Mapping(Register16 address);
}
}

25
EightBit/Mask.cs Normal file
View File

@ -0,0 +1,25 @@
using System;
namespace EightBit
{
public enum Mask
{
None = 0,
Mask1 = Bits.Bit1 - 1,
Mask2 = Bits.Bit2 - 1,
Mask3 = Bits.Bit3 - 1,
Mask4 = Bits.Bit4 - 1,
Mask5 = Bits.Bit5 - 1,
Mask6 = Bits.Bit6 - 1,
Mask7 = Bits.Bit7 - 1,
Mask8 = Bits.Bit8 - 1,
Mask9 = Bits.Bit9 - 1,
Mask10 = Bits.Bit10 - 1,
Mask11 = Bits.Bit11 - 1,
Mask12 = Bits.Bit12 - 1,
Mask13 = Bits.Bit13 - 1,
Mask14 = Bits.Bit14 - 1,
Mask15 = Bits.Bit15 - 1,
Mask16 = Bits.Bit16 - 1
}
}

26
EightBit/Memory.cs Normal file
View File

@ -0,0 +1,26 @@
namespace EightBit
{
using System;
using System.IO;
public abstract class Memory
{
public abstract int Size
{
get;
}
public abstract byte Peek(ushort address);
public virtual ref byte Reference(ushort address)
{
throw new NotImplementedException();
}
public abstract int Load(FileStream file, int writeOffset = 0, int readOffset = 0, int limit = -1);
public abstract int Load(string path, int writeOffset = 0, int readOffset = 0, int limit = -1);
public abstract int Load(byte[] from, int writeOffset = 0, int readOffset = 0, int limit = -1);
protected abstract void Poke(ushort address, byte value);
}
}

23
EightBit/MemoryMapping.cs Normal file
View File

@ -0,0 +1,23 @@
namespace EightBit
{
public class MemoryMapping
{
private Memory memory;
private ushort begin;
private ushort mask;
private AccessLevel access;
public MemoryMapping(Memory memory, ushort begin, ushort mask, AccessLevel access)
{
this.memory = memory;
this.begin = begin;
this.mask = mask;
this.access = access;
}
public Memory Memory { get => memory; set => memory = value; }
public ushort Begin { get => begin; set => begin = value; }
public ushort Mask { get => mask; set => mask = value; }
public AccessLevel Access { get => access; set => access = value; }
}
}

7
EightBit/PinLevel.cs Normal file
View File

@ -0,0 +1,7 @@
namespace EightBit
{
public enum PinLevel
{
Low, High
}
}

View File

@ -0,0 +1,13 @@
namespace EightBit
{
public static class PinLevelExtensions
{
public static bool Raised(this PinLevel line) => line == PinLevel.High;
public static bool Lowered(this PinLevel line) => line == PinLevel.Low;
public static void Raise(this ref PinLevel line) => line = PinLevel.High;
public static void Lower(this ref PinLevel line) => line = PinLevel.Low;
}
}

16
EightBit/PortEventArgs.cs Normal file
View File

@ -0,0 +1,16 @@
using System;
namespace EightBit
{
public sealed class PortEventArgs : EventArgs
{
private byte port;
public PortEventArgs(byte value)
{
port = value;
}
public byte Port { get { return port; } }
}
}

183
EightBit/Processor.cs Normal file
View File

@ -0,0 +1,183 @@
namespace EightBit
{
using System;
public abstract class Processor : ClockedChip
{
private Bus bus;
private byte opcode;
private Register16 pc;
private PinLevel resetLine;
private PinLevel intLine;
protected Processor(Bus memory)
{
bus = memory;
pc = new Register16();
}
public event EventHandler<EventArgs> RaisingRESET;
public event EventHandler<EventArgs> RaisedRESET;
public event EventHandler<EventArgs> LoweringRESET;
public event EventHandler<EventArgs> LoweredRESET;
public event EventHandler<EventArgs> RaisingINT;
public event EventHandler<EventArgs> RaisedINT;
public event EventHandler<EventArgs> LoweringINT;
public event EventHandler<EventArgs> LoweredINT;
public Register16 PC { get => pc; set => pc = value; }
protected byte OpCode { get => opcode; set => opcode = value; }
public Bus Bus { get => bus; set => bus = value; }
public ref PinLevel RESET() { return ref resetLine; }
public ref PinLevel INT() { return ref intLine; }
public abstract int Step();
public abstract int Execute();
public int Run(int limit)
{
int current = 0;
while (Powered && (current < limit))
current += Step();
return current;
}
public int Execute(byte value)
{
OpCode = value;
return Execute();
}
public abstract Register16 PeekWord(Register16 address);
public abstract void PokeWord(Register16 address, Register16 value);
public Register16 PeekWord(byte low, byte high) => PeekWord(new Register16(low, high));
public Register16 PeekWord(ushort address) => PeekWord(LowByte(address), HighByte(address));
public virtual void RaiseRESET()
{
OnRaisingRESET();
RESET().Raise();
OnRaisedRESET();
}
public virtual void LowerRESET()
{
OnLoweringRESET();
RESET().Lower();
OnLoweredRESET();
}
public virtual void RaiseINT()
{
OnRaisingINT();
INT().Raise();
OnRaisedINT();
}
public virtual void LowerINT()
{
OnLoweringINT();
INT().Lower();
OnLoweredINT();
}
protected virtual void OnRaisingRESET() => RaisingRESET?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedRESET() => RaisedRESET?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringRESET() => LoweringRESET?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredRESET() => LoweredRESET?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisingINT() => RaisingINT?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedINT() => RaisedINT?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringINT() => LoweringINT?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredINT() => LoweredINT?.Invoke(this, EventArgs.Empty);
protected virtual void HandleRESET() => RaiseRESET();
protected virtual void HandleINT() => RaiseINT();
protected void BusWrite(byte low, byte data) => BusWrite(low, 0, data);
protected void BusWrite(Register16 address, byte data) => BusWrite(address.Low, address.High, data);
protected void BusWrite(byte low, byte high, byte data)
{
Bus.Address.Low = low;
Bus.Address.High = high;
BusWrite(data);
}
protected void BusWrite(byte data)
{
Bus.Data = data;
BusWrite();
}
protected virtual void BusWrite() => Bus.Write();
protected byte BusRead(byte low) => BusRead(low, 0);
protected byte BusRead(Register16 address) => BusRead(address.Low, address.High);
protected byte BusRead(byte low, byte high)
{
Bus.Address.Low = low;
Bus.Address.High = high;
return BusRead();
}
protected virtual byte BusRead() => Bus.Read();
protected byte GetBytePaged(byte page, byte offset) => BusRead(new Register16(offset, page));
protected void SetBytePaged(byte page, byte offset, byte value) => BusWrite(new Register16(offset, page), value);
protected byte FetchByte() => BusRead(PC++);
protected abstract Register16 GetWord();
protected abstract void SetWord(Register16 value);
protected abstract Register16 GetWordPaged(byte page, byte offset);
protected abstract void SetWordPaged(byte page, byte offset, Register16 value);
protected abstract Register16 FetchWord();
protected abstract void Push(byte value);
protected abstract byte Pop();
protected abstract void PushWord(Register16 value);
protected abstract Register16 PopWord();
protected Register16 GetWord(Register16 address)
{
Bus.Address.Word = address.Word;
return GetWord();
}
protected void SetWord(Register16 address, Register16 value)
{
Bus.Address.Word = address.Word;
SetWord(value);
}
protected void Jump(Register16 destination)
{
PC = destination;
}
protected void Call(Register16 destination)
{
PushWord(PC);
Jump(destination);
}
protected virtual void Return()
{
Jump(PopWord());
}
}
}

View File

@ -0,0 +1,36 @@
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("EightBit")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("EightBit")]
[assembly: AssemblyCopyright("Copyright © 2019")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]
// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("6ebf8857-62a3-4ef4-af21-c1844031d7e4")]
// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

19
EightBit/Ram.cs Normal file
View File

@ -0,0 +1,19 @@
namespace EightBit
{
public class Ram : Rom
{
public Ram(int size = 0)
: base(size)
{
}
public override sealed ref byte Reference(ushort address) {
return ref Bytes()[address];
}
public new void Poke(ushort address, byte value)
{
base.Poke(address, value);
}
}
}

86
EightBit/Register16.cs Normal file
View File

@ -0,0 +1,86 @@
namespace EightBit
{
public sealed class Register16
{
private byte low;
private byte high;
public Register16() { }
public Register16(ushort value) => Word = value;
public Register16(byte lowValue, byte highValue)
{
Low = lowValue;
High = highValue;
}
public byte Low { get => low; set => low = value; }
public byte High { get => high; set => high = value; }
public ushort Word
{
get
{
return (ushort)(Chip.PromoteByte(high) | low);
}
set
{
high = Chip.DemoteByte(value);
low = Chip.LowByte(value);
}
}
public static implicit operator ushort(Register16 value) { return ToUInt16(value); }
public static Register16 operator ++(Register16 left) => Increment(left);
public static Register16 operator --(Register16 left) => Decrement(left);
public static bool operator ==(Register16 left, Register16 right) => Equals(left, right);
public static bool operator !=(Register16 left, Register16 right) => !(left == right);
public static Register16 operator +(Register16 left, Register16 right) => Add(left, right);
public static Register16 operator -(Register16 left, Register16 right) => Subtract(left, right);
public static ushort ToUInt16(Register16 value) { return value.Word; }
public ushort ToUInt16() { return ToUInt16(this); }
public static Register16 Increment(Register16 left)
{
++left.Word;
return left;
}
public static Register16 Decrement(Register16 left)
{
--left.Word;
return left;
}
public static Register16 Add(Register16 left, Register16 right)
{
left.Word += right.Word;
return left;
}
public static Register16 Subtract(Register16 left, Register16 right)
{
left.Word -= right.Word;
return left;
}
public override int GetHashCode() => Word;
public override bool Equals(object obj)
{
var register = obj as Register16;
return Equals(register);
}
public bool Equals(Register16 register)
{
return register != null && low == register.low && high == register.high;
}
}
}

87
EightBit/Rom.cs Normal file
View File

@ -0,0 +1,87 @@
namespace EightBit
{
using System;
using System.IO;
public class Rom : Memory
{
private byte[] bytes;
public Rom(int size) => bytes = new byte[size];
public Rom() : this(0) { }
public override int Size { get { return bytes.Length; } }
protected ref byte[] Bytes() { return ref bytes; }
static public int Load(FileStream file, ref byte[] output, int writeOffset = 0, int readOffset = 0, int limit = -1, int maximumSize = -1)
{
var size = (int)file.Length;
if ((maximumSize > 0) && ((size - readOffset) > maximumSize))
throw new InvalidOperationException("File is too large");
if ((limit < 0) || (limit > size))
limit = (int)size;
var extent = limit + writeOffset;
if (output.Length < extent)
{
var updated = new byte[extent];
Array.Copy(output, updated, output.Length);
output = updated;
}
file.Seek(readOffset, SeekOrigin.Begin);
using (var reader = new BinaryReader(file))
{
reader.Read(output, writeOffset, size);
}
return size;
}
public static int Load(string path, ref byte[] output, int writeOffset = 0, int readOffset = 0, int limit = -1, int maximumSize = -1)
{
using (var file = File.Open(path, FileMode.Open))
{
return Load(file, ref output, writeOffset, readOffset, limit, maximumSize);
}
}
public override int Load(FileStream file, int writeOffset = 0, int readOffset = 0, int limit = -1)
{
var maximumSize = Size - writeOffset;
return Load(file, ref Bytes(), writeOffset, readOffset, limit, maximumSize);
}
public override int Load(string path, int writeOffset = 0, int readOffset = 0, int limit = -1)
{
var maximumSize = Size - writeOffset;
return Load(path, ref Bytes(), writeOffset, readOffset, limit, maximumSize);
}
public override int Load(byte[] from, int writeOffset = 0, int readOffset = 0, int limit = -1)
{
if (limit < 0)
limit = Size - readOffset;
var extent = limit + writeOffset;
if (Size < extent)
{
var updated = new byte[extent];
Array.Copy(Bytes(), updated, Size);
Bytes() = updated;
}
Array.Copy(from, readOffset, Bytes(), writeOffset, limit);
return limit;
}
public override byte Peek(ushort address) => Bytes()[address];
protected override void Poke(ushort address, byte value) => Bytes()[address] = value;
}
}

25
EightBit/UnusedMemory.cs Normal file
View File

@ -0,0 +1,25 @@
namespace EightBit
{
using System.IO;
public class UnusedMemory : Memory
{
private readonly int size;
private readonly byte unchanging;
UnusedMemory(int size, byte unchanging)
{
this.size = size;
this.unchanging = unchanging;
}
public override int Size => size;
public override int Load(FileStream file, int writeOffset = 0, int readOffset = 0, int limit = -1) => throw new System.NotImplementedException();
public override int Load(string path, int writeOffset = 0, int readOffset = 0, int limit = -1) => throw new System.NotImplementedException();
public override int Load(byte[] from, int writeOffset = 0, int readOffset = 0, int limit = -1) => throw new System.NotImplementedException();
public override byte Peek(ushort address) => unchanging;
protected override void Poke(ushort address, byte value) => throw new System.NotImplementedException();
}
}

970
M6502/Disassembly.cs Normal file
View File

@ -0,0 +1,970 @@
namespace EightBit
{
using System.Text;
public class Disassembly
{
private Bus bus;
private M6502 processor;
private Symbols symbols;
private ushort address;
public Disassembly(Bus bus, M6502 processor, Symbols symbols)
{
this.bus = bus;
this.processor = processor;
this.symbols = symbols;
}
public string Disassemble(ushort current)
{
address = current;
var output = new StringBuilder();
var cell = bus.Peek(current);
output.Append(Dump_ByteValue(cell));
output.Append(" ");
var next = bus.Peek((ushort)(current + 1));
var relative = (ushort)(processor.PC.Word + 2 + (sbyte)next);
var aaa = (cell & 0b11100000) >> 5;
var bbb = (cell & 0b00011100) >> 2;
var cc = (cell & 0b00000011);
switch (cc)
{
case 0b00:
switch (aaa)
{
case 0b000:
switch (bbb)
{
case 0b000: // BRK
output.Append(Disassemble_Implied("BRK"));
break;
case 0b001: // DOP/NOP (0x04)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b010: // PHP
output.Append(Disassemble_Implied("PHP"));
break;
case 0b011: // TOP/NOP (0b00001100, 0x0c)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b100: // BPL
output.Append(Disassemble_Relative("BPL", relative));
break;
case 0b101: // DOP/NOP (0x14)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b110: // CLC
output.Append(Disassemble_Implied("CLC"));
break;
case 0b111: // TOP/NOP (0b00011100, 0x1c)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
default:
throw new System.InvalidOperationException("Illegal instruction");
}
break;
case 0b001:
switch (bbb)
{
case 0b000: // JSR
output.Append(Disassemble_Absolute("JSR"));
break;
case 0b010: // PLP
output.Append(Disassemble_Implied("PLP"));
break;
case 0b100: // BMI
output.Append(Disassemble_Relative("BMI", relative));
break;
case 0b101: // DOP/NOP (0x34)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b110: // SEC
output.Append(Disassemble_Implied("SEC"));
break;
case 0b111: // TOP/NOP (0b00111100, 0x3c)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
default: // BIT
output.Append(Disassemble_AM_00(bbb, "BIT"));
break;
}
break;
case 0b010:
switch (bbb)
{
case 0b000: // RTI
output.Append(Disassemble_Implied("RTI"));
break;
case 0b001: // DOP/NOP (0x44)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b010: // PHA
output.Append(Disassemble_Implied("PHA"));
break;
case 0b011: // JMP
output.Append(Disassemble_Absolute("JMP"));
break;
case 0b100: // BVC
output.Append(Disassemble_Relative("BVC", relative));
break;
case 0b101: // DOP/NOP (0x54)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b110: // CLI
output.Append(Disassemble_Implied("CLI"));
break;
case 0b111: // TOP/NOP (0b01011100, 0x5c)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
break;
case 0b011:
switch (bbb)
{
case 0b000: // RTS
output.Append(Disassemble_Implied("RTS"));
break;
case 0b001: // DOP/NOP (0x64)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b010: // PLA
output.Append(Disassemble_Implied("PLA"));
break;
case 0b011: // JMP (abs)
output.Append(Disassemble_Indirect("JMP"));
break;
case 0b100: // BVS
output.Append(Disassemble_Relative("BVS", relative));
break;
case 0b101: // DOP/NOP (0x74)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b110: // SEI
output.Append(Disassemble_Implied("SEI"));
break;
case 0b111: // TOP/NOP (0b01111100, 0x7c)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
break;
case 0b100:
switch (bbb)
{
case 0b000: // DOP/NOP (0x80)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b010: // DEY
output.Append(Disassemble_Implied("DEY"));
break;
case 0b100: // BCC
output.Append(Disassemble_Relative("BCC", relative));
break;
case 0b110: // TYA
output.Append(Disassemble_Implied("TYA"));
break;
default: // STY
output.Append(Disassemble_AM_00(bbb, "STY"));
break;
}
break;
case 0b101:
switch (bbb)
{
case 0b010: // TAY
output.Append(Disassemble_Implied("TAY"));
break;
case 0b100: // BCS
output.Append(Disassemble_Relative("BCS", relative));
break;
case 0b110: // CLV
output.Append(Disassemble_Implied("CLV"));
break;
default: // LDY
output.Append(Disassemble_AM_00(bbb, "LDY"));
break;
}
break;
case 0b110:
switch (bbb)
{
case 0b010: // INY
output.Append(Disassemble_Implied("INY"));
break;
case 0b100: // BNE
output.Append(Disassemble_Relative("BNE", relative));
break;
case 0b101: // DOP/NOP (0xd4)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b110: // CLD
output.Append(Disassemble_Implied("CLD"));
break;
case 0b111: // TOP/NOP (0b11011100, 0xdc)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
default: // CPY
output.Append(Disassemble_AM_00(bbb, "CPY"));
break;
}
break;
case 0b111:
switch (bbb)
{
case 0b010: // INX
output.Append(Disassemble_Implied("INX"));
break;
case 0b100: // BEQ
output.Append(Disassemble_Relative("BEQ", relative));
break;
case 0b101: // DOP/NOP (0xf4)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
case 0b110: // SED
output.Append(Disassemble_Implied("SED"));
break;
case 0b111: // TOP/NOP (0b11111100, 0xfc)
output.Append(Disassemble_AM_00(bbb, "*NOP"));
break;
default: // CPX
output.Append(Disassemble_AM_00(bbb, "CPX"));
break;
}
break;
}
break;
case 0b01:
switch (aaa)
{
case 0b000: // ORA
output.Append(Disassemble_AM_01(bbb, "ORA"));
break;
case 0b001: // AND
output.Append(Disassemble_AM_01(bbb, "AND"));
break;
case 0b010: // EOR
output.Append(Disassemble_AM_01(bbb, "EOR"));
break;
case 0b011: // ADC
output.Append(Disassemble_AM_01(bbb, "ADC"));
break;
case 0b100: // STA
output.Append(Disassemble_AM_01(bbb, "STA"));
break;
case 0b101: // LDA
output.Append(Disassemble_AM_01(bbb, "LDA"));
break;
case 0b110: // CMP
output.Append(Disassemble_AM_01(bbb, "CMP"));
break;
case 0b111: // SBC
output.Append(Disassemble_AM_01(bbb, "SBC"));
break;
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
break;
case 0b10:
switch (aaa)
{
case 0b000: // ASL
switch (bbb)
{
case 0b110: // 0x1a
output.Append(Disassemble_Implied("*NOP"));
break;
default:
output.Append(Disassemble_AM_10(bbb, "ASL"));
break;
}
break;
case 0b001: // ROL
switch (bbb)
{
case 0b110: // 0x3a
output.Append(Disassemble_Implied("*NOP"));
break;
default:
output.Append(Disassemble_AM_10(bbb, "ROL"));
break;
}
break;
case 0b010: // LSR
switch (bbb)
{
case 0b110: // 0x5a
output.Append(Disassemble_Implied("*NOP"));
break;
default:
output.Append(Disassemble_AM_10(bbb, "LSR"));
break;
}
break;
case 0b011: // ROR
switch (bbb)
{
case 0b110: // 0x7a
output.Append(Disassemble_Implied("*NOP"));
break;
default:
output.Append(Disassemble_AM_10(bbb, "ROR"));
break;
}
break;
case 0b100:
switch (bbb)
{
case 0b010: // TXA
output.Append(Disassemble_Implied("TXA"));
break;
case 0b110: // TXS
output.Append(Disassemble_Implied("TXS"));
break;
default: // STX
output.Append(Disassemble_AM_10_x(bbb, "STX"));
break;
}
break;
case 0b101:
switch (bbb)
{
case 0b010: // TAX
output.Append(Disassemble_Implied("TAX"));
break;
case 0b110: // TSX
output.Append(Disassemble_Implied("TSX"));
break;
default: // LDX
output.Append(Disassemble_AM_10_x(bbb, "LDX"));
break;
}
break;
case 0b110:
switch (bbb)
{
case 0b010: // DEX
output.Append(Disassemble_Implied("DEX"));
break;
case 0b110: // 0xda
output.Append(Disassemble_Implied("*NOP"));
break;
default: // DEC
output.Append(Disassemble_AM_10(bbb, "DEC"));
break;
}
break;
case 0b111:
switch (bbb)
{
case 0b010: // NOP
output.Append(Disassemble_Implied("NOP"));
break;
case 0b110: // 0xfa
output.Append(Disassemble_Implied("*NOP"));
break;
default: // INC
output.Append(Disassemble_AM_10(bbb, "INC"));
break;
}
break;
default:
throw new System.InvalidOperationException("Illegal instruction");
}
break;
case 0b11:
switch (aaa)
{
case 0b000:
switch (bbb)
{
case 0b010:
output.Append(Disassemble_Immediate("*AAC"));
break;
default:
output.Append(Disassemble_AM_01(bbb, "*SLO"));
break;
}
break;
case 0b001:
switch (bbb)
{
case 0b010:
output.Append(Disassemble_Immediate("*AAC"));
break;
default:
output.Append(Disassemble_AM_01(bbb, "*RLA"));
break;
}
break;
case 0b010:
output.Append(Disassemble_AM_01(bbb, "*SRE"));
break;
case 0b011:
output.Append(Disassemble_AM_01(bbb, "*RRA"));
break;
case 0b100:
output.Append(Disassemble_AM_11(bbb, "*SAX"));
break;
case 0b101:
output.Append(Disassemble_AM_11(bbb, "*LAX"));
break;
case 0b110:
output.Append(Disassemble_AM_11_x(bbb, "*DCP"));
break;
case 0b111:
switch (bbb)
{
case 0b000: // *ISB
case 0b001:
case 0b011:
case 0b100:
case 0b101:
case 0b110:
case 0b111:
output.Append(Disassemble_AM_01(bbb, "*ISB"));
break;
case 0b010:
output.Append(Disassemble_AM_11(bbb, "*SBC"));
break;
default:
throw new System.InvalidOperationException("Impossible addressing mode");
}
break;
default:
throw new System.InvalidOperationException("Illegal instruction group");
}
break;
default:
throw new System.InvalidOperationException("Impossible instruction");
}
return output.ToString();
}
public static string Dump_Flags(byte value)
{
var returned = new StringBuilder();
returned.Append((value & (byte)StatusBits.NF) != 0 ? "N" : "-");
returned.Append((value & (byte)StatusBits.VF) != 0 ? "O" : "-");
returned.Append((value & (byte)StatusBits.RF) != 0 ? "R" : "-");
returned.Append((value & (byte)StatusBits.BF) != 0 ? "B" : "-");
returned.Append((value & (byte)StatusBits.DF) != 0 ? "D" : "-");
returned.Append((value & (byte)StatusBits.IF) != 0 ? "I" : "-");
returned.Append((value & (byte)StatusBits.ZF) != 0 ? "Z" : "-");
returned.Append((value & (byte)StatusBits.CF) != 0 ? "C" : "-");
return returned.ToString();
}
public static string Dump_ByteValue(byte value)
{
return value.ToString("X2");
}
public static string Dump_WordValue(ushort value)
{
return value.ToString("X4");
}
//
private string ConvertAddress(ushort absolute)
{
if (symbols.Labels.TryGetValue(absolute, out string label))
return label;
return "$" + Dump_WordValue(absolute);
}
private string ConvertAddress(byte absolute)
{
if (symbols.Labels.TryGetValue(absolute, out string label))
return label;
return "$" + Dump_ByteValue(absolute);
}
private string ConvertConstant(ushort constant)
{
if (symbols.Constants.TryGetValue(constant, out string label))
return label;
return Dump_DByte(constant);
}
private string ConvertConstant(byte constant)
{
if (symbols.Constants.TryGetValue(constant, out string label))
return label;
return Dump_ByteValue(constant);
}
//
private byte GetByte(ushort absolute)
{
return bus.Peek(absolute);
}
private ushort GetWord(ushort absolute)
{
return processor.PeekWord(absolute);
}
//
private string Dump_Byte(ushort absolute)
{
return Dump_ByteValue(GetByte(absolute));
}
private string Dump_DByte(ushort absolute)
{
return Dump_Byte(absolute) + " " + Dump_Byte(++absolute);
}
private string Dump_Word(ushort absolute)
{
return Dump_WordValue(GetWord(absolute));
}
//
private string Disassemble_Implied(string instruction)
{
return "\t" + instruction;
}
private string Disassemble_Absolute(string instruction)
{
return AM_Absolute_dump() + "\t" + instruction + " " + AM_Absolute();
}
private string Disassemble_Indirect(string instruction)
{
return AM_Absolute_dump() + "\t" + instruction + " (" + AM_Absolute() + ")";
}
private string Disassemble_Relative(string instruction, ushort absolute)
{
return AM_Immediate_dump() + "\t" + instruction + " $" + Dump_WordValue(absolute);
}
private string Disassemble_Immediate(string instruction)
{
return AM_Immediate_dump() + "\t" + instruction + " " + AM_Immediate();
}
private string Disassemble_AM_00(int bbb, string instruction)
{
return AM_00_dump(bbb) + "\t" + instruction + " " + AM_00(bbb);
}
private string Disassemble_AM_01(int bbb, string instruction)
{
return AM_01_dump(bbb) + "\t" + instruction + " " + AM_01(bbb);
}
private string Disassemble_AM_10(int bbb, string instruction)
{
return AM_10_dump(bbb) + "\t" + instruction + " " + AM_10(bbb);
}
private string Disassemble_AM_10_x(int bbb, string instruction)
{
return AM_10_x_dump(bbb) + "\t" + instruction + " " + AM_10_x(bbb);
}
private string Disassemble_AM_11(int bbb, string instruction)
{
return AM_11_dump(bbb) + "\t" + instruction + " " + AM_11(bbb);
}
private string Disassemble_AM_11_x(int bbb, string instruction)
{
return AM_11_x_dump(bbb) + "\t" + instruction + " " + AM_11_x(bbb);
}
private string AM_Immediate_dump()
{
return Dump_Byte((ushort)(address + 1));
}
private string AM_Immediate()
{
return "#$" + AM_Immediate_dump();
}
private string AM_Absolute_dump()
{
return Dump_DByte((ushort)(address + 1));
}
private string AM_Absolute()
{
return "$" + Dump_Word((ushort)(address + 1));
}
private string AM_ZeroPage_dump()
{
return Dump_Byte((ushort)(address + 1));
}
private string AM_ZeroPage()
{
return "$" + Dump_Byte((ushort)(address + 1));
}
private string AM_ZeroPageX_dump()
{
return AM_ZeroPage_dump();
}
private string AM_ZeroPageX()
{
return AM_ZeroPage() + ",X";
}
private string AM_ZeroPageY_dump()
{
return AM_ZeroPage_dump();
}
private string AM_ZeroPageY()
{
return AM_ZeroPage() + ",Y";
}
private string AM_AbsoluteX_dump()
{
return AM_Absolute_dump();
}
private string AM_AbsoluteX()
{
return AM_Absolute() + ",X";
}
private string AM_AbsoluteY_dump()
{
return AM_Absolute_dump();
}
private string AM_AbsoluteY()
{
return AM_Absolute() + ",Y";
}
private string AM_IndexedIndirectX_dump()
{
return AM_ZeroPage_dump();
}
private string AM_IndexedIndirectX()
{
return "($" + Dump_Byte((ushort)(address + 1)) + ",X)";
}
private string AM_IndirectIndexedY_dump()
{
return AM_ZeroPage_dump();
}
private string AM_IndirectIndexedY()
{
return "($" + Dump_Byte((ushort)(address + 1)) + "),Y";
}
//
private string AM_00_dump(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_Immediate_dump();
case 0b001:
return AM_ZeroPage_dump();
case 0b011:
return AM_Absolute_dump();
case 0b101:
return AM_ZeroPageX_dump();
case 0b111:
return AM_AbsoluteX_dump();
case 0b010:
case 0b100:
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_00(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_Immediate();
case 0b001:
return AM_ZeroPage();
case 0b011:
return AM_Absolute();
case 0b101:
return AM_ZeroPageX();
case 0b111:
return AM_AbsoluteX();
case 0b010:
case 0b100:
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_01_dump(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_IndexedIndirectX_dump();
case 0b001:
return AM_ZeroPage_dump();
case 0b010:
return AM_Immediate_dump();
case 0b011:
return AM_Absolute_dump();
case 0b100:
return AM_IndirectIndexedY_dump();
case 0b101:
return AM_ZeroPageX_dump();
case 0b110:
return AM_AbsoluteY_dump();
case 0b111:
return AM_AbsoluteX_dump();
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_01(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_IndexedIndirectX();
case 0b001:
return AM_ZeroPage();
case 0b010:
return AM_Immediate();
case 0b011:
return AM_Absolute();
case 0b100:
return AM_IndirectIndexedY();
case 0b101:
return AM_ZeroPageX();
case 0b110:
return AM_AbsoluteY();
case 0b111:
return AM_AbsoluteX();
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_10_dump(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_Immediate_dump();
case 0b001:
return AM_ZeroPage_dump();
case 0b010:
return "";
case 0b011:
return AM_Absolute_dump();
case 0b101:
return AM_ZeroPageX_dump();
case 0b111:
return AM_AbsoluteX_dump();
case 0b100:
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_10(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_Immediate();
case 0b001:
return AM_ZeroPage();
case 0b010:
return "A";
case 0b011:
return AM_Absolute();
case 0b101:
return AM_ZeroPageX();
case 0b111:
return AM_AbsoluteX();
case 0b100:
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_10_x_dump(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_Immediate_dump();
case 0b001:
return AM_ZeroPage_dump();
case 0b010:
return "";
case 0b011:
return AM_Absolute_dump();
case 0b101:
return AM_ZeroPageY_dump();
case 0b111:
return AM_AbsoluteY_dump();
case 0b100:
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_10_x(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_Immediate();
case 0b001:
return AM_ZeroPage();
case 0b010:
return "A";
case 0b011:
return AM_Absolute();
case 0b101:
return AM_ZeroPageY();
case 0b111:
return AM_AbsoluteY();
case 0b100:
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_11_dump(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_IndexedIndirectX_dump();
case 0b001:
return AM_ZeroPage_dump();
case 0b010:
return AM_Immediate_dump();
case 0b011:
return AM_Absolute_dump();
case 0b100:
return AM_IndirectIndexedY_dump();
case 0b101:
return AM_ZeroPageY_dump();
case 0b111:
return AM_AbsoluteY_dump();
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_11_x_dump(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_IndexedIndirectX_dump();
case 0b001:
return AM_ZeroPage_dump();
case 0b010:
return AM_Immediate_dump();
case 0b011:
return AM_Absolute_dump();
case 0b100:
return AM_IndirectIndexedY_dump();
case 0b101:
return AM_ZeroPageX_dump();
case 0b110:
return AM_AbsoluteY_dump();
case 0b111:
return AM_AbsoluteX_dump();
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_11(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_IndexedIndirectX();
case 0b001:
return AM_ZeroPage();
case 0b010:
return AM_Immediate();
case 0b011:
return AM_Absolute();
case 0b100:
return AM_IndirectIndexedY();
case 0b101:
return AM_ZeroPageY();
case 0b111:
return AM_AbsoluteY();
case 0b110:
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
private string AM_11_x(int bbb)
{
switch (bbb)
{
case 0b000:
return AM_IndexedIndirectX();
case 0b001:
return AM_ZeroPage();
case 0b010:
return AM_Immediate();
case 0b011:
return AM_Absolute();
case 0b100:
return AM_IndirectIndexedY();
case 0b101:
return AM_ZeroPageX();
case 0b110:
return AM_AbsoluteY();
case 0b111:
return AM_AbsoluteX();
default:
throw new System.InvalidOperationException("Illegal addressing mode");
}
}
}
}

928
M6502/M6502.cs Normal file
View File

@ -0,0 +1,928 @@
namespace EightBit
{
using System;
public class M6502 : LittleEndianProcessor
{
private const byte IRQvector = 0xfe; // IRQ vector
private const byte RSTvector = 0xfc; // RST vector
private const byte NMIvector = 0xfa; // NMI vector
private byte x;
private byte y;
private byte a;
private byte s;
private byte p;
private Register16 intermediate;
private bool handlingRESET;
private bool handlingNMI;
private bool handlingINT;
private PinLevel nmiLine;
private PinLevel soLine;
private PinLevel syncLine;
private PinLevel rdyLine;
public M6502(Bus bus)
: base(bus)
{
intermediate = new Register16();
}
public event EventHandler<EventArgs> ExecutingInstruction;
public event EventHandler<EventArgs> ExecutedInstruction;
public event EventHandler<EventArgs> RaisingNMI;
public event EventHandler<EventArgs> RaisedNMI;
public event EventHandler<EventArgs> LoweringNMI;
public event EventHandler<EventArgs> LoweredNMI;
public event EventHandler<EventArgs> RaisingSO;
public event EventHandler<EventArgs> RaisedSO;
public event EventHandler<EventArgs> LoweringSO;
public event EventHandler<EventArgs> LoweredSO;
public event EventHandler<EventArgs> RaisingSYNC;
public event EventHandler<EventArgs> RaisedSYNC;
public event EventHandler<EventArgs> LoweringSYNC;
public event EventHandler<EventArgs> LoweredSYNC;
public event EventHandler<EventArgs> RaisingRDY;
public event EventHandler<EventArgs> RaisedRDY;
public event EventHandler<EventArgs> LoweringRDY;
public event EventHandler<EventArgs> LoweredRDY;
public byte X { get => x; set => x = value; }
public byte Y { get => y; set { y = value; } }
public byte A { get => a; set { a = value; } }
public byte S { get => s; set { s = value; } }
public byte P { get => p; set { p = value; } }
private int InterruptMasked => P & (byte)StatusBits.IF;
private int Decimal => P & (byte)StatusBits.DF;
private int Negative => P & (byte)StatusBits.NF;
private int Zero => P & (byte)StatusBits.ZF;
private int Overflow => P & (byte)StatusBits.VF;
private int Carry => P & (byte)StatusBits.CF;
public ref PinLevel NMI() => ref nmiLine;
public ref PinLevel SO() => ref soLine;
public ref PinLevel SYNC() => ref syncLine;
public ref PinLevel RDY() => ref rdyLine;
public virtual void RaiseNMI()
{
OnRaisingNMI();
NMI().Raise();
OnRaisedNMI();
}
public virtual void LowerNMI()
{
OnLoweringNMI();
NMI().Lower();
OnLoweredNMI();
}
public virtual void RaiseSO()
{
OnRaisingSO();
SO().Raise();
OnRaisedSO();
}
public virtual void LowerSO()
{
OnLoweringSO();
SO().Lower();
OnLoweredSO();
}
protected virtual void RaiseSYNC()
{
OnRaisingSYNC();
SYNC().Raise();
OnRaisedSYNC();
}
protected virtual void LowerSYNC()
{
OnLoweringSYNC();
SYNC().Lower();
OnLoweredSYNC();
}
public virtual void RaiseRDY()
{
OnRaisingRDY();
RDY().Raise();
OnRaisedRDY();
}
public virtual void LowerRDY()
{
OnLoweringRDY();
RDY().Lower();
OnLoweredRDY();
}
protected virtual void OnExecutingInstruction() => ExecutingInstruction?.Invoke(this, EventArgs.Empty);
protected virtual void OnExecutedInstruction() => ExecutedInstruction?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisingNMI() => RaisingNMI?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedNMI() => RaisedNMI?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringNMI() => LoweringNMI?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredNMI() => LoweredNMI?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisingSO() => RaisingSO?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedSO() => RaisedSO?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringSO() => LoweringSO?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredSO() => LoweredSO?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisingSYNC() => RaisingSYNC?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedSYNC() => RaisedSYNC?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringSYNC() => LoweringSYNC?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredSYNC() => LoweredSYNC?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisingRDY() => RaisingRDY?.Invoke(this, EventArgs.Empty);
protected virtual void OnRaisedRDY() => RaisedRDY?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweringRDY() => LoweringRDY?.Invoke(this, EventArgs.Empty);
protected virtual void OnLoweredRDY() => LoweredRDY?.Invoke(this, EventArgs.Empty);
public override int Execute()
{
RaiseSYNC(); // Instruction fetch has now completed
switch (OpCode)
{
case 0x00: FetchByte(); Interrupt(); break; // BRK (implied)
case 0x01: A = OrR(A, AM_IndexedIndirectX()); break; // ORA (indexed indirect X)
case 0x02: break;
case 0x03: SLO(AM_IndexedIndirectX()); break; // *SLO (indexed indirect X)
case 0x04: AM_ZeroPage(); break; // *NOP (zero page)
case 0x05: A = OrR(A, AM_ZeroPage()); break; // ORA (zero page)
case 0x06: BusReadModifyWrite(ASL(AM_ZeroPage())); break; // ASL (zero page)
case 0x07: SLO(AM_ZeroPage()); break; // *SLO (zero page)
case 0x08: BusRead(); PHP(); break; // PHP (implied)
case 0x09: A = OrR(A, AM_Immediate()); break; // ORA (immediate)
case 0x0a: BusRead(); A = ASL(A); break; // ASL A (implied)
case 0x0b: ANC(AM_Immediate()); break; // *ANC (immediate)
case 0x0c: AM_Absolute(); break; // *NOP (absolute)
case 0x0d: A = OrR(A, AM_Absolute()); break; // ORA (absolute)
case 0x0e: BusReadModifyWrite(ASL(AM_Absolute())); break; // ASL (absolute)
case 0x0f: SLO(AM_Absolute()); break; // *SLO (absolute)
case 0x10: Branch(Negative == 0); break; // BPL (relative)
case 0x11: A = OrR(A, AM_IndirectIndexedY()); break; // ORA (indirect indexed Y)
case 0x12: break;
case 0x13: SLO(AM_IndirectIndexedY()); break; // *SLO (indirect indexed Y)
case 0x14: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x15: A = OrR(A, AM_ZeroPageX()); break; // ORA (zero page, X)
case 0x16: BusReadModifyWrite(ASL(AM_ZeroPageX())); break; // ASL (zero page, X)
case 0x17: SLO(AM_ZeroPageX()); break; // *SLO (zero page, X)
case 0x18: BusRead(); ClearFlag(ref p, StatusBits.CF); break; // CLC (implied)
case 0x19: A = OrR(A, AM_AbsoluteY()); break; // ORA (absolute, Y)
case 0x1a: BusRead(); break; // *NOP (implied)
case 0x1b: SLO(AM_AbsoluteY()); break; // *SLO (absolute, Y)
case 0x1c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x1d: A = OrR(A, AM_AbsoluteX()); break; // ORA (absolute, X)
case 0x1e: BusReadModifyWrite(ASL(AM_AbsoluteX(PageCrossingBehavior.AlwaysReadTwice))); break; // ASL (absolute, X)
case 0x1f: SLO(AM_AbsoluteX()); break; // *SLO (absolute, X)
case 0x20: JSR(); break; // JSR (absolute)
case 0x21: A = AndR(A, AM_IndexedIndirectX()); break; // AND (indexed indirect X)
case 0x22: break;
case 0x23: RLA(AM_IndexedIndirectX()); break; // *RLA (indexed indirect X)
case 0x24: BIT(A, AM_ZeroPage()); break; // BIT (zero page)
case 0x25: A = AndR(A, AM_ZeroPage()); break; // AND (zero page)
case 0x26: BusReadModifyWrite(ROL(AM_ZeroPage())); break; // ROL (zero page)
case 0x27: RLA(AM_ZeroPage()); break; // *RLA (zero page)
case 0x28: BusRead(); GetBytePaged(1, S); PLP(); break; // PLP (implied)
case 0x29: A = AndR(A, AM_Immediate()); break; // AND (immediate)
case 0x2a: BusRead(); A = ROL(A); break; // ROL A (implied)
case 0x2b: ANC(AM_Immediate()); break; // *ANC (immediate)
case 0x2c: BIT(A, AM_Absolute()); break; // BIT (absolute)
case 0x2d: A = AndR(A, AM_Absolute()); break; // AND (absolute)
case 0x2e: BusReadModifyWrite(ROL(AM_Absolute())); break; // ROL (absolute)
case 0x2f: RLA(AM_Absolute()); break; // *RLA (absolute)
case 0x30: Branch(Negative != 0); break; // BMI (relative)
case 0x31: A = AndR(A, AM_IndirectIndexedY()); break; // AND (indirect indexed Y)
case 0x32: break;
case 0x33: RLA(AM_IndirectIndexedY()); break; // *RLA (indirect indexed Y)
case 0x34: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x35: A = AndR(A, AM_ZeroPageX()); break; // AND (zero page, X)
case 0x36: BusReadModifyWrite(ROL(AM_ZeroPageX())); break; // ROL (zero page, X)
case 0x37: RLA(AM_ZeroPageX()); break; // *RLA (zero page, X)
case 0x38: BusRead(); SetFlag(ref p, StatusBits.CF); break; // SEC (implied)
case 0x39: A = AndR(A, AM_AbsoluteY()); break; // AND (absolute, Y)
case 0x3a: BusRead(); break; // *NOP (implied)
case 0x3b: RLA(AM_AbsoluteY()); break; // *RLA (absolute, Y)
case 0x3c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x3d: A = AndR(A, AM_AbsoluteX()); break; // AND (absolute, X)
case 0x3e: BusReadModifyWrite(ROL(AM_AbsoluteX(PageCrossingBehavior.AlwaysReadTwice))); break; // ROL (absolute, X)
case 0x3f: RLA(AM_AbsoluteX()); break; // *RLA (absolute, X)
case 0x40: BusRead(); RTI(); break; // RTI (implied)
case 0x41: A = EorR(A, AM_IndexedIndirectX()); break; // EOR (indexed indirect X)
case 0x42: break;
case 0x43: SRE(AM_IndexedIndirectX()); break; // *SRE (indexed indirect X)
case 0x44: AM_ZeroPage(); break; // *NOP (zero page)
case 0x45: A = EorR(A, AM_ZeroPage()); break; // EOR (zero page)
case 0x46: BusReadModifyWrite(LSR(AM_ZeroPage())); break; // LSR (zero page)
case 0x47: SRE(AM_ZeroPage()); break; // *SRE (zero page)
case 0x48: BusRead(); Push(A); break; // PHA (implied)
case 0x49: A = EorR(A, AM_Immediate()); break; // EOR (immediate)
case 0x4a: BusRead(); A = LSR(A); break; // LSR A (implied)
case 0x4b: ASR(AM_Immediate()); break; // *ASR (immediate)
case 0x4c: Jump(Address_Absolute()); break; // JMP (absolute)
case 0x4d: A = EorR(A, AM_Absolute()); break; // EOR (absolute)
case 0x4e: BusReadModifyWrite(LSR(AM_Absolute())); break; // LSR (absolute)
case 0x4f: SRE(AM_Absolute()); break; // *SRE (absolute)
case 0x50: Branch(Overflow == 0); break; // BVC (relative)
case 0x51: A = EorR(A, AM_IndirectIndexedY()); break; // EOR (indirect indexed Y)
case 0x52: break;
case 0x53: SRE(AM_IndirectIndexedY()); break; // *SRE (indirect indexed Y)
case 0x54: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x55: A = EorR(A, AM_ZeroPageX()); break; // EOR (zero page, X)
case 0x56: BusReadModifyWrite(LSR(AM_ZeroPageX())); break; // LSR (zero page, X)
case 0x57: SRE(AM_ZeroPageX()); break; // *SRE (zero page, X)
case 0x58: BusRead(); ClearFlag(ref p, StatusBits.IF); break; // CLI (implied)
case 0x59: A = EorR(A, AM_AbsoluteY()); break; // EOR (absolute, Y)
case 0x5a: BusRead(); break; // *NOP (implied)
case 0x5b: SRE(AM_AbsoluteY()); break; // *SRE (absolute, Y)
case 0x5c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x5d: A = EorR(A, AM_AbsoluteX()); break; // EOR (absolute, X)
case 0x5e: BusReadModifyWrite(LSR(AM_AbsoluteX(PageCrossingBehavior.AlwaysReadTwice))); break; // LSR (absolute, X)
case 0x5f: SRE(AM_AbsoluteX()); break; // *SRE (absolute, X)
case 0x60: BusRead(); RTS(); break; // RTS (implied)
case 0x61: A = ADC(A, AM_IndexedIndirectX()); break; // ADC (indexed indirect X)
case 0x62: break;
case 0x63: RRA(AM_IndexedIndirectX()); break; // *RRA (indexed indirect X)
case 0x64: AM_ZeroPage(); break; // *NOP (zero page)
case 0x65: A = ADC(A, AM_ZeroPage()); break; // ADC (zero page)
case 0x66: BusReadModifyWrite(ROR(AM_ZeroPage())); break; // ROR (zero page)
case 0x67: RRA(AM_ZeroPage()); break; // *RRA (zero page)
case 0x68: BusRead(); GetBytePaged(1, S); A = Through(Pop()); break; // PLA (implied)
case 0x69: A = ADC(A, AM_Immediate()); break; // ADC (immediate)
case 0x6a: BusRead(); A = ROR(A); break; // ROR A (implied)
case 0x6b: ARR(AM_Immediate()); break; // *ARR (immediate)
case 0x6c: Jump(Address_Indirect()); break; // JMP (indirect)
case 0x6d: A = ADC(A, AM_Absolute()); break; // ADC (absolute)
case 0x6e: BusReadModifyWrite(ROR(AM_Absolute())); break; // ROR (absolute)
case 0x6f: RRA(AM_Absolute()); break; // *RRA (absolute)
case 0x70: Branch(Overflow != 0); break; // BVS (relative)
case 0x71: A = ADC(A, AM_IndirectIndexedY()); break; // ADC (indirect indexed Y)
case 0x72: break;
case 0x73: RRA(AM_IndirectIndexedY()); break; // *RRA (indirect indexed Y)
case 0x74: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0x75: A = ADC(A, AM_ZeroPageX()); break; // ADC (zero page, X)
case 0x76: BusReadModifyWrite(ROR(AM_ZeroPageX())); break; // ROR (zero page, X)
case 0x77: RRA(AM_ZeroPageX()); break; // *RRA (zero page, X)
case 0x78: BusRead(); SetFlag(ref p, StatusBits.IF); break; // SEI (implied)
case 0x79: A = ADC(A, AM_AbsoluteY()); break; // ADC (absolute, Y)
case 0x7a: BusRead(); break; // *NOP (implied)
case 0x7b: RRA(AM_AbsoluteY()); break; // *RRA (absolute, Y)
case 0x7c: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0x7d: A = ADC(A, AM_AbsoluteX()); break; // ADC (absolute, X)
case 0x7e: BusReadModifyWrite(ROR(AM_AbsoluteX(PageCrossingBehavior.AlwaysReadTwice))); break; // ROR (absolute, X)
case 0x7f: RRA(AM_AbsoluteX()); break; // *RRA (absolute, X)
case 0x80: AM_Immediate(); break; // *NOP (immediate)
case 0x81: BusWrite(Address_IndexedIndirectX(), A); break; // STA (indexed indirect X)
case 0x82: AM_Immediate(); break; // *NOP (immediate)
case 0x83: BusWrite(Address_IndexedIndirectX(), (byte)(A & X)); break; // *SAX (indexed indirect X)
case 0x84: BusWrite(Address_ZeroPage(), Y); break; // STY (zero page)
case 0x85: BusWrite(Address_ZeroPage(), A); break; // STA (zero page)
case 0x86: BusWrite(Address_ZeroPage(), X); break; // STX (zero page)
case 0x87: BusWrite(Address_ZeroPage(), (byte)(A & X)); break; // *SAX (zero page)
case 0x88: BusRead(); Y = DEC(Y); break; // DEY (implied)
case 0x89: AM_Immediate(); break; // *NOP (immediate)
case 0x8a: BusRead(); A = Through(X); break; // TXA (implied)
case 0x8b: break;
case 0x8c: BusWrite(Address_Absolute(), Y); break; // STY (absolute)
case 0x8d: BusWrite(Address_Absolute(), A); break; // STA (absolute)
case 0x8e: BusWrite(Address_Absolute(), X); break; // STX (absolute)
case 0x8f: BusWrite(Address_Absolute(), (byte)(A & X)); break; // *SAX (absolute)
case 0x90: Branch(Carry == 0); break; // BCC (relative)
case 0x91: AM_IndirectIndexedY(); BusWrite(A); break; // STA (indirect indexed Y)
case 0x92: break;
case 0x93: break;
case 0x94: BusWrite(Address_ZeroPageX(), Y); break; // STY (zero page, X)
case 0x95: BusWrite(Address_ZeroPageX(), A); break; // STA (zero page, X)
case 0x96: BusWrite(Address_ZeroPageY(), X); break; // STX (zero page, Y)
case 0x97: BusWrite(Address_ZeroPageY(), (byte)(A & X)); break; // *SAX (zero page, Y)
case 0x98: BusRead(); A = Through(Y); break; // TYA (implied)
case 0x99: STA_AbsoluteY(); break; // STA (absolute, Y)
case 0x9a: BusRead(); S = X; break; // TXS (implied)
case 0x9b: break;
case 0x9c: break;
case 0x9d: STA_AbsoluteX(); break; // STA (absolute, X)
case 0x9e: break;
case 0x9f: break;
case 0xa0: Y = Through(AM_Immediate()); break; // LDY (immediate)
case 0xa1: A = Through(AM_IndexedIndirectX()); break; // LDA (indexed indirect X)
case 0xa2: X = Through(AM_Immediate()); break; // LDX (immediate)
case 0xa3: A = X = Through(AM_IndexedIndirectX()); break; // *LAX (indexed indirect X)
case 0xa4: Y = Through(AM_ZeroPage()); break; // LDY (zero page)
case 0xa5: A = Through(AM_ZeroPage()); break; // LDA (zero page)
case 0xa6: X = Through(AM_ZeroPage()); break; // LDX (zero page)
case 0xa7: A = X = Through(AM_ZeroPage()); break; // *LAX (zero page)
case 0xa8: BusRead(); Y = Through(A); break; // TAY (implied)
case 0xa9: A = Through(AM_Immediate()); break; // LDA (immediate)
case 0xaa: BusRead(); X = Through(A); break; // TAX (implied)
case 0xab: A = X = Through(AM_Immediate()); break; // *ATX (immediate)
case 0xac: Y = Through(AM_Absolute()); break; // LDY (absolute)
case 0xad: A = Through(AM_Absolute()); break; // LDA (absolute)
case 0xae: X = Through(AM_Absolute()); break; // LDX (absolute)
case 0xaf: A = X = Through(AM_Absolute()); break; // *LAX (absolute)
case 0xb0: Branch(Carry != 0); break; // BCS (relative)
case 0xb1: A = Through(AM_IndirectIndexedY()); break; // LDA (indirect indexed Y)
case 0xb2: break;
case 0xb3: A = X = Through(AM_IndirectIndexedY()); break; // *LAX (indirect indexed Y)
case 0xb4: Y = Through(AM_ZeroPageX()); break; // LDY (zero page, X)
case 0xb5: A = Through(AM_ZeroPageX()); break; // LDA (zero page, X)
case 0xb6: X = Through(AM_ZeroPageY()); break; // LDX (zero page, Y)
case 0xb7: A = X = Through(AM_ZeroPageY()); break; // *LAX (zero page, Y)
case 0xb8: BusRead(); ClearFlag(ref p, StatusBits.VF); break; // CLV (implied)
case 0xb9: A = Through(AM_AbsoluteY()); break; // LDA (absolute, Y)
case 0xba: BusRead(); X = Through(S); break; // TSX (implied)
case 0xbb: break;
case 0xbc: Y = Through(AM_AbsoluteX()); break; // LDY (absolute, X)
case 0xbd: A = Through(AM_AbsoluteX()); break; // LDA (absolute, X)
case 0xbe: X = Through(AM_AbsoluteY()); break; // LDX (absolute, Y)
case 0xbf: A = X = Through(AM_AbsoluteY()); break; // *LAX (absolute, Y)
case 0xc0: CMP(Y, AM_Immediate()); break; // CPY (immediate)
case 0xc1: CMP(A, AM_IndexedIndirectX()); break; // CMP (indexed indirect X)
case 0xc2: AM_Immediate(); break; // *NOP (immediate)
case 0xc3: DCP(AM_IndexedIndirectX()); break; // *DCP (indexed indirect X)
case 0xc4: CMP(Y, AM_ZeroPage()); break; // CPY (zero page)
case 0xc5: CMP(A, AM_ZeroPage()); break; // CMP (zero page)
case 0xc6: BusReadModifyWrite(DEC(AM_ZeroPage())); break; // DEC (zero page)
case 0xc7: DCP(AM_ZeroPage()); break; // *DCP (zero page)
case 0xc8: BusRead(); Y = INC(Y); break; // INY (implied)
case 0xc9: CMP(A, AM_Immediate()); break; // CMP (immediate)
case 0xca: BusRead(); X = DEC(X); break; // DEX (implied)
case 0xcb: AXS(AM_Immediate()); break; // *AXS (immediate)
case 0xcc: CMP(Y, AM_Absolute()); break; // CPY (absolute)
case 0xcd: CMP(A, AM_Absolute()); break; // CMP (absolute)
case 0xce: BusReadModifyWrite(DEC(AM_Absolute())); break; // DEC (absolute)
case 0xcf: DCP(AM_Absolute()); break; // *DCP (absolute)
case 0xd0: Branch(Zero == 0); break; // BNE (relative)
case 0xd1: CMP(A, AM_IndirectIndexedY()); break; // CMP (indirect indexed Y)
case 0xd2: break;
case 0xd3: DCP(AM_IndirectIndexedY()); break; // *DCP (indirect indexed Y)
case 0xd4: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0xd5: CMP(A, AM_ZeroPageX()); break; // CMP (zero page, X)
case 0xd6: BusReadModifyWrite(DEC(AM_ZeroPageX())); break; // DEC (zero page, X)
case 0xd7: DCP(AM_ZeroPageX()); break; // *DCP (zero page, X)
case 0xd8: BusRead(); ClearFlag(ref p, StatusBits.DF); break; // CLD (implied)
case 0xd9: CMP(A, AM_AbsoluteY()); break; // CMP (absolute, Y)
case 0xda: BusRead(); break; // *NOP (implied)
case 0xdb: DCP(AM_AbsoluteY()); break; // *DCP (absolute, Y)
case 0xdc: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0xdd: CMP(A, AM_AbsoluteX()); break; // CMP (absolute, X)
case 0xde: BusReadModifyWrite(DEC(AM_AbsoluteX(PageCrossingBehavior.AlwaysReadTwice))); break; // DEC (absolute, X)
case 0xdf: DCP(AM_AbsoluteX()); break; // *DCP (absolute, X)
case 0xe0: CMP(X, AM_Immediate()); break; // CPX (immediate)
case 0xe1: A = SBC(A, AM_IndexedIndirectX()); break; // SBC (indexed indirect X)
case 0xe2: AM_Immediate(); break; // *NOP (immediate)
case 0xe3: ISB(AM_IndexedIndirectX()); break; // *ISB (indexed indirect X)
case 0xe4: CMP(X, AM_ZeroPage()); break; // CPX (zero page)
case 0xe5: A = SBC(A, AM_ZeroPage()); break; // SBC (zero page)
case 0xe6: BusReadModifyWrite(INC(AM_ZeroPage())); break; // INC (zero page)
case 0xe7: ISB(AM_ZeroPage()); break; // *ISB (zero page)
case 0xe8: BusRead(); X = INC(X); break; // INX (implied)
case 0xe9: A = SBC(A, AM_Immediate()); break; // SBC (immediate)
case 0xea: BusRead(); break; // NOP (implied)
case 0xeb: A = SBC(A, AM_Immediate()); break; // *SBC (immediate)
case 0xec: CMP(X, AM_Absolute()); break; // CPX (absolute)
case 0xed: A = SBC(A, AM_Absolute()); break; // SBC (absolute)
case 0xee: BusReadModifyWrite(INC(AM_Absolute())); break; // *ISB (absolute)
case 0xf0: Branch(Zero != 0); break; // BEQ (relative)
case 0xf1: A = SBC(A, AM_IndirectIndexedY()); break; // SBC (indirect indexed Y)
case 0xf2: break;
case 0xf3: ISB(AM_IndirectIndexedY()); break; // *ISB (indirect indexed Y)
case 0xf4: AM_ZeroPageX(); break; // *NOP (zero page, X)
case 0xf5: A = SBC(A, AM_ZeroPageX()); break; // SBC (zero page, X)
case 0xf6: BusReadModifyWrite(INC(AM_ZeroPageX())); break; // INC (zero page, X)
case 0xf7: ISB(AM_ZeroPageX()); break; // *ISB (zero page, X)
case 0xf8: BusRead(); SetFlag(ref p, StatusBits.DF); break; // SED (implied)
case 0xf9: A = SBC(A, AM_AbsoluteY()); break; // SBC (absolute, Y)
case 0xfa: BusRead(); break; // *NOP (implied)
case 0xfb: ISB(AM_AbsoluteY()); break; // *ISB (absolute, Y)
case 0xfc: AM_AbsoluteX(); break; // *NOP (absolute, X)
case 0xfd: A = SBC(A, AM_AbsoluteX()); break; // SBC (absolute, X)
case 0xfe: BusReadModifyWrite(INC(AM_AbsoluteX(PageCrossingBehavior.AlwaysReadTwice))); break; // INC (absolute, X)
case 0xff: ISB(AM_AbsoluteX()); break; // *ISB (absolute, X)
}
return Cycles;
}
public override int Step()
{
ResetCycles();
OnExecutingInstruction();
if (Powered)
{
Tick();
if (SO().Lowered())
HandleSO();
if (RDY().Raised())
{
LowerSYNC(); // Instruction fetch beginning
OpCode = Bus.Read(PC++); // can't use fetchByte
if (RESET().Lowered())
HandleRESET();
else if (NMI().Lowered())
HandleNMI();
else if (INT().Lowered() && (InterruptMasked == 0))
HandleINT();
Execute();
}
}
OnExecutedInstruction();
return Cycles;
}
protected override byte Pop() => GetBytePaged(1, ++S);
protected override void Push(byte value) => SetBytePaged(1, S--, value);
protected override sealed void HandleRESET()
{
RaiseRESET();
handlingRESET = true;
OpCode = 0x00; // BRK
}
protected override sealed void HandleINT()
{
RaiseINT();
handlingINT = true;
OpCode = 0x00; // BRK
}
private void HandleNMI()
{
RaiseNMI();
handlingNMI = true;
OpCode = 0x00; // BRK
}
private void HandleSO()
{
RaiseSO();
P |= (byte)StatusBits.VF;
}
private void Interrupt()
{
var reset = handlingRESET;
var nmi = handlingNMI;
var irq = handlingINT;
var hardware = nmi || irq || reset;
var software = !hardware;
if (reset)
{
DummyPush(PC.High);
DummyPush(PC.Low);
DummyPush(P);
}
else
{
PushWord(PC);
Push((byte)(P | (int)(software ? StatusBits.BF : 0)));
}
SetFlag(ref p, StatusBits.IF); // Disable IRQ
var vector = reset ? RSTvector : (nmi ? NMIvector : IRQvector);
Jump(GetWordPaged(0xff, vector));
handlingRESET = handlingNMI = handlingINT = false;
}
private void DummyPush(byte value)
{
Tick();
Bus.Data = value;
Bus.Address.Low = S--;
Bus.Address.High = 1;
}
// Addressing modes
private Register16 Address_Absolute() => FetchWord();
private byte Address_ZeroPage() => FetchByte();
private Register16 Address_ZeroPageIndirect() => GetWordPaged(0, Address_ZeroPage());
private Register16 Address_Indirect()
{
var address = Address_Absolute();
return GetWordPaged(address.High, address.Low);
}
private byte Address_ZeroPageX()
{
var address = Address_ZeroPage();
BusRead(address);
return (byte)LowByte(address + X);
}
private byte Address_ZeroPageY()
{
var address = Address_ZeroPage();
BusRead(address);
return (byte)LowByte(address + Y);
}
private Tuple<Register16, byte> Address_AbsoluteX()
{
var address = Address_Absolute();
var page = address.High;
address.Word += X;
return new Tuple<Register16, byte>(address, page);
}
private Tuple<Register16, byte> Address_AbsoluteY()
{
var address = Address_Absolute();
var page = address.High;
address.Word += Y;
return new Tuple<Register16, byte>(address, page);
}
private Register16 Address_IndexedIndirectX() => GetWordPaged(0, Address_ZeroPageX());
private Tuple<Register16, byte> Address_IndirectIndexedY()
{
var address = Address_ZeroPageIndirect();
var page = address.High;
address.Word += Y;
return new Tuple<Register16, byte>(address, page);
}
private Register16 Address_relative_byte()
{
intermediate.Word = (ushort)(PC + (byte)FetchByte());
return intermediate;
}
//
private byte AM_Immediate() => FetchByte();
private byte AM_Absolute() => BusRead(Address_Absolute());
private byte AM_ZeroPage() => BusRead(Address_ZeroPage());
private byte AM_AbsoluteX(PageCrossingBehavior behaviour = PageCrossingBehavior.MaybeReadTwice)
{
var crossed = Address_AbsoluteX();
var address = crossed.Item1;
var page = crossed.Item2;
var possible = GetBytePaged(page, address.Low);
if ((behaviour == PageCrossingBehavior.AlwaysReadTwice) || (page != address.High))
possible = BusRead(address);
return possible;
}
private byte AM_AbsoluteY()
{
var crossed = Address_AbsoluteY();
var address = crossed.Item1;
var page = crossed.Item2;
var possible = GetBytePaged(page, address.Low);
if (page != address.High)
possible = BusRead(address);
return possible;
}
private byte AM_ZeroPageX() => BusRead(Address_ZeroPageX());
private byte AM_ZeroPageY() => BusRead(Address_ZeroPageY());
private byte AM_IndexedIndirectX() => BusRead(Address_IndexedIndirectX());
private byte AM_IndirectIndexedY()
{
var crossed = Address_IndirectIndexedY();
var address = crossed.Item1;
var page = crossed.Item2;
var possible = GetBytePaged(page, address.Low);
if (page != address.High)
possible = BusRead(address);
return possible;
}
// Flag adjustment
public static void SetFlag(ref byte f, StatusBits flag) => SetFlag(ref f, (byte)flag);
private static void SetFlag(ref byte f, StatusBits flag, int condition) => SetFlag(ref f, (byte)flag, condition);
private static void SetFlag(ref byte f, StatusBits flag, bool condition) => SetFlag(ref f, (byte)flag, condition);
public static void ClearFlag(ref byte f, StatusBits flag) => ClearFlag(ref f, (byte)flag);
private static void ClearFlag(ref byte f, StatusBits flag, int condition) => ClearFlag(ref f, (byte)flag, condition);
private static void ClearFlag(ref byte f, StatusBits flag, bool condition) => ClearFlag(ref f, (byte)flag, condition);
private void AdjustZero(byte datum) => ClearFlag(ref p, StatusBits.ZF, datum);
private void AdjustNegative(byte datum) => SetFlag(ref p, StatusBits.NF, datum & (byte)StatusBits.NF);
private void AdjustNZ(byte datum)
{
AdjustZero(datum);
AdjustNegative(datum);
}
// Miscellaneous
private void Branch(bool condition)
{
var destination = Address_relative_byte();
if (condition) {
BusRead();
var page = PC.High;
Jump(destination);
if (PC.High != page)
BusRead(PC.Low, page);
}
}
private byte Through(int data) => Through((byte)data);
private byte Through(byte data)
{
AdjustNZ(data);
return data;
}
private void BusReadModifyWrite(byte data)
{
// The read will have already taken place...
BusWrite();
BusWrite(data);
}
//
private byte SBC(byte operand, byte data)
{
var returned = SUB(operand, data, ~P & (int)StatusBits.CF);
var difference = intermediate;
AdjustNZ(difference.Low);
SetFlag(ref p, StatusBits.VF, (operand ^ data) & (operand ^ difference.Low) & (int)StatusBits.NF);
ClearFlag(ref p, StatusBits.CF, difference.High);
return returned;
}
private byte SUB(byte operand, byte data, int borrow = 0)
{
return Decimal != 0 ? SUB_d(operand, data, borrow) : SUB_b(operand, data, borrow);
}
private byte SUB_b(byte operand, byte data, int borrow)
{
intermediate.Word = (ushort)(operand - data - borrow);
return intermediate.Low;
}
private byte SUB_d(byte operand, byte data, int borrow)
{
intermediate.Word = (ushort)(operand - data - borrow);
byte low = (byte)(LowNibble(operand) - LowNibble(data) - borrow);
var lowNegative = low & (byte)StatusBits.NF;
if (lowNegative != 0)
low -= 6;
byte high = (byte)(HighNibble(operand) - HighNibble(data) - (lowNegative >> 7));
var highNegative = high & (byte)StatusBits.NF;
if (highNegative != 0)
high -= 6;
return (byte)(PromoteNibble(high) | LowNibble(low));
}
private byte ADC(byte operand, byte data)
{
var returned = ADD(operand, data, Carry);
AdjustNZ(intermediate.Low);
return returned;
}
private byte ADD(byte operand, byte data, int carry = 0)
{
return Decimal != 0 ? ADD_d(operand, data, carry) : ADD_b(operand, data, carry);
}
private byte ADD_b(byte operand, byte data, int carry)
{
intermediate.Word = (ushort)(operand + data + carry);
SetFlag(ref p, StatusBits.VF, ~(operand ^ data) & (operand ^ intermediate.Low) & (int)StatusBits.NF);
SetFlag(ref p, StatusBits.CF, intermediate.High & (int)StatusBits.CF);
return intermediate.Low;
}
private byte ADD_d(byte operand, byte data, int carry)
{
intermediate.Word = (ushort)(operand + data + carry);
byte low = (byte)(LowNibble(operand) + LowNibble(data) + carry);
if (low > 9)
low += 6;
byte high = (byte)(HighNibble(operand) + HighNibble(data) + (low > 0xf ? 1 : 0));
SetFlag(ref p, StatusBits.VF, ~(operand ^ data) & (operand ^ PromoteNibble(high)) & (int)StatusBits.NF);
if (high > 9)
high += 6;
SetFlag(ref p, StatusBits.CF, high > 0xf);
return (byte)(PromoteNibble(high) | LowNibble(low));
}
private byte AndR(byte operand, byte data) => Through(operand & data);
private byte ASL(byte value)
{
SetFlag(ref p, StatusBits.CF, value & (byte)Bits.Bit7);
return Through(value << 1);
}
private void BIT(byte operand, byte data)
{
SetFlag(ref p, StatusBits.VF, data & (byte)StatusBits.VF);
AdjustZero((byte)(operand & data));
AdjustNegative(data);
}
private void CMP(byte first, byte second)
{
intermediate.Word = (ushort)(first - second);
AdjustNZ(intermediate.Low);
ClearFlag(ref p, StatusBits.CF, intermediate.High);
}
private byte DEC(byte value) => Through(value - 1);
byte EorR(byte operand, byte data) => Through(operand ^ data);
private byte INC(byte value) => Through(value + 1);
private void JSR()
{
var low = FetchByte();
GetBytePaged(1, S); // dummy read
PushWord(PC);
PC.High = FetchByte();
PC.Low = low;
}
private byte LSR(byte value)
{
SetFlag(ref p, StatusBits.CF, value & (byte)Bits.Bit0);
return Through(value >> 1);
}
private byte OrR(byte operand, byte data) => Through(operand | data);
private void PHP() => Push((byte)(P | (byte)StatusBits.BF));
private void PLP() => P = (byte)((Pop() | (byte)StatusBits.RF) & (byte)~StatusBits.BF);
private byte ROL(byte operand)
{
var carryIn = Carry;
SetFlag(ref p, StatusBits.CF, operand & (byte)Bits.Bit7);
var result = (operand << 1) | carryIn;
return Through(result);
}
private byte ROR(byte operand)
{
var carryIn = Carry;
SetFlag(ref p, StatusBits.CF, operand & (byte)Bits.Bit0);
var result = (operand >> 1) | (carryIn << 7);
return Through(result);
}
private void RTI()
{
GetBytePaged(1, S); // dummy read
PLP();
Return();
}
private void RTS()
{
GetBytePaged(1, S); // dummy read
Return();
FetchByte();
}
// Undocumented compound instructions
private void ANC(byte value)
{
A = AndR(A, value);
SetFlag(ref p, StatusBits.CF, A & (byte)Bits.Bit7);
}
private void ARR(byte value)
{
A = AndR(A, value);
A = ROR(A);
SetFlag(ref p, StatusBits.CF, A & (byte)Bits.Bit6);
SetFlag(ref p, StatusBits.VF, ((A & (byte)Bits.Bit6) >> 6) ^ ((A & (byte)Bits.Bit5) >> 5));
}
private void ASR(byte value)
{
A = AndR(A, value);
A = LSR(A);
}
private void AXS(byte value)
{
X = Through(SUB((byte)(A & X), value));
ClearFlag(ref p, StatusBits.CF, intermediate.High);
}
private void DCP(byte value)
{
BusReadModifyWrite(DEC(value));
CMP(A, Bus.Data);
}
private void ISB(byte value)
{
BusReadModifyWrite(INC(value));
A = SBC(A, Bus.Data);
}
private void RLA(byte value)
{
BusReadModifyWrite(ROL(value));
A = AndR(A, Bus.Data);
}
private void RRA(byte value)
{
BusReadModifyWrite(ROR(value));
A = ADC(A, Bus.Data);
}
private void SLO(byte value)
{
BusReadModifyWrite(ASL(value));
A = OrR(A, Bus.Data);
}
private void SRE(byte value)
{
BusReadModifyWrite(LSR(value));
A = EorR(A, Bus.Data);
}
//
private void STA_AbsoluteX()
{
var crossed = Address_AbsoluteX();
var address = crossed.Item1;
var page = crossed.Item2;
GetBytePaged(page, address.Low);
BusWrite(address, A);
}
private void STA_AbsoluteY()
{
var crossed = Address_AbsoluteY();
var address = crossed.Item1;
var page = crossed.Item2;
GetBytePaged(page, address.Low);
BusWrite(address, A);
}
}
}

60
M6502/M6502.csproj Normal file
View File

@ -0,0 +1,60 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props" Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props')" />
<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
<ProjectGuid>{3AF29A4F-4294-4A9D-AAC3-D9A48076BD19}</ProjectGuid>
<OutputType>Library</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>EightBit</RootNamespace>
<AssemblyName>M6502</AssemblyName>
<TargetFrameworkVersion>v4.7.2</TargetFrameworkVersion>
<FileAlignment>512</FileAlignment>
<Deterministic>true</Deterministic>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
<LangVersion>latest</LangVersion>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>
<OutputPath>bin\Release\</OutputPath>
<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
</PropertyGroup>
<ItemGroup>
<Reference Include="System" />
<Reference Include="System.Core" />
<Reference Include="System.Xml.Linq" />
<Reference Include="System.Data.DataSetExtensions" />
<Reference Include="Microsoft.CSharp" />
<Reference Include="System.Data" />
<Reference Include="System.Net.Http" />
<Reference Include="System.Xml" />
</ItemGroup>
<ItemGroup>
<Compile Include="Disassembly.cs" />
<Compile Include="M6502.cs" />
<Compile Include="PageCrossingBehavior.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<Compile Include="StatusBits.cs" />
<Compile Include="Symbols.cs" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\EightBit\EightBit.csproj">
<Project>{6ebf8857-62a3-4ef4-af21-c1844031d7e4}</Project>
<Name>EightBit</Name>
</ProjectReference>
</ItemGroup>
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
</Project>

View File

@ -0,0 +1,7 @@
namespace EightBit
{
public enum PageCrossingBehavior
{
AlwaysReadTwice, MaybeReadTwice
}
}

View File

@ -0,0 +1,36 @@
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("M6502")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("M6502")]
[assembly: AssemblyCopyright("Copyright © 2019")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]
// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("3af29a4f-4294-4a9d-aac3-d9a48076bd19")]
// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

32
M6502/StatusBits.cs Normal file
View File

@ -0,0 +1,32 @@
namespace EightBit
{
using System;
[Flags]
public enum StatusBits : byte
{
// Negative
NF = Bits.Bit7,
// Overflow
VF = Bits.Bit6,
// reserved
RF = Bits.Bit5,
// Brk
BF = Bits.Bit4,
// D (use BCD for arithmetic)
DF = Bits.Bit3,
// I (IRQ disable)
IF = Bits.Bit2,
// Zero
ZF = Bits.Bit1,
// Carry
CF = Bits.Bit0,
}
}

107
M6502/Symbols.cs Normal file
View File

@ -0,0 +1,107 @@
namespace EightBit
{
using System;
using System.Collections.Generic;
using System.IO;
public class Symbols
{
private readonly Dictionary<ushort, string> labels;
private readonly Dictionary<ushort, string> constants;
private readonly Dictionary<string, ushort> scopes;
private readonly Dictionary<string, ushort> addresses;
private readonly Dictionary<string, Dictionary<string, Dictionary<string, string>>> parsed;
public Symbols() : this("") { }
public Symbols(string path)
{
labels = new Dictionary<ushort, string>();
constants = new Dictionary<ushort, string>();
scopes = new Dictionary<string, ushort>();
addresses = new Dictionary<string, ushort>();
parsed = new Dictionary<string, Dictionary<string, Dictionary<string, string>>>();
if (path.Length > 0)
{
Parse(path);
AssignSymbols();
AssignScopes();
}
}
public Dictionary<ushort, string> Labels => labels;
public Dictionary<ushort, string> Constants => constants;
public Dictionary<string, ushort> Scopes => scopes;
public Dictionary<string, ushort> Addresses => addresses;
private void AssignScopes()
{
var parsedScopes = parsed["scope"];
foreach (var parsedScopeElement in parsedScopes)
{
var parsedScope = parsedScopeElement.Value;
var name = parsedScope["name"];
var trimmedName = name.Substring(1, name.Length - 2);
var size = parsedScope["size"];
scopes[trimmedName] = ushort.Parse(size);
}
}
private void AssignSymbols()
{
var symbols = parsed["sym"];
foreach (var symbolElement in symbols)
{
var symbol = symbolElement.Value;
var name = symbol["name"];
var trimmedName = name.Substring(1, name.Length - 2);
var value = symbol["val"].Substring(2);
var number = Convert.ToUInt16(value, 16);
var symbolType = symbol["type"];
if (symbolType == "lab")
{
labels[number] = trimmedName;
addresses[trimmedName] = number;
}
else if (symbolType == "equ")
{
constants[number] = trimmedName;
}
}
}
private void Parse(string path)
{
using (var reader = new StreamReader(path))
{
while (!reader.EndOfStream)
{
var line = reader.ReadLine();
var lineElements = line.Split(' ', '\t');
if (lineElements.Length == 2)
{
var type = lineElements[0];
var dataElements = lineElements[1].Split(',');
var data = new Dictionary<string, string>();
foreach (var dataElement in dataElements)
{
var definition = dataElement.Split('=');
if (definition.Length == 2)
data[definition[0]] = definition[1];
}
if (data.ContainsKey("id"))
{
if (!parsed.ContainsKey(type))
parsed[type] = new Dictionary<string, Dictionary<string, string>>();
var id = data["id"];
data.Remove("id");
parsed[type][id] = data;
}
}
}
}
}
}
}

6
Test_M6502/App.config Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.7.2" />
</startup>
</configuration>

123
Test_M6502/Board.cs Normal file
View File

@ -0,0 +1,123 @@
namespace Test
{
using EightBit;
using System.Text;
internal class Board : Bus
{
private readonly Configuration configuration;
private readonly Ram ram;
private readonly M6502 cpu;
private readonly Symbols symbols;
private readonly Disassembly disassembler;
private Register16 oldPC;
private bool stopped;
public Board(Configuration configuration)
{
this.configuration = configuration;
this.ram = new Ram(0x10000);
this.cpu = new M6502(this);
this.symbols = new Symbols();
this.disassembler = new Disassembly(this, this.cpu, this.symbols);
this.oldPC = new Register16((ushort)Mask.Mask16);
this.stopped = false;
}
public M6502 CPU { get { return this.cpu; } }
public override void RaisePOWER()
{
base.RaisePOWER();
CPU.RaisePOWER();
CPU.RaiseRESET();
CPU.RaiseINT();
CPU.RaiseNMI();
CPU.RaiseSO();
CPU.RaiseRDY();
}
public override void LowerPOWER()
{
CPU.LowerPOWER();
base.LowerPOWER();
}
public override void Initialize()
{
var programFilename = configuration.Program;
var programPath = configuration.RomDirectory + "/" + configuration.Program;
var loadAddress = configuration.LoadAddress;
ram.Load(programPath, loadAddress.Word);
if (configuration.DebugMode)
CPU.ExecutingInstruction += CPU_ExecutingInstruction;
CPU.ExecutedInstruction += CPU_ExecutedInstruction;
Poke(0x00, 0x4c);
Poke(0x01, configuration.StartAddress.Low);
Poke(0x02, configuration.StartAddress.High);
}
private void CPU_ExecutedInstruction(object sender, System.EventArgs e)
{
var pc = CPU.PC;
if (oldPC != pc)
{
oldPC = pc;
}
else
{
LowerPOWER();
var test = Peek(0x0200);
System.Console.Out.WriteLine();
System.Console.Out.Write("** Test=");
System.Console.Out.WriteLine(Disassembly.Dump_ByteValue(test));
}
}
private void CPU_ExecutingInstruction(object sender, System.EventArgs e)
{
var address = CPU.PC;
var cell = Peek(address);
var output = new StringBuilder();
output.Append("PC=");
output.Append(Disassembly.Dump_WordValue(address));
output.Append(":");
output.Append("P=");
output.Append(Disassembly.Dump_Flags(CPU.P));
output.Append(", ");
output.Append("A=");
output.Append(Disassembly.Dump_ByteValue(CPU.A));
output.Append(", ");
output.Append("X=");
output.Append(Disassembly.Dump_ByteValue(CPU.X));
output.Append(", ");
output.Append("Y=");
output.Append(Disassembly.Dump_ByteValue(CPU.Y));
output.Append(", ");
output.Append("S=");
output.Append(Disassembly.Dump_ByteValue(CPU.S));
output.Append("\t");
output.Append(disassembler.Disassemble(address.Word));
System.Console.Out.WriteLine(output.ToString());
}
public override MemoryMapping Mapping(Register16 absolute)
{
return new MemoryMapping(ram, 0x0000, (ushort)Mask.Mask16, AccessLevel.ReadWrite);
}
}
}

View File

@ -0,0 +1,26 @@
namespace Test
{
using EightBit;
internal class Configuration
{
private bool debugMode = false;
private readonly Register16 loadAddress = new Register16(0x400);
private readonly Register16 startAddress = new Register16(0x400);
private readonly string romDirectory = "roms";
private readonly string program = "6502_functional_test.bin";
public Configuration() {}
public bool DebugMode {
get { return debugMode; }
set { debugMode = value; }
}
public Register16 LoadAddress { get { return loadAddress; } }
public Register16 StartAddress { get { return startAddress; } }
public string RomDirectory { get { return romDirectory; } }
public string Program { get { return program; } }
}
}

15
Test_M6502/Program.cs Normal file
View File

@ -0,0 +1,15 @@
namespace Test
{
class Program
{
static void Main(string[] args)
{
var configuration = new Configuration();
configuration.DebugMode = true;
var harness = new TestHarness(configuration);
harness.Run();
}
}
}

View File

@ -0,0 +1,36 @@
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("Test_M6502")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("Test_M6502")]
[assembly: AssemblyCopyright("Copyright © 2019")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]
// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("854ede2f-b54d-425c-8f68-eda68bdc797e")]
// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

23
Test_M6502/TestHarness.cs Normal file
View File

@ -0,0 +1,23 @@
namespace Test
{
internal class TestHarness
{
private Board board;
public TestHarness(Configuration configuration)
{
board = new Board(configuration);
}
public void Run()
{
board.Initialize();
board.RaisePOWER();
var cpu = board.CPU;
while (cpu.Powered)
cpu.Step();
}
}
}

View File

@ -0,0 +1,67 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props" Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props')" />
<PropertyGroup>
<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
<ProjectGuid>{854EDE2F-B54D-425C-8F68-EDA68BDC797E}</ProjectGuid>
<OutputType>Exe</OutputType>
<RootNamespace>Test</RootNamespace>
<AssemblyName>Test_M6502</AssemblyName>
<TargetFrameworkVersion>v4.7.2</TargetFrameworkVersion>
<FileAlignment>512</FileAlignment>
<AutoGenerateBindingRedirects>true</AutoGenerateBindingRedirects>
<Deterministic>true</Deterministic>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
<LangVersion>latest</LangVersion>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>
<OutputPath>bin\Release\</OutputPath>
<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
</PropertyGroup>
<ItemGroup>
<Reference Include="System" />
<Reference Include="System.Core" />
<Reference Include="System.Xml.Linq" />
<Reference Include="System.Data.DataSetExtensions" />
<Reference Include="Microsoft.CSharp" />
<Reference Include="System.Data" />
<Reference Include="System.Net.Http" />
<Reference Include="System.Xml" />
</ItemGroup>
<ItemGroup>
<Compile Include="Board.cs" />
<Compile Include="Configuration.cs" />
<Compile Include="Program.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<Compile Include="TestHarness.cs" />
</ItemGroup>
<ItemGroup>
<None Include="App.config" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\EightBit\EightBit.csproj">
<Project>{6ebf8857-62a3-4ef4-af21-c1844031d7e4}</Project>
<Name>EightBit</Name>
</ProjectReference>
<ProjectReference Include="..\M6502\M6502.csproj">
<Project>{3af29a4f-4294-4a9d-aac3-d9a48076bd19}</Project>
<Name>M6502</Name>
</ProjectReference>
</ItemGroup>
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
</Project>

22
Test_M6502/roms/.gitattributes vendored Normal file
View File

@ -0,0 +1,22 @@
# Auto detect text files and perform LF normalization
* text=auto
# Custom for Visual Studio
*.cs diff=csharp
*.sln merge=union
*.csproj merge=union
*.vbproj merge=union
*.fsproj merge=union
*.dbproj merge=union
# Standard to msysgit
*.doc diff=astextplain
*.DOC diff=astextplain
*.docx diff=astextplain
*.DOCX diff=astextplain
*.dot diff=astextplain
*.DOT diff=astextplain
*.pdf diff=astextplain
*.PDF diff=astextplain
*.rtf diff=astextplain
*.RTF diff=astextplain

215
Test_M6502/roms/.gitignore vendored Normal file
View File

@ -0,0 +1,215 @@
#################
## Eclipse
#################
*.pydevproject
.project
.metadata
bin/
tmp/
*.tmp
*.bak
*.swp
*~.nib
local.properties
.classpath
.settings/
.loadpath
# External tool builders
.externalToolBuilders/
# Locally stored "Eclipse launch configurations"
*.launch
# CDT-specific
.cproject
# PDT-specific
.buildpath
#################
## Visual Studio
#################
## Ignore Visual Studio temporary files, build results, and
## files generated by popular Visual Studio add-ons.
# User-specific files
*.suo
*.user
*.sln.docstates
# Build results
[Dd]ebug/
[Rr]elease/
x64/
build/
[Bb]in/
[Oo]bj/
# MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*
*_i.c
*_p.c
*.ilk
*.meta
*.obj
*.pch
*.pdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.log
*.scc
# Visual C++ cache files
ipch/
*.aps
*.ncb
*.opensdf
*.sdf
*.cachefile
# Visual Studio profiler
*.psess
*.vsp
*.vspx
# Guidance Automation Toolkit
*.gpState
# ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
# TeamCity is a build add-in
_TeamCity*
# DotCover is a Code Coverage Tool
*.dotCover
# NCrunch
*.ncrunch*
.*crunch*.local.xml
# Installshield output folder
[Ee]xpress/
# DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html
# Click-Once directory
publish/
# Publish Web Output
*.Publish.xml
*.pubxml
# NuGet Packages Directory
## TODO: If you have NuGet Package Restore enabled, uncomment the next line
#packages/
# Windows Azure Build Output
csx
*.build.csdef
# Windows Store app package directory
AppPackages/
# Others
sql/
*.Cache
ClientBin/
[Ss]tyle[Cc]op.*
~$*
*~
*.dbmdl
*.[Pp]ublish.xml
*.pfx
*.publishsettings
# RIA/Silverlight projects
Generated_Code/
# Backup & report files from converting an old project file to a newer
# Visual Studio version. Backup files are not needed, because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm
# SQL Server files
App_Data/*.mdf
App_Data/*.ldf
#############
## Windows detritus
#############
# Windows image file caches
Thumbs.db
ehthumbs.db
# Folder config file
Desktop.ini
# Recycle Bin used on file shares
$RECYCLE.BIN/
# Mac crap
.DS_Store
#############
## Python
#############
*.py[co]
# Packages
*.egg
*.egg-info
dist/
build/
eggs/
parts/
var/
sdist/
develop-eggs/
.installed.cfg
# Installer logs
pip-log.txt
# Unit test / coverage reports
.coverage
.tox
#Translations
*.mo
#Mr Developer
.mr.developer.cfg

View File

@ -0,0 +1,355 @@
; Verify decimal mode behavior
; Written by Bruce Clark. This code is public domain.
; see http://www.6502.org/tutorials/decimal_mode.html
;
; Returns:
; ERROR = 0 if the test passed
; ERROR = 1 if the test failed
; modify the code at the DONE label for desired program end
;
; This routine requires 17 bytes of RAM -- 1 byte each for:
; AR, CF, DA, DNVZC, ERROR, HA, HNVZC, N1, N1H, N1L, N2, N2L, NF, VF, and ZF
; and 2 bytes for N2H
;
; Variables:
; N1 and N2 are the two numbers to be added or subtracted
; N1H, N1L, N2H, and N2L are the upper 4 bits and lower 4 bits of N1 and N2
; DA and DNVZC are the actual accumulator and flag results in decimal mode
; HA and HNVZC are the accumulator and flag results when N1 and N2 are
; added or subtracted using binary arithmetic
; AR, NF, VF, ZF, and CF are the predicted decimal mode accumulator and
; flag results, calculated using binary arithmetic
;
; This program takes approximately 1 minute at 1 MHz (a few seconds more on
; a 65C02 than a 6502 or 65816)
;
; Configuration:
cputype = 0 ; 0 = 6502, 1 = 65C02, 2 = 65C816
vld_bcd = 0 ; 0 = allow invalid bcd, 1 = valid bcd only
chk_a = 1 ; check accumulator
chk_n = 0 ; check sign (negative) flag
chk_v = 0 ; check overflow flag
chk_z = 0 ; check zero flag
chk_c = 1 ; check carry flag
end_of_test macro
db $db ;execute 65C02 stop instruction
endm
bss
org 0
; operands - register Y = carry in
N1 ds 1
N2 ds 1
; binary result
HA ds 1
HNVZC ds 1
;04
; decimal result
DA ds 1
DNVZC ds 1
; predicted results
AR ds 1
NF ds 1
;08
VF ds 1
ZF ds 1
CF ds 1
ERROR ds 1
;0C
; workspace
N1L ds 1
N1H ds 1
N2L ds 1
N2H ds 2
code
org $200
TEST ldy #1 ; initialize Y (used to loop through carry flag values)
sty ERROR ; store 1 in ERROR until the test passes
lda #0 ; initialize N1 and N2
sta N1
sta N2
LOOP1 lda N2 ; N2L = N2 & $0F
and #$0F ; [1] see text
if vld_bcd = 1
cmp #$0a
bcs NEXT2
endif
sta N2L
lda N2 ; N2H = N2 & $F0
and #$F0 ; [2] see text
if vld_bcd = 1
cmp #$a0
bcs NEXT2
endif
sta N2H
ora #$0F ; N2H+1 = (N2 & $F0) + $0F
sta N2H+1
LOOP2 lda N1 ; N1L = N1 & $0F
and #$0F ; [3] see text
if vld_bcd = 1
cmp #$0a
bcs NEXT1
endif
sta N1L
lda N1 ; N1H = N1 & $F0
and #$F0 ; [4] see text
if vld_bcd = 1
cmp #$a0
bcs NEXT1
endif
sta N1H
jsr ADD
jsr A6502
jsr COMPARE
bne DONE
jsr SUB
jsr S6502
jsr COMPARE
bne DONE
NEXT1 inc N1 ; [5] see text
bne LOOP2 ; loop through all 256 values of N1
NEXT2 inc N2 ; [6] see text
bne LOOP1 ; loop through all 256 values of N2
dey
bpl LOOP1 ; loop through both values of the carry flag
lda #0 ; test passed, so store 0 in ERROR
sta ERROR
DONE
end_of_test
; Calculate the actual decimal mode accumulator and flags, the accumulator
; and flag results when N1 is added to N2 using binary arithmetic, the
; predicted accumulator result, the predicted carry flag, and the predicted
; V flag
;
ADD sed ; decimal mode
cpy #1 ; set carry if Y = 1, clear carry if Y = 0
lda N1
adc N2
sta DA ; actual accumulator result in decimal mode
php
pla
sta DNVZC ; actual flags result in decimal mode
cld ; binary mode
cpy #1 ; set carry if Y = 1, clear carry if Y = 0
lda N1
adc N2
sta HA ; accumulator result of N1+N2 using binary arithmetic
php
pla
sta HNVZC ; flags result of N1+N2 using binary arithmetic
cpy #1
lda N1L
adc N2L
cmp #$0A
ldx #0
bcc A1
inx
adc #5 ; add 6 (carry is set)
and #$0F
sec
A1 ora N1H
;
; if N1L + N2L < $0A, then add N2 & $F0
; if N1L + N2L >= $0A, then add (N2 & $F0) + $0F + 1 (carry is set)
;
adc N2H,x
php
bcs A2
cmp #$A0
bcc A3
A2 adc #$5F ; add $60 (carry is set)
sec
A3 sta AR ; predicted accumulator result
php
pla
sta CF ; predicted carry result
pla
;
; note that all 8 bits of the P register are stored in VF
;
sta VF ; predicted V flags
rts
; Calculate the actual decimal mode accumulator and flags, and the
; accumulator and flag results when N2 is subtracted from N1 using binary
; arithmetic
;
SUB sed ; decimal mode
cpy #1 ; set carry if Y = 1, clear carry if Y = 0
lda N1
sbc N2
sta DA ; actual accumulator result in decimal mode
php
pla
sta DNVZC ; actual flags result in decimal mode
cld ; binary mode
cpy #1 ; set carry if Y = 1, clear carry if Y = 0
lda N1
sbc N2
sta HA ; accumulator result of N1-N2 using binary arithmetic
php
pla
sta HNVZC ; flags result of N1-N2 using binary arithmetic
rts
if cputype != 1
; Calculate the predicted SBC accumulator result for the 6502 and 65816
;
SUB1 cpy #1 ; set carry if Y = 1, clear carry if Y = 0
lda N1L
sbc N2L
ldx #0
bcs S11
inx
sbc #5 ; subtract 6 (carry is clear)
and #$0F
clc
S11 ora N1H
;
; if N1L - N2L >= 0, then subtract N2 & $F0
; if N1L - N2L < 0, then subtract (N2 & $F0) + $0F + 1 (carry is clear)
;
sbc N2H,x
bcs S12
sbc #$5F ; subtract $60 (carry is clear)
S12 sta AR
rts
endif
if cputype = 1
; Calculate the predicted SBC accumulator result for the 6502 and 65C02
;
SUB2 cpy #1 ; set carry if Y = 1, clear carry if Y = 0
lda N1L
sbc N2L
ldx #0
bcs S21
inx
and #$0F
clc
S21 ora N1H
;
; if N1L - N2L >= 0, then subtract N2 & $F0
; if N1L - N2L < 0, then subtract (N2 & $F0) + $0F + 1 (carry is clear)
;
sbc N2H,x
bcs S22
sbc #$5F ; subtract $60 (carry is clear)
S22 cpx #0
beq S23
sbc #6
S23 sta AR ; predicted accumulator result
rts
endif
; Compare accumulator actual results to predicted results
;
; Return:
; Z flag = 1 (BEQ branch) if same
; Z flag = 0 (BNE branch) if different
;
COMPARE
if chk_a = 1
lda DA
cmp AR
bne C1
endif
if chk_n = 1
lda DNVZC ; [7] see text
eor NF
and #$80 ; mask off N flag
bne C1
endif
if chk_v = 1
lda DNVZC ; [8] see text
eor VF
and #$40 ; mask off V flag
bne C1 ; [9] see text
endif
if chk_z = 1
lda DNVZC
eor ZF ; mask off Z flag
and #2
bne C1 ; [10] see text
endif
if chk_c = 1
lda DNVZC
eor CF
and #1 ; mask off C flag
endif
C1 rts
; These routines store the predicted values for ADC and SBC for the 6502,
; 65C02, and 65816 in AR, CF, NF, VF, and ZF
if cputype = 0
A6502 lda VF ; 6502
;
; since all 8 bits of the P register were stored in VF, bit 7 of VF contains
; the N flag for NF
;
sta NF
lda HNVZC
sta ZF
rts
S6502 jsr SUB1
lda HNVZC
sta NF
sta VF
sta ZF
sta CF
rts
endif
if cputype = 1
A6502 lda AR ; 65C02
php
pla
sta NF
sta ZF
rts
S6502 jsr SUB2
lda AR
php
pla
sta NF
sta ZF
lda HNVZC
sta VF
sta CF
rts
endif
if cputype = 2
A6502 lda AR ; 65C816
php
pla
sta NF
sta ZF
rts
S6502 jsr SUB1
lda AR
php
pla
sta NF
sta ZF
lda HNVZC
sta VF
sta CF
rts
endif
end TEST

File diff suppressed because it is too large Load Diff

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,925 @@
; .ORG $4000
*= $4000
start:
; EXPECTED FINAL RESULTS: $0210 = FF
; (any other number will be the
; test that failed)
; initialize:
LDA #$00
STA $0210
; store each test's expected
LDA #$55
STA $0200
LDA #$AA
STA $0201
LDA #$FF
STA $0202
LDA #$6E
STA $0203
LDA #$42
STA $0204
LDA #$33
STA $0205
LDA #$9D
STA $0206
LDA #$7F
STA $0207
LDA #$A5
STA $0208
LDA #$1F
STA $0209
LDA #$CE
STA $020A
LDA #$29
STA $020B
LDA #$42
STA $020C
LDA #$6C
STA $020D
LDA #$42
STA $020E
; expected result: $022A = 0x55
test00:
LDA #85
LDX #42
LDY #115
STA $81
LDA #$01
STA $61
LDA #$7E
LDA $81
STA $0910
LDA #$7E
LDA $0910
STA $56,X
LDA #$7E
LDA $56,X
STY $60
STA ($60),Y
LDA #$7E
LDA ($60),Y
STA $07ff,X
LDA #$7E
LDA $07ff,X
STA $07ff,Y
LDA #$7E
LDA $07ff,Y
STA ($36,X)
LDA #$7E
LDA ($36,X)
STX $50
LDX $60
LDY $50
STX $0913
LDX #$22
LDX $0913
STY $0914
LDY #$99
LDY $0914
STY $2D,X
STX $77,Y
LDY #$99
LDY $2D,X
LDX #$22
LDX $77,Y
LDY #$99
LDY $08A0,X
LDX #$22
LDX $08A1,Y
STA $0200,X
; CHECK test00:
LDA $022A
CMP $0200
BEQ test00pass
JMP theend
test00pass:
LDA #$FE
STA $0210
; expected result: $A9 = 0xAA
test01:
; imm
LDA #85
AND #83
ORA #56
EOR #17
; zpg
STA $99
LDA #185
STA $10
LDA #231
STA $11
LDA #57
STA $12
LDA $99
AND $10
ORA $11
EOR $12
; zpx
LDX #16
STA $99
LDA #188
STA $20
LDA #49
STA $21
LDA #23
STA $22
LDA $99
AND $10,X
ORA $11,X
EOR $12,X
; abs
STA $99
LDA #111
STA $0110
LDA #60
STA $0111
LDA #39
STA $0112
LDA $99
AND $0110
ORA $0111
EOR $0112
; abx
STA $99
LDA #138
STA $0120
LDA #71
STA $0121
LDA #143
STA $0122
LDA $99
AND $0110,X
ORA $0111,X
EOR $0112,X
; aby
LDY #32
STA $99
LDA #115
STA $0130
LDA #42
STA $0131
LDA #241
STA $0132
LDA $99
AND $0110,Y
ORA $0111,Y
EOR $0112,Y
; idx
STA $99
LDA #112
STA $30
LDA #$01
STA $31
LDA #113
STA $32
LDA #$01
STA $33
LDA #114
STA $34
LDA #$01
STA $35
LDA #197
STA $0170
LDA #124
STA $0171
LDA #161
STA $0172
LDA $99
AND ($20,X)
ORA ($22,X)
EOR ($24,X)
; idy
STA $99
LDA #96
STA $40
LDA #$01
STA $41
LDA #97
STA $42
LDA #$01
STA $43
LDA #98
STA $44
LDA #$01
STA $45
LDA #55
STA $0250
LDA #35
STA $0251
LDA #157
STA $0252
LDA $99
LDY #$F0
AND ($40),Y
ORA ($42),Y
EOR ($44),Y
STA $A9
; CHECK test01
LDA $A9
CMP $0201
BEQ test02
LDA #$01
STA $0210
JMP theend
; expected result: $71 = 0xFF
test02:
LDA #$FF
LDX #$00
STA $90
INC $90
INC $90
LDA $90
LDX $90
STA $90,X
INC $90,X
LDA $90,X
LDX $91
STA $0190,X
INC $0192
LDA $0190,X
LDX $0192
STA $0190,X
INC $0190,X
LDA $0190,X
LDX $0193
STA $0170,X
DEC $0170,X
LDA $0170,X
LDX $0174
STA $0170,X
DEC $0173
LDA $0170,X
LDX $0173
STA $70,X
DEC $70,X
LDA $70,X
LDX $72
STA $70,X
DEC $71
DEC $71
; CHECK test02
LDA $71
CMP $0202
BEQ test03
LDA #$02
STA $0210
JMP theend
; expected result: $01DD = 0x6E
test03:
LDA #$4B
LSR
ASL
STA $50
ASL $50
ASL $50
LSR $50
LDA $50
LDX $50
ORA #$C9
STA $60
ASL $4C,X
LSR $4C,X
LSR $4C,X
LDA $4C,X
LDX $60
ORA #$41
STA $012E
LSR $0100,X
LSR $0100,X
ASL $0100,X
LDA $0100,X
LDX $012E
ORA #$81
STA $0100,X
LSR $0136
LSR $0136
ASL $0136
LDA $0100,X
; rol & ror
ROL
ROL
ROR
STA $70
LDX $70
ORA #$03
STA $0C,X
ROL $C0
ROR $C0
ROR $C0
LDA $0C,X
LDX $C0
STA $D0
ROL $75,X
ROL $75,X
ROR $75,X
LDA $D0
LDX $D0
STA $0100,X
ROL $01B7
ROL $01B7
ROL $01B7
ROR $01B7
LDA $0100,X
LDX $01B7
STA $01DD
ROL $0100,X
ROR $0100,X
ROR $0100,X
; CHECK test03
LDA $01DD
CMP $0203
BEQ test04
LDA #$03
STA $0210
JMP theend
; expected result: $40 = 0x42
test04:
LDA #$E8 ;originally:#$7C
STA $20
LDA #$42 ;originally:#$02
STA $21
LDA #$00
ORA #$03
JMP jump1
ORA #$FF ; not done
jump1:
ORA #$30
JSR subr
ORA #$42
JMP ($0020)
ORA #$FF ; not done
subr:
STA $30
LDX $30
LDA #$00
RTS
final:
STA $0D,X
; CHECK test04
LDA $40
CMP $0204
BEQ test05
LDA #$04
STA $0210
JMP theend
; expected result: $40 = 0x33
test05:
LDA #$35
TAX
DEX
DEX
INX
TXA
TAY
DEY
DEY
INY
TYA
TAX
LDA #$20
TXS
LDX #$10
TSX
TXA
STA $40
; CHECK test05
LDA $40
CMP $0205
BEQ test06
LDA #$05
STA $0210
JMP theend
; expected result: $30 = 9D
test06:
; RESET TO CARRY FLAG = 0
ROL
LDA #$6A
STA $50
LDA #$6B
STA $51
LDA #$A1
STA $60
LDA #$A2
STA $61
LDA #$FF
ADC #$FF
ADC #$FF
SBC #$AE
STA $40
LDX $40
ADC $00,X
SBC $01,X
ADC $60
SBC $61
STA $0120
LDA #$4D
STA $0121
LDA #$23
ADC $0120
SBC $0121
STA $F0
LDX $F0
LDA #$64
STA $0124
LDA #$62
STA $0125
LDA #$26
ADC $0100,X
SBC $0101,X
STA $F1
LDY $F1
LDA #$E5
STA $0128
LDA #$E9
STA $0129
LDA #$34
ADC $0100,Y
SBC $0101,Y
STA $F2
LDX $F2
LDA #$20
STA $70
LDA #$01
STA $71
LDA #$24
STA $72
LDA #$01
STA $73
ADC ($41,X)
SBC ($3F,X)
STA $F3
LDY $F3
LDA #$DA
STA $80
LDA #$00
STA $81
LDA #$DC
STA $82
LDA #$00
STA $83
LDA #$AA
ADC ($80),Y
SBC ($82),Y
STA $30
; CHECK test06
LDA $30
CMP $0206
BEQ test07
LDA #$06
STA $0210
JMP theend
; expected result: $15 = 0x7F
test07:
; prepare memory
LDA #$00
STA $34
LDA #$FF
STA $0130
LDA #$99
STA $019D
LDA #$DB
STA $0199
LDA #$2F
STA $32
LDA #$32
STA $4F
LDA #$30
STA $33
LDA #$70
STA $AF
LDA #$18
STA $30
; imm
CMP #$18
BEQ beq1 ; taken
AND #$00 ; not done
beq1:
; zpg
ORA #$01
CMP $30
BNE bne1 ; taken
AND #$00 ; not done
bne1:
; abs
LDX #$00
CMP $0130
BEQ beq2 ; not taken
STA $40
LDX $40
beq2:
; zpx
CMP $27,X
BNE bne2 ; not taken
ORA #$84
STA $41
LDX $41
bne2:
; abx
AND #$DB
CMP $0100,X
BEQ beq3 ; taken
AND #$00 ; not done
beq3:
; aby
STA $42
LDY $42
AND #$00
CMP $0100,Y
BNE bne3 ; taken
ORA #$0F ; not done
bne3:
; idx
STA $43
LDX $43
ORA #$24
CMP ($40,X)
BEQ beq4 ; not taken
ORA #$7F
beq4:
; idy
STA $44
LDY $44
EOR #$0F
CMP ($33),Y
BNE bne4 ; not taken
LDA $44
STA $15
bne4:
; CHECK test07
LDA $15
CMP $0207
BEQ test08
LDA #$07
STA $0210
JMP theend
; expected result: $42 = 0xA5
test08:
; prepare memory
LDA #$A5
STA $20
STA $0120
LDA #$5A
STA $21
; cpx imm...
LDX #$A5
CPX #$A5
BEQ b1 ; taken
LDX #$01 ; not done
b1:
; cpx zpg...
CPX $20
BEQ b2 ; taken
LDX #$02 ; not done
b2:
; cpx abs...
CPX $0120
BEQ b3 ; taken
LDX #$03 ; not done
b3:
; cpy imm...
STX $30
LDY $30
CPY #$A5
BEQ b4 ; taken
LDY #$04 ; not done
b4:
; cpy zpg...
CPY $20
BEQ b5 ; taken
LDY #$05 ; not done
b5:
; cpy abs...
CPY $0120
BEQ b6 ; taken
LDY #$06 ; not done
b6:
; bit zpg...
STY $31
LDA $31
BIT $20
BNE b7 ; taken
LDA #$07 ; not done
b7:
; bit abs...
BIT $0120
BNE b8 ; taken
LDA #$08 ; not done
b8:
BIT $21
BNE b9 ; not taken
STA $42
b9:
; CHECK test08
LDA $42
CMP $0208
BEQ test09
LDA #$08
STA $0210
JMP theend
; expected result: $80 = 0x1F
test09:
; prepare memory
LDA #$54
STA $32
LDA #$B3
STA $A1
LDA #$87
STA $43
; BPL
LDX #$A1
BPL bpl1 ; not taken
LDX #$32
bpl1:
LDY $00,X
BPL bpl2 ; taken
LDA #$05 ; not done
LDX $A1 ; not done
bpl2:
; BMI
BMI bmi1 ; not taken
SBC #$03
bmi1:
BMI bmi2 ; taken
LDA #$41 ; not done
bmi2:
; BVC
EOR #$30
STA $32
ADC $00,X
BVC bvc1 ; not taken
LDA #$03
bvc1:
STA $54
LDX $00,Y
ADC $51,X
BVC bvc2 ; taken
LDA #$E5 ; not done
bvc2:
; BVS
ADC $40,X
BVS bvs1 ; not taken
STA $0001,Y
ADC $55
bvs1:
BVS bvs2 ; taken
LDA #$00
bvs2:
; BCC
ADC #$F0
BCC bcc1 ; not taken
STA $60
ADC $43
bcc1:
BCC bcc2 ; taken
LDA #$FF
bcc2:
; BCS
ADC $54
BCS bcs1 ; not taken
ADC #$87
LDX $60
bcs1:
BCS bcs2 ; taken
LDA #$00 ; not done
bcs2:
STA $73,X
; CHECK test09
LDA $80
CMP $0209
BEQ test10
LDA #$09
STA $0210
JMP theend
; expected result: $30 = 0xCE
test10:
; RESET TO CARRY = 0 & OVERFLOW = 0
ADC #$00
LDA #$99
ADC #$87
CLC
NOP
BCC t10bcc1 ; taken
ADC #$60 ; not done
ADC #$93 ; not done
t10bcc1:
SEC
NOP
BCC t10bcc2 ; not taken
CLV
t10bcc2:
BVC t10bvc1 ; taken
LDA #$00 ; not done
t10bvc1:
ADC #$AD
NOP
STA $30
; CHECK test10
LDA $30
CMP $020A
BEQ test11
LDA #$0A
STA $0210
JMP theend
; expected result: $30 = 0x29
test11:
; RESET TO CARRY = 0 & ZERO = 0
ADC #$01
LDA #$27
ADC #$01
SEC
PHP
CLC
PLP
ADC #$00
PHA
LDA #$00
PLA
STA $30
; CHECK test11
LDA $30
CMP $020B
BEQ test12
LDA #$0B
STA $0210
JMP theend
; expected result: $33 = 0x42
test12:
CLC
LDA #$42
BCC runstuff
STA $33
BCS t12end
runstuff:
LDA #$45
PHA
LDA #$61
PHA
SEC
PHP
CLC
RTI
t12end:
; CHECK test12
LDA $33
CMP $020C
BEQ test13
LDA #$0C
STA $0210
JMP theend
; expected result: $21 = 0x6C (simulator)
; $21 = 0x0C (ours)
test13:
; RESET TO CARRY = 0 & ZERO = 0
ADC #$01
SEI
SED
PHP
PLA
STA $20
CLI
CLD
PHP
PLA
ADC $20
STA $21
; CHECK test13
LDA $21
CMP $020D
BEQ test14
LDA #$0D
STA $0210
JMP theend
; expect result: $60 = 0x42
test14:
; !!! NOTICE: BRK doesn't work in this
; simulator, so commented instructions
; are what should be executed...
;JMP pass_intrp
LDA #$41
STA $60
;RTI
;pass_intrp:
;LDA #$FF
;STA $60
;BRK (two bytes)
INC $60
; CHECK test14
LDA $60
CMP $020E
BEQ suiteafinal
LDA #$0E
STA $0210
JMP theend
suiteafinal:
; IF $0210 == 0xFE, INCREMENT
; (checking that it didn't
; happen to wander off and
; not run our instructions
; to say which tests failed...)
LDA #$FE
CMP $0210
BNE theend
INC $0210
theend:
JMP theend

Binary file not shown.

674
Test_M6502/roms/license.txt Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -0,0 +1,25 @@
This is a set of functional tests for the 6502/65C02 type processors.
The 6502_functional_test.a65 is an assembler sourcecode to test all valid
opcodes and addressing modes of the original NMOS 6502 cpu.
The 65C02_extended_opcodes_test.a65c tests all additional opcodes of the
65C02 processor including undefined opcodes.
The 6502_interrupt_test.a65 is a simple test to check the interrupt system
of both processors. A feedback register is required to inject IRQ and NMI
requests.
Detailed information about how to configure, assemble and run the tests is
included in each source file.
The tests have primarily been written to test my own ATMega16 6502 emulator
project. You can find it here: http://2m5.de/6502_Emu/index.htm
A discussion about the tests can be found here:
http://forum.6502.org/viewtopic.php?f=2&t=2241
Good luck debugging your emulator, simulator, fpga core, discrete
logic implementation or whatever you have!

220
Test_M6502/roms/report.i65 Normal file
View File

@ -0,0 +1,220 @@
;**** report 6502 funtional test errors to standard I/O ****
;
;this include file is part of the 6502 functional tests
;it is used when you configure report = 1 in the tests
;
;to adopt the standard output vectors of your test environment
;you must modify the rchar and rget subroutines in this include
;
;I/O hardware may have to be initialized in report_init
;print message macro - \1 = message location
rprt macro
ldx #0
lda \1
loop\?
jsr rchar
inx
lda \1,x
bne loop\?
endm
;initialize I/O as required (example: configure & enable ACIA)
report_init
;nothing to initialize
rprt rmsg_start
rts
;show stack (with saved registers), zeropage and absolute memory workspace
;after an error was trapped in the test program
report_error
;save registers
php
pha
txa
pha
tya
pha
cld
;show stack with index to registers at error
rprt rmsg_stack
tsx
inx
lda #1 ;address high
jsr rhex
txa ;address low
jsr rhex
rstack jsr rspace
lda $100,x ;stack data
jsr rhex
inx
bne rstack
jsr rcrlf ;new line
;show zero page workspace
lda #0
jsr rhex
lda #zpt
tax
jsr rhex
rzp jsr rspace
lda 0,x
jsr rhex
inx
cpx #zp_bss
bne rzp
jsr rcrlf
;show absolute workspace
lda #hi(data_segment)
jsr rhex
lda #lo(data_segment)
jsr rhex
ldx #0
rabs jsr rspace
lda data_segment,x
jsr rhex
inx
cpx #(data_bss-data_segment)
bne rabs
;ask to continue
rprt rmsg_cont
rerr1 jsr rget
cmp #'S'
beq rskip
cmp #'C'
bne rerr1
;restore registers
pla
tay
pla
tax
pla
plp
rts
;skip the current test
rskip lda #$f0 ;already end of tests?
cmp test_case
beq rerr1 ;skip is not available
ldx #$ff ;clear stack
txs
inc test_case ;next test
lda #lo(start) ;find begin of test
sta zpt
lda #hi(start)
sta zpt+1
rskipl1 ldy #4 ;search pattern
rskipl2 lda (zpt),y ;next byte
cmp rmark,y
bne rskipnx ;no match
dey
bmi rskipf ;found pattern
cpy #1 ;skip immediate value
bne rskipl2
dey
beq rskipl2
rskipnx inc zpt ;next RAM location
bne rskipl1
inc zpt+1
bne rskipl1
rskipf ldy #1 ;pattern found - check test number
lda (zpt),y ;test number
cmp #$f0 ;end of last test?
beq rskipe ;ask to rerun all
cmp test_case ;is next test?
bne rskipnx ;continue searching
rskipe jmp (zpt) ;start next test or rerun at end of tests
rmark lda #0 ;begin of test search pattern
sta test_case
;show test has ended, ask to repeat
report_success
if rep_int = 1
rprt rmsg_priority
lda data_segment ;show interrupt sequence
jsr rhex
jsr rspace
lda data_segment+1
jsr rhex
jsr rspace
lda data_segment+2
jsr rhex
endif
rprt rmsg_success
rsuc1 jsr rget
cmp #'R'
bne rsuc1
rts
;input subroutine
;get a character from standard input
;adjust according to the needs in your test environment
rget ;get character in A
;rget1
; lda $bff1 ;wait RDRF
; and #8
; beq rget1
;not a real ACIA - so RDRF is not checked
; lda $bff0 ;read acia rx reg
lda $f004 ;Kowalski simulator default
;the load can be replaced by a call to a kernal routine
; jsr $ffcf ;example: CHRIN for a C64
cmp #'a' ;lower case
bcc rget1
and #$5f ;convert to upper case
rget1 rts
;output subroutines
rcrlf lda #10
jsr rchar
lda #13
bne rchar
rspace lda #' '
bne rchar
rhex pha ;report hex byte in A
lsr a ;high nibble first
lsr a
lsr a
lsr a
jsr rnib
pla ;now low nibble
and #$f
rnib clc ;report nibble in A
adc #'0' ;make printable 0-9
cmp #'9'+1
bcc rchar
adc #6 ;make printable A-F
;send a character to standard output
;adjust according to the needs in your test environment
;register X needs to be preserved!
rchar ;report character in A
; pha ;wait TDRF
;rchar1 lda $bff1
; and #$10
; beq rchar1
; pla
;not a real ACIA - so TDRF is not checked
; sta $bff0 ;write acia tx reg
sta $f001 ;Kowalski simulator default
;the store can be replaced by a call to a kernal routine
; jsr $ffd2 ;example: CHROUT for a C64
rts
rmsg_start
db 10,13,"Started testing",10,13,0
rmsg_stack
db 10,13,"regs Y X A PS PCLPCH",10,13,0
rmsg_cont
db 10,13,"press C to continue or S to skip current test",10,13,0
rmsg_success
db 10,13,"All tests completed, press R to repeat",10,13,0
if rep_int = 1
rmsg_priority
db 10,13,"interrupt sequence (NMI IRQ BRK) ",0
endif