EightBitNet/M6502/M6502.Test/roms/65C02_extended_opcodes_test.ca65
2024-09-14 10:08:21 +01:00

2995 lines
82 KiB
Plaintext

;
; 6 5 C 0 2 E X T E N D E D O P C O D E S T E S T
;
; Copyright (C) 2013-2017 Klaus Dormann
;
; This program is free software: you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program. If not, see <http://www.gnu.org/licenses/>.
; This program is designed to test all additional 65C02 opcodes, addressing
; modes and functionality not available in the NMOS version of the 6502.
; The 6502_functional_test is a prerequisite to this test.
; NMI, IRQ, STP & WAI are covered in the 6502_interrupt_test.
;
; version 04-dec-2017
; contact info at http://2m5.de or email K@2m5.de
;
; assembled with CA65, linked with LD65 (cc65.github.io):
; ca65 -l 6502_functional_test.lst 6502_functional_test.ca65
; ld65 6502_functional_test.o -o 6502_functional_test.bin \
; -m 6502_functional_test.map -C example.cfg
; example linker config (example.cfg):
; MEMORY {
; RAM: start = $0000, size=$8000, type = rw, fill = yes, \
; fillval = $FF, file = %O;
; ROM: start = $8000, size=$7FFA, type = ro, fill = yes, \
; fillval = $FF, file = %O;
; ROM_VECTORS: start = $FFFA, size=6, type = ro, fill = yes, \
; fillval = $FF, file = %O;
; }
; SEGMENTS {
; ZEROPAGE: load=RAM, type=rw;
; DATA: load=RAM, type=rw, offset=$0200;
; CODE: load=RAM, type=rw, offset=$0400;
; VECTORS: load=ROM_VECTORS, type=ro;
; }
;
; No IO - should be run from a monitor with access to registers.
; To run load intel hex image with a load command, than alter PC to 400 hex
; (code_segment) and enter a go command.
; Loop on program counter determines error or successful completion of test.
; Check listing for relevant traps (jump/branch *).
; Please note that in early tests some instructions will have to be used before
; they are actually tested!
;
; RESET, NMI or IRQ should not occur and will be trapped if vectors are enabled.
; Tests documented behavior of the original 65C02 only!
; Decimal ops will only be tested with valid BCD operands and the V flag will
; be ignored as it is absolutely useless in decimal mode.
;
; Debugging hints:
; Most of the code is written sequentially. if you hit a trap, check the
; immediately preceeding code for the instruction to be tested. Results are
; tested first, flags are checked second by pushing them onto the stack and
; pulling them to the accumulator after the result was checked. The "real"
; flags are no longer valid for the tested instruction at this time!
; If the tested instruction was indexed, the relevant index (X or Y) must
; also be checked. Opposed to the flags, X and Y registers are still valid.
;
; versions:
; 19-jul-2013 1st version distributed for testing
; 23-jul-2013 fixed BRA out of range due to larger trap macros
; added RAM integrity check
; 16-aug-2013 added error report to standard output option
; 23-aug-2015 change revoked
; 24-aug-2015 all self modifying immediate opcodes now execute in data RAM
; 28-aug-2015 fixed decimal adc/sbc immediate only testing carry
; 09-feb-2017 fixed RMB/SMB tested when they shouldn't be tested
; 04-dec-2017 fixed BRK not tested for actually going through the IRQ vector
; added option to skip the remainder of a failing test
; in report.i65
; added skip override to undefined opcode as NOP test
; C O N F I G U R A T I O N
;ROM_vectors writable (0=no, 1=yes)
;if ROM vectors can not be used interrupts will not be trapped
;as a consequence BRK can not be tested but will be emulated to test RTI
ROM_vectors = 1
;load_data_direct (0=move from code segment, 1=load directly)
;loading directly is preferred but may not be supported by your platform
;0 produces only consecutive object code, 1 is not suitable for a binary image
load_data_direct = 1
;I_flag behavior (0=force enabled, 1=force disabled, 2=prohibit change, 3=allow
;change) 2 requires extra code and is not recommended.
I_flag = 3
;configure memory - try to stay away from memory used by the system
;zero_page memory start address, $4e (78) consecutive Bytes required
; add 2 if I_flag = 2
zero_page = $a
;data_segment memory start address, $63 (99) consecutive Bytes required
; + 12 Bytes at data_segment + $f9 (JMP indirect page cross test)
data_segment = $200
.if (data_segment & $ff) <> 0
.error "low byte of data_segment MUST be $00 !!"
.endif
;code_segment memory start address, 10kB of consecutive space required
; add 1 kB if I_flag = 2
code_segment = $400
;added WDC only opcodes WAI & STP (0=test as NOPs, >0=no test)
wdc_op = 1
;added Rockwell & WDC opcodes BBR, BBS, RMB & SMB
;(0=test as NOPs, 1=full test, >1=no test)
rkwl_wdc_op = 1
;skip testing all undefined opcodes override
;0=test as NOP, >0=skip
skip_nop = 0
;report errors through I/O channel (0=use standard self trap loops, 1=include
;report.i65 as I/O channel, add 3 kB)
report = 1
rep_int = 0
;RAM integrity test option. Checks for undesired RAM writes.
;set lowest non RAM or RAM mirror address page (-1=disable, 0=64k, $40=16k)
;leave disabled if a monitor, OS or background interrupt is allowed to alter RAM
ram_top = -1
; E N D O F C O N F I G U R A T I O N
;macros for error & success traps to allow user modification
;example:
; .macro trap
; jsr my_error_handler
; .endmacro
; .macro trap_eq
; bne :+
; trap ;failed equal (zero)
;:
; .endmacro
;
; my_error_handler should pop the calling address from the stack and report it.
; putting larger portions of code (more than 3 bytes) inside the trap macro
; may lead to branch range problems for some tests.
.if report = 0
.macro trap
jmp * ;failed anyway
.endmacro
.macro trap_eq
beq * ;failed equal (zero)
.endmacro
.macro trap_ne
bne * ;failed not equal (non zero)
.endmacro
.macro trap_cs
bcs * ;failed carry set
.endmacro
.macro trap_cc
bcc * ;failed carry clear
.endmacro
.macro trap_mi
bmi * ;failed minus (bit 7 set)
.endmacro
.macro trap_pl
bpl * ;failed plus (bit 7 clear)
.endmacro
.macro trap_vs
bvs * ;failed overflow set
.endmacro
.macro trap_vc
bvc * ;failed overflow clear
.endmacro
; please observe that during the test the stack gets invalidated
; therefore a RTS inside the success macro is not possible
.macro success
jmp * ;test passed, no errors
.endmacro
.endif
.if report = 1
.macro trap
jsr report_error
.endmacro
.macro trap_eq
bne :+
trap ;failed equal (zero)
:
.endmacro
.macro trap_ne
beq :+
trap ;failed not equal (non zero)
:
.endmacro
.macro trap_cs
bcc :+
trap ;failed carry set
:
.endmacro
.macro trap_cc
bcs :+
trap ;failed carry clear
:
.endmacro
.macro trap_mi
bpl :+
trap ;failed minus (bit 7 set)
:
.endmacro
.macro trap_pl
bmi :+
trap ;failed plus (bit 7 clear)
:
.endmacro
.macro trap_vs
bvc :+
trap ;failed overflow set
:
.endmacro
.macro trap_vc
bvs :+
trap ;failed overflow clear
:
.endmacro
; please observe that during the test the stack gets invalidated
; therefore a RTS inside the success macro is not possible
.macro success
jsr report_success
.endmacro
.endif
.define equ =
carry equ %00000001 ;flag bits in status
zero equ %00000010
intdis equ %00000100
decmode equ %00001000
break equ %00010000
reserv equ %00100000
overfl equ %01000000
minus equ %10000000
fc equ carry
fz equ zero
fzc equ carry+zero
fv equ overfl
fvz equ overfl+zero
fn equ minus
fnc equ minus+carry
fnz equ minus+zero
fnzc equ minus+zero+carry
fnv equ minus+overfl
fao equ break+reserv ;bits always on after PHP, BRK
fai equ fao+intdis ;+ forced interrupt disable
m8 equ $ff ;8 bit mask
m8i equ $ff&~intdis ;8 bit mask - interrupt disable
;macros to allow masking of status bits.
;masking of interrupt enable/disable on load and compare
;masking of always on bits after PHP or BRK (unused & break) on compare
.if I_flag = 0
.macro load_flag p1
lda #p1&m8i ;force enable interrupts (mask I)
.endmacro
.macro cmp_flag p1
cmp #(p1|fao)&m8i ;I_flag is always enabled + always on bits
.endmacro
.macro eor_flag p1
eor #(p1&m8i|fao) ;mask I, invert expected flags + always on bits
.endmacro
.endif
.if I_flag = 1
.macro load_flag p1
lda #p1|intdis ;force disable interrupts
.endmacro
.macro cmp_flag p1
cmp #(p1|fai)&m8 ;I_flag is always disabled + always on bits
.endmacro
.macro eor_flag p1
eor #(p1|fai) ;invert expected flags + always on bits + I
.endmacro
.endif
.if I_flag = 2
.macro load_flag p1
lda #p1
ora flag_I_on ;restore I-flag
and flag_I_off
.endmacro
.macro cmp_flag p1
eor flag_I_on ;I_flag is never changed
cmp #(p1|fao)&m8i ;expected flags + always on bits, mask I
.endmacro
.macro eor_flag p1
eor flag_I_on ;I_flag is never changed
eor #(p1&m8i|fao) ;mask I, invert expected flags + always on bits
.endmacro
.endif
.if I_flag = 3
.macro load_flag p1
lda #p1 ;allow test to change I-flag (no mask)
.endmacro
.macro cmp_flag p1
cmp #(p1|fao)&m8 ;expected flags + always on bits
.endmacro
.macro eor_flag p1
eor #p1|fao ;invert expected flags + always on bits
.endmacro
.endif
;macros to set (register|memory|zeropage) & status
.macro set_stat p1 ;setting flags in the processor status register
load_flag p1
pha ;use stack to load status
plp
.endmacro
.macro set_a p1,p2 ;precharging accu & status
load_flag p2
pha ;use stack to load status
lda #p1 ;precharge accu
plp
.endmacro
.macro set_x p1,p2 ;precharging index & status
load_flag p2
pha ;use stack to load status
ldx #p1 ;precharge index x
plp
.endmacro
.macro set_y p1,p2 ;precharging index & status
load_flag p2
pha ;use stack to load status
ldy #p1 ;precharge index y
plp
.endmacro
.macro set_ax p1,p2 ;precharging indexed accu & immediate status
load_flag p2
pha ;use stack to load status
lda p1,x ;precharge accu
plp
.endmacro
.macro set_ay p1,p2 ;precharging indexed accu & immediate status
load_flag p2
pha ;use stack to load status
lda p1,y ;precharge accu
plp
.endmacro
.macro set_z p1,p2 ;precharging indexed zp & immediate status
load_flag p2
pha ;use stack to load status
lda p1,x ;load to zeropage
sta zpt
plp
.endmacro
.macro set_zx p1,p2 ;precharging zp,x & immediate status
load_flag p2
pha ;use stack to load status
lda p1,x ;load to indexed zeropage
sta zpt,x
plp
.endmacro
.macro set_abs p1,p2 ;precharging indexed memory & immediate status
load_flag p2
pha ;use stack to load status
lda p1,x ;load to memory
sta abst
plp
.endmacro
.macro set_absx p1,p2 ;precharging abs,x & immediate status
load_flag p2
pha ;use stack to load status
lda p1,x ;load to indexed memory
sta abst,x
plp
.endmacro
;macros to test (register|memory|zeropage) & status & (mask)
.macro tst_stat p1 ;testing flags in the processor status register
php ;save status
pla ;use stack to retrieve status
pha
cmp_flag p1
trap_ne
plp ;restore status
.endmacro
.macro tst_a p1,p2 ;testing result in accu & flags
php ;save flags
cmp #p1 ;test result
trap_ne
pla ;load status
pha
cmp_flag p2
trap_ne
plp ;restore status
.endmacro
.macro tst_as p1,p2 ;testing result in accu & flags, save accu
pha
php ;save flags
cmp #p1 ;test result
trap_ne
pla ;load status
pha
cmp_flag p2
trap_ne
plp ;restore status
pla
.endmacro
.macro tst_x p1,p2 ;testing result in x index & flags
php ;save flags
cpx #p1 ;test result
trap_ne
pla ;load status
pha
cmp_flag p2
trap_ne
plp ;restore status
.endmacro
.macro tst_y p1,p2 ;testing result in y index & flags
php ;save flags
cpy #p1 ;test result
trap_ne
pla ;load status
pha
cmp_flag p2
trap_ne
plp ;restore status
.endmacro
.macro tst_ax p1,p2,p3 ;indexed testing result in accu & flags
php ;save flags
cmp p1,x ;test result
trap_ne
pla ;load status
eor_flag p3
cmp p2,x ;test flags
trap_ne ;
.endmacro
.macro tst_ay p1,p2,p3 ;indexed testing result in accu & flags
php ;save flags
cmp p1,y ;test result
trap_ne ;
pla ;load status
eor_flag p3
cmp p2,y ;test flags
trap_ne
.endmacro
.macro tst_z p1,p2,p3 ;indexed testing result in zp & flags
php ;save flags
lda zpt
cmp p1,x ;test result
trap_ne
pla ;load status
eor_flag p3
cmp p2,x ;test flags
trap_ne
.endmacro
.macro tst_zx p1,p2,p3 ;testing result in zp,x & flags
php ;save flags
lda zpt,x
cmp p1,x ;test result
trap_ne
pla ;load status
eor_flag p3
cmp p2,x ;test flags
trap_ne
.endmacro
.macro tst_abs p1,p2,p3 ;indexed testing result in memory & flags
php ;save flags
lda abst
cmp p1,x ;test result
trap_ne
pla ;load status
eor_flag p3
cmp p2,x ;test flags
trap_ne
.endmacro
.macro tst_absx p1,p2,p3 ;testing result in abs,x & flags
php ;save flags
lda abst,x
cmp p1,x ;test result
trap_ne
pla ;load status
eor_flag p3
cmp p2,x ;test flags
trap_ne
.endmacro
; RAM integrity test
; verifies that none of the previous tests has altered RAM outside of the
; designated write areas.
; uses zpt word as indirect pointer, zpt+2 word as checksum
.if ram_top > -1
.macro check_ram
.local ccs1, ccs2, ccs3, ccs4, ccs5
cld
lda #0
sta zpt ;set low byte of indirect pointer
sta zpt+3 ;checksum high byte
ldx #11 ;reset modifiable RAM
ccs1: sta jxi_tab,x ;JMP indirect page cross area
dex
bpl ccs1
clc
ldx #zp_bss-zero_page ;zeropage - write test area
ccs3: adc zero_page,x
bcc ccs2
inc zpt+3 ;carry to high byte
clc
ccs2: inx
bne ccs3
ldx #>abs1 ;set high byte of indirect pointer
stx zpt+1
ldy #<abs1 ;data after write & execute test area
ccs5: adc (zpt),y
bcc ccs4
inc zpt+3 ;carry to high byte
clc
ccs4: iny
bne ccs5
inx ;advance RAM high address
stx zpt+1
cpx #ram_top
bne ccs5
sta zpt+2 ;checksum low is
cmp ram_chksm ;checksum low expected
trap_ne ;checksum mismatch
lda zpt+3 ;checksum high is
cmp ram_chksm+1 ;checksum high expected
trap_ne ;checksum mismatch
.endmacro
.else
.macro check_ram
;RAM check disabled - RAM size not set
.endmacro
.endif
.macro next_test ;make sure, tests don't jump the fence
lda test_case ;previous test
cmp #test_num
trap_ne ;test is out of sequence
test_num .set test_num + 1
lda #test_num ;*** next tests' number
sta test_case
;check_ram ;uncomment to find altered RAM after each test
.endmacro
.ZEROPAGE
.res zero_page, 0
.org zero_page
;break test interrupt save
irq_a: .res 1 ;a register
irq_x: .res 1 ;x register
.if I_flag = 2
;masking for I bit in status
flag_I_on: .res 1 ;or mask to load flags
flag_I_off: .res 1 ;and mask to load flags
.endif
zpt: ;5 bytes store/modify test area
;add/subtract operand generation and result/flag prediction
adfc: .res 1 ;carry flag before op
ad1: .res 1 ;operand 1 - accumulator
ad2: .res 1 ;operand 2 - memory / immediate
adrl: .res 1 ;expected result bits 0-7
adrh: .res 1 ;expected result bit 8 (carry)
adrf: .res 1 ;expected flags NV0000ZC (-V in decimal mode)
sb2: .res 1 ;operand 2 complemented for subtract
zp_bss:
zp1: .byte $c3,$82,$41,0 ;test patterns for LDx BIT ROL ROR ASL LSR
zp7f: .byte $7f ;test pattern for compare
;logical zeropage operands
zpOR: .byte 0,$1f,$71,$80 ;test pattern for OR
zpAN: .byte $0f,$ff,$7f,$80 ;test pattern for AND
zpEO: .byte $ff,$0f,$8f,$8f ;test pattern for EOR
;indirect addressing pointers
ind1: .word abs1 ;indirect pointer to pattern in absolute memory
.word abs1+1
.word abs1+2
.word abs1+3
.word abs7f
inw1: .word abs1-$f8 ;indirect pointer for wrap-test pattern
indt: .word abst ;indirect pointer to store area in absolute memory
.word abst+1
.word abst+2
.word abst+3
inwt: .word abst-$f8 ;indirect pointer for wrap-test store
indAN: .word absAN ;indirect pointer to AND pattern in absolute memory
.word absAN+1
.word absAN+2
.word absAN+3
indEO: .word absEO ;indirect pointer to EOR pattern in absolute memory
.word absEO+1
.word absEO+2
.word absEO+3
indOR: .word absOR ;indirect pointer to OR pattern in absolute memory
.word absOR+1
.word absOR+2
.word absOR+3
;add/subtract indirect pointers
adi2: .word ada2 ;indirect pointer to operand 2 in absolute memory
sbi2: .word sba2 ;indirect pointer to complemented operand 2 (SBC)
adiy2: .word ada2-$ff ;with offset for indirect indexed
sbiy2: .word sba2-$ff
zp_bss_end:
.DATA
.org data_segment
pg_x: .res 2 ;high JMP indirect address for page cross bug
test_case: .res 1 ;current test number
ram_chksm: .res 2 ;checksum for RAM integrity test
;add/subtract operand copy - abs tests write area
abst: ;5 bytes store/modify test area
ada2: .res 1 ;operand 2
sba2: .res 1 ;operand 2 complemented for subtract
.res 3 ;fill remaining bytes
data_bss:
.if load_data_direct = 1
ex_adci: adc #0 ;execute immediate opcodes
rts
ex_sbci: sbc #0 ;execute immediate opcodes
rts
.else
ex_adci: .res 3
ex_sbci: .res 3
.endif
abs1: .byte $c3,$82,$41,0 ;test patterns for LDx BIT ROL ROR ASL LSR
abs7f: .byte $7f ;test pattern for compare
;loads
fLDx: .byte fn,fn,0,fz ;expected flags for load
;shifts
rASL: ;expected result ASL & ROL -carry
rROL: .byte $86,$04,$82,0 ; "
rROLc: .byte $87,$05,$83,1 ;expected result ROL +carry
rLSR: ;expected result LSR & ROR -carry
rROR: .byte $61,$41,$20,0 ; "
rRORc: .byte $e1,$c1,$a0,$80 ;expected result ROR +carry
fASL: ;expected flags for shifts
fROL: .byte fnc,fc,fn,fz ;no carry in
fROLc: .byte fnc,fc,fn,0 ;carry in
fLSR:
fROR: .byte fc,0,fc,fz ;no carry in
fRORc: .byte fnc,fn,fnc,fn ;carry in
;increments (decrements)
rINC: .byte $7f,$80,$ff,0,1 ;expected result for INC/DEC
fINC: .byte 0,fn,fn,fz,0 ;expected flags for INC/DEC
;logical memory operand
absOR: .byte 0,$1f,$71,$80 ;test pattern for OR
absAN: .byte $0f,$ff,$7f,$80 ;test pattern for AND
absEO: .byte $ff,$0f,$8f,$8f ;test pattern for EOR
;logical accu operand
absORa: .byte 0,$f1,$1f,0 ;test pattern for OR
absANa: .byte $f0,$ff,$ff,$ff ;test pattern for AND
absEOa: .byte $ff,$f0,$f0,$0f ;test pattern for EOR
;logical results
absrlo: .byte 0,$ff,$7f,$80
absflo: .byte fz,fn,0,fn
data_bss_end:
;define area for page crossing JMP (abs) & JMP (abs,x) test
jxi_tab equ data_segment + $100 - 7 ;JMP (jxi_tab,x) x=6
ji_tab equ data_segment + $100 - 3 ;JMP (ji_tab+2)
jxp_tab equ data_segment + $100 ;JMP (jxp_tab-255) x=255
.CODE
.PC02
.org code_segment
start: cld
ldx #$ff
txs
lda #0 ;*** test 0 = initialize
sta test_case
test_num .set 0
;stop interrupts before initializing BSS
.if I_flag = 1
sei
.endif
;initialize I/O for report channel
.if report = 1
jsr report_init
.endif
;initialize BSS segment
.if load_data_direct <> 1
ldx #zp_end-zp_init-1
ld_zp: lda zp_init,x
sta zp_bss,x
dex
bpl ld_zp
ldx #data_end-data_init-1
ld_data:lda data_init,x
sta data_bss,x
dex
bpl ld_data
.if ROM_vectors = 1
ldx #5
ld_vect:lda vec_init,x
sta vec_bss,x
dex
bpl ld_vect
.endif
.endif
;retain status of interrupt flag
.if I_flag = 2
php
pla
and #4 ;isolate flag
sta flag_I_on ;or mask
eor #<(~4) ;reverse
sta flag_I_off ;and mask
.endif
;generate checksum for RAM integrity test
.if ram_top > -1
lda #0
sta zpt ;set low byte of indirect pointer
sta ram_chksm+1 ;checksum high byte
ldx #11 ;reset modifiable RAM
gcs1: sta jxi_tab,x ;JMP indirect page cross area
dex
bpl gcs1
clc
ldx #zp_bss-zero_page ;zeropage - write test area
gcs3: adc zero_page,x
bcc gcs2
inc ram_chksm+1 ;carry to high byte
clc
gcs2: inx
bne gcs3
ldx #>abs1 ;set high byte of indirect pointer
stx zpt+1
ldy #<abs1 ;data after write & execute test area
gcs5: adc (zpt),y
bcc gcs4
inc ram_chksm+1 ;carry to high byte
clc
gcs4: iny
bne gcs5
inx ;advance RAM high address
stx zpt+1
cpx #ram_top
bne gcs5
sta ram_chksm ;checksum complete
.endif
next_test
;testing stack operations PHX PHY PLX PLY
lda #$99 ;protect a
ldx #$ff ;initialize stack
txs
ldx #$55
phx
ldx #$aa
phx
cpx $1fe ;on stack ?
trap_ne
tsx
cpx #$fd ;sp decremented?
trap_ne
ply
cpy #$aa ;successful retreived from stack?
trap_ne
ply
cpy #$55
trap_ne
cpy $1ff ;remains on stack?
trap_ne
tsx
cpx #$ff ;sp incremented?
trap_ne
ldy #$a5
phy
ldy #$5a
phy
cpy $1fe ;on stack ?
trap_ne
tsx
cpx #$fd ;sp decremented?
trap_ne
plx
cpx #$5a ;successful retreived from stack?
trap_ne
plx
cpx #$a5
trap_ne
cpx $1ff ;remains on stack?
trap_ne
tsx
cpx #$ff ;sp incremented?
trap_ne
cmp #$99 ;unchanged?
trap_ne
next_test
; test PHX does not alter flags or X but PLX does
ldy #$aa ;protect y
set_x 1,$ff ;push
phx
tst_x 1,$ff
set_x 0,0
phx
tst_x 0,0
set_x $ff,$ff
phx
tst_x $ff,$ff
set_x 1,0
phx
tst_x 1,0
set_x 0,$ff
phx
tst_x 0,$ff
set_x $ff,0
phx
tst_x $ff,0
set_x 0,$ff ;pull
plx
tst_x $ff,$ff-zero
set_x $ff,0
plx
tst_x 0,zero
set_x $fe,$ff
plx
tst_x 1,$ff-zero-minus
set_x 0,0
plx
tst_x $ff,minus
set_x $ff,$ff
plx
tst_x 0,$ff-minus
set_x $fe,0
plx
tst_x 1,0
cpy #$aa ;Y unchanged
trap_ne
next_test
; test PHY does not alter flags or Y but PLY does
ldx #$55 ;x & a protected
set_y 1,$ff ;push
phy
tst_y 1,$ff
set_y 0,0
phy
tst_y 0,0
set_y $ff,$ff
phy
tst_y $ff,$ff
set_y 1,0
phy
tst_y 1,0
set_y 0,$ff
phy
tst_y 0,$ff
set_y $ff,0
phy
tst_y $ff,0
set_y 0,$ff ;pull
ply
tst_y $ff,$ff-zero
set_y $ff,0
ply
tst_y 0,zero
set_y $fe,$ff
ply
tst_y 1,$ff-zero-minus
set_y 0,0
ply
tst_y $ff,minus
set_y $ff,$ff
ply
tst_y 0,$ff-minus
set_y $fe,0
ply
tst_y 1,0
cpx #$55 ;x unchanged?
trap_ne
next_test
; PC modifying instructions (BRA, BBR, BBS, 1, 2, 3 byte NOPs, JMP(abs,x))
; testing unconditional branch BRA
ldx #$81 ;protect unused registers
ldy #$7e
set_a 0,$ff
bra br1 ;branch should always be taken
trap
br1:
tst_a 0,$ff
set_a $ff,0
bra br2 ;branch should always be taken
trap
br2:
tst_a $ff,0
cpx #$81
trap_ne
cpy #$7e
trap_ne
next_test
ldy #0 ;branch range test
bra bra0
bra1: cpy #1
trap_ne ;long range backward
iny
bra bra2
bra3: cpy #3
trap_ne ;long range backward
iny
bra bra4
bra5: cpy #5
trap_ne ;long range backward
iny
ldy #0
bra brf0
iny
iny
iny
iny
brf0: bra brf1
iny
iny
iny
brf1: iny
bra brf2
iny
iny
brf2: iny
iny
bra brf3
iny
brf3: iny
iny
iny
bra brf4
brf4: iny
iny
iny
iny
cpy #10
trap_ne ;short range forward
bra brb0
brb4: dey
dey
dey
dey
bra brb5
brb3: dey
dey
dey
bra brb4
brb2: dey
dey
bra brb3
brb1: dey
bra brb2
brb0: bra brb1
brb5: cpy #0
trap_ne ;short range backward
bra bra6
bra4: cpy #4
trap_ne ;long range forward
iny
bra bra5
bra2: cpy #2
trap_ne ;long range forward
iny
bra bra3
bra0: cpy #0
trap_ne ;long range forward
iny
bra bra1
bra6:
next_test
.if rkwl_wdc_op = 1
; testing BBR & BBS
.macro bbr n,b,r
.if n = 0
bbr0 b,r
.elseif n = 1
bbr1 b,r
.elseif n = 2
bbr2 b,r
.elseif n = 3
bbr3 b,r
.elseif n = 4
bbr4 b,r
.elseif n = 5
bbr5 b,r
.elseif n = 6
bbr6 b,r
.elseif n = 7
bbr7 b,r
.else
.error "syntax error in bbr"
.endif
.endmacro
.macro bbs n,b,r
.if n = 0
bbs0 b,r
.elseif n = 1
bbs1 b,r
.elseif n = 2
bbs2 b,r
.elseif n = 3
bbs3 b,r
.elseif n = 4
bbs4 b,r
.elseif n = 5
bbs5 b,r
.elseif n = 6
bbs6 b,r
.elseif n = 7
bbs7 b,r
.else
.error "syntax error in bbs"
.endif
.endmacro
.macro bbt bitnum
.local fail1, ok1, fail2, ok2, fail3, ok3, fail4, ok4
lda #(1<<bitnum) ;testing 1 bit on
sta zpt
set_a $33,0 ;with flags off
bbr bitnum,zpt,fail1
bbs bitnum,zpt,ok1
trap ;bbs branch not taken
fail1:
trap ;bbr branch taken
ok1:
tst_a $33,0
set_a $cc,$ff ;with flags on
bbr bitnum,zpt,fail2
bbs bitnum,zpt,ok2
trap ;bbs branch not taken
fail2:
trap ;bbr branch taken
ok2:
tst_a $cc,$ff
lda zpt
cmp #(1<<bitnum)
trap_ne ;zp altered
lda #$ff-(1<<bitnum) ;testing 1 bit off
sta zpt
set_a $33,0 ;with flags off
bbs bitnum,zpt,fail3
bbr bitnum,zpt,ok3
trap ;bbr branch not taken
fail3:
trap ;bbs branch taken
ok3:
tst_a $33,0
set_a $cc,$ff ;with flags on
bbs bitnum,zpt,fail4
bbr bitnum,zpt,ok4
trap ;bbr branch not taken
fail4:
trap ;bbs branch taken
ok4:
tst_a $cc,$ff
lda zpt
cmp #$ff-(1<<bitnum)
trap_ne ;zp altered
.endmacro
ldx #$11 ;test bbr/bbs integrity
ldy #$22
bbt 0
bbt 1
bbt 2
bbt 3
bbt 4
bbt 5
bbt 6
bbt 7
cpx #$11
trap_ne ;x overwritten
cpy #$22
trap_ne ;y overwritten
next_test
.macro bbrc bitnum
.local skip
bbr bitnum,zpt,skip
eor #(1<<bitnum)
skip:
.endmacro
.macro bbsc bitnum
.local skip
bbs bitnum,zpt,skip
eor #(1<<bitnum)
skip:
.endmacro
lda #0 ;combined bit test
sta zpt
bbcl: lda #0
bbrc 0
bbrc 1
bbrc 2
bbrc 3
bbrc 4
bbrc 5
bbrc 6
bbrc 7
eor zpt
trap_ne ;failed bbr bitnum in accu
lda #$ff
bbsc 0
bbsc 1
bbsc 2
bbsc 3
bbsc 4
bbsc 5
bbsc 6
bbsc 7
eor zpt
trap_ne ;failed bbs bitnum in accu
inc zpt
bne bbcl
next_test
.endif
; testing NOP
.macro nop_test opcode, num_bytes
ldy #$42
ldx #4-num_bytes
.byte opcode ;test nop length
.if num_bytes = 1
dex
dex
.endif
.if num_bytes = 2
iny
dex
.endif
.if num_bytes = 3
iny
iny
.endif
dex
trap_ne ;wrong number of bytes
set_a $ff-opcode,0
.byte opcode ;test nop integrity - flags off
nop
nop
tst_a $ff-opcode,0
.if $aa-opcode >= 0
set_a $aa-opcode,$ff
.else
set_a $ff+$aa-opcode,$ff
.endif
.byte opcode ;test nop integrity - flags on
nop
nop
.if $aa-opcode >= 0
tst_a $aa-opcode,$ff
.else
tst_a $ff+$aa-opcode,$ff
.endif
cpy #$42
trap_ne ;y changed
cpx #0
trap_ne ;x changed
.endmacro
.if skip_nop = 0
nop_test $02,2
nop_test $22,2
nop_test $42,2
nop_test $62,2
nop_test $82,2
nop_test $c2,2
nop_test $e2,2
nop_test $44,2
nop_test $54,2
nop_test $d4,2
nop_test $f4,2
nop_test $5c,3
nop_test $dc,3
nop_test $fc,3
nop_test $03,1
nop_test $13,1
nop_test $23,1
nop_test $33,1
nop_test $43,1
nop_test $53,1
nop_test $63,1
nop_test $73,1
nop_test $83,1
nop_test $93,1
nop_test $a3,1
nop_test $b3,1
nop_test $c3,1
nop_test $d3,1
nop_test $e3,1
nop_test $f3,1
nop_test $0b,1
nop_test $1b,1
nop_test $2b,1
nop_test $3b,1
nop_test $4b,1
nop_test $5b,1
nop_test $6b,1
nop_test $7b,1
nop_test $8b,1
nop_test $9b,1
nop_test $ab,1
nop_test $bb,1
nop_test $eb,1
nop_test $fb,1
.if rkwl_wdc_op = 0 ;NOPs not available on Rockwell & WDC 65C02
nop_test $07,1
nop_test $17,1
nop_test $27,1
nop_test $37,1
nop_test $47,1
nop_test $57,1
nop_test $67,1
nop_test $77,1
nop_test $87,1
nop_test $97,1
nop_test $a7,1
nop_test $b7,1
nop_test $c7,1
nop_test $d7,1
nop_test $e7,1
nop_test $f7,1
nop_test $0f,1
nop_test $1f,1
nop_test $2f,1
nop_test $3f,1
nop_test $4f,1
nop_test $5f,1
nop_test $6f,1
nop_test $7f,1
nop_test $8f,1
nop_test $9f,1
nop_test $af,1
nop_test $bf,1
nop_test $cf,1
nop_test $df,1
nop_test $ef,1
nop_test $ff,1
.endif
.if wdc_op = 0 ;NOPs not available on WDC 65C02 (WAI, STP)
nop_test $cb,1
nop_test $db,1
.endif
next_test
.endif
; jump indirect (test page cross bug is fixed)
ldx #3 ;prepare table
ji1: lda ji_adr,x
sta ji_tab,x
dex
bpl ji1
lda #>ji_px ;high address if page cross bug
sta pg_x
set_stat 0
lda #'I'
ldx #'N'
ldy #'D' ;N=0, V=0, Z=0, C=0
jmp (ji_tab)
nop
trap_ne ;runover protection
dey
dey
ji_ret: php ;either SP or Y count will fail, if we do not hit
dey
dey
dey
plp
trap_eq ;returned flags OK?
trap_pl
trap_cc
trap_vc
cmp #('I'^$aa) ;returned registers OK?
trap_ne
cpx #('N'+1)
trap_ne
cpy #('D'-6)
trap_ne
tsx ;SP check
cpx #$ff
trap_ne
next_test
; jump indexed indirect
ldx #11 ;prepare table
jxi1: lda jxi_adr,x
sta jxi_tab,x
dex
bpl jxi1
lda #>jxi_px ;high address if page cross bug
sta pg_x
set_stat 0
lda #'X'
ldx #4
ldy #'I' ;N=0, V=0, Z=0, C=0
jmp (jxi_tab,x)
nop
trap_ne ;runover protection
dey
dey
jxi_ret:php ;either SP or Y count will fail, if we do not hit
dey
dey
dey
plp
trap_eq ;returned flags OK?
trap_pl
trap_cc
trap_vc
cmp #('X'^$aa) ;returned registers OK?
trap_ne
cpx #6
trap_ne
cpy #('I'-6)
trap_ne
tsx ;SP check
cpx #$ff
trap_ne
lda #<jxp_ok ;test with index causing a page cross
sta jxp_tab
lda #>jxp_ok
sta jxp_tab+1
lda #<jxp_px
sta pg_x
lda #>jxp_px
sta pg_x+1
ldx #$ff
jmp (jxp_tab-$ff,x)
jxp_px:
trap ;page cross by index to wrong page
jxp_ok:
next_test
.if ROM_vectors = 1
; test BRK clears decimal mode
load_flag 0 ;with interrupts enabled if allowed!
pha
lda #'B'
ldx #'R'
ldy #'K'
plp ;N=0, V=0, Z=0, C=0
brk
dey ;should not be executed
brk_ret0: ;address of break return
php ;either SP or Y count will fail, if we do not hit
dey
dey
dey
cmp #'B'^$aa ;returned registers OK?
;the IRQ vector was never executed if A & X stay unmodified
trap_ne
cpx #'R'+1
trap_ne
cpy #'K'-6
trap_ne
pla ;returned flags OK (unchanged)?
cmp_flag 0
trap_ne
tsx ;sp?
cpx #$ff
trap_ne
;pass 2
load_flag $ff ;with interrupts disabled if allowed!
pha
lda #$ff-'B'
ldx #$ff-'R'
ldy #$ff-'K'
plp ;N=1, V=1, Z=1, C=1
brk
dey ;should not be executed
brk_ret1: ;address of break return
php ;either SP or Y count will fail, if we do not hit
dey
dey
dey
cmp #($ff-'B')^$aa ;returned registers OK?
;the IRQ vector was never executed if A & X stay unmodified
trap_ne
cpx #$ff-'R'+1
trap_ne
cpy #$ff-'K'-6
trap_ne
pla ;returned flags OK (unchanged)?
cmp_flag $ff
trap_ne
tsx ;sp?
cpx #$ff
trap_ne
next_test
.endif
; testing accumulator increment/decrement INC A & DEC A
ldx #$ac ;protect x & y
ldy #$dc
set_a $fe,$ff
inc a ;ff
tst_as $ff,$ff-zero
inc a ;00
tst_as 0,$ff-minus
inc a ;01
tst_as 1,$ff-minus-zero
dec a ;00
tst_as 0,$ff-minus
dec a ;ff
tst_as $ff,$ff-zero
dec a ;fe
set_a $fe,0
inc a ;ff
tst_as $ff,minus
inc a ;00
tst_as 0,zero
inc a ;01
tst_as 1,0
dec a ;00
tst_as 0,zero
dec a ;ff
tst_as $ff,minus
cpx #$ac
trap_ne ;x altered during test
cpy #$dc
trap_ne ;y altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
; testing load / store accumulator LDA / STA (zp)
ldx #$99 ;protect x & y
ldy #$66
set_stat 0
lda (ind1)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt)
php ;flags after load/store sequence
eor #$c3
cmp #$c3 ;test result
trap_ne
pla ;load status
eor_flag 0
cmp fLDx ;test flags
trap_ne
set_stat 0
lda (ind1+2)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt+2)
php ;flags after load/store sequence
eor #$c3
cmp #$82 ;test result
trap_ne
pla ;load status
eor_flag 0
cmp fLDx+1 ;test flags
trap_ne
set_stat 0
lda (ind1+4)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt+4)
php ;flags after load/store sequence
eor #$c3
cmp #$41 ;test result
trap_ne
pla ;load status
eor_flag 0
cmp fLDx+2 ;test flags
trap_ne
set_stat 0
lda (ind1+6)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt+6)
php ;flags after load/store sequence
eor #$c3
cmp #0 ;test result
trap_ne
pla ;load status
eor_flag 0
cmp fLDx+3 ;test flags
trap_ne
cpx #$99
trap_ne ;x altered during test
cpy #$66
trap_ne ;y altered during test
ldy #3 ;testing store result
ldx #0
tstai1: lda abst,y
eor #$c3
cmp abs1,y
trap_ne ;store to indirect data
txa
sta abst,y ;clear
dey
bpl tstai1
ldx #$99 ;protect x & y
ldy #$66
set_stat $ff
lda (ind1)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt)
php ;flags after load/store sequence
eor #$c3
cmp #$c3 ;test result
trap_ne
pla ;load status
eor_flag <(~fnz) ;mask bits not altered
cmp fLDx ;test flags
trap_ne
set_stat $ff
lda (ind1+2)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt+2)
php ;flags after load/store sequence
eor #$c3
cmp #$82 ;test result
trap_ne
pla ;load status
eor_flag <(~fnz) ;mask bits not altered
cmp fLDx+1 ;test flags
trap_ne
set_stat $ff
lda (ind1+4)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt+4)
php ;flags after load/store sequence
eor #$c3
cmp #$41 ;test result
trap_ne
pla ;load status
eor_flag <(~fnz) ;mask bits not altered
cmp fLDx+2 ;test flags
trap_ne
set_stat $ff
lda (ind1+6)
php ;test stores do not alter flags
eor #$c3
plp
sta (indt+6)
php ;flags after load/store sequence
eor #$c3
cmp #0 ;test result
trap_ne
pla ;load status
eor_flag <(~fnz) ;mask bits not altered
cmp fLDx+3 ;test flags
trap_ne
cpx #$99
trap_ne ;x altered during test
cpy #$66
trap_ne ;y altered during test
ldy #3 ;testing store result
ldx #0
tstai2: lda abst,y
eor #$c3
cmp abs1,y
trap_ne ;store to indirect data
txa
sta abst,y ;clear
dey
bpl tstai2
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
; testing STZ - zp / abs / zp,x / abs,x
ldy #123 ;protect y
ldx #4 ;precharge test area
lda #7
tstz1: sta zpt,x
asl a
dex
bpl tstz1
ldx #4
set_a $55,$ff
stz zpt
stz zpt+1
stz zpt+2
stz zpt+3
stz zpt+4
tst_a $55,$ff
tstz2: lda zpt,x ;verify zeros stored
trap_ne ;non zero after STZ zp
dex
bpl tstz2
ldx #4 ;precharge test area
lda #7
tstz3: sta zpt,x
asl a
dex
bpl tstz3
ldx #4
set_a $aa,0
stz zpt
stz zpt+1
stz zpt+2
stz zpt+3
stz zpt+4
tst_a $aa,0
tstz4: lda zpt,x ;verify zeros stored
trap_ne ;non zero after STZ zp
dex
bpl tstz4
ldx #4 ;precharge test area
lda #7
tstz5: sta abst,x
asl a
dex
bpl tstz5
ldx #4
set_a $55,$ff
stz abst
stz abst+1
stz abst+2
stz abst+3
stz abst+4
tst_a $55,$ff
tstz6: lda abst,x ;verify zeros stored
trap_ne ;non zero after STZ abs
dex
bpl tstz6
ldx #4 ;precharge test area
lda #7
tstz7: sta abst,x
asl a
dex
bpl tstz7
ldx #4
set_a $aa,0
stz abst
stz abst+1
stz abst+2
stz abst+3
stz abst+4
tst_a $aa,0
tstz8: lda abst,x ;verify zeros stored
trap_ne ;non zero after STZ abs
dex
bpl tstz8
ldx #4 ;precharge test area
lda #7
tstz11: sta zpt,x
asl a
dex
bpl tstz11
ldx #4
tstz15:
set_a $55,$ff
stz zpt,x
tst_a $55,$ff
dex
bpl tstz15
ldx #4
tstz12: lda zpt,x ;verify zeros stored
trap_ne ;non zero after STZ zp
dex
bpl tstz12
ldx #4 ;precharge test area
lda #7
tstz13: sta zpt,x
asl a
dex
bpl tstz13
ldx #4
tstz16:
set_a $aa,0
stz zpt,x
tst_a $aa,0
dex
bpl tstz16
ldx #4
tstz14: lda zpt,x ;verify zeros stored
trap_ne ;non zero after STZ zp
dex
bpl tstz14
ldx #4 ;precharge test area
lda #7
tstz21: sta abst,x
asl a
dex
bpl tstz21
ldx #4
tstz25:
set_a $55,$ff
stz abst,x
tst_a $55,$ff
dex
bpl tstz25
ldx #4
tstz22: lda abst,x ;verify zeros stored
trap_ne ;non zero after STZ zp
dex
bpl tstz22
ldx #4 ;precharge test area
lda #7
tstz23: sta abst,x
asl a
dex
bpl tstz23
ldx #4
tstz26:
set_a $aa,0
stz abst,x
tst_a $aa,0
dex
bpl tstz26
ldx #4
tstz24: lda abst,x ;verify zeros stored
trap_ne ;non zero after STZ zp
dex
bpl tstz24
cpy #123
trap_ne ;y altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
; testing BIT - zp,x / abs,x / #
ldy #$42
ldx #3
set_a $ff,0
bit zp1,x ;00 - should set Z / clear NV
tst_a $ff,fz
dex
set_a 1,0
bit zp1,x ;41 - should set V (M6) / clear NZ
tst_a 1,fv
dex
set_a 1,0
bit zp1,x ;82 - should set N (M7) & Z / clear V
tst_a 1,fnz
dex
set_a 1,0
bit zp1,x ;c3 - should set N (M7) & V (M6) / clear Z
tst_a 1,fnv
set_a 1,$ff
bit zp1,x ;c3 - should set N (M7) & V (M6) / clear Z
tst_a 1,~fz
inx
set_a 1,$ff
bit zp1,x ;82 - should set N (M7) & Z / clear V
tst_a 1,~fv
inx
set_a 1,$ff
bit zp1,x ;41 - should set V (M6) / clear NZ
tst_a 1,~fnz
inx
set_a $ff,$ff
bit zp1,x ;00 - should set Z / clear NV
tst_a $ff,~fnv
set_a $ff,0
bit abs1,x ;00 - should set Z / clear NV
tst_a $ff,fz
dex
set_a 1,0
bit abs1,x ;41 - should set V (M6) / clear NZ
tst_a 1,fv
dex
set_a 1,0
bit abs1,x ;82 - should set N (M7) & Z / clear V
tst_a 1,fnz
dex
set_a 1,0
bit abs1,x ;c3 - should set N (M7) & V (M6) / clear Z
tst_a 1,fnv
set_a 1,$ff
bit abs1,x ;c3 - should set N (M7) & V (M6) / clear Z
tst_a 1,~fz
inx
set_a 1,$ff
bit abs1,x ;82 - should set N (M7) & Z / clear V
tst_a 1,~fv
inx
set_a 1,$ff
bit abs1,x ;41 - should set V (M6) / clear NZ
tst_a 1,~fnz
inx
set_a $ff,$ff
bit abs1,x ;00 - should set Z / clear NV
tst_a $ff,~fnv
set_a $ff,0
bit #$00 ;00 - should set Z
tst_a $ff,fz
dex
set_a 1,0
bit #$41 ;41 - should clear Z
tst_a 1,0
; *** DEBUG INFO ***
; if it fails the previous test and your BIT # has set the V flag
; see http://forum.6502.org/viewtopic.php?f=2&t=2241&p=27243#p27239
; why it shouldn't alter N or V flags on a BIT #
dex
set_a 1,0
bit #$82 ;82 - should set Z
tst_a 1,fz
dex
set_a 1,0
bit #$c3 ;c3 - should clear Z
tst_a 1,0
set_a 1,$ff
bit #$c3 ;c3 - clear Z
tst_a 1,~fz
inx
set_a 1,$ff
bit #$82 ;82 - should set Z
tst_a 1,$ff
inx
set_a 1,$ff
bit #$41 ;41 - should clear Z
tst_a 1,~fz
inx
set_a $ff,$ff
bit #$00 ;00 - should set Z
tst_a $ff,$ff
cpx #3
trap_ne ;x altered during test
cpy #$42
trap_ne ;y altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
; testing TRB, TSB - zp / abs
.macro trbt memory, flags
sty memory
load_flag flags
pha
lda zpt+1
plp
trb memory
php
cmp zpt+1
trap_ne ;accu was changed
pla
pha
ora #fz ;mask Z
cmp_flag flags|fz
trap_ne ;flags changed except Z
pla
and #fz
cmp zpt+2
trap_ne ;Z flag invalid
lda zpt+3
cmp zpt
trap_ne ;altered bits in memory wrong
.endmacro
.macro tsbt memory, flags
sty memory
load_flag flags
pha
lda zpt+1
plp
tsb memory
php
cmp zpt+1
trap_ne ;accu was changed
pla
pha
ora #fz ;mask Z
cmp_flag flags|fz
trap_ne ;flags changed except Z
pla
and #fz
cmp zpt+2
trap_ne ;Z flag invalid
lda zpt+4
cmp zpt
trap_ne ;altered bits in memory wrong
.endmacro
ldx #$c0
ldy #0 ;op1 - memory save
; zpt ;op1 - memory modifiable
stz zpt+1 ;op2 - accu
; zpt+2 ;and flags
; zpt+3 ;memory after reset
; zpt+4 ;memory after set
tbt1: tya
and zpt+1 ;set Z by anding the 2 operands
php
pla
and #fz ;mask Z
sta zpt+2
tya ;reset op1 bits by op2
eor #$ff
ora zpt+1
eor #$ff
sta zpt+3
tya ;set op1 bits by op2
ora zpt+1
sta zpt+4
trbt zpt,$ff
trbt abst,$ff
trbt zpt,0
trbt abst,0
tsbt zpt,$ff
tsbt abst,$ff
tsbt zpt,0
tsbt abst,0
iny ;iterate op1
bne tbt3
inc zpt+1 ;iterate op2
beq tbt2
tbt3: jmp tbt1
tbt2:
cpx #$c0
trap_ne ;x altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
.if rkwl_wdc_op = 1
; testing RMB, SMB - zp
.macro rmb n,addr
.if n = 0
rmb0 addr
.elseif n = 1
rmb1 addr
.elseif n = 2
rmb2 addr
.elseif n = 3
rmb3 addr
.elseif n = 4
rmb4 addr
.elseif n = 5
rmb5 addr
.elseif n = 6
rmb6 addr
.elseif n = 7
rmb7 addr
.else
.error "syntax error in rmb"
.endif
.endmacro
.macro smb n,addr
.if n = 0
smb0 addr
.elseif n = 1
smb1 addr
.elseif n = 2
smb2 addr
.elseif n = 3
smb3 addr
.elseif n = 4
smb4 addr
.elseif n = 5
smb5 addr
.elseif n = 6
smb6 addr
.elseif n = 7
smb7 addr
.else
.error "syntax error in smb"
.endif
.endmacro
.macro rmbt bitnum
lda #$ff
sta zpt
set_a $a5,0
rmb bitnum,zpt
tst_a $a5,0
lda zpt
cmp #$ff-(1<<bitnum)
trap_ne ;wrong bits set or cleared
lda #1<<bitnum
sta zpt
set_a $5a,$ff
rmb bitnum,zpt
tst_a $5a,$ff
lda zpt
trap_ne ;wrong bits set or cleared
.endmacro
.macro smbt bitnum
lda #$ff-(1<<bitnum)
sta zpt
set_a $a5,0
smb bitnum,zpt
tst_a $a5,0
lda zpt
cmp #$ff
trap_ne ;wrong bits set or cleared
lda #0
sta zpt
set_a $5a,$ff
smb bitnum,zpt
tst_a $5a,$ff
lda zpt
cmp #1<<bitnum
trap_ne ;wrong bits set or cleared
.endmacro
ldx #$ba ;protect x & y
ldy #$d0
rmbt 0
rmbt 1
rmbt 2
rmbt 3
rmbt 4
rmbt 5
rmbt 6
rmbt 7
smbt 0
smbt 1
smbt 2
smbt 3
smbt 4
smbt 5
smbt 6
smbt 7
cpx #$ba
trap_ne ;x altered during test
cpy #$d0
trap_ne ;y altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
.endif
; testing CMP - (zp)
ldx #$de ;protect x & y
ldy #$ad
set_a $80,0
cmp (ind1+8)
tst_a $80,fc
set_a $7f,0
cmp (ind1+8)
tst_a $7f,fzc
set_a $7e,0
cmp (ind1+8)
tst_a $7e,fn
set_a $80,$ff
cmp (ind1+8)
tst_a $80,~fnz
set_a $7f,$ff
cmp (ind1+8)
tst_a $7f,~fn
set_a $7e,$ff
cmp (ind1+8)
tst_a $7e,~fzc
cpx #$de
trap_ne ;x altered during test
cpy #$ad
trap_ne ;y altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
; testing logical instructions - AND EOR ORA (zp)
ldx #$42 ;protect x & y
ldy #0 ;AND
lda indAN ;set indirect address
sta zpt
lda indAN+1
sta zpt+1
tand1:
set_ay absANa,0
and (zpt)
tst_ay absrlo,absflo,0
inc zpt
iny
cpy #4
bne tand1
dey
dec zpt
tand2:
set_ay absANa,$ff
and (zpt)
tst_ay absrlo,absflo,$ff-fnz
dec zpt
dey
bpl tand2
ldy #0 ;EOR
lda indEO ;set indirect address
sta zpt
lda indEO+1
sta zpt+1
teor1:
set_ay absEOa,0
eor (zpt)
tst_ay absrlo,absflo,0
inc zpt
iny
cpy #4
bne teor1
dey
dec zpt
teor2:
set_ay absEOa,$ff
eor (zpt)
tst_ay absrlo,absflo,$ff-fnz
dec zpt
dey
bpl teor2
ldy #0 ;ORA
lda indOR ;set indirect address
sta zpt
lda indOR+1
sta zpt+1
tora1:
set_ay absORa,0
ora (zpt)
tst_ay absrlo,absflo,0
inc zpt
iny
cpy #4
bne tora1
dey
dec zpt
tora2:
set_ay absORa,$ff
ora (zpt)
tst_ay absrlo,absflo,$ff-fnz
dec zpt
dey
bpl tora2
cpx #$42
trap_ne ;x altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
.if I_flag = 3
cli
.endif
; full binary add/subtract test - (zp) only
; iterates through all combinations of operands and carry input
; uses increments/decrements to predict result & result flags
cld
ldx #ad2 ;for indexed test
ldy #$ff ;max range
lda #0 ;start with adding zeroes & no carry
sta adfc ;carry in - for diag
sta ad1 ;operand 1 - accumulator
sta ad2 ;operand 2 - memory or immediate
sta ada2 ;non zp
sta adrl ;expected result bits 0-7
sta adrh ;expected result bit 8 (carry out)
lda #$ff ;complemented operand 2 for subtract
sta sb2
sta sba2 ;non zp
lda #2 ;expected Z-flag
sta adrf
tadd: clc ;test with carry clear
jsr chkadd
inc adfc ;now with carry
inc adrl ;result +1
php ;save N & Z from low result
php
pla ;accu holds expected flags
and #$82 ;mask N & Z
plp
bne tadd1
inc adrh ;result bit 8 - carry
tadd1: ora adrh ;merge C to expected flags
sta adrf ;save expected flags except overflow
sec ;test with carry set
jsr chkadd
dec adfc ;same for operand +1 but no carry
inc ad1
bne tadd ;iterate op1
lda #0 ;preset result to op2 when op1 = 0
sta adrh
inc ada2
inc ad2
php ;save NZ as operand 2 becomes the new result
pla
and #$82 ;mask N00000Z0
sta adrf ;no need to check carry as we are adding to 0
dec sb2 ;complement subtract operand 2
dec sba2
lda ad2
sta adrl
bne tadd ;iterate op2
cpx #ad2
trap_ne ;x altered during test
cpy #$ff
trap_ne ;y altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
next_test
; decimal add/subtract test
; *** WARNING - tests documented behavior only! ***
; only valid BCD operands are tested, the V flag is ignored
; although V is declared as beeing valid on the 65C02 it has absolutely
; no use in BCD math. No sign = no overflow!
; iterates through all valid combinations of operands and carry input
; uses increments/decrements to predict result & carry flag
sed
ldx #ad2 ;for indexed test
ldy #$ff ;max range
lda #$99 ;start with adding 99 to 99 with carry
sta ad1 ;operand 1 - accumulator
sta ad2 ;operand 2 - memory or immediate
sta ada2 ;non zp
sta adrl ;expected result bits 0-7
lda #1 ;set carry in & out
sta adfc ;carry in - for diag
sta adrh ;expected result bit 8 (carry out)
lda #$81 ;set N & C (99 + 99 + C = 99 + C)
sta adrf
lda #0 ;complemented operand 2 for subtract
sta sb2
sta sba2 ;non zp
tdad: sec ;test with carry set
jsr chkdad
dec adfc ;now with carry clear
lda adrl ;decimal adjust result
bne tdad1 ;skip clear carry & preset result 99 (9A-1)
dec adrh
lda #$99
sta adrl
bne tdad3
tdad1: and #$f ;lower nibble mask
bne tdad2 ;no decimal adjust needed
dec adrl ;decimal adjust (?0-6)
dec adrl
dec adrl
dec adrl
dec adrl
dec adrl
tdad2: dec adrl ;result -1
tdad3: php ;save valid flags
pla
and #$82 ;N-----Z-
ora adrh ;N-----ZC
sta adrf
clc ;test with carry clear
jsr chkdad
inc adfc ;same for operand -1 but with carry
lda ad1 ;decimal adjust operand 1
beq tdad5 ;iterate operand 2
and #$f ;lower nibble mask
bne tdad4 ;skip decimal adjust
dec ad1 ;decimal adjust (?0-6)
dec ad1
dec ad1
dec ad1
dec ad1
dec ad1
tdad4: dec ad1 ;operand 1 -1
jmp tdad ;iterate op1
tdad5: lda #$99 ;precharge op1 max
sta ad1
lda ad2 ;decimal adjust operand 2
beq tdad7 ;end of iteration
and #$f ;lower nibble mask
bne tdad6 ;skip decimal adjust
dec ad2 ;decimal adjust (?0-6)
dec ad2
dec ad2
dec ad2
dec ad2
dec ad2
inc sb2 ;complemented decimal adjust for subtract (?9+6)
inc sb2
inc sb2
inc sb2
inc sb2
inc sb2
tdad6: dec ad2 ;operand 2 -1
inc sb2 ;complemented operand for subtract
lda sb2
sta sba2 ;copy as non zp operand
lda ad2
sta ada2 ;copy as non zp operand
sta adrl ;new result since op1+carry=00+carry +op2=op2
php ;save flags
pla
and #$82 ;N-----Z-
ora #1 ;N-----ZC
sta adrf
inc adrh ;result carry
jmp tdad ;iterate op2
tdad7: cpx #ad2
trap_ne ;x altered during test
cpy #$ff
trap_ne ;y altered during test
tsx
cpx #$ff
trap_ne ;sp push/pop mismatch
cld
lda test_case
cmp #test_num
trap_ne ;previous test is out of sequence
lda #$f0 ;mark opcode testing complete
sta test_case
; final RAM integrity test
; verifies that none of the previous tests has altered RAM outside of the
; designated write areas.
check_ram
; *** DEBUG INFO ***
; to debug checksum errors uncomment check_ram in the next_test macro to
; narrow down the responsible opcode.
; may give false errors when monitor, OS or other background activity is
; allowed during previous tests.
; S U C C E S S ************************************************
; -------------
success ;if you get here everything went well
; -------------
; S U C C E S S ************************************************
jmp start ;run again
; core subroutine of the decimal add/subtract test
; *** WARNING - tests documented behavior only! ***
; only valid BCD operands are tested, V flag is ignored
; iterates through all valid combinations of operands and carry input
; uses increments/decrements to predict result & carry flag
chkdad:
; decimal ADC / SBC zp
php ;save carry for subtract
lda ad1
adc ad2 ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc sb2 ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC abs
php ;save carry for subtract
lda ad1
adc ada2 ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc sba2 ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC #
php ;save carry for subtract
lda ad2
sta ex_adci+1 ;set ADC # operand
lda ad1
jsr ex_adci ;execute ADC # in RAM
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda sb2
sta ex_sbci+1 ;set SBC # operand
lda ad1
jsr ex_sbci ;execute SBC # in RAM
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC zp,x
php ;save carry for subtract
lda ad1
adc 0,x ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc sb2-ad2,x ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC abs,x
php ;save carry for subtract
lda ad1
adc ada2-ad2,x ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc sba2-ad2,x ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC abs,y
php ;save carry for subtract
lda ad1
adc ada2-$ff,y ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc sba2-$ff,y ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC (zp,x)
php ;save carry for subtract
lda ad1
adc (<(adi2-ad2),x) ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc (<(sbi2-ad2),x) ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC (abs),y
php ;save carry for subtract
lda ad1
adc (adiy2),y ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc (sbiy2),y ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
; decimal ADC / SBC (zp)
php ;save carry for subtract
lda ad1
adc (adi2) ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc (sbi2) ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$83 ;mask N-----ZC
cmp adrf
trap_ne ;bad flags
plp
rts
; core subroutine of the full binary add/subtract test
; iterates through all combinations of operands and carry input
; uses increments/decrements to predict result & result flags
chkadd: lda adrf ;add V-flag if overflow
and #$83 ;keep N-----ZC / clear V
pha
lda ad1 ;test sign unequal between operands
eor ad2
bmi ckad1 ;no overflow possible - operands have different sign
lda ad1 ;test sign equal between operands and result
eor adrl
bpl ckad1 ;no overflow occured - operand and result have same sign
pla
ora #$40 ;set V
pha
ckad1: pla
sta adrf ;save expected flags
; binary ADC / SBC (zp)
php ;save carry for subtract
lda ad1
adc (adi2) ;perform add
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$c3 ;mask NV----ZC
cmp adrf
trap_ne ;bad flags
plp
php ;save carry for next add
lda ad1
sbc (sbi2) ;perform subtract
php
cmp adrl ;check result
trap_ne ;bad result
pla ;check flags
and #$c3 ;mask NV----ZC
cmp adrf
trap_ne ;bad flags
plp
rts
; target for the jump indirect test
ji_adr: .word test_ji
.word ji_ret
dey
dey
test_ji:
php ;either SP or Y count will fail, if we do not hit
dey
dey
dey
plp
trap_cs ;flags loaded?
trap_vs
trap_mi
trap_eq
cmp #'I' ;registers loaded?
trap_ne
cpx #'N'
trap_ne
cpy #('D'-3)
trap_ne
pha ;save a,x
txa
pha
tsx
cpx #$fd ;check SP
trap_ne
pla ;restore x
tax
set_stat $ff
pla ;restore a
inx ;return registers with modifications
eor #$aa ;N=1, V=1, Z=0, C=1
jmp (ji_tab+2)
nop
nop
trap ;runover protection
jmp start ;catastrophic error - cannot continue
; target for the jump indirect test
jxi_adr:.word trap_ind
.word trap_ind
.word test_jxi ;+4
.word jxi_ret ;+6
.word trap_ind
.word trap_ind
dey
dey
test_jxi:
php ;either SP or Y count will fail, if we do not hit
dey
dey
dey
plp
trap_cs ;flags loaded?
trap_vs
trap_mi
trap_eq
cmp #'X' ;registers loaded?
trap_ne
cpx #4
trap_ne
cpy #('I'-3)
trap_ne
pha ;save a,x
txa
pha
tsx
cpx #$fd ;check SP
trap_ne
pla ;restore x
tax
set_stat $ff
pla ;restore a
inx ;return registers with modifications
inx
eor #$aa ;N=1, V=1, Z=0, C=1
jmp (jxi_tab,x)
nop
nop
trap ;runover protection
jmp start ;catastrophic error - cannot continue
; JMP (abs,x) with bad x
nop
nop
trap_ind:
nop
nop
trap ;near miss indexed indirect jump
jmp start ;catastrophic error - cannot continue
;trap in case of unexpected IRQ, NMI, BRK, RESET
nmi_trap:
trap ;check stack for conditions at NMI
jmp start ;catastrophic error - cannot continue
res_trap:
trap ;unexpected RESET
jmp start ;catastrophic error - cannot continue
dey
dey
irq_trap: ;BRK test or unextpected BRK or IRQ
php ;either SP or Y count will fail, if we do not hit
dey
dey
dey
;next traps could be caused by unexpected BRK or IRQ
;check stack for BREAK and originating location
;possible jump/branch into weeds (uninitialized space)
cmp #$ff-'B' ;BRK pass 2 registers loaded?
beq break2
cmp #'B' ;BRK pass 1 registers loaded?
trap_ne
cpx #'R'
trap_ne
cpy #'K'-3
trap_ne
sta irq_a ;save registers during break test
stx irq_x
tsx ;test break on stack
lda $102,x
cmp_flag 0 ;break test should have B=1 & unused=1 on stack
trap_ne ;possible no break flag on stack
pla
cmp_flag intdis ;should have added interrupt disable
trap_ne
tsx
cpx #$fc ;sp -3? (return addr, flags)
trap_ne
lda $1ff ;propper return on stack
cmp #>brk_ret0
trap_ne
lda $1fe
cmp #<brk_ret0
trap_ne
load_flag $ff
pha
ldx irq_x
inx ;return registers with modifications
lda irq_a
eor #$aa
plp ;N=1, V=1, Z=1, C=1 but original flags should be restored
rti
trap ;runover protection
jmp start ;catastrophic error - cannot continue
break2: ;BRK pass 2
cpx #$ff-'R'
trap_ne
cpy #$ff-'K'-3
trap_ne
sta irq_a ;save registers during break test
stx irq_x
tsx ;test break on stack
lda $102,x
cmp_flag $ff ;break test should have B=1
trap_ne ;possibly no break flag on stack
pla
cmp_flag $ff-decmode ;actual passed flags should have decmode cleared
trap_ne
tsx
cpx #$fc ;sp -3? (return addr, flags)
trap_ne
lda $1ff ;propper return on stack
cmp #>brk_ret1
trap_ne
lda $1fe
cmp #<brk_ret1
trap_ne
load_flag intdis
pha
ldx irq_x
inx ;return registers with modifications
lda irq_a
eor #$aa
plp ;N=0, V=0, Z=0, C=0 but original flags should be restored
rti
trap ;runover protection
jmp start ;catastrophic error - cannot continue
.if report = 1
.include "report.i65"
.endif
;copy of data to initialize BSS segment
.if load_data_direct <> 1
zp_init:
zp1_: .byte $c3,$82,$41,0 ;test patterns for LDx BIT ROL ROR ASL LSR
zp7f_: .byte $7f ;test pattern for compare
;logical zeropage operands
zpOR_: .byte 0,$1f,$71,$80 ;test pattern for OR
zpAN_: .byte $0f,$ff,$7f,$80 ;test pattern for AND
zpEO_: .byte $ff,$0f,$8f,$8f ;test pattern for EOR
;indirect addressing pointers
ind1_: .word abs1 ;indirect pointer to pattern in absolute memory
.word abs1+1
.word abs1+2
.word abs1+3
.word abs7f
inw1_: .word abs1-$f8 ;indirect pointer for wrap-test pattern
indt_: .word abst ;indirect pointer to store area in absolute memory
.word abst+1
.word abst+2
.word abst+3
inwt_: .word abst-$f8 ;indirect pointer for wrap-test store
indAN_: .word absAN ;indirect pointer to AND pattern in absolute memory
.word absAN+1
.word absAN+2
.word absAN+3
indEO_: .word absEO ;indirect pointer to EOR pattern in absolute memory
.word absEO+1
.word absEO+2
.word absEO+3
indOR_: .word absOR ;indirect pointer to OR pattern in absolute memory
.word absOR+1
.word absOR+2
.word absOR+3
;add/subtract indirect pointers
adi2_: .word ada2 ;indirect pointer to operand 2 in absolute memory
sbi2_: .word sba2 ;indirect pointer to complemented operand 2 (SBC)
adiy2_: .word ada2-$ff ;with offset for indirect indexed
sbiy2_: .word sba2-$ff
zp_end:
.if (zp_end - zp_init) <> (zp_bss_end - zp_bss)
;force assembler error if size is different
.error "mismatch between bss and zeropage data"
.endif
data_init:
ex_adc_:adc #0 ;execute immediate opcodes
rts
ex_sbc_:sbc #0 ;execute immediate opcodes
rts
abs1_: .byte $c3,$82,$41,0 ;test patterns for LDx BIT ROL ROR ASL LSR
abs7f_: .byte $7f ;test pattern for compare
;loads
fLDx_: .byte fn,fn,0,fz ;expected flags for load
;shifts
rASL_: ;expected result ASL & ROL -carry
rROL_: .byte $86,$04,$82,0 ; "
rROLc_: .byte $87,$05,$83,1 ;expected result ROL +carry
rLSR_: ;expected result LSR & ROR -carry
rROR_: .byte $61,$41,$20,0 ; "
rRORc_: .byte $e1,$c1,$a0,$80 ;expected result ROR +carry
fASL_: ;expected flags for shifts
fROL_: .byte fnc,fc,fn,fz ;no carry in
fROLc_: .byte fnc,fc,fn,0 ;carry in
fLSR_:
fROR_: .byte fc,0,fc,fz ;no carry in
fRORc_: .byte fnc,fn,fnc,fn ;carry in
;increments (decrements)
rINC_: .byte $7f,$80,$ff,0,1 ;expected result for INC/DEC
fINC_: .byte 0,fn,fn,fz,0 ;expected flags for INC/DEC
;logical memory operand
absOR_: .byte 0,$1f,$71,$80 ;test pattern for OR
absAN_: .byte $0f,$ff,$7f,$80 ;test pattern for AND
absEO_: .byte $ff,$0f,$8f,$8f ;test pattern for EOR
;logical accu operand
absORa_:.byte 0,$f1,$1f,0 ;test pattern for OR
absANa_:.byte $f0,$ff,$ff,$ff ;test pattern for AND
absEOa_:.byte $ff,$f0,$f0,$0f ;test pattern for EOR
;logical results
absrlo_:.byte 0,$ff,$7f,$80
absflo_:.byte fz,fn,0,fn
data_end:
.if (data_end - data_init) <> (data_bss_end - data_bss)
;force assembler error if size is different
.error "mismatch between bss and data"
.endif
vec_init:
.word nmi_trap
.word res_trap
.word irq_trap
vec_bss equ $fffa
.endif ;end of RAM init data
; code at end of image due to the need to add blank space as required
.if ($ff & (ji_ret - * - 2)) < ($ff & (jxi_ret - * - 2))
; JMP (abs) when $xxff and $xx00 are from same page
.res <(ji_ret - * - 2)
nop
nop
ji_px: nop ;low address byte matched with ji_ret
nop
trap ;jmp indirect page cross bug
; JMP (abs,x) when $xxff and $xx00 are from same page
.res <(jxi_ret - * - 2)
nop
nop
jxi_px: nop ;low address byte matched with jxi_ret
nop
trap ;jmp indexed indirect page cross bug
.else
; JMP (abs,x) when $xxff and $xx00 are from same page
.res <(jxi_ret - * - 2)
nop
nop
jxi_px: nop ;low address byte matched with jxi_ret
nop
trap ;jmp indexed indirect page cross bug
; JMP (abs) when $xxff and $xx00 are from same page
.res <(ji_ret - * - 2)
nop
nop
ji_px: nop ;low address byte matched with ji_ret
nop
trap ;jmp indirect page cross bug
.endif
.if (load_data_direct = 1) & (ROM_vectors = 1)
.segment "VECTORS"
.word nmi_trap
.word res_trap
.word irq_trap
.endif