
Programming with Ophis

Michael Martin

Programming with Ophis
by Michael Martin

Copyright © 2006-2012 Michael Martin

Table of Contents
Preface .. v

History of the project .. v
Getting a copy of Ophis.. v
About the examples ... vi

I. Using the Ophis Assembler ..1
1. The basics ..1

A note on numeric notation ..1
Producing Commodore 64 programs ..1
Related commands and options ...2
Writing the actual code ..3
Assembling the code ..3

2. Labels and aliases...5
Temporary labels ..5
Anonymous labels ..5
Aliasing ..5

3. Headers, Libraries, and Macros ...7
Header files and libraries ..7
Macros ..7
Example code ..8

4. Character maps...9
5. Local variables and memory segments...11
6. Expressions..13
7. Advanced Memory Segments ..15

The Problem ..15
The Solution...15
Where to go from here ...16

II. To HLL and Back..17
8. The Second Step..17

The problem ..17
The solution ...17
Unsigned arithmetic...17
16-bit addition and subtraction ..18
16-bit comparisons..18

9. Structured Programming ..19
Control constructs...19
The stack ..21
Procedures and register saving...21
Variables...22
Data structures ..23
A modest example: Insertion sort on linked lists...26

10. Pointers and Indirection..31
The absolute basics ...31
Pointer arithmetic ...31
What about Indexed Indirect? ..32
Comparison with the other indexed forms...33
Conclusion ...33

11. Functionals ..35
Function Pointers..35
A quick digression on how subroutines work ...35
Dispatch-on-type and Data-Directed Assembler...35
VTables and Object-Oriented Assembler ..36
A final reminder..37

12. Call Stacks ...39
Recursion ...39
Our Goals...39
Example: Fibonnacci Numbers...41

iii

A. Example Programs ...43
hello1.oph ...43
hello2.oph ...43
c64-1.oph ...43
c64kernal.oph...44
hello3.oph ...45
hello4a.oph ...46
hello4b.oph ...47
hello4c.oph ...48
hello5.oph ...49
hello6.oph ...50
c64_0.oph ...52
hello7.oph ...53
structuredemo.oph ..54
fibonacci.oph...58

B. Ophis Command Reference ...63
Command Modes...63
Basic arguments..63

Numeric types...63
Label types...63
String types..64

Compound Arguments ...64
Memory Model ...64

Basic PC tracking ..64
Basic Segmentation simulation...65
General Segmentation Simulation ...65

Macros..66
Defining Macros..66
Invoking Macros ...66
Passing Arguments to Macros ..66
Features and Restrictions of the Ophis Macro Model66

Assembler directives..67

iv

Preface

Ophis is an assembler for the 6502 microprocessor - the famous chip used in the vast
majority of the classic 8-bit computers and consoles. Its primary design goals are code
readability and output flexibility - Ophis has successfully been used to create pro-
grams for the Nintendo Entertainment System, the Atari 2600, and the Commodore
64.

Ophis’s syntax is noticably different from the formats traditionally used for these
chips; it draws its syntactic inspiration primarily from the assemblers for more mod-
ern chips, where the role of tokens is determined more by what they’re made of and
their grammatical location on a line rather than their absolute position on a line. It
also borrows the sophisticated methods of tracking the location of labels when writ-
ing relinkable code—Ophis expects that the final output it produces will have only a
vague resemblance to the memory image when loaded. Most of the alternatives when
Ophis was first designed would place instructions and data into a memory map and
then dump that map.

That said, there remain many actively used 6502 assemblers out there. If you’re al-
ready a seasoned 6502 assembly programmer, or want to get your old sources built
again, Ophis is likely not for you—however, if you are writing new code, or are new
to the chip while still having other experience, then Ophis is a tool built with you in
mind.

History of the project
The Ophis project started on a lark back in 2001. My graduate studies required me to
learn Perl and Python, and I’d been playing around with Commodore 64 emulators
in my spare time, so I decided to learn both languages by writing a simple cross-
assembler for the 6502 chip the C64 used in both.

The Perl one—uncreatively dubbed “Perl65”—was quickly abandoned, but the
Python one saw more work. When it came time to name it, one of the things I
had been hoping to do with the assembler was to produce working Apple II
programs. “Ophis” is Greek for “snake”, and a number of traditions also use it
as the actual name of the serpent in the Garden of Eden. So, Pythons, snakes, and
stories involving really old Apples all combined to name the assembler.1

Ophis slowly grew in scope and power over the years, and by 2005 was a very pow-
erful, flexible macro assembler that saw more use than I’d expect. In 2007 Ophis 1.0
was formally released. However, Ophis was written for Python 2.1 and this became
more and more untenable as time has gone by. As I started receiving patches for
parts of Ophis, and as I used it for some projects of my own, it became clear that
Ophis needed to be modernized and to become better able to interoperate with other
toolchains. It was this process that led to Ophis 2.

This is an updated edition of Programming With Ophis, including documentation for
all new features introduced and expanding the examples to include simple demon-
stration programs for platforms besides the Commodore 64. It also includes updated
versions of the To HLL and Back essays I wrote using Ophis and Perl65 as example
languages.

Getting a copy of Ophis
As of this writing, the Ophis assembler is hosted at Github. The latest downloads
and documentation will be available at http://github.com/michaelcmartin/Ophis.
If this is out-of-date, a Web search on “Ophis 6502 assembler” (without the quotation
marks) should yield its page.

Ophis is written entirely in Python and packaged using the distutils. The default
installation script on Unix and Mac OS X systems should put the files where they

v

Preface

need to go. If you are running it locally, you will need to install the Ophis package
somewhere in your Python package path, and then put the ophis script somewhere
in your path.

For Windows users, a prepackaged system made with py2exe is also available.
The default Windows installer will use this. In this case, all you need to do is have
ophis.exe in your path.

If you are working on a system with Python installed but to which you do not wish
to install software, there is also a standalone pure-Python edition with an ophis.py
script. This may be placed anywhere and running ophis.py will temporarily set the
library path to point to your directory.

About the examples
Versions of the examples in this book are available from the Ophis site. Windows
users will find them packaged with the distribution; all other users can get them as a
separate download or pull them directly from github.

The code in this book is available in the examples/ subdirectory, while extra exam-
ples will be in subdirectories of their own with brief descriptions. They are largely all
simple “Hello world” applications, designed mainly to demonstrate how to package
assembled binaries into forms that emulators or ROM loaders can use. They are not
primarily intended as tutorials for writing for the platforms themselves.

Most examples will require use of platform headers—standardized header files that set
useful constants for the target system and, if needed, contain small programs to allow
the program to be loaded and run. These are stored in the platform/ subdirectory.

Notes
1. Ironically, cross-platform development for the Apple II is extremely difficult, and

while Ophis has been very successfully used to develop code for the Commodore
64, Nintendo Entertainment System, and Atari 2600, it has yet to actually be de-
ployed on any of the Apples which inspired its name.

vi

Chapter 1. The basics

In this first part of the tutorial we will create a simple “Hello World” program to run
on the Commodore 64. This will cover:

• How to make programs run on a Commodore 64

• Writing simple code with labels

• Numeric and string data

• Invoking the assembler

A note on numeric notation
Throughout these tutorials, I will be using a lot of both decimal and hexadecimal
notation. Hex numbers will have a dollar sign in front of them. Thus, 100 = $64, and
$100 = 256.

Producing Commodore 64 programs
Commodore 64 programs are stored in the PRG format on disk. Some emulators (such
as CCS64 or VICE) can run PRG programs directly; others need them to be transferred
to a D64 image first.

The PRG format is ludicrously simple. It has two bytes of header data: This is a little-
endian number indicating the starting address. The rest of the file is a single con-
tinuous chunk of data loaded into memory, starting at that address. BASIC memory
starts at memory location 2048, and that’s probably where we’ll want to start.

Well, not quite. We want our program to be callable from BASIC, so we should have
a BASIC program at the start. We guess the size of a simple one line BASIC program
to be about 16 bytes. Thus, we start our program at memory location 2064 ($0810),
and the BASIC program looks like this:

10 SYS 2064

We SAVE this program to a file, then study it in a debugger. It’s 15 bytes long:

1070:0100 01 08 0C 08 0A 00 9E 20-32 30 36 34 00 00 00

The first two bytes are the memory location: $0801. The rest of the data breaks down
as follows:

Table 1-1. BASIC program breakdown

Memory Locations Value

$0801-$0802 2-byte pointer to the next line of BASIC
code ($080C).

$0803-$0804 2-byte line number ($000A = 10).

$0805 Byte code for the SYS command.

$0806-$080A The rest of the line, which is just the
string “ 2064”.

1

Chapter 1. The basics

Memory Locations Value
$080B Null byte, terminating the line.

$080C-$080D 2-byte pointer to the next line of BASIC
code ($0000 = end of program).

That’s 13 bytes. We started at 2049, so we need 2 more bytes of filler to make our
code actually start at location 2064. These 17 bytes will give us the file format and the
BASIC code we need to have our machine language program run.

These are just bytes—indistinguishable from any other sort of data. In Ophis, bytes
of data are specified with the .byte command. We’ll also have to tell Ophis what
the program counter should be, so that it knows what values to assign to our labels.
The .org (origin) command tells Ophis this. Thus, the Ophis code for our header and
linking info is:

.byte $01, $08, $0C, $08, $0A, $00, $9E, $20

.byte $32, $30, $36, $34, $00, $00, $00, $00

.byte $00, $00

.org $0810

This gets the job done, but it’s completely incomprehensible, and it only uses two
directives—not very good for a tutorial. Here’s a more complicated, but much clearer,
way of saying the same thing.

.word $0801

.org $0801

.word next, 10 ; Next line and current line number

.byte $9e," 2064",0 ; SYS 2064
next: .word 0 ; End of program

.advance 2064

This code has many advantages over the first.

• It describes better what is actually happening. The .word directive at the beginning
indicates a 16-bit value stored in the typical 65xx way (small byte first). This is
followed by an .org statement, so we let the assembler know right away where
everything is supposed to be.

• Instead of hardcoding in the value $080C, we instead use a label to identify the
location it’s pointing to. Ophis will compute the address of next and put that value
in as data. We also describe the line number in decimal since BASIC line numbers
generally are in decimal. Labels are defined by putting their name, then a colon, as
seen in the definition of next.

• Instead of putting in the hex codes for the string part of the BASIC code, we in-
cluded the string directly. Each character in the string becomes one byte.

• Instead of adding the buffer ourselves, we used .advance, which outputs zeros un-
til the specified address is reached. Attempting to .advance backwards produces
an assemble-time error. (If we wanted to output something besides zeros, we could
add it as a second argument: .advance 2064,$FF, for instance.)

• It has comments that explain what the data are for. The semicolon is the comment
marker; everything from a semicolon to the end of the line is ignored.

2

Chapter 1. The basics

Related commands and options
This code includes constants that are both in decimal and in hex. It is also possible to
specify constants in octal, binary, or with an ASCII character.

• To specify decimal constants, simply write the number.

• To specify hexadecimal constants, put a $ in front.

• To specify octal constants, put a 0 (zero) in front.

• To specify binary constants, put a % in front.

• To specify ASCII constants, put an apostrophe in front.

Example: 65 = $41 = 0101 = %1000001 = ’A

There are other commands besides .byte and .word to specify data. In particular,
the .dword command specifies four-byte values which some applications will find
useful. Also, some linking formats (such as the SID format) have header data in big-
endian (high byte first) format. The .wordbe and .dwordbe directives provide a way
to specify multibyte constants in big-endian formats cleanly.

Writing the actual code
Now that we have our header information, let’s actually write the “Hello world”
program. It’s pretty short—a simple loop that steps through a hardcoded array until
it reaches a 0 or outputs 256 characters. It then returns control to BASIC with an RTS
statement.

Each character in the array is passed as an argument to a subroutine at memory lo-
cation $FFD2. This is part of the Commodore 64’s BIOS software, which its devel-
opment documentation calls the KERNAL. Location $FFD2 prints out the character
corresponding to the character code in the accumulator.

ldx #0
loop: lda hello, x

beq done
jsr $ffd2
inx
bne loop

done: rts

hello: .byte "HELLO, WORLD!", 0

The complete, final source is available in the hello1.oph file.

Assembling the code
The Ophis assembler is a collection of Python modules, controlled by a master script.
On Windows, this should all have been combined into an executable file ophis.exe;
on other platforms, the Ophis modules should be in the library and the ophis script
should be in your path. Typing ophis with no arguments should give a summary of
available command line options.

Ophis takes a list of source files and produces an output file based on assembling
each file you give it, in order. You can add a line to your program like this to name
the output file:

.outfile "hello.prg"

3

Chapter 1. The basics

Alternately, you can use the -o option on the command line. This will override any
.outfile directives. If you don’t specify any name, it will put the output into a file
named ophis.bin.

If you are using Ophis as part of some larger toolchain, you can also make it run in
pipe mode. If you give a dash - as an input file or as the output target, Ophis will use
standard input or output for communication.

Table 1-2. Ophis Options

Option Effect

-o FILE Overrides the default filename for
output.

-u Allows the 6510 undocumented opcodes
as listed in the VICE documentation.

-c Allows opcodes and addressing modes
added by the 65C02.

-q Quiet operation. Only reports warnings
and errors.

-v Verbose operation. Reports files as they
are loaded.

The only options Ophis demands are an input file and an output file. Here’s a sample
session, assembling the tutorial file here:

localhost$ ophis -v hello1.oph
Loading hello1.oph
Assembly complete: 45 bytes output (14 code, 29 data, 2 filler)

This will produce a file named hello.prg. If your emulator can run PRG files directly,
this file will now run (and print HELLO, WORLD!) as many times as you type RUN.
Otherwise, use a D64 management utility to put the PRG on a D64, then load and run
the file off that.

4

Chapter 2. Labels and aliases

Labels are an important part of your code. However, since each label must normally
be unique, this can lead to “namespace pollution,” and you’ll find yourself going
through ever more contorted constructions to generate unique label names. Ophis
offers two solutions to this: anonymous labels and temporary labels. This tutorial will
cover both of these facilities, and also introduce the aliasing mechanism.

Temporary labels
Temporary labels are the easiest to use. If a label begins with an underscore, it will
only be reachable from inside the innermost enclosing scope. Scopes begin when a
.scope statement is encountered. This produces a new, inner scope if there is another
scope in use. The .scend command ends the innermost currently active scope.

We can thus rewrite our header data using temporary labels, thus allowing the main
program to have a label named next if it wants.

.word $0801

.org $0801

.scope
.word _next, 10 ; Next line and current line number
.byte $9e," 2064",0 ; SYS 2064

_next: .word 0 ; End of program
.scend

.advance 2064

Anonymous labels
Anonymous labels are a way to handle short-ranged branches without having to
come up with names for the then and else branches, for brief loops, and other such
purposes. To define an anonymous label, use an asterisk. To refer to an anonymous
label, use a series of + or - signs. + refers to the next anonymous label, ++ the label
after that, etc. Likewise, - is the most recently defined label, -- the one before that,
and so on. The main body of the Hello World program with anonymous labels would
be:

ldx #0
* lda hello, x

beq +
jsr $ffd2
inx
bne -

* rts

It is worth noting that anonymous labels are globally available. They are not tempo-
rary labels, and they ignore scoping restrictions.

Aliasing
Rather the reverse of anonymous labels, aliases are names given to specific memory
locations. These make it easier to keep track of important constants or locations. The
KERNAL routines are a good example of constants that deserve names. To assign the
traditional name chrout to the routine at $FFD2, simply give the directive:

.alias chrout $ffd2

5

Chapter 2. Labels and aliases

And change the jsr command to:

jsr chrout

The final version of the code is in hello2.oph. It should assemble to exactly the same
program as hello1.oph.

6

Chapter 3. Headers, Libraries, and Macros

In this chapter we will split away parts of our “Hello World” program into reusable
header files and libraries. We will also abstract away our string printing technique
into a macro which may be invoked at will, on arbitrary strings. We will then multiply
the output of our program tenfold.

Header files and libraries
The prelude to our program—the PRG information and the BASIC program—are go-
ing to be the same in many, many programs. Thus, we should put them into a header
file to be included later. The .include directive will load a file and insert it as source
at the designated point.

A related directive, .require, will include the file as long as it hasn’t been included
yet elsewhere. It is useful for ensuring a library is linked in.

For pre-assembled code or raw binary data, the .incbin directive lets you include
the contents of a binary file directly in the output. This is handy for linking in pre-
created graphics or sound data.

If you only wish to include part of a binary file, .incbin takes up to two optional ar-
guments, naming the file offset at which to start reading and the number of characters
to read.

As a sample library, we will expand the definition of the chrout routine to include
the standard names for every KERNAL routine. Our header file will then .require
it.

We’ll also add some convenience aliases for things like reverse video, color changes,
and shifting between upper case/graphics and mixed case text. We’d feed those to
the chrout routine to get their effects.

Since there have been no interesting changes to the prelude, and the KERNAL values
are standard, we do not reproduce them here. (The files in question are c64-1.oph and
c64kernal.oph.) The c64kernal.oph header is likely to be useful in your own projects,
and it is available in the platform/ directory for easy inclusion.

Macros
A macro is a way of expressing a lot of code or data with a simple shorthand. It’s
also usually configurable. Traditional macro systems such as C’s #define mechanic
use textual replacement: a macro is expanded before any evaluation or even parsing
occurs.

In contrast, Ophis’s macro system uses a call by value approach where the arguments
to macros are evaluated to bytes or words before being inserted into the macro body.
This produces effects much closer to those of a traditional function call. A more de-
tailed discussion of the tradeoffs may be found in Appendix B.

Macro definitions
A macro definition is a set of statements between a .macro statement and a .macend
statement. The .macro statement also names the macro being defined.

No global or anonymous labels may be defined inside a macro: temporary labels only
persist in the macro expansion itself. (Each macro body has its own scope.)

Arguments to macros are referred to by number: the first is _1, the second _2, and so
on.

7

Chapter 3. Headers, Libraries, and Macros

Here’s a macro that encapsulates the printing routine in our “Hello World” program,
with an argument being the address of the string to print:

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

Macro invocations
Macros may be invoked in two ways: one that looks like a directive, and one that
looks like an instruction.

The most common way to invoke a macro is to backquote the name of the macro. It
is also possible to use the .invoke command. These commands look like this:

‘print msg
.invoke print msg

Arguments are passed to the macro as a comma-separated list. They must all be ex-
pressions that evaluate to byte or word values—a mechanism similar to .alias is
used to assign their values to the _n names.

Example code
hello3.oph expands our running example, including the code above and also defining
a new macro greet that takes a string argument and prints a greeting to it. It then
greets far too many targets.

8

Chapter 4. Character maps

Now we will close the gap between the Commodore’s version of ASCII and the real
one. We’ll also add a time-delay routine to slow down the output. This routine isn’t
really of interest to us right now, so we’ll add a subroutine called delay that executes
2,560*(accumulator) NOPs. By the time the program is finished, we’ll have executed
768,000 no-ops.

There actually are better ways of getting a time-delay on the Commodore 64; we’ll
deal with those in Chapter 5. As a result, there isn’t really a lot to discuss here. The
later tutorials will be building off of hello4a.oph, so you may want to get familiar with
that. Note also the change to the body of the greet macro.

On to the topic at hand. Let’s change the code to use mixed case. We defined the
upper’case and lower’case aliases back in Chapter 3 as part of the standard
c64kernal.oph header, so we can add this before our invocations of the greet macro:

lda #lower’case
jsr chrout

And that will put us into mixed case mode. So, now we just need to redefine the data
so that it uses the mixed-case:

hello1: .byte "Hello, ",0
hello2: .byte "!", 13, 0

target1: .byte "programmer", 0
target2: .byte "room", 0
target3: .byte "building", 0
target4: .byte "neighborhood", 0
target5: .byte "city", 0
target6: .byte "nation", 0
target7: .byte "world", 0
target8: .byte "Solar System", 0
target9: .byte "Galaxy", 0
target10: .byte "Universe", 0

The code that does this is in hello4b.oph. If you assemble and run it, you will notice
that the output is not what we want. In particular, upper and lowercase are reversed,
so we have messages like hELLO, sOLAR sYSTEM!. For the specific case of PETSCII,
we can just fix our strings, but that’s less of an option if we’re writing for a game
console that puts its letters in arbitrary locations. We need to remap how strings are
turned into byte values. The .charmap and .charmapbin directives do what we need.

The .charmap directive usually takes two arguments; a byte (usually in character
form) indicating the ASCII value to start remapping from, and then a string giving
the new values. To do our case-swapping, we write two directives before defining
any string constants:

.charmap ’A, "abcdefghijklmnopqrstuvwxyz"

.charmap ’a, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Note that the ’a constant in the second directive refers to the “a” character in the
source, not in the current map.

The fixed code is in hello4c.oph, and will produce the expected results when run.

An alternative is to use a .charmapbin directive to replace the entire character map
directly. This specifies an external file, 256 bytes long, that is loaded in at that point. A
binary character map for the Commodore 64 is provided with the sample programs
as petscii.map.

9

Chapter 4. Character maps

10

Chapter 5. Local variables and memory segments

As mentioned in Chapter 4, there are better ways to handle waiting than just execut-
ing vast numbers of NOPs. The Commodore 64 KERNAL library includes a rdtim
routine that returns the uptime of the machine, in 60ths of a second, as a 24-bit inte-
ger. The Commodore 64 programmer’s guide available online actually has a bug in
it, reversing the significance of the A and Y registers. The accumulator holds the least
significant byte, not the most.

Here’s a first shot at a better delay routine:

.scope
; data used by the delay routine
_tmp: .byte 0
_target: .byte 0

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

This works, but it eats up two bytes of file space that don’t really need to be specified.
Also, it’s modifying data inside a program text area, which isn’t good if you’re assem-
bling to a ROM chip. (Since the Commodore 64 stores its programs in RAM, it’s not
an issue for us here.) A slightly better solution is to use .alias to assign the names to
chunks of RAM somewhere. There’s a 4K chunk of RAM from $C000 through $CFFF
between the BASIC ROM and the I/O ROM that should serve our purposes nicely.
We can replace the definitions of _tmp and _target with:

; data used by the delay routine
.alias _tmp $C000
.alias _target $C001

This works better, but now we’ve just added a major bookkeeping burden upon our-
selves—we must ensure that no routines step on each other. What we’d really like are
two separate program counters—one for the program text, and one for our variable
space.

Ophis lets us do this with the .text and .data commands. The .text command
switches to the program-text counter, and the .data command switches to the
variable-data counter. When Ophis first starts assembling a file, it starts in .text
mode.

To reserve space for a variable, use the .space command. This takes the form:

.space varname size

which assigns the name varname to the current program counter, then advances the
program counter by the amount specified in size. Nothing is output to the final
binary as a result of the .space command.

You may not put in any commands that produce output into a .data segment. Gen-
erally, all you will be using are .org and .space commands. Ophis will not complain
if you use .space inside a .text segment, but this is nearly always wrong.

The final version of delay looks like this:

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).

11

Chapter 5. Local variables and memory segments

.scope

.data

.space _tmp 1

.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

We’re not quite done yet, however, because we have to tell the data segment where
to begin. (If we don’t, it starts at 0, which is usually wrong.) We add a very brief data
segment to the top of our code:

.data

.org $C000

.text

This will run. However, we also ought to make sure that we aren’t overstepping any
boundaries. Our program text shouldn’t run into the BASIC chip at $A000, and our
data shouldn’t run into the I/O region at $D000. The .checkpc command lets us
assert that the program counter hasn’t reached a specific point yet. We put, at the end
of our code:

.checkpc $A000

.data

.checkpc $D000

The final program is available as hello5.oph. Note that we based this on the
all-uppercase version from the last section, not any of the charmapped versions.

12

Chapter 6. Expressions

Ophis permits a reasonably rich set of arithmetic operations to be done at assem-
ble time. So far, all of our arguments and values have either been constants or label
names. In this chapter, we will modify the print macro so that it calls a subroutine
to do the actual printing. This will shrink the final code size a fair bit.

Here’s our printing routine. It’s fairly straightforward.

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

.scope
printstr:

sta $10
stx $11
ldy #$00

_lp: lda ($10), y
beq _done
jsr chrout
iny
bne _lp

_done: rts
.scend

However, now we are faced with the problem of what to do with the print macro.
We need to take a 16-bit value and store it in two 8-bit registers. We can use the < and
> operators to take the low or high byte of a word, respectively. The print macro
becomes:

.macro print
lda #<_1
ldx #>_1
jsr printstr

.macend

Also, since BASIC uses the locations $10 and $11, we should really cache them at the
start of the program and restore them at the end:

.data

.org $C000

.space cache 2

.text

; Save the zero page locations that printstr uses.
lda $10
sta cache
lda $11
sta cache+1

; ... main program goes here ...

; Restore the zero page values printstr uses.
lda cache
sta $10
lda cache+1
sta $11

Note that we only have to name cache once, but can use addition to refer to any
offset from it.

Ophis supports following operations, with the following precedence levels (higher
entries bind more tightly):

13

Chapter 6. Expressions

Table 6-1. Ophis Operators

Operators Description

[] Parenthesized expressions

< > Byte selection (low, high)

* / Multiply, divide

+ - Add, subtract

| & ^ Bitwise OR, AND, XOR

Note that brackets, not parentheses, are used to group arithmetic operations. This is
because parentheses are used for the indirect addressing modes, and it makes parsing
much easier.

The code for this version of the code is in hello6.oph.

14

Chapter 7. Advanced Memory Segments

This is the last section of the Ophis tutorial. By now we’ve covered the basics of every
command in the assembler; in this final installment we show the full capabilities of
the .text and .data commands as we produce a final set of Commodore 64 header
files.

The Problem
Our print’str routine in hello6.oph accesses memory locations $10 and $11 directly.
We’d prefer to have symbolic names for them. This reprises our concerns back in
Chapter 5 when we concluded that we wanted two separate program counters. Now
we realize that we really need three; one for the text, one for the data, and one for
the zero page data. And if we’re going to allow three, we really should allow any
number.

The Solution
The .data and .text commands can take a label name after them—this names a
new segment. We’ll define a new segment called zp (for “zero page”) and have our
zero-page variables be placed there. We can’t actually use the default origin of $0000
here either, though, because the Commodore 64 reserves memory locations 0 and 1
to control its memory mappers:

.data zp

.org $0002

Now, actually, the rest of the zero page is reserved too: locations $02-$7F are used
by the BASIC interpreter, and locations $80-$FF are used by the KERNAL. We don’t
need the BASIC interpreter, though, so we can back up all of $02-$7F at the start of
our program and restore it all when we’re done.

In fact, since we’re disablng BASIC, we can actually also swap out its ROM entirely
and get a contiguous block of RAM from $0002 to $CFFF:

.scope
; Cache BASIC zero page at top of available RAM
ldx #$7E

* lda $01, x
sta $CF81, x
dex
bne -

; Swap out the BASIC ROM for RAM
lda $01
and #$fe
ora #$06
sta $01

; Run the real program
jsr _main

; Restore BASIC ROM
lda $01
ora #$07
sta $01

; Restore BASIC zero page
ldx #$7E

* lda $CF81, x
sta $01, x

15

Chapter 7. Advanced Memory Segments

dex
bne -

; Back to BASIC
rts

_main:
; _main points at the start of the real program,
; which is actually outside of this scope

.scend

The new, improved header file is c64_0.oph. This, like c64kernal.oph, is available for
use in your own projects in the platform/ directory.

Our print’str routine is then rewritten to declare and use a zero-page variable, like
so:

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

.scope

.data zp

.space _ptr 2

.text
printstr:

sta _ptr
stx _ptr+1
ldy #$00

_lp: lda (_ptr),y
beq _done
jsr chrout
iny
bne _lp

_done: rts
.scend

Also, we ought to put in an extra check to make sure our zero-page allocations don’t
overflow, either:

.data zp

.checkpc $80

That concludes our tour. The final source file is hello7.oph.

Where to go from here
This tutorial has touched on everything that the assembler can do, but it’s not really
well organized as a reference. Appendix B is a better place to look up matters of
syntax or consult lists of available commands.

If you’re looking for projects to undertake, the Commodore 64 and Atari 2600 devel-
opment communities are both very strong, and the Apple II and NES development
communities are still alive and well as well. There’s an annual Minigame Competi-
tion that’s always looking for new entries.

16

Chapter 8. The Second Step

This essay discusses how to do 16-or-more bit addition and subtraction on the 6502,
and how to do unsigned comparisons properly, thus making 16-bit arithmetic less
necessary.

The problem
The ADC, SBC, INX, and INY instructions are the only real arithmetic instructions the
6502 chip has. In and of themselves, they aren’t too useful for general applications:
the accumulator can only hold 8 bits, and thus can’t store any value over 255. Matters
get even worse when we’re branching based on values; BMI and BPL hinge on the
seventh (sign) bit of the result, so we can’t represent any value above 127.

The solution
We have two solutions available to us. First, we can use the “unsigned” discipline,
which involves checking different flags, but lets us deal with values between 0 and
255 instead of -128 to 127. Second, we can trade speed and register persistence for
multiple precision arithmetic, using 16-bit integers (-32768 to 32767, or 0-65535), 24-
bit, or more.

Multiplication, division, and floating point arithmetic are beyond the scope of this
essay. The best way to deal with those is to find a math library on the web (I recom-
mend http://www.6502.org/) and use the routines there.

Unsigned arithmetic
When writing control code that hinges on numbers, we should always strive to have
our comparison be with zero; that way, no explicit compare is necessary, and we
can branch simply with BEQ/BNE, which test the zero flag. Otherwise, we use CMP.
The CMP command subtracts its argument from the accumulator (without borrow),
updates the flags, but throws away the result. If the value is equal, the result is zero.
(CMP followed by BEQ branches if the argument is equal to the accumulator; this is
probably why it’s called BEQ and not something like BZS.)

Intuitively, then, to check if the accumulator is less than some value, we CMP against
that value and BMI. The BMI command branches based on the Negative Flag, which
is equal to the seventh bit of CMP’s subtract. That’s exactly what we need, for signed
arithmetic. However, this produces problems if you’re writing a boundary detector
on your screen or something and find that 192 < 4. 192 is outside of a signed byte’s
range, and is interpreted as if it were -64. This will not do for most graphics applica-
tions, where your values will be ranging from 0-319 or 0-199 or 0-255.

Instead, we take advantage of the implied subtraction that CMP does. When subtract-
ing, the result’s carry bit starts at 1, and gets borrowed from if necessary. Let us con-
sider some four-bit subtractions.

C|3210 C|3210
------ ------
1|1001 9 1|1001 9
|0100 - 4 |1100 -12

------ --- ------ ---
1|0101 5 0|1101 -3

The CMP command properly modifies the carry bit to reflect this. When computing
A-B, the carry bit is set if A >= B, and it’s clear if A < B. Consider the following two
code sequences.

17

Chapter 8. The Second Step

(1) (2)
CMP #$C0 CMP #$C0
BMI label BCC label

The code in the first column treats the value in the accumulator as a signed value,
and branches if the value is less than -64. (Because of overflow issues, it will actually
branch for accumulator values between $40 and $BF, even though it *should* only be
doing it for values between $80 and $BF. To see why, compare $40 to $C0 and look at
the result.) The second column code treats the accumulator as holding an unsigned
value, and branches if the value is less than 192. It will branch for accumulator values
$00-$BF.

16-bit addition and subtraction
Time to use the carry bit for what it was meant to do. Adding two 8 bit numbers can
produce a 9-bit result. That 9th bit is stored in the carry flag. The ADC command adds
the carry value to its result, as well. Thus, carries work just as we’d expect them to.
Suppose we’re storing two 16-bit values, low byte first, in $C100-1 and $C102-3. To
add them together and store them in $C104-5, this is very easy:

CLC
LDA $C100
ADC $C102
STA $C104
LDA $C101
ADC $C103
STA $C105

Subtraction is identical, but you set the carry bit first with SEC (because borrow is the
complement of carry—think about how the unsigned compare works if this puzzles
you) and, of course, using the SBC instruction instead of ADC.

The carry/borrow bit is set appropriately to let you continue, too. As long as you just
keep working your way up to bytes of ever-higher significance, this generalizes to 24
(do it three times instead of two) or 32 (four, etc.) bit integers.

16-bit comparisons
Doing comparisons on extended precision values is about the same as doing them on
8-bit values, but you have to have the value you test in memory, since it won’t fit in
the accumulator all at once. You don’t have to store the values back anywhere, either,
since all you care about is the final state of the flags. For example, here’s a signed
comparison, branching to label if the value in $C100-1 is less than 1000 ($03E8):

SEC
LDA $C100
SBC #$E8
LDA $C101 ; We only need the carry bit from that subtract
SBC #$03
BMI label

All the commentary on signed and unsigned compares holds for 16-bit (or higher)
integers just as it does for the 8-bit ones.

18

Chapter 9. Structured Programming

This essay discusses the machine language equivalents of the basic “structured pro-
gramming” concepts that are part of the “imperative” family of programming lan-
guages: if/then/else, for/next, while loops, and procedures. It also discusses basic
use of variables, as well as arrays, multi-byte data types (records), and sub-byte data
types (bitfields). It closes by hand-compiling pseudo-code for an insertion sort on
linked lists into assembler. A complete Commodore 64 application is included as a
sample with this essay.

Control constructs

Branches: if x then y else z

This is almost the most basic control construct. The most basic is if x then y, which
is a simple branch instruction (bcc/bcs/beq/bmi/bne/bpl/bvc/bvs) past the “then”
clause if the conditional is false:

iny
bne no’overflow
inx

no’overflow:
;; rest of code

This increments the value of the y register, and if it just wrapped back around to
zero, it increments the x register too. It is basically equivalent to the C statement if
((++y)==0) ++x;. We need a few more labels to handle else clauses as well.

;; Computation of the conditional expression.
;; We assume for the sake of the example that
;; we want to execute the THEN clause if the
;; zero bit is set, otherwise the ELSE
;; clause. This will happen after a CMP,
;; which is the most common kind of ’if’
;; statement anyway.

BNE else’clause

;; THEN clause code goes here.

JMP end’of’if’stmt
else’clause:

;; ELSE clause code goes here.

end’of’if’stmt:
;; ... rest of code.

Free loops: while x do y

A free loop is one that might execute any number of times. These are basically just a
combination of if and goto. For a “while x do y” loop, that executes zero or more
times, you’d have code like this...

loop’begin:
;; ... computation of condition, setting zero
;; bit if loop is finished...
beq loop’done
;; ... loop body goes here
jmp loop’begin

19

Chapter 9. Structured Programming

loop’done:
;; ... rest of program.

If you want to ensure that the loop body executes at least once (do y while x), just
move the test to the end.

loop’begin:
;; ... loop body goes here
;; ... computation of condition, setting zero
;; bit if loop is finished...
bne loop’begin
;; ... rest of program.

The choice of zero bit is kind of arbitrary here. If the condition involves the carry bit,
or overflow, or negative, then replace the beq with bcs/bvs/bmi appropriately.

Bounded loops: for i = x to y do z

A special case of loops is one where you know exactly how many times you’re going
through it—this is called a bounded loop. Suppose you’re copying 16 bytes from $C000
to $D000. The C code for that would look something like this:

int *a = 0xC000;
int *b = 0xD000;
int i;
for (i = 0; i < 16; i++) { a[i] = b[i]; }

C doesn’t directly support bounded loops; its for statement is just “syntactic sugar”
for a while statement. However, we can take advantage of special purpose machine
instructions to get very straightforward code:

ldx #$00
loop:

lda $c000, x
sta $d000, x
inx
cpx #$10
bmi loop

However, remember that every arithmetic operation, including inx and dex, sets the
various flags, including the Zero bit. That means that if we can make our computation
end when the counter hits zero, we can shave off some bytes:

ldx #$10
loop:

lda #$bfff, x
sta #$cfff, x
dex
bne loop

Notice that we had to change the addresses we’re indexing from, because x takes a
slightly different range of values. The space savings is small here, and it’s become
slightly more unclear. (It also hasn’t actually saved any time, because the lda and sta
instructions are crossing a page boundary where they weren’t before—but if the start
or end arrays began at $b020 or something this wouldn’t be an issue.) This tends to
work better when the precise value of the counter isn’t used in the computation—so
let us consider the NES, which uses memory location $2007 as a port to its video
memory. Suppose we wish to jam 4,096 copies of the hex value $20 into the video
memory. We can write this very cleanly, using the X and Y registers as indices in a
nested loop.

ldx #$10

20

Chapter 9. Structured Programming

ldy #$00
lda #$20

loop:
sta $2007
iny
bne loop
dex
bne loop

Work through this code. Convince yourself that the sta is executed exactly 16*256 =
4096 times.

This is an example of a nested loop: a loop inside a loop. Since our internal loop didn’t
need the X or Y registers, we got to use both of them, which is nice, because they have
special incrementing and decrementing instructions. The accumulator lacks these in-
structions, so it is a poor choice to use for index variables. If you have a bounded
loop and don’t have access to registers, use memory locations instead:

lda #$10
sta counter ; loop 16 times

loop:
;; Do stuff that trashes all the registers
dec counter
bne loop

That’s it! These are the basic control constructs for using inside of procedures. Before
talking about how to organize procedures, I’ll briefly cover the way the 6502 handles
its stack, because stacks and procedures are very tightly intertwined.

The stack
The 6502 has an onboard stack in page 1. You can modify the stack pointer by stor-
ing values in X register and using txs; an “empty” stack is value $FF. Going into a
procedure pushes the address of the next instruction onto the stack, and RTS pops
that value off and jumps there. (Well, not precisely. JSR actually pushes a value that’s
one instruction short, and RTS loads the value, increases it by one, and THEN jumps
there. But that’s only an issue if you’re using RTS to implement jump tables.) On an
interrupt, the next instruction’s address is pushed on the stack, then the process flags,
and it jumps to the handler. The return from interrupt restores the flags and the PC,
just as if nothing had happened.

The stack only has 256 possible entries; since addresses take two bytes to store, that
means that if you call something that calls something that calls something that (etc.,
etc., 129 times), your computation will fail. This can happen faster if you save regis-
ters or memory values on the stack (see below).

Procedures and register saving
All programming languages are designed around the concept of procedures.1 Proce-
dures let you break a computation up into different parts, then use them indepen-
dently. However, compilers do a lot of work for you behind the scenes to let you
think this. Consider the following assembler code. How many times does the loop
execute?

loop: ldx #$10 jsr do’stuff dex bne loop

The correct answer is “I don’t know, but it should be 16.” The reason we don’t know
is because we’re assuming here that the do’stuff routine doesn’t change the value
of the X register. If it does, than all sorts of chaos could result. For major routines that

21

Chapter 9. Structured Programming

aren’t called often but are called in places where the register state is important, you
should store the old registers on the stack with code like this:

do’stuff:
pha
txa
pha
tya
pha

;; Rest of do’stuff goes here

pla
tay
pla
tax
pla
rts

(Remember, the last item pushed onto the stack is the first one pulled off, so you have
to restore them in reverse order.) That’s three more bytes on the stack, so you don’t
want to do this if you don’t absolutely have to. If do’stuff actually doesn’t touch X,
there’s no need to save and restore the value. This technique is called callee-save.

The reverse technique is called caller-save and pushes important registers onto the
stack before the routine is called, then restores them afterwards. Each technique has
its advantages and disadvantages. The best way to handle it in your own code is to
mark at the top of each routine which registers need to be saved by the caller. (It’s
also useful to note things like how it takes arguments and how it returns values.)

Variables
Variables come in several flavors.

Global variables
Global variables are variables that can be reached from any point in the program.
Since the 6502 has no memory protection, these are easy to declare. Take some ran-
dom chunk of unused memory and declare it to be the global variables area. All rea-
sonable assemblers have commands that let you give a symbolic name to a memory
location—you can use this to give your globals names.

Local variables
All modern languages have some concept of “local variables”, which are data val-
ues unique to that invocation of that procedure. In modern architecures, this data is
stored into and read directly off of the stack. The 6502 doesn’t really let you do this
cleanly; I’ll discuss ways of handling it in a later essay. If you’re implementing a sys-
tem from scratch, you can design your memory model to not require such extreme
measures. There are three basic techniques.

Treat local variables like registers
This means that any memory location you use, you save on the stack and restore
afterwards. This can really eat up stack space, and it’s really slow, it’s often pointless,
and it has a tendency to overflow the stack. I can’t recommend it. But it does let you
do recursion right, if you don’t need to save much memory and you aren’t recursing
very deep.

22

Chapter 9. Structured Programming

Procedure-based memory allocation
With this technique, you give each procedure its own little chunk of memory for use
with its data. All the variables are still, technically, globals; a routine could interfere
with another’s, but the discipline of “only mess with real globals, and your own
locals” is very, very easy to maintain.

This has many advantages. It’s very fast, both to write and to run, because loading a
variable is an Absolute or Zero Page instruction. Also, any procedure may call any
other procedure, as long as it doesn’t wind up calling itself at some point.

It has two major disadvantages. First, if many routines need a lot of space, it can
consume more memory than it should. Also, this technique can require significant
assembler support—you must ensure that no procedure’s local variables are defined
in the same place as any other procedure, and it essentially requires a full symbolic
linker to do right. Ophis includes commands for memory segmentation simulation that
automate most of this task, and make writing general libraries feasible.

Partition-based memory allocation
It’s not really necessary that no procedure overwrite memory used by any other pro-
cedure. It’s only required that procedures don’t write on the memory that their callers
use. Suppose that your program is organized into a bunch of procedures, and each
fall into one of three sets:

• Procedures in set A don’t call anyone.

• Procedures in set B only call procedures in set A.

• Procedures in set C only call procedures in sets A or B.

Now, each set can be given its own chunk of memory, and we can be absolutely sure
that no procedures overwrite each other. Even if every procedure in set C uses the
same memory location, they’ll never step on each other, because there’s no way to get
to any other routine in set C from any routine in set C.

This has the same time efficiencies as procedure-based memory allocation, and, given
a thoughtful design aimed at using this technique, also can use significantly less
memory at run time. It’s also requires much less assembler support, as addresses for
variables may be assigned by hand without having to worry about those addresses
already being used. However, it does impose a very tight discipline on the design
of the overall system, so you’ll have to do a lot more work before you start actually
writing code.

Constants
Constants are “variables” that don’t change. If you know that the value you’re us-
ing is not going to change, you should fold it into the code, either as an Immediate
operand wherever it’s used, or (if it’s more complicated than that) as .byte com-
mands in between the procedures. This is especially important for ROM-based sys-
tems such as the NES; the NES has very little RAM available, so constants should be
kept in the more plentiful ROM wherever possible.

Data structures
So far, we’ve been treating data as a bunch of one-byte values. There really isn’t a
lot you can do just with bytes. This section talks about how to deal with larger and
smaller elements.

23

Chapter 9. Structured Programming

Arrays
An array is a bunch of data elements in a row. An array of bytes is very easy to
handle with the 6502 chip, because the various indexed addressing modes handle it
for you. Just load the index into the X or Y register and do an absolute indexed load.
In general, these are going to be zero-indexed (that is, a 32-byte array is indexed from
0 to 31.) This code would initialize a byte array with 32 entries to 0:

lda #$00
tax

loop:
sta array,x
inx
cpx #$20
bne loop

(If you count down to save instructions, remember to adjust the base address so that
it’s still writing the same memory location.)

This approach to arrays has some limits. Primary among them is that we can’t have
arrays of size larger than 256; we can’t fit our index into the index register. In order to
address larger arrays, we need to use the indirect indexed addressing mode. We use
16-bit addition to add the offset to the base pointer, then set the Y register to 0 and
then load the value with lda (ptr),y.

Well, actually, we can do better than that. Suppose we want to clear out 8K of ram,
from $2000 to $4000. We can use the Y register to hold the low byte of our offset, and
only update the high bit when necessary. That produces the following loop:

lda #$00 ; Set pointer value to base ($2000)
sta ptr
lda #$20
sta ptr+1
lda #$00 ; Storing a zero
ldx #$20 ; 8,192 ($2000) iterations: high byte
ldy #$00 ; low byte.

loop:
sta (ptr),y
iny
bne loop ; If we haven’t wrapped around, go back
inc ptr+1 ; Otherwise update high byte
dex ; bump counter
bne loop ; and continue if we aren’t done

This code could be optimized further; the loop prelude in particular loads a lot of
redundant values that could be compressed down further:

lda #$00
tay
ldx #$20
sta ptr
stx ptr+1

That’s not directly relevant to arrays, but these sorts of things are good things to
keep in mind when writing your code. Done well, they can make it much smaller
and faster; done carelessly, they can force a lot of bizarre dependencies on your code
and make it impossible to modify later.

Records
A record is a collection of values all referred to as one variable. This has no immediate
representation in assembler. If you have a global variable that’s two bytes and a code
pointer, this is exactly equivalent to three seperate variables. You can just put one

24

Chapter 9. Structured Programming

label in front of it, and refer to the first byte as label, the second as label+1, and the
code pointer a label+2.

This really applies to all data structures that take up more than one byte. When deal-
ing with the pointer, a 16-bit value, we refer to the low byte as ptr (or label+2, in
the example above), and the high byte as ptr+1 (or label+3).

Arrays of records are more interesting. There are two possibilities for these. The way
most high level languages treat it is by keeping the records contiguous. If you have
an array of two sixteen bit integers, then the records are stored in order, one at a time.
The first is in location $1000, the next in $1004, the next in $1008, and so on. You can
do this with the 6502, but you’ll probably have to use the indirect indexed mode if
you want to be able to iterate conveniently.

Another, more unusual, but more efficient approach is to keep each byte as a seperate
array, just like in the arrays example above. To illustrate, here’s a little bit of code to
go through a contiguous array of 16 bit integers, adding their values to some total
variable:

ldx #$10 ; Number of elements in the array
ldy #$00 ; Byte index from array start

loop:
clc
lda array, y ; Low byte
adc total
sta total
lda array+1, y ; High byte
adc total+1
sta total+1
iny ; Jump ahead to next entry
iny
dex ; Check for loop termination
bne loop

And here’s the same loop, keeping the high and low bytes in seperate arrays:

ldx #$00
loop:

clc
lda lowbyte,x
adc total
sta total
lda highbyte,x
adc total+1
sta total+1
inx
cpx #$10
bne loop

Which approach is the right one depends on what you’re doing. For large arrays, the
first approach is better, as you only need to maintain one base pointer. For smaller
arrays, the easier indexing makes the second approach more convenient.

Bitfields
To store values that are smaller than a byte, you can save space by putting multiple
values in a byte. To extract a sub-byte value, use the bitmasking commands:

• To set bits, use the ORA command. ORA #$0F sets the lower four bits to 1 and leaves
the rest unchanged.

• To clear bits, use the AND command. AND #$F0 sets the lower four bits to 0 and
leaves the rest unchanged.

25

Chapter 9. Structured Programming

• To reverse bits, use the EOR command. EOR #$0F reverses the lower four bits and
leaves the rest unchanged.

• To test if a bit is 0, AND away everything but that bit, then see if the Zero bit
was set. If the bit is in the top two bits of a memory location, you can use the BIT
command instead (which stores bit 7 in the Negative bit, and bit 6 in the Overflow
bit).

A modest example: Insertion sort on linked lists
To demonstrate these techniques, we will now produce code to perform insertion sort
on a linked list. We’ll start by defining our data structure, then defining the routines
we want to write, then producing actual code for those routines. A downloadable
version that will run unmodified on a Commodore 64 closes the chapter.

The data structure
We don’t really want to have to deal with pointers if we can possibly avoid it, but it’s
hard to do a linked list without them. Instead of pointers, we will use cursors: small
integers that represent the index into the array of values. This lets us use the many-
small-byte-arrays technique for our data. Furthermore, our random data that we’re
sorting never has to move, so we may declare it as a constant and only bother with
changing the values of head and the next arrays. The data record definition looks
like this:

head : byte;
data : const int[16] = [838, 618, 205, 984, 724, 301, 249, 946,

925, 43, 114, 697, 985, 633, 312, 86];
next : byte[16];

Exactly how this gets represented will vary from assembler to assembler. Ophis does
it like this:

.data

.space head 1

.space next 16

.text
lb: .byte <$838,<$618,<$205,<$984,<$724,<$301,<$249,<$946

.byte <$925,<$043,<$114,<$697,<$985,<$633,<$312,<$086
hb: .byte >$838,>$618,>$205,>$984,>$724,>$301,>$249,>$946

.byte >$925,>$043,>$114,>$697,>$985,>$633,>$312,>$086

Doing an insertion sort
To do an insertion sort, we clear the list by setting the ’head’ value to -1, and then
insert each element into the list one at a time, placing each element in its proper
order in the list. We can consider the lb/hb structure alone as an array of 16 integers,
and just insert each one into the list one at a time.

procedure insertion_sort
head := -1;
for i := 0 to 15 do
insert_elt i

end
end

26

Chapter 9. Structured Programming

This translates pretty directly. We’ll have insert_elt take its argument in the X register,
and loop with that. However, given that insert_elt is going to be a complex procedure,
we’ll save the value first. The assembler code becomes:

;;
; insertion’sort: Sorts the list defined by head, next, hb, lb.
; Arguments: None.
; Modifies: All registers destroyed, head and next array sorted.
;;

insertion’sort:
lda #$FF ; Clear list by storing the terminator in ’head’
sta head
ldx #$0 ; Loop through the lb/hb array, adding each

insertion’sort’loop: ; element one at a time
txa
pha
jsr insert_elt
pla
tax
inx
cpx #$10
bne insertion’sort’loop
rts

Inserting an element
The pseudocode for inserting an element is a bit more complicated. If the list is empty,
or the value we’re inserting goes at the front, then we have to update the value of
head. Otherwise, we can iterate through the list until we find the element that our
value fits in after (so, the first element whose successor is larger than our value).
Then we update the next pointers directly and exit.

procedure insert_elt i
begin

if head = -1 then begin
head := i;
next[i] := -1;
return;

end;
val := data[i];
if val < data[i] then begin

next[i] := head;
head := i;
return;

end;
current := head;
while (next[current] <> -1 and val < data[next[current]]) do

current := next[current];
end;
next[i] := next[current];
next[current] := i;

end;

This produces the following rather hefty chunk of code:

;;
; insert_elt: Insert an element into the linked list. Maintains the
; list in sorted, ascending order. Used by
; insertion’sort.
; Arguments: X register holds the index of the element to add.
; Modifies: All registers destroyed; head and next arrays updated
;;

27

Chapter 9. Structured Programming

.data

.space lbtoinsert 1

.space hbtoinsert 1

.space indextoinsert 1

.text

insert_elt:
ldy head ; If the list is empty, make
cpy #$FF ; head point at it, and return.
bne insert_elt’list’not’empty
stx head
tya
sta next,x
rts

insert_elt’list’not’empty:
lda lb,x ; Cache the data we’re inserting
sta lbtoinsert
lda hb,x
sta hbtoinsert
stx indextoinsert
ldy head ; Compare the first value with
sec ; the data. If the data must
lda lb,y ; be inserted at the front...
sbc lbtoinsert
lda hb,y
sbc hbtoinsert
bmi insert_elt’not’smallest
tya ; Set its next pointer to the
sta next,x ; old head, update the head
stx head ; pointer, and return.
rts

insert_elt’not’smallest:
ldx head

insert_elt’loop: ; At this point, we know that
lda next,x ; argument > data[X].
tay
cpy #$FF ; if next[X] = #$FF, insert arg at end.
beq insert_elt’insert’after’current
lda lb,y ; Otherwise, compare arg to
sec ; data[next[X]]. If we insert
sbc lbtoinsert ; before that...
lda hb,y
sbc hbtoinsert
bmi insert_elt’goto’next

insert_elt’insert’after’current: ; Fix up all the next links
tya
ldy indextoinsert
sta next,y
tya
sta next,x
rts ; and return.

insert_elt’goto’next: ; Otherwise, let X = next[X]
tya ; and go looping again.
tax
jmp insert_elt’loop

The complete application
The full application, which deals with interfacing with CBM BASIC and handles con-
sole I/O and such, is in structuredemo.oph.

28

Chapter 9. Structured Programming

Notes
1. Yes, all of them. Functional languages just let you do more things with them,

logic programming has implicit calls to query procedures, and object-oriented
“methods” are just normal procedures that take one extra argument in secret.

29

Chapter 9. Structured Programming

30

Chapter 10. Pointers and Indirection

The basics of pointers versus cursors (or, at the 6502 assembler level, the indirect
indexed addressing mode versus the absolute indexed ones) were covered in Chapter
9 This essay seeks to explain the uses of the indirect modes, and how to implement
pointer operations with them. It does not seek to explain why you’d want to use
pointers for something to begin with; for a tutorial on proper pointer usage, consult
any decent C textbook.

The absolute basics
A pointer is a variable holding the address of a memory location. Memory locations
take 16 bits to represent on the 6502: thus, we need two bytes to hold it. Any decent
assembler will have ways of taking the high and low bytes of an address; use these
to acquire the raw values you need. The 6502 chip does not have any simple “pure”
indirect modes (except for JMP, which is a matter for a later essay); all are indexed,
and they’re indexed different ways depending on which index register you use.

The simplest example
When doing a simple, direct dereference (that is, something equivalent to the C code
c=*b;) the code looks like this:

ldy #0
lda (b), y
sta c

Even with this simple example, there are several important things to notice.

• The variable b must be on the zero page, and furthermore, it cannot be $FF. All your
pointer values need to be either stored on the zero page to begin with or copied
there before use.

• The y in the lda statement must be y. It cannot be x (that’s a different form of
indirection), and it cannot be a constant. If you’re doing a lot of indirection, be sure
to keep your Y register free to handle the indexing on the pointers.

• The b variable is used alone. Statements like lda (b+2), y are syntactically valid
and sometimes even correct: it dereferences the value next to b after adding y to
the value therein. However, it is almost guaranteed that what you *really* wanted
to do was compute *(b+2) (that is, take the address of b, add 2 to that, and deref-
erence that value); see the next section for how to do this properly.

In nearly all cases, it is the Y-register’s version (Indirect Indexed) that you want to
use when you’re dealing with pointers. Even though either version could be used for
this example, we use the Y register to establish this habit.

Pointer arithmetic
Pointer arithmetic is an obscenely powerful and dangerous technique. However,
it’s the most straightforward way to deal with enormous arrays, structs, indexable
stacks, and nearly everything you do in C. (C has no native array or string types pri-
marily because it allows arbitrary pointer arithmetic, which is strong enough to han-
dle all of those without complaint and at blazing speed. It also allows for all kinds
of buffer overrun security holes, but let’s face it, who’s going to be cracking root on
your Apple II?) There are a number of ways to implement this on the 6502. We’ll deal
with them in increasing order of design complexity.

31

Chapter 10. Pointers and Indirection

The straightforward, slow way
When computing a pointer value, you simply treat the pointer as if it were a 16-
bit integer. Do all the math you need, then when the time comes to dereference it,
simply do a direct dereference as above. This is definitely doable, and it’s not difficult.
However, it is costly in both space and time.

When dealing with arbitrary indices large enough that they won’t fit in the Y register,
or when creating values that you don’t intend to dereference (such as subtracting two
pointers to find the length of a string), this is also the only truly usable technique.

The clever fast way
But wait, you say. Often when we compute a value, at least one of the operations is
going to be an addition, and we’re almost certain to have that value be less than 256!
Surely we may save ourselves an operation by loading that value into the Y register
and having the load operation itself perform the final addition!

Very good. This is the fastest technique, and sometimes it’s even the most readable.
These cases usually involve repeated reading of various fields from a structure or
record. The base pointer always points to the base of the structure (or the top of the
local variable list, or what have you) and the Y register takes values that index into
that structure. This lets you keep the pointer variable in memory largely static and
requires no explicit arithmetic instructions at all.

However, this technique is highly opaque and should always be well documented,
indicating exactly what you think you’re pointing at. Then, when you get garbage
results, you can compare your comments and the resulting Y values with the actual
definition of the structure to see who’s screwing up.

For a case where we still need to do arithmetic, consider the classic case of needing
to clear out a large chunk of memory. The following code fills the 4KB of memory
between $C000 and $D000 with zeroes:

lda #$C0 ; Store #$C000 in mem (low byte first)
sta mem+1
lda #$00
sta mem
ldx #$04 ; x holds number of times to execute outer loop
tay ; accumulator and y are both 0

loop: sta (mem), y
iny
bne loop ; Inner loop ends when y wraps around to 0
inc mem+1 ; "Carry" from the iny to the core pointer
dex ; Decrement outer loop count, quit if done
bne loop

Used carefully, proper use of the Y register can make your code smaller, faster, and
more readable. Used carelessly it can make your code an unreadable, unmaintainable
mess. Use it wisely, and with care, and it will be your greatest ally in writing flexible
code.

What about Indexed Indirect?
This essay has concerned itself almost exclusively with the Indirect Indexed—or (In-
direct), Y—mode. What about Indexed Indirect—(Indirect, X)? This is a much less
useful mode than the Y register’s version. While the Y register indirection lets you
implement pointers and arrays in full generality, the X register is useful for pretty
much only one application: lookup tables for single byte values.

32

Chapter 10. Pointers and Indirection

Even coming up with a motivating example for this is difficult, but here goes. Sup-
pose you have multiple, widely disparate sections of memory that you’re watching
for signals. The following routine takes a resource index in the accumulator and re-
turns the status byte for the corresponding resource.

; This data is sitting on the zero page somewhere
resource_status_table: .word resource0_status, resource1_status,

.word resource2_status, resource3_status,
; etc. etc. etc.

; This is the actual program code
.text
getstatus:

clc ; Multiply argument by 2 before putting it in X, so that it
asl ; produces a value that’s properly word-indexed
tax
lda (resource_status_table, x)
rts

Why having a routine such as this is better than just having the calling routine ac-
cess resourceN_status itself as an absolute memory load is left as an exercise for the
reader. That aside, this code fragment does serve as a reminder that when indexing
an array of anything other than bytes, you must multiply your index by the size of
the objects you want to index. C does this automatically—assembler does not. Stay
sharp.

Comparison with the other indexed forms
Pointers are slow. It sounds odd saying this, when C is the fastest language around
on modern machines precisely because of its powerful and extensive use of pointers.
However, modern architectures are designed to be optimized for C-style code (as an
example, the x86 architecture allows statements like mov eax, [bs+bx+4*di] as a
single instruction), while the 6502 is not. An (Indirect, Y) operation can take up to
6 cycles to complete just on its own, while the preparation of that command costs
additional time and scribbles over a bunch of registers, meaning memory operations
to save the values and yet more time spent. The simple code given at the beginning
of this essay—loading *b into the accumulator—takes 7 cycles, not counting the 6 it
takes to load b with the appropriate value to begin with. If b is known to contain
a specific value, we can write a single Absolute mode instruction to load its value,
which takes only 4 cycles and also preserves the value in the Y register. Clearly, Ab-
solute mode should be used whenever possible.

One might be tempted to use self-modifying code to solve this problem. This actually
doesn’t pay off near enough for the hassle it generates; for self-modifying code, the
address must be generated, then stored in the instruction, and then the data must be
loaded. Cost: 16 cycles for 2 immediate loads, 2 absolute stores, and 1 absolute load.
For the straight pointer dereference, we generate the address, store it in the pointer,
clear the index, then dereference that. Cost: 17 cycles for 3 immediate loads, 2 zero
page stores, and 1 indexed indirect load. Furthermore, unlike in the self-modifying
case, loops where simple arithmetic is being continuously performed only require
repeating the final load instruction, which allows for much greater time savings over
an equivalent self-modifying loop.

(This point is also completely moot for NES programmers or anyone else whose pro-
grams are sitting in ROM, because programs stored on a ROM cannot modify them-
selves.)

33

Chapter 10. Pointers and Indirection

Conclusion
That’s pretty much it for pointers. Though they tend to make programs hairy, and
learning how to properly deal with pointers is what separates real C programmers
from the novices, the basic mechanics of them are not complex. With pointers you can
do efficient passing of large structures, pass-by-reference, complicated return values,
and dynamic memory management—and now these wondrous toys may be added
to your assembler programs, too (assuming you have that kind of space to play with).

34

Chapter 11. Functionals

This essay deals with indirect calls. These are the core of an enormous number of
high level languages: LISP’s closures, C’s function pointers, C++ and Java’s virtual
method calls, and some implementations of the switch statement.

These techniques vary in complexity, and most will not be appropriate for large-scale
assembler projects. Of them, however, the Data-Directed approach is the most likely
to lead to organized and maintainable code.

Function Pointers
Because assembly language is totally untyped, function pointers are the same as any
other sixteen-bit integer. This makes representing them really quite easy; most assem-
blers should permit routines to be declared simply by naming the routine as a .word
directly.

To actually invoke these methods, copy them to some sixteen-bit location (say,
target) and then invoking the method is a simple matter of the using an indirect
jump: the JMP (target) instruction.

There’s really only one subtlety here, and it’s that the indirect jump is an indirect
jump, not an indirect function call. Thus, if some function A makes in indirect jump to
some routine, when that routine returns, it returns to whoever called A, not A itself.

There are several ways of dealing with this, but only one correct way, which is to
structure your procedures so that any call to JMP (xxxx) occurs at the very end.

A quick digression on how subroutines work
Ordinarily, subroutines are called with JSR and finished with RTS. The JSR instruction
takes its own address, adds 2 to it, and pushes this 16-bit value on the stack, high byte
first, then low byte (so that the low byte will be popped off first).

But wait, you may object. All JSR instructions are three bytes long. This “return ad-
dress” is in the middle of the instruction. And you would be quite right; the RTS in-
struction pops off the 16-bit address, adds one to it, and then sets the program counter
to that value.

So it is possible to set up a “JSR indirect” kind of operation by adding two to the
indirect jump’s address and then pushing that value onto the stack before making
the jump; however, you wouldn’t want to do this. It takes six bytes and trashes your
accumulator, and you can get the same functionality with half the space and with
no register corruption by simply defining the indirect jump to be a one-instruction
routine and JSR-ing to it directly. As an added bonus, that way if you have multi-
ple indirect jumps through the same pointer, you don’t need to duplicate the jump
instruction.

Does this mean that abusing JSR and RTS is a dead-end, though? Not at all...

Dispatch-on-type and Data-Directed Assembler
Most of the time, you care about function pointers because you’ve arranged them in
some kind of table. You hand it an index representing the type of your argument, or
which method it is you’re calling, or some other determinator, and then you index
into an array of routines and execute the right one.

Writing a generic routine to do this is kind of a pain. First you have to pass a 16-bit
pointer in, then you have to dereference it to figure out where your table is, then you
have to do an indexed dereference on that to get the routine you want to run, then you
need to copy it out to somewhere fixed so that you can write your jump instruction.

35

Chapter 11. Functionals

And making this non-generic doesn’t help a whole lot, since that only saves you the
first two steps, but now you have to write them out in every single indexed jump
instruction. If only there were some way to easily and quickly pass in a local pointer
directly...

Something, say, like the JSR instruction, only not for program code.

Or we could just use the JSR statement itself, but only call this routine at the ends of
other routines, much like we were organizing for indirect jumps to begin with. This
lets us set up routines that look like this:

jump’table’alpha:
jsr do’jump’table
.word alpha’0, alpha’1, alpha’2

Where the alpha’x routines are the ones to be called when the index has that value.
This leaves the implementation of do’jump’table, which in this case uses the Y regis-
ter to hold the index:

do’jump’table:
sta _scratch
pla
sta _jmpptr
pla
sta _jmpptr+1
tya
asl
tay
iny
lda (_jmpptr), y
sta _target
iny
lda (_jmpptr), y
sta _target+1
lda _scratch
jmp (_target)

The TYA:ASL:TAY:INY sequence can actually be omitted if you don’t mind having
your Y indices be 1, 3, 5, 7, 9, etc., instead of 0, 1, 2, 3, 4, etc. Likewise, the instructions
dealing with _scratch can be omitted if you don’t mind trashing the accumulator.
Keeping the accumulator and X register pristine for the target call comes in handy,
though, because it means we can pass in a pointer argument purely in registers. This
will come in handy soon...

VTables and Object-Oriented Assembler
The usual technique for getting something that looks object-oriented in
non-object-oriented languages is to fill a structure with function pointers, and have
those functions take the structure itself as an argument. This works just fine in
assembler, of course (and doesn’t really require anything more than your traditional
jump-indirects), but it’s also possible to use a lot of the standard optimizations that
languages such as C++ provide.

The most important of these is the vtable. Each object type has its own vtable, and
it’s a list of function pointers for all the methods that type provides. This is a space
savings over the traditional structs-with-function-pointers approach because when
you have many objects of the same class, you only have to represent the vtable once.
So that all objects may be treated identically, the vtable location is traditionally fixed
as being the first entry in the corresponding structure.

Virtual method invocation takes an object pointer (traditionally called self or this)
and a method index and invokes the approprate method on that object. Gee, where
have we seen that before?

36

Chapter 11. Functionals

sprite’vtable:
jsr do’jump’table
.word sprite’init, sprite’update, sprite’render

We mentioned before that vtables are generally the first entries in objects. We can
play another nasty trick here, paying an additional byte per object to have the vtable
be not merely a pointer to its vtable routine, but an actual jump instruction to it. (That
is, if an object is at location X, then location X is the byte value $4C, representing JMP,
location X+1 is the low byte of the vtable, and location X+2 is the high byte of the
vtable.) Given that, our invokevirtual function becomes very simple indeed:

invokevirtual:
sta this
stx this+1
jmp (this)

Which, combined with all our previous work here, takes the this pointer in .AX and
a method identifier in .Y and invokes that method on that object. Arguments besides
this need to be set up before the call to invokevirtual, probably in some global
argument array somewhere as discussed back in Chapter 9.

A final reminder
We’ve been talking about all these routines as if they could be copy-pasted or hand-
compiled from C++ or Java code. This isn’t really the case, primarily because “local
variables” in your average assembler routines aren’t really local, so multiple calls to
the same method will tend to trash the program state. And since a lot of the ma-
chinery described here shares a lot of memory (in particular, every single method
invocation everywhere shares a this), attempting to shift over standard OO code
into this format is likely to fail miserably.

You can get an awful lot of flexibility out of even just one layer of method-calls,
though, given a thoughtful design. The do’jump’table routine, or one very like it,
was extremely common in NES games in the mid-1980s and later, usually as the be-
ginning of the frame-update loop.

If you find you really need multiple layers of method calls, though, then you really
are going to need a full-on program stack, and that’s going to be several kinds of
mess. That’s the topic for the final chapter.

37

Chapter 11. Functionals

38

Chapter 12. Call Stacks

All our previous work has been assuming FORTRAN-style calling conventions. In
this, all procedure-local variables are actually secretly globals. This means that a
function that calls itself will end up stomping on its previous values, and everything
will be hideously scrambled. Various workarounds for this are covered in Chapter 9.
Here, we solve the problem fully.

Recursion
A procedure in C or other similar languages declares a chunk of storage that’s unique
to that invocation. This chunk is just large enough to hold the return address and all
the local variables, and is called the stack frame. Stack frames are arranged on a call
stack; when a function is called, the stack grows with the new frame, and when that
function returns, its frame is destroyed. Once the main function returns, the stack is
empty.

Most modern architectures are designed to let you implement variable access like
this directly, without touching the registers at all. The x86 architecture even dedicates
a register to function explicitly as the stack pointer, and then one could read, say, the
fifth 16-bit variable into the register AX with the command MOV AX, [SP+10].

As we saw in Chapter 10, the 6502 isn’t nearly as convenient. We’d need to keep the
stack pointer somewhere on the zero page, then load the Y register with 10, then load
the accumulator with an indexed-indirect call. This is verbose, keeps trashing our
registers, and it’s very, very slow.

So, in the spirit of programmers everywhere, we’ll cheat.

Our Goals
The system we develop should have all of the following characteristics.

• It should be intuitive to program for. The procedure bodies should be easily readable
and writable by humans, even in assembler form.

• It should be efficient. Variable accesses are very common, so procedures shouldn’t
cost much to run.

• It should allow multiple arity in both arguments and return values. We won’t re-
quire that an unlimited amount of information be passable, but it should allow
more than the three bytes the registers give us.

• It should permit tail call elimination, an optimization that will allow certain forms
of recursion to actually not grow the stack.

Here is a system that meets all these properties.

• Reserve two bytes of the zero page for a stack pointer. At the beginning of the
program, set it to the top of memory.

• Divide the remainder of Zero Page into two parts:

• The scratch space, which is where arguments and return values go, and which
may be scrambled by any function call, and

• The local area, which all functions must restore to their initial state once finished.

• Assign to each procedure a frame size S, which is a maximum size on the amount of
the local area the procedure can use. The procedure’s variables will sit in the first S
bytes of the local area.

39

Chapter 12. Call Stacks

• Upon entering the procedure, push the first S bytes of the local area onto the stack;
upon exit, pop hose S bytes back on top of the local area.

• While the procedure is running, only touch the local area and the scratch space.

This meets our design criteria neatly:

• It’s as intuitive as such a system will get. You have to call init’stack at the be-
ginning, and you need to ensure that save’stack and restore’stack are called
right. The procedure’s program text can pretend that it’s just referring to its own
variables, just like with the old style. If a procedure doesn’t call anyone, then it can
just do all its work in the scratch space.

• It’s efficient; the inside of the procedure is likely to be faster and smaller than its
FORTRAN-style counterpart, because all variable references are on the Zero Page.

• Both arguments and return values can be as large as the scratch space. It’s not
infinite, but it’s probably good enough.

• Tail call elimination is possible; just restore the stack before making the JMP to the
tail call target.

The necessary support code is pretty straightforward. The stack modification rou-
tines take the size of the frame in the accumulator, and while saving the local area,
it copies over the corresponding values from the scratch space. (This is because most
functions will be wanting to keep their arguments around across calls.)

.scope
; Stack routines
.data zp
.space _sp $02
.space _counter $01
.space fun’args $10
.space fun’vars $40

.text
init’stack:

lda #$00
sta _sp
lda #$A0
sta _sp+1
rts

save’stack:
sta _counter
sec
lda _sp
sbc _counter
sta _sp
lda _sp+1
sbc #$00
sta _sp+1
ldy #$00

* lda fun’vars, y
sta (_sp), y
lda fun’args, y
sta fun’vars, y
iny
dec _counter
bne -
rts

restore’stack:
pha
sta _counter
ldy #$00

* lda (_sp), y

40

Chapter 12. Call Stacks

sta fun’vars, y
iny
dec _counter
bne -
pla
clc
adc _sp
sta _sp
lda _sp+1
adc #$00
sta _sp+1
rts

.scend

Example: Fibonnacci Numbers
About the simplest “interesting” recursive function is the Fibonacci numbers. The
function fib(x) is defined as being 1 if x is 0 or 1, and being fib(x-2)+fib(x-1) otherwise.

Actually expressing it like that directly produces a very inefficient implementation,
but it’s a simple demonstration of the system. Here’s code for expressing the fib func-
tion:

.scope
; Uint16 fib (Uint8 x): compute Xth fibonnaci number.
; fib(0) = fib(1) = 1.
; Stack usage: 3.

fib: lda #$03
jsr save’stack
lda fun’vars
cmp #$02
bcc _base

dec fun’args
jsr fib
lda fun’args
sta fun’vars+1
lda fun’args+1
sta fun’vars+2
lda fun’vars
sec
sbc #$02
sta fun’args
jsr fib
clc
lda fun’args
adc fun’vars+1
sta fun’args
lda fun’args+1
adc fun’vars+2
sta fun’args+1
jmp _done

_base: ldy #$01
sty fun’args
dey
sty fun’args+1

_done: lda #$03
jsr restore’stack
rts

.scend

41

Chapter 12. Call Stacks

The full application, which deals with interfacing with CBM BASIC and handles con-
sole I/O and such, is in fibonacci.oph.

42

Appendix A. Example Programs

This Appendix collects all the programs referred to in the course of this manual.

hello1.oph

.word $0801

.org $0801

.outfile "hello.prg"

.word next, 10 ; Next line and current line number

.byte $9e," 2064",0 ; SYS 2064
next: .word 0 ; End of program

.advance 2064

ldx #0
loop: lda hello, x

beq done
jsr $ffd2
inx
bne loop

done: rts

hello: .byte "HELLO, WORLD!", 0

hello2.oph

.word $0801

.org $0801

.outfile "hello.prg"

.scope
.word _next, 10 ; Next line and current line number
.byte $9e," 2064",0 ; SYS 2064

_next: .word 0 ; End of program
.scend

.advance 2064

.alias chrout $ffd2

ldx #0
* lda hello, x

beq +
jsr chrout
inx
bne -

* rts

hello: .byte "HELLO, WORLD!", 0

43

Appendix A. Example Programs

c64-1.oph

.word $0801

.org $0801

.scope
.word _next, 10 ; Next line and current line number
.byte $9e," 2064",0 ; SYS 2064

_next: .word 0 ; End of program
.scend

.advance 2064

.require "../platform/c64kernal.oph"

c64kernal.oph

; KERNAL routine aliases (C64)

.alias acptr $ffa5

.alias chkin $ffc6

.alias chkout $ffc9

.alias chrin $ffcf

.alias chrout $ffd2

.alias ciout $ffa8

.alias cint $ff81

.alias clall $ffe7

.alias close $ffc3

.alias clrchn $ffcc

.alias getin $ffe4

.alias iobase $fff3

.alias ioinit $ff84

.alias listen $ffb1

.alias load $ffd5

.alias membot $ff9c

.alias memtop $ff99

.alias open $ffc0

.alias plot $fff0

.alias ramtas $ff87

.alias rdtim $ffde

.alias readst $ffb7

.alias restor $ff8a

.alias save $ffd8

.alias scnkey $ff9f

.alias screen $ffed

.alias second $ff93

.alias setlfs $ffba

.alias setmsg $ff90

.alias setnam $ffbd

.alias settim $ffdb

.alias settmo $ffa2

.alias stop $ffe1

.alias talk $ffb4

.alias tksa $ff96

.alias udtim $ffea

.alias unlsn $ffae

.alias untlk $ffab

.alias vector $ff8d

; Character codes for the colors.
.alias color’0 144
.alias color’1 5
.alias color’2 28
.alias color’3 159

44

Appendix A. Example Programs

.alias color’4 156

.alias color’5 30

.alias color’6 31

.alias color’7 158

.alias color’8 129

.alias color’9 149

.alias color’10 150

.alias color’11 151

.alias color’12 152

.alias color’13 153

.alias color’14 154

.alias color’15 155

; ...and reverse video
.alias reverse’on 18
.alias reverse’off 146

; ...and character set
.alias upper’case 142
.alias lower’case 14

hello3.oph

.include "c64-1.oph"

.outfile "hello.prg"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0

45

Appendix A. Example Programs

target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

hello4a.oph

.include "c64-1.oph"

.outfile "hello.prg"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Executes 2,560*(A) NOP statements.
delay: tax

ldy #00
* nop

nop
nop
nop

46

Appendix A. Example Programs

nop
nop
nop
nop
nop
nop
iny
bne -
dex
bne -
rts

hello4b.oph

.include "c64-1.oph"

.outfile "hello.prg"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
lda #lower’case
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "Hello, ",0
hello2: .byte "!", 13, 0

target1: .byte "programmer", 0
target2: .byte "room", 0
target3: .byte "building", 0
target4: .byte "neighborhood", 0
target5: .byte "city", 0
target6: .byte "nation", 0
target7: .byte "world", 0
target8: .byte "Solar System", 0
target9: .byte "Galaxy", 0
target10: .byte "Universe", 0

47

Appendix A. Example Programs

; DELAY routine. Executes 2,560*(A) NOP statements.
delay: tax

ldy #00
* nop

nop
nop
nop
nop
nop
nop
nop
nop
nop
iny
bne -
dex
bne -
rts

hello4c.oph

.include "c64-1.oph"

.outfile "hello.prg"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
lda #lower’case
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

.charmap ’A, "abcdefghijklmnopqrstuvwxyz"

.charmap ’a, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

hello1: .byte "Hello, ",0
hello2: .byte "!", 13, 0

48

Appendix A. Example Programs

target1: .byte "programmer", 0
target2: .byte "room", 0
target3: .byte "building", 0
target4: .byte "neighborhood", 0
target5: .byte "city", 0
target6: .byte "nation", 0
target7: .byte "world", 0
target8: .byte "Solar System", 0
target9: .byte "Galaxy", 0
target10: .byte "Universe", 0

; DELAY routine. Executes 2,560*(A) NOP statements.
delay: tax

ldy #00
* nop

nop
nop
nop
nop
nop
nop
nop
nop
nop
iny
bne -
dex
bne -
rts

hello5.oph

.include "c64-1.oph"

.outfile "hello.prg"

.data

.org $C000

.text

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4

49

Appendix A. Example Programs

‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).
.scope
.data
.space _tmp 1
.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

.checkpc $A000

.data

.checkpc $D000

hello6.oph

.include "c64-1.oph"

.outfile "hello.prg"

.data

.org $C000

.space cache 2

.text

.macro print
lda #<_1
ldx #>_1
jsr printstr

.macend

.macro greet
lda #30

50

Appendix A. Example Programs

jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

; Save the zero page locations that PRINTSTR uses.
lda $10
sta cache
lda $11
sta cache+1

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10

; Restore the zero page values printstr uses.
lda cache
sta $10
lda cache+1
sta $11

rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).
.scope
.data
.space _tmp 1
.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

51

Appendix A. Example Programs

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

.scope
printstr:

sta $10
stx $11
ldy #$00

_lp: lda ($10),y
beq _done
jsr chrout
iny
bne _lp

_done: rts
.scend

.checkpc $A000

.data

.checkpc $D000

c64_0.oph

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Commodore 64 Basic Runtime File
;;
;; Include this at the TOP of your C64 program, and it will handle
;; hiding away the BASIC ROM and data and restoring it at the end.
;;
;; You will have a contiguous block of RAM from $0800 to $CF81, and
;; Zero Page access from $02 to $7F in the segment "zp".

.word $0801

.org $0801

; BASIC program that just calls our machine language code
.scope

.word _next, 10 ; Next line and current line number

.byte $9e," 2062",0 ; SYS 2062
_next: .word 0 ; End of program
.scend

.data zp ; Zero Page memory segment.

.org $0002

.text

.scope
; Cache BASIC zero page at top of available RAM
ldx #$7E

* lda $01, x
sta $CF81, x
dex
bne -

; Swap out the BASIC ROM for RAM
lda $01
and #$fe
ora #$06
sta $01

; Run the real program

52

Appendix A. Example Programs

jsr _main

; Restore BASIC ROM
lda $01
ora #$07
sta $01

; Restore BASIC zero page
ldx #$7E

* lda $CF81, x
sta $01, x
dex
bne -

; Back to BASIC
rts

_main:
; Program follows...

.scend

hello7.oph

.include "../platform/c64_0.oph"

.require "../platform/c64kernal.oph"

.outfile "hello.prg"

.data

.org $C000

.text

.macro print
lda #<_1
ldx #>_1
jsr printstr

.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10

rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0

53

Appendix A. Example Programs

target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).
.scope
.data
.space _tmp 1
.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

.scope

.data zp

.space _ptr 2

.text
printstr:

sta _ptr
stx _ptr+1
ldy #$00

_lp: lda (_ptr),y
beq _done
jsr chrout
iny
bne _lp

_done: rts
.scend

.checkpc $A000

.data

.checkpc $D000

.data zp

.checkpc $80

54

Appendix A. Example Programs

structuredemo.oph

.include "../platform/c64_0.oph"

.require "../platform/c64kernal.oph"

.outfile "structuredemo.prg"

jsr print’unsorted
jsr insertion’sort
jsr print’list
rts

;;
; Linked list data: head, next, lb, hb.
; lb/hb: Low/high bytes of the data array. These are immutable and
; kept with the program text.
; head: Array index of the first element in the list, or #$FF if the
; list is empty
; next: Array of successor indices. If you’ve just read element X,
; the value of memory location next+X is the index of the
; next element. If next is #$FF, you’ve reached the end of
; the list.
;;

.data

.org $C000

.space head 1

.space next 16

.text
lb: .byte <$838,<$618,<$205,<$984,<$724,<$301,<$249,<$946

.byte <$925,<$043,<$114,<$697,<$985,<$633,<$312,<$086
hb: .byte >$838,>$618,>$205,>$984,>$724,>$301,>$249,>$946

.byte >$925,>$043,>$114,>$697,>$985,>$633,>$312,>$086

;;
; insertion’sort: Sorts the list defined by head, next, hb, lb.
; Arguments: None.
; Modifies: All registers destroyed, head and next array sorted.
;;

insertion’sort:
lda #$FF ; Clear list by storing the terminator in ’head’
sta head
ldx #$0 ; Loop through the lb/hb array, adding each

insertion’sort’loop: ; element one at a time
txa
pha
jsr insert_elt
pla
tax
inx
cpx #$10
bne insertion’sort’loop
rts

;;
; insert_elt: Insert an element into the linked list. Maintains the
; list in sorted, ascending order. Used by
; insertion’sort.
; Arguments: X register holds the index of the element to add.
; Modifies: All registers destroyed; head and next arrays updated
;;

.data

.space lbtoinsert 1

.space hbtoinsert 1

55

Appendix A. Example Programs

.space indextoinsert 1

.text

insert_elt:
ldy head ; If the list is empty, make
cpy #$FF ; head point at it, and return.
bne insert_elt’list’not’empty
stx head
tya
sta next,x
rts

insert_elt’list’not’empty:
lda lb,x ; Cache the data we’re inserting
sta lbtoinsert
lda hb,x
sta hbtoinsert
stx indextoinsert
ldy head ; Compare the first value with
sec ; the data. If the data must
lda lb,y ; be inserted at the front...
sbc lbtoinsert
lda hb,y
sbc hbtoinsert
bmi insert_elt’not’smallest
tya ; Set its next pointer to the
sta next,x ; old head, update the head
stx head ; pointer, and return.
rts

insert_elt’not’smallest:
ldx head

insert_elt’loop: ; At this point, we know that
lda next,x ; argument > data[X].
tay
cpy #$FF ; if next[X] = #$FF, insert arg at end.
beq insert_elt’insert’after’current
lda lb,y ; Otherwise, compare arg to
sec ; data[next[X]]. If we insert
sbc lbtoinsert ; before that...
lda hb,y
sbc hbtoinsert
bmi insert_elt’goto’next

insert_elt’insert’after’current: ; Fix up all the next links
tya
ldy indextoinsert
sta next,y
tya
sta next,x
rts ; and return.

insert_elt’goto’next: ; Otherwise, let X = next[X]
tya ; and go looping again.
tax
jmp insert_elt’loop

;;
; print’unsorted: Steps through the data array and prints each value.
; Standalone procedure.
;;

print’unsorted:
lda #<unsorted’hdr
ldx #>unsorted’hdr
jsr put’string
ldy #$00

print’unsorted’loop:
lda hb, Y

56

Appendix A. Example Programs

jsr print’hex
lda lb, y
jsr print’hex
lda #$20
jsr chrout
iny
cpy #$10
bne print’unsorted’loop
lda #$0D
jsr chrout
rts

;;
; print’list: Starts at head, and prints out every value in the
; linked list.
; Standalone procedure.
;;

print’list:
lda #<sorted’hdr
ldx #>sorted’hdr
jsr put’string
ldy head

print’list’loop:
cpy #$FF
beq print’list’done
lda hb, y
jsr print’hex
lda lb, y
jsr print’hex
lda #$20
jsr chrout
lda next, Y
tay
jmp print’list’loop

print’list’done:
lda #$0d
jsr chrout
rts

;; String data for the above routines.

unsorted’hdr:
.byte 147 ; Clear screen first!
.byte "UNSORTED DATA:",13,0

sorted’hdr:
.byte "SORTED DATA:",13,0

;;
; print’hex: outputs a two-character hex representation of a one-
; byte value.
; Arguments: Byte to print in accumulator
; Modifies: .A and .X
;;

print’hex:
pha
clc
lsr
lsr
lsr
lsr
tax
lda hexstr,x

57

Appendix A. Example Programs

jsr chrout
pla
and #$0F
tax
lda hexstr,X
jsr chrout
rts

; Character data array for print’hex.
hexstr: .byte "0123456789ABCDEF"

;;
; put’string: outputs a C-style null terminated string with length
; less than 256 to the screen. If 256 bytes are written
; without finding a terminator, the routine ends quietly.
; Arguments: Low byte of string address in .A, high byte in .X
; Modifies: .A and .Y
;;

.data zp

.space put’string’addr 2

.text
put’string:

sta put’string’addr
stx put’string’addr+1
ldy #$00

put’string’loop:
lda (put’string’addr),y
beq put’string’done
jsr chrout
iny
bne put’string’loop

put’string’done:
rts

fibonacci.oph

.include "../platform/c64_0.oph"

.require "../platform/c64kernal.oph"

.outfile "fibonacci.prg"

lda #<opening ; Print opening text
sta fun’args
lda #>opening
sta fun’args+1
jsr print’string

lda #$00
sta fun’vars ; Count num from 0 to 19

* lda fun’vars ; Main loop: print num, with leading space if <10
cmp #$09
bcs +
lda #$20
jsr chrout
lda fun’vars

* sta fun’args ; Copy num to args, print it, plus ": "
inc fun’args
lda #$00
sta fun’args+1
jsr print’dec
lda #$3A
jsr chrout
lda #$20

58

Appendix A. Example Programs

jsr chrout
lda fun’vars ; Copy num to args, call fib, print result
sta fun’args
jsr fib
jsr print’dec
lda #$0D ; Newline
jsr chrout
inc fun’vars ; Increment num; if it’s 20, we’re done.
lda fun’vars
cmp #20
bne -- ; Otherwise, loop.
rts

opening:
.byte 147, " FIBONACCI SEQUENCE",13,13,0

.scope
; Uint16 fib (Uint8 x): compute Xth fibonnaci number.
; fib(0) = fib(1) = 1.
; Stack usage: 3.

fib: lda #$03
jsr save’stack

lda fun’vars ; If x < 2, goto _base.
cmp #$02
bcc _base

dec fun’args ; Otherwise, call fib(x-1)...
jsr fib
lda fun’args ; Copy the result to local variable...
sta fun’vars+1
lda fun’args+1
sta fun’vars+2
lda fun’vars ; Call fib(x-2)...
sec
sbc #$02
sta fun’args
jsr fib
clc ; And add the old result to it, leaving it
lda fun’args ; in the ’result’ location.
adc fun’vars+1
sta fun’args
lda fun’args+1
adc fun’vars+2
sta fun’args+1
jmp _done ; and then we’re done.

_base: ldy #$01 ; In the base case, just copy 1 to the
sty fun’args ; result.
dey
sty fun’args+1

_done: lda #$03
jsr restore’stack
rts

.scend

.scope
; Stack routines: init’stack, save’stack, restore’stack
.data zp
.space _sp $02
.space _counter $01
.space fun’args $10
.space fun’vars $40

59

Appendix A. Example Programs

.text
init’stack:

lda #$00
sta _sp
lda #$A0
sta _sp+1
rts

save’stack:
sta _counter
sec
lda _sp
sbc _counter
sta _sp
lda _sp+1
sbc #$00
sta _sp+1
ldy #$00

* lda fun’vars, y
sta (_sp), y
lda fun’args, y
sta fun’vars, y
iny
dec _counter
bne -
rts

restore’stack:
pha
sta _counter
ldy #$00

* lda (_sp), y
sta fun’vars, y
iny
dec _counter
bne -
pla
clc
adc _sp
sta _sp
lda _sp+1
adc #$00
sta _sp+1
rts

.scend

; Utility functions. print’dec prints an unsigned 16-bit integer.
; It’s ugly and long, mainly because we don’t bother with niceties
; like "division". print’string prints a zero-terminated string.

.scope

.data

.org fun’args
.space _val 2
.space _step 2
.space _res 1
.space _allowzero 1

.text
print’dec:

lda #$00
sta _allowzero
lda #<10000
sta _step
lda #>10000
sta _step+1

60

Appendix A. Example Programs

jsr repsub’16
lda #<1000
sta _step
lda #>1000
sta _step+1
jsr repsub’16
lda #0
sta _step+1
lda #100
sta _step
jsr repsub’16
lda #10
sta _step
jsr repsub’16
lda _val
jsr _print
rts

repsub’16:
lda #$00
sta _res

* lda _val
sec
sbc _step
lda _val+1
sbc _step+1
bcc _done
lda _val
sec
sbc _step
sta _val
lda _val+1
sbc _step+1
sta _val+1
inc _res
jmp -

_done: lda _res
ora _allowzero
beq _ret
sta _allowzero
lda _res

_print: clc
adc #’0
jsr chrout

_ret: rts
.scend

print’string:
ldy #$00

* lda (fun’args), y
beq +
jsr chrout
iny
jmp -

* rts

61

Appendix A. Example Programs

62

Appendix B. Ophis Command Reference

Command Modes
These mostly follow the MOS Technology 6500 Microprocessor Family Programming
Manual, except for the Accumulator mode. Accumulator instructions are written and
interpreted identically to Implied mode instructions.

• Implied: RTS

• Accumulator: LSR

• Immediate: LDA #$06

• Zero Page: LDA $7C

• Zero Page, X: LDA $7C,X

• Zero Page, Y: LDA $7C,Y

• Absolute: LDA $D020

• Absolute, X: LDA $D000,X

• Absolute, Y: LDA $D000,Y

• (Zero Page Indirect, X): LDA ($80, X)

• (Zero Page Indirect), Y: LDA ($80), Y

• (Absolute Indirect): JMP ($A000)

• Relative: BNE loop

• (Absolute Indirect, X): JMP ($A000, X) — Only available with 65C02 extensions

• (Zero Page Indirect): LDX ($80) — Only available with 65C02 extensions

Basic arguments
Most arguments are just a number or label. The formats for these are below.

Numeric types

• Hex: $41 (Prefixed with $)

• Decimal: 65 (No markings)

• Octal: 0101 (Prefixed with zero)

• Binary: %01000001 (Prefixed with %)

• Character: ’A (Prefixed with single quote)

Label types
Normal labels are simply referred to by name. Anonymous labels may be referenced
with strings of - or + signs (the label - refers to the immediate previous anonymous
label, -- the one before that, etc., while + refers to the next anonymous label), and the
special label ^ refers to the program counter at the start of the current instruction or
directive.

Normal labels are defined by prefixing a line with the label name and then a colon (e.g.,
label:). Anonymous labels are defined by prefixing a line with an asterisk (e.g., *).

63

Appendix B. Ophis Command Reference

Temporary labels are only reachable from inside the innermost enclosing .scope
statement. They are identical to normal labels in every way, except that they start
with an underscore.

String types
Strings are enclosed in double quotation marks. Backslashed characters (including
backslashes and double quotes) are treated literally, so the string "The man said,
\"The \\ character is the backslash.\"" produces the ASCII sequence for
The man said, "The \ character is the backslash."

Strings are generally only used as arguments to assembler directives—usually for
filenames (e.g., .include) but also for string data (in association with .byte).

It is legal, though unusual, to attempt to pass a string to the other data statements.
This will produces a series of words/dwords where all bytes that aren’t
least-significant are zero. Endianness and size will match what the directive itself
indicated.

Compound Arguments
Compound arguments may be built up from simple ones, using the standard +, -, *,
and / operators, which carry the usual precedence. Also, the unary operators > and
<, which bind more tightly than anything else, provide the high and low bytes of
16-bit values, respectively.

Use brackets [] instead of parentheses () when grouping arithmetic operations, as
the parentheses are needed for the indirect addressing modes.

Examples:

• $D000 evaluates to $D000

• $D000+32 evaluates to $D020

• $D000+$20 also evaluates to $D020

• <$D000+32 evaluates to $20

• >$D000+32 evaluates to $F0

• >[$D000+32] evaluates to $D0

• >[$D000-275] evaluates to $CE

Memory Model
In order to properly compute the locations of labels and the like, Ophis must keep
track of where assembled code will actually be sitting in memory, and it strives to do
this in a way that is independent both of the target file and of the target machine.

Basic PC tracking
The primary technique Ophis uses is program counter tracking. As it assembles the
code, it keeps track of a virtual program counter, and uses that to determine where
the labels should go.

In the absence of an .org directive, it assumes a starting PC of zero. .org is a simple
directive, setting the PC to the value that .org specifies. In the simplest case, one

64

Appendix B. Ophis Command Reference

.org directive appears at the beginning of the code and sets the location for the rest
of the code, which is one contiguous block.

Basic Segmentation simulation
However, this isn’t always practical. Often one wishes to have a region of memory
reserved for data without actually mapping that memory to the file. On some systems
(typically cartridge-based systems where ROM and RAM are seperate, and the target
file only specifies the ROM image) this is mandatory. In order to access these variables
symbolically, it’s necessary to put the values into the label lookup table.

It is possible, but inconvenient, to do this with .alias, assigning a specific memory
location to each variable. This requires careful coordination through your code, and
makes creating reusable libraries all but impossible.

A better approach is to reserve a section at the beginning or end of your program, put
an .org directive in, then use the .space directive to divide up the data area. This
is still a bit inconvenient, though, because all variables must be assigned all at once.
What we’d really like is to keep multiple PC counters, one for data and one for code.

The .text and .data directives do this. Each has its own PC that starts at zero, and
you can switch between the two at any point without corrupting the other’s counter.
In this way each function can have a .data section (filled with .space commands)
and a .text section (that contains the actual code). This lets our library routines be al-
most completely self-contained - we can have one source file that could be .included
by multiple projects without getting in anything’s way.

However, any given program may have its own ideas about where data and code
go, and it’s good to ensure with a .checkpc at the end of your code that you haven’t
accidentally overwritten code with data or vice versa. If your .data segment did start
at zero, it’s probably wise to make sure you aren’t smashing the stack, too (which is
sitting in the region from $0100 to $01FF).

If you write code with no segment-defining statements in it, the default segment is
text.

The data segment is designed only for organizing labels. As such, errors will be
flagged if you attempt to actually output information into a data segment.

General Segmentation Simulation
One text and data segment each is usually sufficient, but for the cases where it is
not, Ophis allows for user-defined segments. Putting a label after .text or .data
produces a new segment with the specified name.

Say, for example, that we have access to the RAM at the low end of the address space,
but want to reserve the zero page for truly critical variables, and use the rest of RAM
for everything else. Let’s also assume that this is a 6510 chip, and locations $00 and
$01 are reserved for the I/O port. We could start our program off with:

.data

.org $200

.data zp

.org $2

.text

.org $800

And, to be safe, we would probably want to end our code with checks to make sure
we aren’t overwriting anything:

.data

.checkpc $800

.data zp

65

Appendix B. Ophis Command Reference

.checkpc $100

Macros
Assembly language is a powerful tool—however, there are many tasks that need to
be done repeatedly, and with mind-numbing minor modifications. Ophis includes a
facility for macros to allow this. Ophis macros are very similar in form to function
calls in higher level languages.

Defining Macros
Macros are defined with the .macro and .macend commands. Here’s a simple one
that will clear the screen on a Commodore 64:

.macro clr’screen
lda #147
jsr $FFD2

.macend

Invoking Macros
To invoke a macro, either use the .invoke command or backquote the name of the
routine. The previous macro may be expanded out in either of two ways, at any point
in the source:

.invoke clr’screen

or

‘clr’screen

will work equally well.

Passing Arguments to Macros
Macros may take arguments. The arguments to a macro are all of the “word” type,
though byte values may be passed and used as bytes as well. The first argument in
an invocation is bound to the label _1, the second to _2, and so on. Here’s a macro
for storing a 16-bit value into a word pointer:

.macro store16 ; ‘store16 dest, src
lda #<_2
sta _1
lda #>_2
sta _1+1

.macend

Macro arguments behave, for the most part, as if they were defined by .alias com-
mands in the calling context. (They differ in that they will not produce duplicate-label
errors if those names already exist in the calling scope, and in that they disappear
after the call is completed.)

66

Appendix B. Ophis Command Reference

Features and Restrictions of the Ophis Macro Model
Unlike most macro systems (which do textual replacement), Ophis macros evaluate
their arguments and bind them into the symbol table as temporary labels. This pro-
duces some benefits, but it also puts some restrictions on what kinds of macros may
be defined.

The primary benefit of this “expand-via-binding” discipline is that there are no sur-
prises in the semantics. The expression _1+1 in the macro above will always evaluate
to one more than the value that was passed as the first argument, even if that first
argument is some immensely complex expression that an expand-via-substitution
method may accidentally mangle.

The primary disadvantage of the expand-via-binding discipline is that only fixed
numbers of words and bytes may be passed. A substitution-based system could
define a macro including the line LDA _1 and accept as arguments both $C000
(which would put the value of memory location $C000 into the accumulator) and
#$40 (which would put the immediate value $40 into the accumulator). If you really
need this kind of behavior, a run a C preprocessor over your Ophis source, and use
#define to your heart’s content.

Assembler directives
Assembler directives are all instructions to the assembler that are not actual instruc-
tions. Ophis’s set of directives follow.

• .outfile filename: Sets the filename for the output binary if one has not already
been set. If no name is ever set, the output will be written to ophis.bin.

• .advance address [, filler]: Forces the program counter to be address. Unlike the .org
directive, .advance outputs bytes (the value of filler, or zeroes if it is unspecified)
until the program counter reaches a specified address. Attempting to .advance to
a point behind the current program counter is an assemble-time error.

• .alias label value: The .alias directive assigns an arbitrary value to a label. This
value may be an arbitrary argument, but cannot reference any label that has not
already been defined (this prevents recursive label dependencies).

• .byte arg [, arg, ...]: Specifies a series of arguments, which are evaluated, and
strings, which are included as raw ASCII data. The final results of these arguments
must be one byte in size. Seperate constants are seperated by comments.

• .checkpc address: Ensures that the program counter is less than or equal to the
address specified, and emits an assemble-time error if it is not. This produces no code
in the final binary - it is there to ensure that linking a large amount of data together does
not overstep memory boundaries.

• .data [label]: Sets the segment to the segment name specified and disallows output.
If no label is given, switches to the default data segment.

• .incbin filename [, offset [, length]]: Inserts the contents of the file specified as bi-
nary data. Use it to include graphics information, precompiled code, or other non-
assembler data. You may also optionally specify an index to start including from,
or a length to only include a subset.

• .include filename: Includes the entirety of the file specified at that point in the pro-
gram. Use this to order your final sources, if you aren’t doing it via the command
line.

• .org address: Sets the program counter to the address specified. This does not emit
any code in and of itself, nor does it overwrite anything that previously existed. If you
wish to jump ahead in memory, use .advance.

67

Appendix B. Ophis Command Reference

• .require filename: Includes the entirety of the file specified at that point in the
program. Unlike .include, however, code included with .require will only be
inserted once. The .require directive is useful for ensuring that certain code li-
braries are somewhere in the final binary. They are also very useful for guarantee-
ing that macro libraries are available.

• .space label size: This directive is used to organize global variables. It defines the
label specified to be at the current location of the program counter, and then ad-
vances the program counter size steps ahead. No actual code is produced. This is
equivalent to label: .org ^+size.

• .text [label]: Sets the segment to the segment name specified and allows output. If
no label is given, switches to the default text segment.

• .word arg [, arg, ...]: Like .byte, but values are all treated as two-byte values
and stored low-end first (as is the 6502’s wont). Use this to create jump tables (an
unadorned label will evaluate to that label’s location) or otherwise store 16-bit data.

• .dword arg [, arg, ...]: Like .word, but for 32-bit values.

• .wordbe arg [, arg, ...]: Like .word, but stores the value in a big-endian format (high
byte first).

• .dwordbe arg [, arg, ...]: Like .dword, but stores the value high byte first.

• .scope: Starts a new scope block. Labels that begin with an underscore are only
reachable from within their innermost enclosing .scope statement.

• .scend: Ends a scope block. Makes the temporary labels defined since the last
.scope statement unreachable, and permits them to be redefined in a new scope.

• .macro name: Begins a macro definition block. This is a scope block that can be
inlined at arbitrary points with .invoke. Arguments to the macro will be bound to
temporary labels with names like _1, _2, etc.

• .macend: Ends a macro definition block.

• .invoke label [argument [, argument ...]]: invokes (inlines) the specified macro, bind-
ing the values of the arguments to the ones the macro definition intends to read. A
shorthand for .invoke is the name of the macro to invoke, backquoted.

68

	Programming with Ophis
	Table of Contents
	Preface
	History of the project
	Getting a copy of Ophis
	About the examples

	Chapter 1. The basics
	A note on numeric notation
	Producing Commodore 64 programs
	Related commands and options
	Writing the actual code
	Assembling the code

	Chapter 2. Labels and aliases
	Temporary labels
	Anonymous labels
	Aliasing

	Chapter 3. Headers, Libraries, and Macros
	Header files and libraries
	Macros
	Macro definitions
	Macro invocations

	Example code

	Chapter 4. Character maps
	Chapter 5. Local variables and memory segments
	Chapter 6. Expressions
	Chapter 7. Advanced Memory Segments
	The Problem
	The Solution
	Where to go from here

	Chapter 8. The Second Step
	The problem
	The solution
	Unsigned arithmetic
	16bit addition and subtraction
	16bit comparisons

	Chapter 9. Structured Programming
	Control constructs
	Branches: if x then y else z
	Free loops: while x do y
	Bounded loops: for i = x to y do z

	The stack
	Procedures and register saving
	Variables
	Global variables
	Local variables
	Treat local variables like registers
	Procedurebased memory allocation
	Partitionbased memory allocation

	Constants

	Data structures
	Arrays
	Records
	Bitfields

	A modest example: Insertion sort on linked lists
	The data structure
	Doing an insertion sort
	Inserting an element
	The complete application

	Chapter 10. Pointers and Indirection
	The absolute basics
	The simplest example

	Pointer arithmetic
	The straightforward, slow way
	The clever fast way

	What about Indexed Indirect?
	Comparison with the other indexed forms
	Conclusion

	Chapter 11. Functionals
	Function Pointers
	A quick digression on how subroutines work
	Dispatchontype and DataDirected Assembler
	VTables and ObjectOriented Assembler
	A final reminder

	Chapter 12. Call Stacks
	Recursion
	Our Goals
	Example: Fibonnacci Numbers

	Appendix A. Example Programs
	hello1.oph
	hello2.oph
	c641.oph
	c64kernal.oph
	hello3.oph
	hello4a.oph
	hello4b.oph
	hello4c.oph
	hello5.oph
	hello6.oph
	c640.oph
	hello7.oph
	structuredemo.oph
	fibonacci.oph

	Appendix B. Ophis Command Reference
	Command Modes
	Basic arguments
	Numeric types
	Label types
	String types

	Compound Arguments
	Memory Model
	Basic PC tracking
	Basic Segmentation simulation
	General Segmentation Simulation

	Macros
	Defining Macros
	Invoking Macros
	Passing Arguments to Macros
	Features and Restrictions of the Ophis Macro Model

	Assembler directives

