
Programming with Ophis

Michael Martin

Programming with Ophis
by Michael Martin

Copyright © 2006-7 Michael Martin

Table of Contents
Preface .. v

Why “Ophis”?.. v
Getting a copy of Ophis.. v

1. The basics ...1
A note on numeric notation..1
Producing Commodore 64 programs..1
Related commands and options...2
Writing the actual code..3
Assembling the code..3

2. Labels and aliases ...5
Temporary labels ..5
Anonymous labels..5
Aliasing..5

3. Headers, Libraries, and Macros..7
Header files and libraries ..7
Macros..7

Macro definitions..7
Macro invocations ..8

Example code..8
4. Character maps ..9
5. Local variables and memory segments...11
6. Expressions...13
7. Advanced Memory Segments...15

The Problem ..15
The Solution ..15
Where to go from here...16

A. Example Programs ...17
tutor1.oph ...17
tutor2.oph ...17
c64-1.oph ...17
kernal.oph ...18
tutor3.oph ...19
tutor4a.oph ...19
tutor4b.oph ...21
tutor4c.oph ...22
tutor5.oph ...23
tutor6.oph ...24
c64-2.oph ...26
tutor7.oph ...26

B. Ophis Command Reference ...29
Command Modes...29
Basic arguments..29

Numeric types...29
Label types...29
String types..30

Compound Arguments ...30
Memory Model ...30

Basic PC tracking ..30
Basic Segmentation simulation...31
General Segmentation Simulation ...31

Macros..32
Defining Macros..32
Invoking Macros ...32
Passing Arguments to Macros ..32

iii

Features and Restrictions of the Ophis Macro Model32
Assembler directives..33

iv

Preface

The Ophis project started on a lark back in 2001. My graduate studies required me to
learn Perl and Python, and I’d been playing around with Commodore 64 emulators
in my spare time, so I decided to learn both languages by writing a simple cross-
assembler for the 6502 chip the C-64 used in both.

The Perl version was quickly abandoned, but the Python one slowly grew in scope
and power over the years, and by 2005 was a very powerful, flexible macro assembler
that saw more use than I’d expect. In 2007 I finally got around to implementing the
last few features I really wanted and polishing it up for general release.

Part of that process has been formatting the various little tutorials and references I’d
created into a single, unified document—the one you are now reading.

Why “Ophis”?
It’s actually a kind of a horrific pun. See, I was using Python at the time, and one of
the things I had been hoping to do with the assembler was to produce working Apple
II programs. “Ophis” is Greek for “snake”, and a number of traditions also use it as
the actual name of the serpent in the Garden of Eden. So, Pythons, snakes, and stories
involving really old Apples all combined to name the assembler.

Getting a copy of Ophis
If you’re reading this as part of the Ophis install, you clearly already
have it. If not, as of this writing the homepage for the Ophis assembler is
http://hkn.eecs.berkeley.edu/~mcmartin/ophis/. If this is out-of-date, a Web
search on “Ophis 6502 assembler” (without the quotation marks) should yield its
page.

Ophis is written entirely in Python and packaged using the distutils. The default
installation script on Unix and Mac OS X systems should put the files where they
need to go. If you are running it locally, you will need to install the Ophis package
somewhere in your Python package path, and then put the ophis script somewhere
in your path.

Windows users that have Python installed can use the same source distributions that
the other operating systems use; ophis.bat will arrange the environment variables
accordingly and invoke the main script.

If you are on Windows and do not have Python installed, a prepackaged system
made with py2exe is also available. The default Windows installer will use this. In
this case, all you need to do is have ophis.exe in your path.

v

Preface

vi

Chapter 1. The basics

In this first part of the tutorial we will create a simple “Hello World” program to run
on the Commodore 64. This will cover:

• How to make programs run on a Commodore 64

• Writing simple code with labels

• Numeric and string data

• Invoking the assembler

A note on numeric notation
Throughout these tutorials, I will be using a lot of both decimal and hexadecimal
notation. Hex numbers will have a dollar sign in front of them. Thus, 100 = $64, and
$100 = 256.

Producing Commodore 64 programs
Commodore 64 programs are stored in the PRG format on disk. Some emulators (such
as CCS64 or VICE) can run PRG programs directly; others need them to be transferred
to a D64 image first.

The PRG format is ludicrously simple. It has two bytes of header data: This is a little-
endian number indicating the starting address. The rest of the file is a single con-
tinuous chunk of data loaded into memory, starting at that address. BASIC memory
starts at memory location 2048, and that’s probably where we’ll want to start.

Well, not quite. We want our program to be callable from BASIC, so we should have
a BASIC program at the start. We guess the size of a simple one line BASIC program
to be about 16 bytes. Thus, we start our program at memory location 2064 ($0810),
and the BASIC program looks like this:

10 SYS 2064

We SAVE this program to a file, then study it in a debugger. It’s 15 bytes long:

1070:0100 01 08 0C 08 0A 00 9E 20-32 30 36 34 00 00 00

The first two bytes are the memory location: $0801. The rest of the data breaks down
as follows:

Table 1-1. BASIC program breakdown

Memory Locations Value

$0801-$0802 2-byte pointer to the next line of BASIC
code ($080C).

$0803-$0804 2-byte line number ($000A = 10).

$0805 Byte code for the SYS command.

$0806-$080A The rest of the line, which is just the
string “ 2064”.

1

Chapter 1. The basics

Memory Locations Value
$080B Null byte, terminating the line.

$080C-$080D 2-byte pointer to the next line of BASIC
code ($0000 = end of program).

That’s 13 bytes. We started at 2049, so we need 2 more bytes of filler to make our
code actually start at location 2064. These 17 bytes will give us the file format and the
BASIC code we need to have our machine language program run.

These are just bytes—indistinguishable from any other sort of data. In Ophis, bytes
of data are specified with the .byte command. We’ll also have to tell Ophis what
the program counter should be, so that it knows what values to assign to our labels.
The .org (origin) command tells Ophis this. Thus, the Ophis code for our header and
linking info is:

.byte $01, $08, $0C, $08, $0A, $00, $9E, $20

.byte $32, $30, $36, $34, $00, $00, $00, $00

.byte $00, $00

.org $0810

This gets the job done, but it’s completely incomprehensible, and it only uses two
directives—not very good for a tutorial. Here’s a more complicated, but much clearer,
way of saying the same thing.

.word $0801

.org $0801

.word next, 10 ; Next line and current line number

.byte $9e," 2064",0 ; SYS 2064
next: .word 0 ; End of program

.advance 2064

This code has many advantages over the first.

• It describes better what is actually happening. The .word directive at the beginning
indicates a 16-bit value stored in the typical 65xx way (small byte first). This is
followed by an .org statement, so we let the assembler know right away where
everything is supposed to be.

• Instead of hardcoding in the value $080C, we instead use a label to identify the
location it’s pointing to. Ophis will compute the address of next and put that value
in as data. We also describe the line number in decimal since BASIC line numbers
generally are in decimal. Labels are defined by putting their name, then a colon, as
seen in the definition of next.

• Instead of putting in the hex codes for the string part of the BASIC code, we in-
cluded the string directly. Each character in the string becomes one byte.

• Instead of adding the buffer ourselves, we used .advance, which outputs zeros un-
til the specified address is reached. Attempting to .advance backwards produces
an assemble-time error.

• It has comments that explain what the data are for. The semicolon is the comment
marker; everything from a semicolon to the end of the line is ignored.

2

Chapter 1. The basics

Related commands and options
This code includes constants that are both in decimal and in hex. It is also possible to
specify constants in octal, binary, or with an ASCII character.

• To specify decimal constants, simply write the number.

• To specify hexadecimal constants, put a $ in front.

• To specify octal constants, put a 0 (zero) in front.

• To specify binary constants, put a % in front.

• To specify ASCII constants, put an apostrophe in front.

Example: 65 = $41 = 0101 = %1000001 = ’A

There are other commands besides .byte and .word to specify data. In particular,
the .dword command specifies four-byte values which some applications will find
useful. Also, some linking formats (such as the SID format) have header data in big-
endian (high byte first) format. The .wordbe and .dwordbe directives provide a way
to specify multibyte constants in big-endian formats cleanly.

Writing the actual code
Now that we have our header information, let’s actually write the “Hello world”
program. It’s pretty short—a simple loop that steps through a hardcoded array until
it reaches a 0 or outputs 256 characters. It then returns control to BASIC with an RTS
statement.

Each character in the array is passed as an argument to a subroutine at memory lo-
cation $FFD2. This is part of the Commodore 64’s BIOS software, which its devel-
opment documentation calls the KERNAL. Location $FFD2 prints out the character
corresponding to the character code in the accumulator.

ldx #0
loop: lda hello, x

beq done
jsr $ffd2
inx
bne loop

done: rts

hello: .byte "HELLO, WORLD!", 0

The complete, final source is available in the tutor1.oph file.

Assembling the code
The Ophis assembler is a collection of Python modules, controlled by a master script.
On Windows, this should all have been combined into an executable file ophis.exe;
on other platforms, the Ophis modules should be in the library and the ophis script
should be in your path. Typing ophis with no arguments should give a summary of
available command line options.

Table 1-2. Ophis Options

Option Effect

3

Chapter 1. The basics

Option Effect
-6510 Allows the 6510 undocumented opcodes

as listed in the VICE documentation.

-65c02 Allows opcodes and addressing modes
added by the 65C02.

-v 0 Quiet operation. Only reports errors.

-v 1 Default operation. Reports files as they
are loaded, and gives statistics on the
final output.

-v 2 Verbose operation. Names each
assembler pass as it runs.

-v 3 Debug operation: Dumps the entire IR
after each pass.

-v 4 Full debug operation: Dumps the entire
IR and symbol table after each pass.

The only options Ophis demands are an input file and an output file. Here’s a sample
session, assembling the tutorial file here:

localhost$ ophis tutor1.oph tutor1.prg -v 2
Loading tutor1.oph
Running: Macro definition pass
Running: Macro expansion pass
Running: Label initialization pass
Fixpoint failed, looping back
Running: Label initialization pass
Running: Circularity check pass
Running: Expression checking pass
Running: Easy addressing modes pass
Running: Label Update Pass
Fixpoint failed, looping back
Running: Label Update Pass
Running: Instruction Collapse Pass
Running: Mode Normalization pass
Running: Label Update Pass
Running: Assembler
Assembly complete: 45 bytes output (14 code, 29 data, 2 filler)

If your emulator can run PRG files directly, this file will now run (and print HELLO,
WORLD!) as many times as you type RUN. Otherwise, use a D64 management utility to
put the PRG on a D64, then load and run the file off that.

4

Chapter 2. Labels and aliases

Labels are an important part of your code. However, since each label must normally
be unique, this can lead to “namespace pollution,” and you’ll find yourself going
through ever more contorted constructions to generate unique label names. Ophis
offers two solutions to this: anonymous labels and temporary labels. This tutorial will
cover both of these facilities, and also introduce the aliasing mechanism.

Temporary labels
Temporary labels are the easiest to use. If a label begins with an underscore, it will
only be reachable from inside the innermost enclosing scope. Scopes begin when a
.scope statement is encountered. This produces a new, inner scope if there is another
scope in use. The .scend command ends the innermost currently active scope.

We can thus rewrite our header data using temporary labels, thus allowing the main
program to have a label named next if it wants.

.word $0801

.org $0801

.scope
.word _next, 10 ; Next line and current line number
.byte $9e," 2064",0 ; SYS 2064

_next: .word 0 ; End of program
.scend

.advance 2064

Anonymous labels
Anonymous labels are a way to handle short-ranged branches without having to
come up with names for the then and else branches, for brief loops, and other such
purposes. To define an anonymous label, use an asterisk. To refer to an anonymous
label, use a series of + or - signs. + refers to the next anonymous label, ++ the label
after that, etc. Likewise, - is the most recently defined label, -- the one before that,
and so on. The main body of the Hello World program with anonymous labels would
be:

ldx #0
* lda hello, x

beq +
jsr $ffd2
inx
bne -

* rts

It is worth noting that anonymous labels are globally available. They are not tempo-
rary labels, and they ignore scoping restrictions.

Aliasing
Rather the reverse of anonymous labels, aliases are names given to specific memory
locations. These make it easier to keep track of important constants or locations. The
KERNAL routines are a good example of constants that deserve names. To assign the
traditional name chrout to the routine at $FFD2, simply give the directive:

.alias chrout $ffd2

5

Chapter 2. Labels and aliases

And change the jsr command to:

jsr chrout

The final version of the code is in tutor2.oph. It should assemble to exactly the same
program as tutor1.oph.

6

Chapter 3. Headers, Libraries, and Macros

In this chapter we will split away parts of our “Hello World” program into reusable
header files and libraries. We will also abstract away our string printing technique
into a macro which may be invoked at will, on arbitrary strings. We will then multiply
the output of our program tenfold.

Header files and libraries
The prelude to our program—the PRG information and the BASIC program—are go-
ing to be the same in many, many programs. Thus, we should put them into a header
file to be included later. The .include directive will load a file and insert it as source
at the designated point.

A related directive, .require, will include the file as long as it hasn’t been included
yet elsewhere. It is useful for ensuring a library is linked in.

For pre-assembled code or raw binary data, the .incbin directive lets you include
the contents of a binary file directly in the output. This is handy for linking in pre-
created graphics or sound data.

As a sample library, we will expand the definition of the chrout routine to include
the standard names for every KERNAL routine. Our header file will then .require
it.

We’ll also add some convenience aliases for things like reverse video, color changes,
and shifting between upper case/graphics and mixed case text. We’d feed those to
the chrout routine to get their effects.

Since there have been no interesting changes to the prelude, and the KERNAL values
are standard, we do not reproduce them here. (The files in question are c64-1.oph and
kernal.oph.)

Macros
A macro is a way of expressing a lot of code or data with a simple shorthand. It’s
also usually configurable. Traditional macro systems such as C’s #define mechanic
use textual replacement: a macro is expanded before any evaluation or even parsing
occurs.

In contrast, Ophis’s macro system uses a call by value approach where the arguments
to macros are evaluated to bytes or words before being inserted into the macro body.
This produces effects much closer to those of a traditional function call. A more de-
tailed discussion of the tradeoffs may be found in Appendix B.

Macro definitions
A macro definition is a set of statements between a .macro statement and a .macend
statement. The .macro statement also names the macro being defined.

No global or anonymous labels may be defined inside a macro: temporary labels only
persist in the macro expansion itself. (Each macro body has its own scope.)

Arguments to macros are referred to by number: the first is _1, the second _2, and so
on.

Here’s a macro that encapsulates the printing routine in our “Hello World” program,
with an argument being the address of the string to print:

.macro print
ldx #0

_loop: lda _1, x

7

Chapter 3. Headers, Libraries, and Macros

beq _done
jsr chrout
inx
bne _loop

_done:
.macend

Macro invocations
Macros may be invoked in two ways: one that looks like a directive, and one that
looks like an instruction.

The most common way to invoke a macro is to backquote the name of the macro. It
is also possible to use the .invoke command. These commands look like this:

‘print msg
.invoke print msg

Arguments are passed to the macro as a comma-separated list. They must all be ex-
pressions that evaluate to byte or word values—a mechanism similar to .alias is
used to assign their values to the _n names.

Example code
tutor3.oph expands our running example, including the code above and also defining
a new macro greet that takes a string argument and prints a greeting to it. It then
greets far too many targets.

8

Chapter 4. Character maps

Now we will close the gap between the Commodore’s version of ASCII and the real
one. We’ll also add a time-delay routine to slow down the output. This routine isn’t
really of interest to us right now, so we’ll add a subroutine called delay that executes
2,560*(accumulator) NOPs. By the time the program is finished, we’ll have executed
768,000 no-ops.

There actually are better ways of getting a time-delay on the Commodore 64; we’ll
deal with those in Chapter 5. As a result, there isn’t really a lot to discuss here. The
later tutorials will be building off of tutor4a.oph, so you may want to get familiar with
that. Note also the change to the body of the greet macro.

On to the topic at hand. Let’s change the code to use mixed case. We defined the
upper’case and lower’case aliases back in Chapter 3 as part of the standard ker-
nal.oph header, so we can add this before our invocations of the greet macro:

lda #lower’case
jsr chrout

And that will put us into mixed case mode. So, now we just need to redefine the data
so that it uses the mixed-case:

hello1: .byte "Hello, ",0
hello2: .byte "!", 13, 0

target1: .byte "programmer", 0
target2: .byte "room", 0
target3: .byte "building", 0
target4: .byte "neighborhood", 0
target5: .byte "city", 0
target6: .byte "nation", 0
target7: .byte "world", 0
target8: .byte "Solar System", 0
target9: .byte "Galaxy", 0
target10: .byte "Universe", 0

The code that does this is in tutor4b.oph. If you assemble and run it, you will notice
that the output is not what we want. In particular, upper and lowercase are reversed,
so we have messages like hELLO, sOLAR sYSTEM!. For the specific case of PETSCII,
we can just fix our strings, but that’s less of an option if we’re writing for the Apple
II’s character set, or targeting a game console that puts its letters in arbitrary loca-
tions. We need to remap how strings are turned into byte values. The .charmap and
.charmapbin directives do what we need.

The .charmap directive usually takes two arguments; a byte (usually in character
form) indicating the ASCII value to start remapping from, and then a string giving
the new values. To do our case-swapping, we write two directives before defining
any string constants:

.charmap ’A, "abcdefghijklmnopqrstuvwxyz"

.charmap ’a, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Note that the ’a constant in the second directive refers to the “a” character in the
source, not in the current map.

The fixed code is in tutor4c.oph, and will produce the expected results when run.

An alternative is to use a .charmapbin directive to replace the entire character map
directly. This specifies an external file, 256 bytes long, that is loaded in at that point.
A binary character map for the Commodore 64 is provided with the sample pro-
grams as petscii.map. There are also three files, a2normal.map, a2inverse.map,
and a2blink.map that handle the Apple II’s very nonstandard character encodings.

9

Chapter 4. Character maps

10

Chapter 5. Local variables and memory segments

As mentioned in Chapter 4, there are better ways to handle waiting than just execut-
ing vast numbers of NOPs. The Commodore 64 KERNAL library includes a rdtim
routine that returns the uptime of the machine, in 60ths of a second, as a 24-bit inte-
ger. The Commodore 64 programmer’s guide available online actually has a bug in
it, reversing the significance of the A and Y registers. The accumulator holds the least
significant byte, not the most.

Here’s a first shot at a better delay routine:

.scope
; data used by the delay routine
_tmp: .byte 0
_target: .byte 0

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

This works, but it eats up two bytes of file space that don’t really need to be specified.
Also, it’s modifying data inside a program text area, which isn’t good if you’re assem-
bling to a ROM chip. (Since the Commodore 64 stores its programs in RAM, it’s not
an issue for us here.) A slightly better solution is to use .alias to assign the names to
chunks of RAM somewhere. There’s a 4K chunk of RAM from $C000 through $CFFF
between the BASIC ROM and the I/O ROM that should serve our purposes nicely.
We can replace the definitions of _tmp and _target with:

; data used by the delay routine
.alias _tmp $C000
.alias _target $C001

This works better, but now we’ve just added a major bookkeeping burden upon our-
selves—we must ensure that no routines step on each other. What we’d really like are
two separate program counters—one for the program text, and one for our variable
space.

Ophis lets us do this with the .text and .data commands. The .text command
switches to the program-text counter, and the .data command switches to the
variable-data counter. When Ophis first starts assembling a file, it starts in .text
mode.

To reserve space for a variable, use the .space command. This takes the form:

.space varname size

which assigns the name varname to the current program counter, then advances the
program counter by the amount specified in size. Nothing is output to the final
binary as a result of the .space command.

You may not put in any commands that produce output into a .data segment. Gen-
erally, all you will be using are .org and .space commands. Ophis will not complain
if you use .space inside a .text segment, but this is nearly always wrong.

The final version of delay looks like this:

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).

11

Chapter 5. Local variables and memory segments

.scope

.data

.space _tmp 1

.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

We’re not quite done yet, however, because we have to tell the data segment where
to begin. (If we don’t, it starts at 0, which is usually wrong.) We add a very brief data
segment to the top of our code:

.data

.org $C000

.text

This will run. However, we also ought to make sure that we aren’t overstepping any
boundaries. Our program text shouldn’t run into the BASIC chip at $A000, and our
data shouldn’t run into the I/O region at $D000. The .checkpc command lets us
assert that the program counter hasn’t reached a specific point yet. We put, at the end
of our code:

.checkpc $A000

.data

.checkpc $D000

The final program is available as tutor5.oph. Note that we based this on the
all-uppercase version from the last section, not any of the charmapped versions.

12

Chapter 6. Expressions

Ophis permits a reasonably rich set of arithmetic operations to be done at assem-
ble time. So far, all of our arguments and values have either been constants or label
names. In this chapter, we will modify the print macro so that it calls a subroutine
to do the actual printing. This will shrink the final code size a fair bit.

Here’s our printing routine. It’s fairly straightforward.

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

.scope
printstr:

sta $10
stx $11
ldy #$00

_lp: lda ($10), y
beq _done
jsr chrout
iny
bne _lp

_done: rts
.scend

However, now we are faced with the problem of what to do with the print macro.
We need to take a 16-bit value and store it in two 8-bit registers. We can use the < and
> operators to take the low or high byte of a word, respectively. The print macro
becomes:

.macro print
lda #<_1
ldx #>_1
jsr printstr

.macend

Also, since BASIC uses the locations $10 and $11, we should really cache them at the
start of the program and restore them at the end:

.data

.org $C000

.space cache 2

.text

; Save the zero page locations that printstr uses.
lda $10
sta cache
lda $11
sta cache+1

; ... main program goes here ...

; Restore the zero page values printstr uses.
lda cache
sta $10
lda cache+1
sta $11

Note that we only have to name cache once, but can use addition to refer to any
offset from it.

Ophis supports following operations, with the following precedence levels (higher
entries bind more tightly):

13

Chapter 6. Expressions

Table 6-1. Ophis Operators

Operators Description

[] Parenthesized expressions

< > Byte selection (low, high)

* / Multiply, divide

+ - Add, subtract

| & ^ Bitwise OR, AND, XOR

Note that brackets, not parentheses, are used to group arithmetic operations. This is
because parentheses are used for the indirect addressing modes, and it makes parsing
much easier.

The code for this version of the code is in tutor6.oph.

14

Chapter 7. Advanced Memory Segments

This is the last section of the Ophis tutorial. By now we’ve covered the basics of every
command in the assembler; in this final installment we show the full capabilities of
the .text and .data commands as we produce a final set of Commodore 64 header
files.

The Problem
Our print’str routine in tutor6.oph accesses memory locations $10 and $11 directly.
We’d prefer to have symbolic names for them. This reprises our concerns back in
Chapter 5 when we concluded that we wanted two separate program counters. Now
we realize that we really need three; one for the text, one for the data, and one for
the zero page data. And if we’re going to allow three, we really should allow any
number.

The Solution
The .data and .text commands can take a label name after them—this names a
new segment. We’ll define a new segment called zp (for “zero page”) and have our
zero-page variables be placed there. We can’t actually use the default origin of $0000
here either, though, because the Commodore 64 reserves memory locations 0 and 1
to control its memory mappers:

.data zp

.org $0002

Now, actually, the rest of the zero page is reserved too: locations $02-$7F are used
by the BASIC interpreter, and locations $80-$FF are used by the KERNAL. We don’t
need the BASIC interpreter, though, so we can back up all of $02-$7F at the start of
our program and restore it all when we’re done:

.scope
; Cache BASIC’s zero page at top of available RAM.
ldx #$7E

* lda $01, x
sta $CF81, x
dex
bne -

jsr _main

; Restore BASIC’s zero page and return control.

ldx #$7E
* lda $CF81, x

sta $01, x
dex
bne -
rts

_main:
; _main points at the start of the real program,
; which is actually outside of this scope

.scend

The new, improved header file is c64-2.oph.

Our print’str routine is then rewritten to declare and use a zero-page variable, like
so:

15

Chapter 7. Advanced Memory Segments

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

.scope

.data zp

.space _ptr 2

.text
printstr:

sta _ptr
stx _ptr+1
ldy #$00

_lp: lda (_ptr),y
beq _done
jsr chrout
iny
bne _lp

_done: rts
.scend

Also, we ought to put in an extra check to make sure our zero-page allocations don’t
overflow, either:

.data zp

.checkpc $80

That concludes our tour. The final source file is tutor7.oph.

Where to go from here
This tutorial has touched on everything that the assembler can do, but it’s not really
well organized as a reference. Appendix B is a better place to look up matters of
syntax or consult lists of available commands.

If you’re looking for projects to undertake, the Commodore 64 and Atari 2600 devel-
opment communities are both very strong, and the Apple II and NES development
communities are still alive and well as well. There’s an annual Minigame Competi-
tion that’s always looking for new entries.

16

Appendix A. Example Programs

This Appendix collects all the programs referred to in the course of this manual.

tutor1.oph

.word $0801

.org $0801

.word next, 10 ; Next line and current line number

.byte $9e," 2064",0 ; SYS 2064
next: .word 0 ; End of program

.advance 2064

ldx #0
loop: lda hello, x

beq done
jsr $ffd2
inx
bne loop

done: rts

hello: .byte "HELLO, WORLD!", 0

tutor2.oph

.word $0801

.org $0801

.scope
.word _next, 10 ; Next line and current line number
.byte $9e," 2064",0 ; SYS 2064

_next: .word 0 ; End of program
.scend

.advance 2064

.alias chrout $ffd2

ldx #0
* lda hello, x

beq +
jsr chrout
inx
bne -

* rts

hello: .byte "HELLO, WORLD!", 0

c64-1.oph

.word $0801

.org $0801

.scope
.word _next, 10 ; Next line and current line number
.byte $9e," 2064",0 ; SYS 2064

_next: .word 0 ; End of program

17

Appendix A. Example Programs

.scend

.advance 2064

.require "kernal.oph"

kernal.oph

; KERNAL routine aliases (C64)

.alias acptr $ffa5

.alias chkin $ffc6

.alias chkout $ffc9

.alias chrin $ffcf

.alias chrout $ffd2

.alias ciout $ffa8

.alias cint $ff81

.alias clall $ffe7

.alias close $ffc3

.alias clrchn $ffcc

.alias getin $ffe4

.alias iobase $fff3

.alias ioinit $ff84

.alias listen $ffb1

.alias load $ffd5

.alias membot $ff9c

.alias memtop $ff99

.alias open $ffc0

.alias plot $fff0

.alias ramtas $ff87

.alias rdtim $ffde

.alias readst $ffb7

.alias restor $ff8a

.alias save $ffd8

.alias scnkey $ff9f

.alias screen $ffed

.alias second $ff93

.alias setlfs $ffba

.alias setmsg $ff90

.alias setnam $ffbd

.alias settim $ffdb

.alias settmo $ffa2

.alias stop $ffe1

.alias talk $ffb4

.alias tksa $ff96

.alias udtim $ffea

.alias unlsn $ffae

.alias untlk $ffab

.alias vector $ff8d

; Character codes for the colors.
.alias color’0 144
.alias color’1 5
.alias color’2 28
.alias color’3 159
.alias color’4 156
.alias color’5 30
.alias color’6 31
.alias color’7 158
.alias color’8 129
.alias color’9 149
.alias color’10 150
.alias color’11 151
.alias color’12 152

18

Appendix A. Example Programs

.alias color’13 153

.alias color’14 154

.alias color’15 155

; ...and reverse video
.alias reverse’on 18
.alias reverse’off 146

; ...and character set
.alias upper’case 142
.alias lower’case 14

tutor3.oph

.include "c64-1.oph"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

19

Appendix A. Example Programs

tutor4a.oph

.include "c64-1.oph"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Executes 2,560*(A) NOP statements.
delay: tax

ldy #00
* nop

nop
nop
nop
nop
nop
nop
nop
nop
nop
iny
bne -
dex

20

Appendix A. Example Programs

bne -
rts

tutor4b.oph

.include "c64-1.oph"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
lda #lower’case
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "Hello, ",0
hello2: .byte "!", 13, 0

target1: .byte "programmer", 0
target2: .byte "room", 0
target3: .byte "building", 0
target4: .byte "neighborhood", 0
target5: .byte "city", 0
target6: .byte "nation", 0
target7: .byte "world", 0
target8: .byte "Solar System", 0
target9: .byte "Galaxy", 0
target10: .byte "Universe", 0

; DELAY routine. Executes 2,560*(A) NOP statements.
delay: tax

ldy #00
* nop

nop
nop
nop
nop
nop

21

Appendix A. Example Programs

nop
nop
nop
nop
iny
bne -
dex
bne -
rts

tutor4c.oph

.include "c64-1.oph"

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
lda #lower’case
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

.charmap ’A, "abcdefghijklmnopqrstuvwxyz"

.charmap ’a, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

hello1: .byte "Hello, ",0
hello2: .byte "!", 13, 0

target1: .byte "programmer", 0
target2: .byte "room", 0
target3: .byte "building", 0
target4: .byte "neighborhood", 0
target5: .byte "city", 0
target6: .byte "nation", 0
target7: .byte "world", 0
target8: .byte "Solar System", 0
target9: .byte "Galaxy", 0
target10: .byte "Universe", 0

22

Appendix A. Example Programs

; DELAY routine. Executes 2,560*(A) NOP statements.
delay: tax

ldy #00
* nop

nop
nop
nop
nop
nop
nop
nop
nop
nop
iny
bne -
dex
bne -
rts

tutor5.oph

.include "c64-1.oph"

.data

.org $C000

.text

.macro print
ldx #0

_loop: lda _1, x
beq _done
jsr chrout
inx
bne _loop

_done:
.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10
rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0

23

Appendix A. Example Programs

target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).
.scope
.data
.space _tmp 1
.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

.checkpc $A000

.data

.checkpc $D000

tutor6.oph

.include "c64-1.oph"

.data

.org $C000

.space cache 2

.text

.macro print
lda #<_1
ldx #>_1
jsr printstr

.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

; Save the zero page locations that PRINTSTR uses.
lda $10
sta cache
lda $11
sta cache+1

lda #147

24

Appendix A. Example Programs

jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10

; Restore the zero page values printstr uses.
lda cache
sta $10
lda cache+1
sta $11

rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).
.scope
.data
.space _tmp 1
.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

.scope
printstr:

sta $10
stx $11
ldy #$00

_lp: lda ($10),y
beq _done
jsr chrout

25

Appendix A. Example Programs

iny
bne _lp

_done: rts
.scend

.checkpc $A000

.data

.checkpc $D000

c64-2.oph

.word $0801

.org $0801

.scope
.word _next, 10 ; Next line and current line number
.byte $9e," 2064",0 ; SYS 2064

_next: .word 0 ; End of program
.scend

.advance $0810

.require "kernal.oph"

.data zp

.org $0002

.text

.scope
; Cache BASIC’s zero page at top of available RAM.
ldx #$7E

* lda $01, x
sta $CF81, x
dex
bne -

jsr _main

; Restore BASIC’s zero page and return control.

ldx #$7E
* lda $CF81, x

sta $01, x
dex
bne -
rts

_main:
; Program follows...

.scend

tutor7.oph

.include "c64-2.oph"

.data

.org $C000

.text

.macro print

26

Appendix A. Example Programs

lda #<_1
ldx #>_1
jsr printstr

.macend

.macro greet
lda #30
jsr delay
‘print hello1
‘print _1
‘print hello2

.macend

lda #147
jsr chrout
‘greet target1
‘greet target2
‘greet target3
‘greet target4
‘greet target5
‘greet target6
‘greet target7
‘greet target8
‘greet target9
‘greet target10

rts

hello1: .byte "HELLO, ",0
hello2: .byte "!", 13, 0

target1: .byte "PROGRAMMER", 0
target2: .byte "ROOM", 0
target3: .byte "BUILDING", 0
target4: .byte "NEIGHBORHOOD", 0
target5: .byte "CITY", 0
target6: .byte "NATION", 0
target7: .byte "WORLD", 0
target8: .byte "SOLAR SYSTEM", 0
target9: .byte "GALAXY", 0
target10: .byte "UNIVERSE", 0

; DELAY routine. Takes values from the Accumulator and pauses
; for that many jiffies (1/60th of a second).
.scope
.data
.space _tmp 1
.space _target 1

.text

delay: sta _tmp ; save argument (rdtim destroys it)
jsr rdtim
clc
adc _tmp ; add current time to get target
sta _target

* jsr rdtim
cmp _target
bmi - ; Buzz until target reached
rts

.scend

; PRINTSTR routine. Accumulator stores the low byte of the address,
; X register stores the high byte. Destroys the values of $10 and
; $11.

27

Appendix A. Example Programs

.scope

.data zp

.space _ptr 2

.text
printstr:

sta _ptr
stx _ptr+1
ldy #$00

_lp: lda (_ptr),y
beq _done
jsr chrout
iny
bne _lp

_done: rts
.scend

.checkpc $A000

.data

.checkpc $D000

.data zp

.checkpc $80

28

Appendix B. Ophis Command Reference

Command Modes
These mostly follow the MOS Technology 6500 Microprocessor Family Programming
Manual, except for the Accumulator mode. Accumulator instructions are written and
interpreted identically to Implied mode instructions.

• Implied: RTS

• Accumulator: LSR

• Immediate: LDA #$06

• Zero Page: LDA $7C

• Zero Page, X: LDA $7C,X

• Zero Page, Y: LDA $7C,Y

• Absolute: LDA $D020

• Absolute, X: LDA $D000,X

• Absolute, Y: LDA $D000,Y

• (Zero Page Indirect, X): LDA ($80, X)

• (Zero Page Indirect), Y: LDA ($80), Y

• (Absolute Indirect): JMP ($A000)

• Relative: BNE loop

• (Absolute Indirect, X): JMP ($A000, X) — Only available with 65C02 extensions

• (Zero Page Indirect): LDX ($80) — Only available with 65C02 extensions

Basic arguments
Most arguments are just a number or label. The formats for these are below.

Numeric types

• Hex: $41 (Prefixed with $)

• Decimal: 65 (No markings)

• Octal: 0101 (Prefixed with zero)

• Binary: %01000001 (Prefixed with %)

• Character: ’A (Prefixed with single quote)

Label types
Normal labels are simply referred to by name. Anonymous labels may be referenced
with strings of - or + signs (the label - refers to the immediate previous anonymous
label, -- the one before that, etc., while + refers to the next anonymous label), and the
special label ^ refers to the program counter at the start of the current instruction or
directive.

Normal labels are defined by prefixing a line with the label name and then a colon (e.g.,
label:). Anonymous labels are defined by prefixing a line with an asterisk (e.g., *).

29

Appendix B. Ophis Command Reference

Temporary labels are only reachable from inside the innermost enclosing .scope
statement. They are identical to normal labels in every way, except that they start
with an underscore.

String types
Strings are enclosed in double quotation marks. Backslashed characters (including
backslashes and double quotes) are treated literally, so the string "The man said,
\"The \\ character is the backslash.\"" produces the ASCII sequence for
The man said, "The \ character is the backslash."

Strings are generally only used as arguments to assembler directives—usually for
filenames (e.g., .include) but also for string data (in association with .byte).

It is legal, though unusual, to attempt to pass a string to the other data statements.
This will produces a series of words/dwords where all bytes that aren’t
least-significant are zero. Endianness and size will match what the directive itself
indicated.

Compound Arguments
Compound arguments may be built up from simple ones, using the standard +, -, *,
and / operators, which carry the usual precedence. Also, the unary operators > and
<, which bind more tightly than anything else, provide the high and low bytes of
16-bit values, respectively.

Use brackets [] instead of parentheses () when grouping arithmetic operations, as
the parentheses are needed for the indirect addressing modes.

Examples:

• $D000 evaluates to $D000

• $D000+32 evaluates to $D020

• $D000+$20 also evaluates to $D020

• <$D000+32 evaluates to $20

• >$D000+32 evaluates to $F0

• >[$D000+32] evaluates to $D0

• >$D000-275 evaluates to $CE

Memory Model
In order to properly compute the locations of labels and the like, Ophis must keep
track of where assembled code will actually be sitting in memory, and it strives to do
this in a way that is independent both of the target file and of the target machine.

Basic PC tracking
The primary technique Ophis uses is program counter tracking. As it assembles the
code, it keeps track of a virtual program counter, and uses that to determine where
the labels should go.

In the absence of an .org directive, it assumes a starting PC of zero. .org is a simple
directive, setting the PC to the value that .org specifies. In the simplest case, one

30

Appendix B. Ophis Command Reference

.org directive appears at the beginning of the code and sets the location for the rest
of the code, which is one contiguous block.

Basic Segmentation simulation
However, this isn’t always practical. Often one wishes to have a region of memory
reserved for data without actually mapping that memory to the file. On some systems
(typically cartridge-based systems where ROM and RAM are seperate, and the target
file only specifies the ROM image) this is mandatory. In order to access these variables
symbolically, it’s necessary to put the values into the label lookup table.

It is possible, but inconvenient, to do this with .alias, assigning a specific memory
location to each variable. This requires careful coordination through your code, and
makes creating reusable libraries all but impossible.

A better approach is to reserve a section at the beginning or end of your program, put
an .org directive in, then use the .space directive to divide up the data area. This
is still a bit inconvenient, though, because all variables must be assigned all at once.
What we’d really like is to keep multiple PC counters, one for data and one for code.

The .text and .data directives do this. Each has its own PC that starts at zero, and
you can switch between the two at any point without corrupting the other’s counter.
In this way each function can have a .data section (filled with .space commands)
and a .text section (that contains the actual code). This lets our library routines be al-
most completely self-contained - we can have one source file that could be .included
by multiple projects without getting in anything’s way.

However, any given program may have its own ideas about where data and code
go, and it’s good to ensure with a .checkpc at the end of your code that you haven’t
accidentally overwritten code with data or vice versa. If your .data segment did start
at zero, it’s probably wise to make sure you aren’t smashing the stack, too (which is
sitting in the region from $0100 to $01FF).

If you write code with no segment-defining statements in it, the default segment is
text.

The data segment is designed only for organizing labels. As such, errors will be
flagged if you attempt to actually output information into a data segment.

General Segmentation Simulation
One text and data segment each is usually sufficient, but for the cases where it is
not, Ophis allows for user-defined segments. Putting a label after .text or .data
produces a new segment with the specified name.

Say, for example, that we have access to the RAM at the low end of the address space,
but want to reserve the zero page for truly critical variables, and use the rest of RAM
for everything else. Let’s also assume that this is a 6510 chip, and locations $00 and
$01 are reserved for the I/O port. We could start our program off with:

.data

.org $200

.data zp

.org $2

.text

.org $800

And, to be safe, we would probably want to end our code with checks to make sure
we aren’t overwriting anything:

.data

.checkpc $800

.data zp

31

Appendix B. Ophis Command Reference

.checkpc $100

Macros
Assembly language is a powerful tool—however, there are many tasks that need to
be done repeatedly, and with mind-numbing minor modifications. Ophis includes a
facility for macros to allow this. Ophis macros are very similar in form to function
calls in higher level languages.

Defining Macros
Macros are defined with the .macro and .macend commands. Here’s a simple one
that will clear the screen on a Commodore 64:

.macro clr’screen
lda #147
jsr $FFD2

.macend

Invoking Macros
To invoke a macro, either use the .invoke command or backquote the name of the
routine. The previous macro may be expanded out in either of two ways, at any point
in the source:

.invoke clr’screen

or

‘clr’screen

will work equally well.

Passing Arguments to Macros
Macros may take arguments. The arguments to a macro are all of the “word” type,
though byte values may be passed and used as bytes as well. The first argument in
an invocation is bound to the label _1, the second to _2, and so on. Here’s a macro
for storing a 16-bit value into a word pointer:

.macro store16 ; ‘store16 dest, src
lda #<_2
sta _1
lda #>_2
sta _1+1
.macend

Macro arguments behave, for the most part, as if they were defined by .alias com-
mands in the calling context. (They differ in that they will not produce duplicate-label
errors if those names already exist in the calling scope, and in that they disappear
after the call is completed.)

32

Appendix B. Ophis Command Reference

Features and Restrictions of the Ophis Macro Model
Unlike most macro systems (which do textual replacement), Ophis macros evaluate
their arguments and bind them into the symbol table as temporary labels. This pro-
duces some benefits, but it also puts some restrictions on what kinds of macros may
be defined.

The primary benefit of this “expand-via-binding” discipline is that there are no sur-
prises in the semantics. The expression _1+1 in the macro above will always evaluate
to one more than the value that was passed as the first argument, even if that first
argument is some immensely complex expression that an expand-via-substitution
method may accidentally mangle.

The primary disadvantage of the expand-via-binding discipline is that only fixed
numbers of words and bytes may be passed. A substitution-based system could
define a macro including the line LDA _1 and accept as arguments both $C000
(which would put the value of memory location $C000 into the accumulator) and
#$40 (which would put the immediate value $40 into the accumulator). If you really
need this kind of behavior, a run a C preprocessor over your Ophis source, and use
#define to your heart’s content.

Assembler directives
Assembler directives are all instructions to the assembler that are not actual instruc-
tions. Ophis’s set of directives follow.

• .advance address: Forces the program counter to be address. Unlike the .org direc-
tive, .advance outputs zeroes until the program counter reaches a specified ad-
dress. Attempting to .advance to a point behind the current program counter is
an assemble-time error.

• .alias label value: The .alias directive assigns an arbitrary value to a label. This
value may be an arbitrary argument, but cannot reference any label that has not
already been defined (this prevents recursive label dependencies).

• .byte arg [, arg, ...]: Specifies a series of arguments, which are evaluated, and
strings, which are included as raw ASCII data. The final results of these arguments
must be one byte in size. Seperate constants are seperated by comments.

• .checkpc address: Ensures that the program counter is less than or equal to the
address specified, and emits an assemble-time error if it is not. This produces no code
in the final binary - it is there to ensure that linking a large amount of data together does
not overstep memory boundaries.

• .data [label]: Sets the segment to the segment name specified and disallows output.
If no label is given, switches to the default data segment.

• .incbin filename: Inserts the contents of the file specified as binary data. Use it to
include graphics information, precompiled code, or other non-assembler data.

• .include filename: Includes the entirety of the file specified at that point in the
program. Use this to order your final sources.

• .org address: Sets the program counter to the address specified. This does not emit
any code in and of itself, nor does it overwrite anything that previously existed. If you
wish to jump ahead in memory, use .advance.

• .require filename: Includes the entirety of the file specified at that point in the
program. Unlike .include, however, code included with .require will only be
inserted once. The .require directive is useful for ensuring that certain code li-
braries are somewhere in the final binary. They are also very useful for guarantee-
ing that macro libraries are available.

33

Appendix B. Ophis Command Reference

• .space label size: This directive is used to organize global variables. It defines the
label specified to be at the current location of the program counter, and then ad-
vances the program counter size steps ahead. No actual code is produced. This is
equivalent to label: .org ^+size.

• .text [label]: Sets the segment to the segment name specified and allows output. If
no label is given, switches to the default text segment.

• .word arg [, arg, ...]: Like .byte, but values are all treated as two-byte values
and stored low-end first (as is the 6502’s wont). Use this to create jump tables (an
unadorned label will evaluate to that label’s location) or otherwise store 16-bit data.

• .dword arg [, arg, ...]: Like .word, but for 32-bit values.

• .wordbe arg [, arg, ...]: Like .word, but stores the value in a big-endian format (high
byte first).

• .dwordbe arg [, arg, ...]: Like .dword, but stores the value high byte first.

• .scope: Starts a new scope block. Labels that begin with an underscore are only
reachable from within their innermost enclosing .scope statement.

• .scend: Ends a scope block. Makes the temporary labels defined since the last
.scope statement unreachable, and permits them to be redefined in a new scope.

• .macro name: Begins a macro definition block. This is a scope block that can be
inlined at arbitrary points with .invoke. Arguments to the macro will be bound to
temporary labels with names like _1, _2, etc.

• .macend: Ends a macro definition block.

• .invoke label [argument [, argument ...]]: invokes (inlines) the specified macro, bind-
ing the values of the arguments to the ones the macro definition intends to read. A
shorthand for .invoke is the name of the macro to invoke, backquoted.

The following directives are deprecated, added for compatibility with the old Perl
assembler P65. Use the -d option to Ophis to enable them.

• .ascii: Equivalent to .byte, which didn’t used to be able to handle strings.

• .code: Equivalent to .text.

• .segment: Equivalent to .text, from when there was no distinction between .text
and .data segments.

• .address: Equivalent to .word.

• .link filename address: Assembles the file specified as if it began at the address
specified. This is generally for use in “top-level” files, where there is not necessarily
a one-to-one correspondence between file position and memory position. This is
equivalent to an .org directive followed by an .include. With the introduction of
the .org directive this one is less useful (and in most cases, any .org statement
you use will actually be at the top of the .included file).

34

	Programming with Ophis
	Table of Contents
	Preface
	Why Ophis?
	Getting a copy of Ophis

	Chapter 1. The basics
	A note on numeric notation
	Producing Commodore 64 programs
	Related commands and options
	Writing the actual code
	Assembling the code

	Chapter 2. Labels and aliases
	Temporary labels
	Anonymous labels
	Aliasing

	Chapter 3. Headers, Libraries, and Macros
	Header files and libraries
	Macros
	Macro definitions
	Macro invocations

	Example code

	Chapter 4. Character maps
	Chapter 5. Local variables and memory segments
	Chapter 6. Expressions
	Chapter 7. Advanced Memory Segments
	The Problem
	The Solution
	Where to go from here

	Appendix A. Example Programs
	tutor1.oph
	tutor2.oph
	c641.oph
	kernal.oph
	tutor3.oph
	tutor4a.oph
	tutor4b.oph
	tutor4c.oph
	tutor5.oph
	tutor6.oph
	c642.oph
	tutor7.oph

	Appendix B. Ophis Command Reference
	Command Modes
	Basic arguments
	Numeric types
	Label types
	String types

	Compound Arguments
	Memory Model
	Basic PC tracking
	Basic Segmentation simulation
	General Segmentation Simulation

	Macros
	Defining Macros
	Invoking Macros
	Passing Arguments to Macros
	Features and Restrictions of the Ophis Macro Model

	Assembler directives

