1
0
mirror of https://github.com/dschmenk/PLASMA.git synced 2025-01-21 17:31:31 +00:00

Add source with reference counting. Super slow. Ouch

This commit is contained in:
David Schmenk 2024-07-15 09:01:10 -07:00
parent d8ec9f9709
commit 713b6ea7fa
3 changed files with 1616 additions and 0 deletions

295
src/lisp/drawl.ref Normal file
View File

@ -0,0 +1,295 @@
include "inc/cmdsys.plh"
include "inc/args.plh"
include "inc/fileio.plh"
import sexpr
const TYPE_MASK = $70
const NIL = $00
const BOOL_FALSE = $00
const BOOL_TRUE = $01
const CONS_TYPE = $10
const SYM_TYPE = $20
const SYM_LEN = $0F
const NUM_TYPE = $30
const NUM_INT = $31
const NUM_FLOAT = $32
const ARRAY_TYPE = $40
struc t_elem
word link
byte type
byte refcnt
end
struc t_cons
res[t_elem]
word car
word cdr
end
struc t_sym
res[t_elem]
word natv
word lambda
word array
word apval
char name[0]
end
struc t_numint
res[t_elem]
word intval[2]
end
var fmt_fpint
var fmt_fpfrac
predef ref(expr)#1
predef deref(expr)#1
predef print_expr(expr)#1
predef parse_expr(evalptr, level, refill)#2
predef eval_expr(expr)#1
predef bool_pred(bool)#1
predef new_int(intlo, inthi)#1
predef new_sym(symstr)#1
predef new_assoc(symptr, valptr)#0
predef set_assoc(symptr, valptr)#0
end
import smath
predef eval_int(expr)#1
end
var prog, prog_expr, prog_return // Current PROG expressions
var sym_cond, sym_fpint, sym_fpfrac
var pred_true
const FILEBUF_SIZE = 128
var readfn // Read input routine
var fileref, filebuf // File read vars
byte quit = FALSE // Quit interpreter flag
//
// (PROG ...) language extension
//
def natv_prog(symptr, expr)
var prog_enter, prog_car, cond_expr
prog_expr = expr=>cdr
prog = prog_expr // Update current PROG expression
prog_enter = prog // Save current prog
expr = expr=>car // Set up local variables
while expr
new_assoc(expr=>car, NULL)
expr = expr=>cdr
loop
prog_return = NULL
while prog_expr and not prog_return
prog_car = prog_expr=>car
prog_expr = prog_expr=>cdr // Assume continuation
if prog_car->type == CONS_TYPE
//
// List - check for (COND (...))
//
if prog_car=>car == sym_cond // Inline cond() evaluation
cond_expr = prog_car=>cdr
while cond_expr
if deref(eval_expr(cond_expr=>car=>car)) == pred_true
deref(eval_expr(cond_expr=>car=>cdr=>car)) // Drop result
break
fin
cond_expr = cond_expr=>cdr
loop
else
deref(eval_expr(prog_car)) // Drop result
fin
//else
//
// Atom - skip, i.e. (GO ) destination
//
fin
loop
prog = prog_enter
return eval_expr(prog_return)
end
def natv_return(symptr, expr)
prog_return = expr=>car
return NULL // This value will be dropped in natv_prog
end
def natv_go(symptr, expr)
expr = expr=>car
symptr = prog // Scan prog list looking for matching SYM
while symptr
if symptr=>car == expr
prog_expr = symptr=>cdr
return NULL
fin
symptr = symptr=>cdr
loop
puts("(GO ...) destination not found:"); print_expr(expr); putln
return NULL
end
def natv_set(symptr, expr)
symptr = eval_expr(expr=>cdr=>car)
set_assoc(deref(eval_expr(expr=>car)), symptr)
return ref(symptr)
end
def natv_setq(symptr, expr)
symptr = eval_expr(expr=>cdr=>car)
set_assoc(expr=>car, symptr)
return ref(symptr)
end
//
// REPL native helper functions
//
def natv_fpint(symptr, expr)
var fmt
fmt_fpint = eval_int(expr)=>intval
deref(expr)
fmt = new_int(fmt_fpint, 0)
set_assoc(sym_fpint, fmt)
return fmt
end
def natv_fpfrac(symptr, expr)
var fmt
fmt_fpfrac = eval_int(expr)=>intval
deref(expr)
fmt = new_int(fmt_fpfrac, 0)
set_assoc(sym_fpfrac, fmt)
return fmt
end
def natv_memavail(symptr, expr)
return new_int(heapavail, 0)
end
def natv_bye(symptr, expr)
quit = TRUE
return ref(new_sym("GOODBYE!")) // (QUOTE GOODBYE!)
end
//
// Keyboard and file input routines
//
def refill_keybd
var readline
repeat
readline = gets('>'|$80)
^(readline + ^readline + 1) = 0
until ^readline
return readline + 1
end
def read_keybd
var readline, expr
repeat
readline = gets('?'|$80)
^(readline + ^readline + 1) = 0
until ^readline
drop, expr = parse_expr(readline + 1, 0, @refill_keybd)
//print_expr(expr); putln // DEBUG - print parsed expression
return expr
end
def read_fileline
var len
repeat
len = fileio:read(fileref, filebuf, FILEBUF_SIZE-1)
if len
if ^(filebuf + len - 1) == $0D
len-- // Remove trailing carriage return
fin
^(filebuf + len) = 0 // NULL terminate
else
fileio:close(fileref)
readfn = @read_keybd
return FALSE
fin
until len
return TRUE
end
def refill_file
if not read_fileline
puts("File input prematurely ended\n")
return refill_keybd
fin
return filebuf
end
def read_file
var expr
if not read_fileline
return read_keybd
fin
drop, expr = parse_expr(filebuf, 0, @refill_file)
return expr
end
//
// Handle command line options
//
def parse_cmdline#0
var filename
readfn = @read_keybd
filename = argNext(argFirst)
if ^filename
fileref = fileio:open(filename)
if fileref
fileio:newline(fileref, $7F, $0D)
readfn = @read_file
filebuf = heapalloc(FILEBUF_SIZE)
else
puts("Unable to open: "); puts(filename); putln
fin
fin
end
//
// REPL
//
def rep#0
var expr, eval
expr = readfn()
eval = eval_expr(expr)
deref(print_expr(eval)); putln
if eval and eval <> expr; deref(expr); fin
end
puts("DRAWL (LISP 1.5) symbolic processor\n")
pred_true = bool_pred(TRUE) // Capture value of TRUE
sym_fpint = new_sym("FMTFPI")
sym_fpfrac = new_sym("FMTFPF")
sym_fpint=>natv = @natv_fpint
sym_fpfrac=>natv = @natv_fpfrac
new_assoc(sym_fpint, new_int(fmt_fpint, 0))
new_assoc(sym_fpfrac, new_int(fmt_fpfrac, 0))
sym_cond = new_sym("COND") // This should actually match COND
new_sym("PROG")=>natv = @natv_prog
new_sym("GO")=>natv = @natv_go
new_sym("RETURN")=>natv = @natv_return
new_sym("SET")=>natv = @natv_set
new_sym("SETQ")=>natv = @natv_setq
new_sym("MEM")=>natv = @natv_memavail
new_sym("BYE")=>natv = @natv_bye
parse_cmdline
while not quit; rep; loop
putln
done

979
src/lisp/s-expr.ref Normal file
View File

@ -0,0 +1,979 @@
include "inc/cmdsys.plh"
include "inc/int32.plh"
include "inc/fpstr.plh"
const TYPE_MASK = $70
const NIL = $00
const BOOL_FALSE = $00
const BOOL_TRUE = $01
const CONS_TYPE = $10
const SYM_TYPE = $20
const SYM_LEN = $0F
const NUM_TYPE = $30
const NUM_INT = $31
const NUM_FLOAT = $32
const ARRAY_TYPE = $40
const NULL_HACK = 1 // Hack so we can set elements to NULL
struc t_elem
word link
byte type
byte refcnt
end
struc t_cons
res[t_elem]
word car
word cdr
end
struc t_sym
res[t_elem]
word natv
word lambda
word array
word apval
char name[0]
end
struc t_array
res[t_elem]
word dimension[4]
word offset[4]
word arraymem
end
struc t_numint
res[t_elem]
word intval[2]
end
struc t_numfloat
res[t_elem]
res floatval[10]
end
predef eval_expr(expr)#1
predef print_expr(expr)#1
var sym_nil, sym_quote, sym_lambda, sym_cond, sym_set
res[t_elem] pred_true = 0, 0, BOOL_TRUE, 1
var sym_list = NULL
var cons_free = NULL
var int_free = NULL
var float_free = NULL
var assoc_list = NULL // SYM->value association list
const fmt_fp = FPSTR_FIXED|FPSTR_STRIP|FPSTR_FLEX
export var fmt_fpint = 6
export var fmt_fpfrac = 4
//
// Reference manager
//
export def ref(expr)#1
var refexpr
puts("REF:"); print_expr(expr); putln
refexpr = expr
while expr
if expr->refcnt == 255; puts("Ref overflow:"); print_expr(expr); putln; return refexpr; fin
expr->refcnt++
if expr->type == CONS_TYPE
ref(expr=>car)
expr = expr=>cdr
else
return refexpr
fin
loop
return refexpr
end
export def deref(expr)#1
var refexpr, expr_next
puts("DEREF:"); print_expr(expr); putln
refexpr = expr
while expr
expr_next = NULL
if expr->refcnt == 0; puts("Ref underflow:"); print_expr(expr); putln; return NULL; fin
if expr->type == CONS_TYPE
deref(expr=>car)
expr_next = expr=>cdr
fin
expr->refcnt--
if expr->refcnt == 0
when expr->type
is CONS_TYPE
//puts("Free CONS\n")
expr=>link = cons_free
cons_free = expr
break
is NUM_INT
//puts("Free INT:"); print_expr(expr); putln
expr=>link = int_free
int_free = expr
break
is NUM_FLOAT
//puts("Free FLOAT:"); print_expr(expr); putln
expr=>link = float_free
float_free = expr
break
otherwise
// Do nothing
puts("0 ref count:"); print_expr(expr); putln
wend
fin
expr = expr_next
loop
return refexpr
end
//
// Build ATOMS
//
export def new_cons#1
var consptr
if cons_free
consptr = cons_free
cons_free = cons_free=>link
else
consptr = heapalloc(t_cons)
fin
consptr->type = CONS_TYPE
consptr->refcnt = 1
consptr=>car = NULL
consptr=>cdr = NULL
return consptr
end
export def new_int(intlo, inthi)#1
var intptr
if int_free
intptr = int_free
int_free = int_free=>link
else
intptr = heapalloc(t_numint)
fin
intptr->type = NUM_INT
intptr->refcnt = 1
intptr=>intval[0] = intlo
intptr=>intval[1] = inthi
return intptr
end
export def new_float(extptr)#1
var floatptr
if float_free
floatptr = float_free
float_free = float_free=>link
else
floatptr = heapalloc(t_numfloat)
fin
floatptr->type = NUM_FLOAT
floatptr->refcnt = 1
memcpy(floatptr + floatval, extptr, 10)
return floatptr
end
def new_array(dim0, dim1, dim2, dim3)
var ofst0, ofst1, ofst2, ofst3
var size, aptr, memptr
if dim3
ofst3 = 2
ofst2 = dim3 * 2
ofst1 = ofst2 * dim2
ofst0 = ofst1 * dim1
elsif dim2
ofst2 = 2
ofst1 = dim2 * 2
ofst0 = ofst1 * dim1
elsif dim1
ofst1 = 2
ofst0 = dim1 * 2
else
ofst0 = 2
fin
size = dim0 * ofst0
memptr = heapalloc(size)
if not memptr
puts("Array too large!\n")
return NULL
fin
memset(memptr, NULL, size)
aptr = heapalloc(t_array)
aptr->type = ARRAY_TYPE
aptr->refcnt = 1
aptr=>dimension[0] = dim0
aptr=>dimension[1] = dim1
aptr=>dimension[2] = dim2
aptr=>dimension[3] = dim3
aptr=>offset[0] = ofst0
aptr=>offset[1] = ofst1
aptr=>offset[2] = ofst2
aptr=>offset[3] = ofst3
aptr=>arraymem = memptr
return aptr
end
def match_sym(symstr)
var symptr
byte len, typelen, i
len = ^symstr
typelen = SYM_TYPE | len
len--; symstr++
symptr = sym_list
while symptr
if symptr->type == typelen
for i = 0 to len
if symptr->name[i] <> symstr->[i]; break; fin
next
if i > len
symptr->refcnt++
return symptr
fin
fin
symptr = symptr=>link
loop
return NULL
end
export def new_sym(symstr)#1
var symptr
symptr = match_sym(symstr)
if symptr; return symptr; fin // Return already existing symbol
symptr = heapalloc(t_sym + ^symstr)
symptr=>link = sym_list
sym_list = symptr
symptr->type = ^symstr | SYM_TYPE
symptr->refcnt = 1
symptr=>natv = NULL
symptr=>lambda = NULL
symptr=>array = NULL
symptr=>apval = NULL
memcpy(symptr + name, symstr + 1, ^symstr)
return symptr
end
//
// Build/set association between symbols and values
//
def assoc_pair(symptr)
var pair
if symptr->type & TYPE_MASK == SYM_TYPE
//
// Search association list for symbol
//
pair = assoc_list
while pair
if (pair=>car=>car == symptr)
return pair=>car
fin
pair = pair=>cdr
loop
fin
return NULL // SYM not associated
end
def assoc(symptr)
var pair
pair = assoc_pair(symptr)
return pair ?? pair=>cdr :: NULL
end
export def new_assoc(symptr, valptr)#0
var pair, addlist
if symptr and (symptr->type & TYPE_MASK <> SYM_TYPE)
puts("Not a SYM in new_assoc\n")
return
fin
pair = new_cons
pair=>car = ref(symptr)
pair=>cdr = ref(valptr)
if assoc_list // Add to end of assoc_list
addlist = assoc_list
while addlist=>cdr
addlist = addlist=>cdr
loop
addlist=>cdr = new_cons
addlist = addlist=>cdr
else // New list
assoc_list = new_cons
addlist = assoc_list
fin
addlist=>car = pair
end
export def set_assoc(symptr, valptr)#0
var pair
//
// Search association list for symbol
//
pair = assoc_pair(symptr)
if pair
ref(valptr)
deref(pair=>cdr)
pair=>cdr = valptr // update association
else
new_assoc(symptr, valptr) // add association if unknown
fin
end
//
// Print textual representation of S-expression
//
def print_atom(atom)#0
char prstr[32]
var elemptr, i, j, k, l
if not atom
puts("NIL")
else
when atom->type & TYPE_MASK
is NIL
putc(atom->type ?? 'T' :: 'F')
break
is NUM_TYPE
when atom->type
is NUM_INT
if atom=>intval[1] >= 0; putc(' '); fin // Add space for pos
puti32(atom + intval)
break
is NUM_FLOAT
puts(ext2str(atom + floatval, @prstr, fmt_fpint, fmt_fpfrac, fmt_fp))
break
wend
break
is SYM_TYPE
prstr = atom->type & SYM_LEN
memcpy(@prstr + 1, atom + name, prstr)
puts(@prstr)
break;
is ARRAY_TYPE
elemptr = atom=>arraymem
puts("[ ")
for i = 1 to atom=>dimension[0]
if atom=>dimension[1]
puts("\n[ ")
for j = 1 to atom=>dimension[1]
if atom=>dimension[2]
puts("\n[ ")
for k = 1 to atom=>dimension[2]
if atom=>dimension[3]
puts("\n[ ")
for l = 1 to atom=>dimension[3]
print_atom(*elemptr); putc(' ')
elemptr = elemptr + 2
next
puts("]")
else
print_atom(*elemptr); putc(' ')
elemptr = elemptr + 2
fin
next
puts("]")
else
print_atom(*elemptr); putc(' ')
elemptr = elemptr + 2
fin
next
puts("]")
else
print_atom(*elemptr); putc(' ')
elemptr = elemptr + 2
fin
next
puts("]\n")
break
otherwise
puts("Unkown atom type\n")
wend
fin
end
export def print_expr(expr)#1
var prexpr
prexpr = expr
if not expr
puts("NIL")
else
if expr->type == CONS_TYPE
putc('(')
while expr and expr->type == CONS_TYPE
print_expr(expr=>car)
expr = expr=>cdr
if expr
if expr->type <> CONS_TYPE
putc('.')
print_atom(expr)
expr = NULL
else
putc(' ')
fin
fin
loop
putc(')')
else
print_atom(expr)
fin
fin
return prexpr
end
//
// Parse textual representation of S-expression
//
def is_num(cptr)
if ^cptr == '-' or ^cptr == '+'; cptr++; fin
return ^cptr >= '0' and ^cptr <= '9'
end
def is_alphasym(c)
return (c >= '*' and c <= 'z') and (c <> '.') and (c <> ',')
end
def parse_num(evalptr)#2 // return evalptr, intptr
var startptr
var int[2], ext[5]
byte sign
sign = FALSE
if ^evalptr == '-'
sign = TRUE
evalptr++
elsif ^evalptr == '+'
evalptr++
fin
startptr = evalptr
while ^evalptr >= '0' and ^evalptr <= '9'
evalptr++
loop
if (evalptr - startptr > 10) or ^evalptr == '.' or toupper(^evalptr) == 'E'
if ^evalptr == '.'
evalptr++
while ^evalptr >= '0' and ^evalptr <= '9'
evalptr++
loop
fin
if toupper(^evalptr) == 'E'
evalptr++
if ^evalptr == '-' or ^evalptr == '+'; evalptr++; fin
while ^evalptr >= '0' and ^evalptr <= '9'
evalptr++
loop
fin
if sign; startptr--; fin
^(startptr - 1) = evalptr - startptr
str2ext(startptr - 1, @ext)
return evalptr, new_float(@ext)
fin
zero32
while startptr <> evalptr
muli16(10); addi16(^startptr - '0')
startptr++
loop
if sign; neg32; fin
store32(@int)
return evalptr, new_int(int[0], int[1])
end
def parse_sym(evalptr)#2 // return evalptr, symptr
var symstr
symstr = evalptr - 1
while is_alphasym(^evalptr)
^evalptr = toupper(^evalptr)
evalptr++
loop
^symstr = evalptr - symstr - 1
if ^symstr > 31; ^symstr = 31; fin
return evalptr, new_sym(symstr)
end
export def parse_expr(evalptr, level, refill)#2 // return evalptr, exprptr
var exprptr, consptr, elemptr, quotecons
exprptr = NULL
consptr = NULL
while TRUE
//
// Parse textual S-expression
//
elemptr = NULL
when ^evalptr
is 0
if level
evalptr = refill() // Refill input buffer
else
return evalptr, exprptr
fin
break
is ' '
is ','
evalptr++
break
is ')'
if not exprptr
exprptr = ref(sym_nil)
fin
return evalptr + 1, exprptr
is '('
evalptr++
if level == 0
level++
else
evalptr, elemptr = parse_expr(evalptr, 1, refill)
fin
break
is '\''
evalptr++
evalptr, elemptr = parse_expr(evalptr, 0, refill)
quotecons = new_cons
quotecons=>car = ref(sym_quote)
quotecons=>cdr = new_cons
quotecons=>cdr=>car = elemptr
elemptr = quotecons
if level == 0
return evalptr, elemptr
fin
break
is '.'
evalptr++
evalptr, elemptr = parse_expr(evalptr, 0, refill)
//
// Add expression to CDR
//
if not (consptr and consptr=>car)
puts("Invalid . operator\n")
return evalptr, exprptr
fin
consptr=>cdr = elemptr
elemptr = NULL
break
otherwise
if is_num(evalptr)
evalptr, elemptr = parse_num(evalptr)
elsif is_alphasym(^evalptr)
evalptr, elemptr = parse_sym(evalptr)
else
putc('\\')
putc(^evalptr)
evalptr++
fin
if level == 0
return evalptr, elemptr
fin
wend
if elemptr
//
// Add element to S-expression
//
if not consptr
consptr = new_cons
exprptr = consptr
else
if consptr=>cdr
puts("Improperly formed .\n")
return evalptr, exprptr
fin
consptr=>cdr = new_cons
consptr = consptr=>cdr
fin
//
// Add element to CAR
//
consptr=>car = elemptr
fin
loop
return evalptr, exprptr
end
//
// Evaluate expression
//
def enter_lambda(curl, expr, params)#2 // curl, expr
var args, arglist, pairlist, pair
if !expr or expr=>car <> sym_lambda
puts("Invalid LAMBDA expression: ")
print_expr(expr)
return NULL, NULL
fin
args = expr=>cdr=>car
if curl == expr
//
// Update current associations during tail recursion
//
while args
pair = assoc_pair(args=>car)
arglist = pair=>cdr
pair=>cdr = eval_expr(params=>car)
deref(arglist)
args = args=>cdr
params = params=>cdr
loop
else
//
// Build arg list before prepending to assoc_list
//
arglist = NULL
while args
if arglist
pairlist=>cdr = new_cons
pairlist = pairlist=>cdr
else
arglist = new_cons
pairlist = arglist
fin
pair = new_cons
pair=>car = ref(args=>car)
pair=>cdr = eval_expr(params=>car)
pairlist=>car = pair
args = args=>cdr
params = params=>cdr
loop
if arglist
pairlist=>cdr = assoc_list
assoc_list = arglist
fin
fin
return expr, expr=>cdr=>cdr=>car
end
def exit_lambda(alist)#0
var args
if alist <> assoc_list
args = assoc_list
while args=>cdr <> alist
args = args=>cdr
loop
args=>cdr = NULL
deref(assoc_list)
assoc_list = alist
fin
end
export def eval_expr(expr)#1
var alist_enter, curl, expr_car
curl = NULL // Current lambda
alist_enter = assoc_list
while expr
if expr->type == CONS_TYPE
//
// List - first element better be a function
//
expr_car = expr=>car
if expr_car->type & TYPE_MASK == SYM_TYPE
if expr_car=>natv
expr = expr_car=>natv(expr_car, expr=>cdr) // Native function
break
elsif expr_car=>lambda // DEFINEd lambda S-expression
curl, expr = enter_lambda(curl, expr_car=>lambda, expr=>cdr)
elsif expr_car == sym_cond // Inline cond() evaluation
expr = expr=>cdr
while expr
if deref(eval_expr(expr=>car=>car)) == @pred_true
expr = expr=>car=>cdr=>car
break
fin
expr = expr=>cdr
loop
else // Symbol associated with lambda
curl, expr = enter_lambda(curl, assoc(expr_car), expr=>cdr)
fin
elsif expr_car->type == CONS_TYPE and expr_car=>car == sym_lambda
curl, expr = enter_lambda(NULL, expr_car, expr=>cdr) // Inline lambda
fin
else
//
// Atom
//
if expr->type & TYPE_MASK == SYM_TYPE
if expr=>apval
expr = expr=>apval ^ NULL_HACK
elsif expr=>array
expr = expr=>array
else
expr = assoc(expr)
fin
fin
ref(expr)
break
fin
loop
if curl; exit_lambda(alist_enter); fin
return expr
end
//
// Base native functions
//
export def bool_pred(bool)
return bool ?? ref(@pred_true) :: NULL
end
def natv_atom(symptr, expr)
symptr = deref(eval_expr(expr=>car))
return bool_pred(!symptr or symptr->type <> CONS_TYPE))
end
def natv_null(symptr, expr)
return bool_pred(!deref(eval_expr(expr=>car)))
end
def natv_eq(symptr, expr)
byte iseq, i
iseq = FALSE
symptr = eval_expr(expr=>car)
expr = eval_expr(expr=>cdr=>car)
if symptr == expr
iseq = TRUE
elsif symptr->type == NUM_INT and expr->type == NUM_INT
iseq = symptr=>intval[0] == expr=>intval[0]
if iseq
iseq = symptr=>intval[1] == expr=>intval[1]
fin
elsif symptr->type == NUM_FLOAT and expr->type == NUM_FLOAT
iseq = TRUE
for i = 0 to 9
if symptr->floatval[i] <> expr->floatval[i]
iseq = FALSE
break
fin
next
fin
deref(symptr)
deref(expr)
return bool_pred(iseq)
end
def natv_and(symptr, expr)
while expr
symptr = eval_expr(expr=>car)
if !symptr; return NULL; fin
deref(symptr)
expr = expr=>cdr
loop
return ref(@pred_true)
end
def natv_or(symptr, expr)
while expr
symptr = deref(eval_expr(expr=>car))
if symptr; return ref(@pred_true); fin
expr = expr=>cdr
loop
return NULL
end
def natv_cons(symptr, expr)
symptr = ref(new_cons)
symptr=>car = eval_expr(expr=>car)
symptr=>cdr = eval_expr(expr=>cdr=>car)
return symptr
end
def natv_car(symptr, expr)
return eval_expr(expr=>car)=>car
end
def natv_cdr(symptr, expr)
return eval_expr(expr=>car)=>cdr
end
def natv_quote(symptr, expr)
return ref(expr=>car)
end
def natv_label(symptr, expr)
symptr = expr=>cdr=>car
set_assoc(expr=>car, symptr)
return ref(symptr)
end
def natv_define(symptr, expr)
var funclist, funcptr
funclist = NULL
if expr
funclist = new_cons
funcptr = funclist
fin
while expr
symptr = expr=>car=>car
deref(symptr=>lambda)
symptr=>lambda = expr=>car=>cdr=>car
ref(symptr=>lambda)
funcptr=>car = symptr
expr = expr=>cdr
if expr
funcptr=>cdr = new_cons
funcptr = funcptr=>cdr
fin
loop
return ref(funclist)
end
def eval_index(arrayptr, expr)
var idx[4], i, ii, index
ii = 0
while expr and ii < 4
index = eval_expr(expr=>car)
if index->type <> NUM_INT or isuge(index=>intval, arrayptr=>dimension[ii])
puts("Invalid array index: "); print_expr(expr=>car); putln
deref(index)
return NULL
fin
idx[ii] = index=>intval
deref(index)
expr = expr=>cdr
ii++
loop
index = 0
while ii
ii--
index = index + idx[ii] * arrayptr=>offset[ii]
loop
return arrayptr=>arraymem + index
end
def natv_index(symptr, expr)
var elemptr
if expr=>car == sym_set
elemptr = eval_index(symptr=>array, expr=>cdr=>cdr)
if elemptr; *elemptr = eval_expr(expr=>cdr=>car); fin
else
elemptr = eval_index(symptr=>array, expr)
fin
return elemptr ?? ref(*elemptr) :: NULL
end
def natv_array(symptr, expr)
var arraylist, aptr
var idx_expr, idx[4], ii, index
arraylist = NULL
if expr
arraylist = new_cons
aptr = arraylist
fin
while expr
symptr = expr=>car=>car
symptr=>natv = @natv_index
idx_expr = expr=>car=>cdr=>car
idx[0] = 0
idx[1] = 0
idx[2] = 0
idx[3] = 0
ii = 0
while idx_expr and ii < 4
index = eval_expr(idx_expr=>car)
if index->type <> NUM_INT
puts("Invalid array dimension\n"); print_expr(idx_expr=>car); putln
deref(index)
return NULL
fin
idx[ii] = index=>intval
deref(index)
idx_expr = idx_expr=>cdr
ii++
loop
symptr=>array = new_array(idx[0], idx[1], idx[2], idx[3])
aptr=>car = symptr
expr = expr=>cdr
if expr
aptr=>cdr = new_cons
aptr = aptr=>cdr
fin
loop
return ref(arraylist)
end
def natv_cset(symptr, expr)
symptr = deref(eval_expr(expr=>car))
if symptr->type & TYPE_MASK <> SYM_TYPE
puts("CSET: Not a SYM\n")
return NULL
fin
if symptr=>apval
puts("Constant already set:"); print_expr(symptr); putln
return NULL
fin
expr = eval_expr(expr=>cdr=>car)
symptr=>apval = expr ^ NULL_HACK
return ref(expr)
end
def natv_csetq(symptr, expr)
symptr = expr=>car
if symptr->type & TYPE_MASK <> SYM_TYPE
puts("CSETQ: Not a SYM\n")
return NULL
fin
if symptr=>apval
puts("Constant already set:"); print_expr(symptr); putln
return NULL
fin
expr = eval_expr(expr=>cdr=>car)
symptr=>apval = expr ^ NULL_HACK
return ref(expr)
end
def natv_print(symptr, expr)
expr = eval_expr(expr=>car)
print_expr(expr)
putln
return expr
end
//
// Install default functions
//
new_sym("T")=>apval = @pred_true ^ NULL_HACK
new_sym("F")=>apval = NULL_HACK
sym_nil = new_sym("NIL")
sym_nil=>apval = NULL_HACK
sym_lambda = new_sym("LAMBDA")
sym_cond = new_sym("COND")
sym_set = new_sym("SET")
sym_quote = new_sym("QUOTE")
sym_quote=>natv = @natv_quote
new_sym("CAR")=>natv = @natv_car
new_sym("CDR")=>natv = @natv_cdr
new_sym("CONS")=>natv = @natv_cons
new_sym("ATOM")=>natv = @natv_atom
new_sym("EQ")=>natv = @natv_eq
new_sym("CSET")=>natv = @natv_cset
new_sym("CSETQ")=>natv = @natv_csetq
new_sym("NOT")=>natv = @natv_null
new_sym("AND")=>natv = @natv_and
new_sym("OR")=>natv = @natv_or
new_sym("NULL")=>natv = @natv_null
new_sym("LABEL")=>natv = @natv_label
new_sym("DEFINE")=>natv = @natv_define
new_sym("ARRAY")=>natv = @natv_array
new_sym("PRINT")=>natv = @natv_print
return modkeep | modinitkeep
done

342
src/lisp/s-math.ref Normal file
View File

@ -0,0 +1,342 @@
include "inc/cmdsys.plh"
include "inc/int32.plh"
include "inc/fpu.plh"
import sexpr
const TYPE_MASK = $70
const NIL = $00
const BOOL_FALSE = $00
const BOOL_TRUE = $01
const CONS_TYPE = $10
const SYM_TYPE = $20
const SYM_LEN = $0F
const NUM_TYPE = $30
const NUM_INT = $31
const NUM_FLOAT = $32
const ARRAY_TYPE = $40
struc t_elem
word link
byte type
byte refcnt
end
struc t_cons
res[t_elem]
word car
word cdr
end
struc t_sym
res[t_elem]
word natv
word lambda
word array
word apval
char name[0]
end
struc t_numint
res[t_elem]
word intval[2]
end
struc t_numfloat
res[t_elem]
res floatval[10]
end
predef ref(expr)#1
predef deref(expr)#1
predef new_sym(symstr)#1
predef new_int(intlo, inthi)#1
predef new_float(extptr)#1
predef eval_expr(expr)#1
predef bool_pred(bool)#1
end
res[t_numint] nan = 0, 0, NUM_INT, 0, 0, 0, 128 // NaN
def eval_num(expr)
var result
result = eval_expr(expr=>car)
if result and (result->type & TYPE_MASK == NUM_TYPE)
return result
fin
puts("Not an number\n")
deref(result)
return NULL
end
export def eval_int(expr)#1 // Always return an int
var result
var[2] int
result = eval_num(expr)
if result->type == NUM_FLOAT
fpu:pushExt(result + floatval)
fpu:pullInt(@int)
deref(result)
int[1] = int[0] < 0 ?? -1 :: 0
return new_int(int[0], int[1])
fin
return result
end
def push_int32(intptr)#0
var[2] int
byte isneg
isneg = FALSE
if intptr=>[1] < 0
load32(intptr)
isneg = TRUE
neg32
store32(@int)
else
int[0] = intptr=>[0]
int[1] = intptr=>[1]
fin
fpu:pushInt(@int[1])
fpu:scalebXInt(16)
fpu:pushInt(@int[0])
fpu:addXY()
if isneg
fpu:negX()
fin
end
def push_num(numptr)#0
var int
if numptr->type == NUM_FLOAT
fpu:pushExt(numptr + floatval)
elsif numptr->type == NUM_INT
push_int32(numptr + intval)
else
puts("Pushing non number!\n")
int = 0
fpu:pushInt(@int)
fin
end
def natv_add(symptr, expr)
var num
var[2] intsum
var[5] extsum
intsum[0] = 0
intsum[1] = 0
num = eval_num(expr)
expr = expr=>cdr
if num->type == NUM_INT
//
// Sum as integers unless a float is encountered
//
intsum[0] = num=>intval[0]
intsum[1] = num=>intval[1]
deref(num)
while expr
num = eval_num(expr)
expr = expr=>cdr
if num->type == NUM_FLOAT
break
fin
load32(@intsum)
add32(num + intval)
store32(@intsum)
deref(num)
loop
fin
if num->type == NUM_FLOAT
//
// Sum as floating point numbers
//
push_int32(@intsum)
push_num(num)
fpu:addXY()
deref(num)
while expr
num = eval_num(expr)
push_num(num)
fpu:addXY()
deref(num)
expr = expr=>cdr
loop
fpu:pullExt(@extsum)
return new_float(@extsum)
fin
return new_int(intsum[0], intsum[1])
end
def natv_sub(symptr, expr)
var num1, num2
var[2] dif
var[5] ext
num1 = eval_num(expr)
num2 = eval_num(expr=>cdr)
if num1->type == NUM_INT and num2->type == NUM_INT
load32(num1 + intval)
sub32(num2 + intval)
store32(@dif)
deref(num1)
deref(num2)
return new_int(dif[0], dif[1])
fin
push_num(num1)
push_num(num2)
fpu:subXY()
fpu:pullExt(@ext)
deref(num1)
deref(num2)
return new_float(@ext)
end
def natv_mul(symptr, expr)
var num1, num2
var[2] mul
var[5] ext
num1 = eval_num(expr)
num2 = eval_num(expr=>cdr)
if num1->type == NUM_INT and num2->type == NUM_INT
load32(num1 + intval)
mul32(num2 + intval)
store32(@mul)
deref(num1)
deref(num2)
return new_int(mul[0], mul[1])
fin
push_num(num1)
push_num(num2)
fpu:mulXY()
fpu:pullExt(@ext)
deref(num1)
deref(num2)
return new_float(@ext)
end
def natv_div(symptr, expr)
var num1, num2
var[2] div
var[5] ext
num1 = eval_num(expr)
num2 = eval_num(expr=>cdr)
if num1->type == NUM_INT and num2->type == NUM_INT
load32(num1 + intval)
div32(num2 + intval)
store32(@div)
deref(num1)
deref(num2)
return new_int(div[0], div[1])
fin
push_num(num1)
push_num(num2)
fpu:divXY()
fpu:pullExt(@ext)
deref(num1)
deref(num2)
return new_float(@ext)
end
def natv_rem(symptr, expr)
var num1, num2
var[2] rem, div
var[5] ext
num1 = eval_num(expr)
num2 = eval_num(expr=>cdr)
if num1->type == NUM_INT and num2->type == NUM_INT
load32(num1 + intval)
rem[1], rem[0] = div32(num2 + intval)
deref(num1)
deref(num2)
return new_int(rem[0], rem[1])
fin
push_num(num1)
push_num(num2)
fpu:remXY()
fpu:pullExt(@ext)
deref(num1)
deref(num2)
return new_float(@ext)
end
def natv_neg(symptr, expr)
var num
var[2] neg
var[5] ext
num = ref(eval_num(expr))
if num=>type == NUM_INT
load32(num + intval)
deref(num)
neg32
store32(@neg)
return new_int(neg[0], neg[1])
fin
push_num(num)
fpu:negX()
fpu:pullExt(@ext)
deref(num)
return new_float(@ext)
end
def natv_gt(symptr, expr)
var num1, num2, bool
var[5] ext
num1 = eval_num(expr)
num2 = eval_num(expr=>cdr)
if num1->type == NUM_INT and num2->type == NUM_INT
load32(num1 + intval)
bool = isgt32(num2 + intval)
deref(num1)
deref(num2)
return bool_pred(bool)
fin
push_num(num2)
push_num(num1)
fpu:subXY()
fpu:pullExt(@ext)
deref(num1)
deref(num2)
return bool_pred(ext[4] < 0)
end
def natv_lt(symptr, expr)
var num1, num2, bool
var[5] ext
num1 = eval_num(expr)
num2 = eval_num(expr=>cdr)
if num1->type == NUM_INT and num2->type == NUM_INT
load32(num1 + intval)
bool = islt32(num2 + intval)
deref(num1)
deref(num2)
return bool_pred(bool)
fin
push_num(num1)
push_num(num2)
fpu:subXY()
fpu:pullExt(@ext)
deref(num1)
deref(num2)
return bool_pred(ext[4] < 0)
end
//
// Install math functions
//
new_sym("+")=>natv = @natv_add
new_sym("-")=>natv = @natv_sub
new_sym("*")=>natv = @natv_mul
new_sym("/")=>natv = @natv_div
new_sym("REM")=>natv = @natv_rem
new_sym("NEG")=>natv = @natv_neg
new_sym(">")=>natv = @natv_gt
new_sym("<")=>natv = @natv_lt
fpu:reset()
return modkeep | modinitkeep
done