acme/testing/math1.a

215 lines
4.1 KiB
Plaintext
Raw Normal View History

;ACME 0.96.5
; "assert" macro
!macro a @r {
!if @r != 1 {
!error "assertion failed"
}
}
three = 3
five = 5
seven = 7
fp = 123.456
abcdef = $abcdef
; literals
+a 255 = $ff
+a 255 = 0xFF
+a 255 = %#1#1#1#1
+a 255 = 0b1111####
+a 255 = &377
+a 33 = '!'
; test monadic operators
+a NOT 1 = -2
+a -three = -3
+a <abcdef = $ef
+a >abcdef = $cd
+a ^abcdef = $ab
+a addr(abcdef) = abcdef
+a int(abcdef) = abcdef
+a float(three) = three
+a three = float(three)
+a float(fp) != int(fp)
+a int(fp) != float(fp)
+a float(three) = int(three)
+a int(three) = float(three)
+a sin(3.14) > 0
+a cos(0.1) > 0.9
+a tan(3.1415 / 2) > 1
+a arcsin(1) > 1.57
+a arccos(0) > 1.57
+a arctan(1) > 0.78
; test dyadic operators
+a three^five = 3*3*3*3*3
+a three*five = 15
+a 15 / 2 = 7
+a 15.0 / 2 = 7.5
+a 15.0 DIV 2.0 = 7
+a 17 % 3 = 2
+a 3 << 3 = 24
+a -5 >> 2 = -2
+a 24 >> 3 = 3
+a -1 >> 3 = -1
+a 24 >>> 3 = 3
+a five + three = 8
+a five - three = 2
+a 2*3 = 1+5
+a 2<=3
+a 2<=2
+a 2<3
+a 3>=3
+a 3>=2
+a 3>2
+a 2!=3
+a (abcdef & $a0c0e0) = $a0c0e0
+a (abcdef | $ff0001) = $ffcdef
; +a ($aa eor $55) = $ff
+a ($aa xor $55) = $ff
; priorities
+a 3 + 4 * 5 = 23
+a 4 * 5 + 3 = 23
+a 4.1 * 5.1 + 3.1 > 23.1
+a (15 or 3 xor 5) = (15 or (3 xor 5))
+a (15 or 3 xor 5) != ((15 or 3) xor 5)
+a (15 xor 3 and 5) = (15 xor (3 and 5))
+a (15 xor 3 and 5) != ((15 xor 3) and 5)
+a (5 and 3 = 3) = (5 and (3 = 3))
+a (5 and 3 = 3) != ((5 and 3) = 3)
+a (1 = 2 != 0) = (1 = (2 != 0))
+a (1 = 2 != 0) != ((1 = 2) != 0)
+a (0 != 3 < 2) = (0 != (3 < 2))
+a (0 != 3 < 2) != ((0 != 3) < 2)
; < and > comparisons have the same priority, so this actually checks left-associativity:
+a (3 <= 3 > 0) = ((3 <= 3) > 0)
+a (3 <= 3 > 0) != (3 <= (3 > 0))
+a (<257 > 1) = ((<257) > 1)
+a (<257 > 1) != (<(257 > 1))
+a (<256 >> 4) = (<(256 >> 4))
+a (<256 >> 4) != ((<256) >> 4)
; shifts have the same priority, so this actually checks left-associativity:
+a (16 >>> 2 >> 1) = ((16 >>> 2) >> 1)
+a (16 >>> 2 >> 1) != (16 >>> (2 >> 1))
+a (16 >> 2 << 1) = ((16 >> 2) << 1)
+a (16 >> 2 << 1) != (16 >> (2 << 1))
+a (8 << 4 >>> 2) = ((8 << 4) >>> 2)
+a (8 << 4 >>> 2) != (8 << (4 >>> 2))
+a (3 >> 1 + 5) = (3 >> (1 + 5))
+a (3 >> 1 + 5) != ((3 >> 1) + 5)
; + and - have the same priority, so this actually checks left-associativity:
+a (3 - 5 + 7) = ((3 - 5) + 7)
+a (3 - 5 + 7) != (3 - (5 + 7))
; test left-associativity
+a 11-5-3 = 3
+a 11-5-3 != 9
+a (3 + 5 * 7) = (3 + (5 * 7))
+a (3 + 5 * 7) != ((3 + 5) * 7)
; *, /, DIV and MOD have the same priority, so this actually checks left-associativity:
+a (7 * 5 MOD 7) = ((7 * 5) MOD 7)
+a (7 * 5 MOD 7) != (7 * (5 MOD 7))
+a (-14 + 5) = ((-14) + 5)
+a (-14 + 5) != (-(14 + 5))
+a (-3^2) = -(3^2)
+a (-3^2) != (-3)^2
; test right-associativity
+a 2^3^4 = 2^(3^4)
+a 2^3^4 != (2^3)^4
+a NOT 3 ^ 5 = ((NOT 3) ^ 5)
+a NOT 3 ^ 5 != (NOT (3 ^ 5))
+a int(3 + 4) + .8 = (int(3 + 4) + .8)
+a int(3 + 4) + .8 != int((3 + 4) + .8)
+a 3*(4+5)+7 = (3*(4+5))+7
+a 3*(4+5)+7 != 3*((4+5)+7)
; test dyadics with different arg types
; int/int
+a 3 ^ 2 = 9
+a 3 * 2 = 6
+a 6 / 2 = 3
+a 5 DIV 2 = 2
+a 3 + 2 = 5
+a 6 - 4 = 2
+a 2 <= 3
+a 2 < 3
+a 3 >= 2
+a 3 > 2
+a 2 != 3
+a 2 = 2
+a 5 MOD 2 = 1
+a 5 >>> 1 = 2
+a (5 & 1) = 1
+a (5 | 2) = 7
; +a (5 EOR 2) = 7
+a (5 XOR 2) = 7
+a 5 << 2 = 20
+a 5 >> 2 = 1
; int/float
+a 3 ^ 2.0 = 9
+a 3 * 2.0 = 6
+a 6 / 2.0 = 3
+a 5 DIV 2.0 = 2
+a 3 + 2.0 = 5
+a 6 - 4.0 = 2
+a 2 <= 3.0
+a 2 < 3.0
+a 3 >= 2.0
+a 3 > 2.0
+a 2 != 3.0
+a 2 = 2.0
+a 5 MOD 2.0 = 1
+a 5 << 2.0 = 20
+a 5 >> 2.0 = 1
; float/int
+a 3.0 ^ 2 = 9
+a 3.0 * 2 = 6
+a 6.0 / 2 = 3
+a 5.0 DIV 2 = 2
+a 3.0 + 2 = 5
+a 6.0 - 4 = 2
+a 2.0 <= 3
+a 2.0 < 3
+a 3.0 >= 2
+a 3.0 > 2
+a 2.0 != 3
+a 2.0 = 2
+a 5.0 MOD 2 = 1
+a 5.0 << 2 = 20
+a 5.0 >> 2 = 1.25
; float/float
+a 3.0 ^ 2.0 = 9
+a 3.0 * 2.0 = 6
+a 6.0 / 2.0 = 3
+a 5.0 DIV 2.0 = 2
+a 3.0 + 2.0 = 5
+a 6.0 - 4.0 = 2
+a 2.0 <= 3.0
+a 2.0 < 3.0
+a 3.0 >= 2.0
+a 3.0 > 2.0
+a 2.0 != 3.0
+a 2.0 = 2.0
+a 5.0 MOD 2.0 = 1
+a 5.0 << 2.0 = 20
+a 5.0 >> 2.0 = 1.25