1
0
mirror of https://github.com/pevans/erc-c.git synced 2024-11-27 05:49:24 +00:00

Moar documentation

This commit is contained in:
Peter Evans 2017-12-06 18:01:13 -06:00
parent fca069d5de
commit ccd7a3f665
4 changed files with 129 additions and 0 deletions

View File

@ -5,44 +5,76 @@
#include "mos6502.h"
#include "mos6502.enums.h"
/*
* This is just a minor convenience macro to wrap the logic we use in
* branch situations, which is if `cond` is true, then we set the
* program counter to the last effective address.
*/
#define JUMP_IF(cond) \
if (cond) cpu->PC = cpu->last_addr
/*
* Branch if the carry flag is clear.
*/
DEFINE_INST(bcc)
{
JUMP_IF(~cpu->P & CARRY);
}
/*
* Branch if carry is set.
*/
DEFINE_INST(bcs)
{
JUMP_IF(cpu->P & CARRY);
}
/*
* Branch if the zero flag is set (that is, if our last instruction
* resulted in something being _equal to zero_).
*/
DEFINE_INST(beq)
{
JUMP_IF(cpu->P & ZERO);
}
/*
* Branch if the negative ("minus") flag is set.
*/
DEFINE_INST(bmi)
{
JUMP_IF(cpu->P & NEGATIVE);
}
/*
* Branch if the zero flag is not set; which is to say, that the last
* operation was _not equal_ to zero.
*/
DEFINE_INST(bne)
{
JUMP_IF(~cpu->P & ZERO);
}
/*
* Branch if the negative flag is not set (meaning the last operation
* was "plus", which includes zero).
*/
DEFINE_INST(bpl)
{
JUMP_IF(~cpu->P & NEGATIVE);
}
/*
* Branch if the overflow bit is clear.
*/
DEFINE_INST(bvc)
{
JUMP_IF(~cpu->P & OVERFLOW);
}
/*
* Branch if the overflow bit is set.
*/
DEFINE_INST(bvs)
{
JUMP_IF(cpu->P & OVERFLOW);

View File

@ -5,6 +5,10 @@
#include "mos6502.h"
#include "mos6502.enums.h"
/*
* The BRK instruction will set the interrupt bit; will push the current
* PC address to the stack; and will advance the counter by 2 positions.
*/
DEFINE_INST(brk)
{
cpu->P |= INTERRUPT;
@ -12,27 +16,48 @@ DEFINE_INST(brk)
cpu->PC += 2;
}
/*
* A jump is straight forward; whatever the effective address is, that
* is now the new value of the PC register.
*/
DEFINE_INST(jmp)
{
cpu->PC = cpu->last_addr;
}
/*
* Meanwhile, a JSR (or jump to subroutine) is a little more nuanced. We
* record our current position, plus two, to the stack, and jump the
* effective address.
*/
DEFINE_INST(jsr)
{
mos6502_push_stack(cpu, cpu->PC + 2);
cpu->PC = cpu->last_addr;
}
/*
* The NOP instruction is short for no-operation. It does nothing except
* waste cycles (which happens elsewhere).
*/
DEFINE_INST(nop)
{
// do nothing
}
/*
* Here we return from an interrupt, which effectively resets the PC
* register to the last value on the stack.
*/
DEFINE_INST(rti)
{
cpu->PC = mos6502_pop_stack(cpu);
}
/*
* The RTS instruction (return from subroutine) works the same as the
* RTI instruction, which may or may not be a misconception on my part.
*/
DEFINE_INST(rts)
{
cpu->PC = mos6502_pop_stack(cpu);

View File

@ -5,89 +5,140 @@
#include "mos6502.h"
#include "mos6502.enums.h"
/*
* The LDA instruction will assign ("load") an operand into the
* accumulator.
*/
DEFINE_INST(lda)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, oper);
cpu->A = oper;
}
/*
* Similar to LDA, except targeting X.
*/
DEFINE_INST(ldx)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, oper);
cpu->X = oper;
}
/*
* Again similar to LDA, except with Y.
*/
DEFINE_INST(ldy)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, oper);
cpu->Y = oper;
}
/*
* This instruction will "push" the A register onto the stack.
*/
DEFINE_INST(pha)
{
mos6502_push_stack(cpu, cpu->A);
}
/*
* Similar to above, but will push the P register.
*/
DEFINE_INST(php)
{
mos6502_push_stack(cpu, cpu->P);
}
/*
* Here we pop the stack (or "pull" it), and assign to the accumulator.
*/
DEFINE_INST(pla)
{
cpu->A = mos6502_pop_stack(cpu);
}
/*
* Again we pop from the stack, but assign to the P register.
*/
DEFINE_INST(plp)
{
cpu->P = mos6502_pop_stack(cpu);
}
/*
* The STA instruction assigns the value of the accumulator to a given
* address in memory. (That is to say, it "stores" it.)
*/
DEFINE_INST(sta)
{
vm_segment_set(cpu->memory, cpu->last_addr, cpu->A);
}
/*
* Similar to STA, but drawing from the X register.
*/
DEFINE_INST(stx)
{
vm_segment_set(cpu->memory, cpu->last_addr, cpu->X);
}
/*
* And, again, similar to STA, but with the Y register.
*/
DEFINE_INST(sty)
{
vm_segment_set(cpu->memory, cpu->last_addr, cpu->Y);
}
/*
* The TAX instruction taxes no one but your patience for my puns. What
* it does do is transfer the contents of the A register to X.
*/
DEFINE_INST(tax)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, cpu->A);
cpu->X = cpu->A;
}
/*
* This transfers from A to Y.
*/
DEFINE_INST(tay)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, cpu->A);
cpu->Y = cpu->A;
}
/*
* Transfer the stack pointer (S register) to X.
*/
DEFINE_INST(tsx)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, cpu->S);
cpu->X = cpu->S;
}
/*
* Transfer the X register to A.
*/
DEFINE_INST(txa)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, cpu->X);
cpu->A = cpu->X;
}
/*
* Transfer the X register to S.
*/
DEFINE_INST(txs)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, cpu->X);
cpu->S = cpu->X;
}
/*
* Transfer the Y register to A.
*/
DEFINE_INST(tya)
{
mos6502_modify_status(cpu, ZERO | NEGATIVE, cpu->Y);

View File

@ -5,36 +5,57 @@
#include "mos6502.h"
#include "mos6502.enums.h"
/*
* Clear the carry bit in the status register.
*/
DEFINE_INST(clc)
{
cpu->P &= ~CARRY;
}
/*
* Clear the decimal bit.
*/
DEFINE_INST(cld)
{
cpu->P &= ~DECIMAL;
}
/*
* Clear the interrupt bit.
*/
DEFINE_INST(cli)
{
cpu->P &= ~INTERRUPT;
}
/*
* Clear the overflow bit.
*/
DEFINE_INST(clv)
{
cpu->P &= ~OVERFLOW;
}
/*
* Set the carry bit.
*/
DEFINE_INST(sec)
{
cpu->P |= CARRY;
}
/*
* Set the decimal bit.
*/
DEFINE_INST(sed)
{
cpu->P |= DECIMAL;
}
/*
* Set the interrupt bit.
*/
DEFINE_INST(sei)
{
cpu->P |= INTERRUPT;