erc-c/tests/mos6502/arith.c

460 lines
13 KiB
C

#include <criterion/criterion.h>
#include "mos6502/mos6502.h"
#include "mos6502/enums.h"
#include "mos6502/tests.h"
TestSuite(mos6502_arith, .init = setup, .fini = teardown);
/*
* ADC is a deceptively simple instruction. It works like this:
*
* A = A + DATA + C
*
* If D = 1, then ADC works in an entirely different manner, treating
* the input as BCD (Binary-Coded Decimal).
*
* Z = 1 if RESULT = 0
* N = 1 if RESULT has BIT 7 high
* V = 1 if (A ^ DATA) has BIT 7 high AND (A ^ RESULT) has BIT 7 high
* C = 1 if (16-BIT) RESULT > 0xFF
*/
Test(mos6502_arith, adc)
{
vm_8bit start = 30,
main = 60,
ztest = 0x100 - start,
vtest = 0x80,
ctest = 0xff;
// Test with and without carry
cpu->P |= MOS_CARRY;
cpu->A = start;
mos6502_handle_adc(cpu, main);
cr_assert_eq(cpu->A, start + main + 1);
cpu->P &= ~MOS_CARRY;
cpu->A = start;
mos6502_handle_adc(cpu, main);
cr_assert_eq(cpu->A, start + main);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_OVERFLOW, 0);
cr_assert_eq(cpu->P & MOS_CARRY, 0);
// If an add results in Z = 1, it necessarily implies C = 1. Say you
// have A = 1, and add -1. With two's complement, the binary coded
// form of -1 is 0xff; thus 0xff + 0x1 = 0x100, or 0x00 after
// variable overflow, and thus C = 1.
//
// NOTE: variable overflow is e.g. when you go from 0xff to 0x00; it
// means something different from the V/OVERFLOW status in the 6502
// chip, which cares about going from a positive to a negative, or
// from a negative to a positive.
cpu->A = start;
cpu->P &= ~MOS_CARRY;
mos6502_handle_adc(cpu, ztest);
cr_assert_eq(cpu->A, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_OVERFLOW, 0);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
// We can test both negative and overflow here. We could do a
// separate test on the N flag if we set A = 0x80 and added a small
// number, like 0x3; we would essentially begin with a negative
// number and end with a negative number.
cpu->A = start;
cpu->P &= ~MOS_CARRY;
mos6502_handle_adc(cpu, vtest);
cr_assert_eq(cpu->A, start + vtest);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_OVERFLOW, MOS_OVERFLOW);
cr_assert_eq(cpu->P & MOS_CARRY, 0);
cpu->A = start;
cpu->P &= ~MOS_CARRY;
mos6502_handle_adc(cpu, ctest);
// Cast to vm_8bit since we're working with variable overflow
cr_assert_eq(cpu->A, (vm_8bit)(start + ctest));
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_OVERFLOW, 0);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
// This should handle decimal mode without complaint
cpu->P |= MOS_DECIMAL;
cpu->P &= ~MOS_CARRY;
cpu->A = 0x18;
mos6502_handle_adc(cpu, 0x3);
cr_assert_eq(cpu->A, 0x21);
}
Test(mos6502_arith, adc_dec)
{
cpu->P &= ~MOS_CARRY;
cpu->A = 0x05;
mos6502_handle_adc_dec(cpu, 0x10);
cr_assert_eq(cpu->A, 0x15);
cpu->A = 0x98;
mos6502_handle_adc_dec(cpu, 0x3);
cr_assert_eq(cpu->A, 0x1);
// Test that A + M + 1 works for carry
cpu->P |= MOS_CARRY;
cpu->A = 0x15;
mos6502_handle_adc_dec(cpu, 0x13);
cr_assert_eq(cpu->A, 0x29);
}
/*
* In CMP, the following occurs:
*
* Z = 1 if A = DATA (which is to say: Z = 1 if A - DATA = 0)
* N = 1 if DATA BIT 7 is high
* C = 1 if A >= DATA
*
* Only status flags are changed by the operation of CMP.
*
* We need to test four permutations:
* - A > DATA
* - A = DATA
* - A < DATA
*/
Test(mos6502_arith, cmp)
{
cpu->A = 123;
mos6502_handle_cmp(cpu, cpu->A - 1);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
mos6502_handle_cmp(cpu, cpu->A);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
mos6502_handle_cmp(cpu, cpu->A + 1);
cr_assert_eq(cpu->P & MOS_CARRY, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
}
/*
* As in the CMP test, we check the same qualities: X > DATA, X = DATA,
* X < DATA.
*/
Test(mos6502_arith, cpx)
{
cpu->X = 123;
mos6502_handle_cpx(cpu, cpu->X - 1);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
mos6502_handle_cpx(cpu, cpu->X);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
mos6502_handle_cpx(cpu, cpu->X + 1);
cr_assert_eq(cpu->P & MOS_CARRY, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
}
/*
* And, finally, we check similarly as to the CPX test, except with Y
* instead of X.
*/
Test(mos6502_arith, cpy)
{
cpu->Y = 123;
mos6502_handle_cpy(cpu, cpu->Y - 1);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
mos6502_handle_cpy(cpu, cpu->Y);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
mos6502_handle_cpy(cpu, cpu->Y + 1);
cr_assert_eq(cpu->P & MOS_CARRY, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
}
/*
* In DEC, we simply decrement an address of memory (or the accumulator)
* by 1.
*
* Status flags:
* - N = 1 if (DATA - 1) has BIT 7 high
* - Z = 1 if (DATA - 1) = 0, i.e. if DATA = 1
*/
Test(mos6502_arith, dec)
{
vm_8bit main = 123,
ntest = 0,
ztest = 1;
vm_16bit addr = 0x123;
cpu->A = main;
cpu->addr_mode = ACC;
mos6502_handle_dec(cpu, cpu->A);
cr_assert_eq(cpu->A, main - 1);
cpu->eff_addr = addr;
cpu->addr_mode = ABS;
mos6502_handle_dec(cpu, main);
cr_assert_eq(mos6502_get(cpu, addr), main - 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_dec(cpu, ntest);
// Cast ntest - 1 so that the result we compare is 8-bit negative
// and not 32-bit negative
cr_assert_eq(mos6502_get(cpu, addr), (vm_8bit)(ntest - 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_dec(cpu, ztest);
cr_assert_eq(mos6502_get(cpu, addr), ztest - 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
}
/*
* Same principles as the test for DEC, but there is no need to test for
* memory sets; DEX only modifies the X register.
*/
Test(mos6502_arith, dex)
{
vm_8bit main = 123,
ntest = 0,
ztest = 1;
cpu->X = main;
cpu->addr_mode = ACC;
mos6502_handle_dex(cpu, cpu->X);
cr_assert_eq(cpu->X, main - 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_dex(cpu, ntest);
// Cast ntest - 1 so that the result we compare is 8-bit negative
// and not 32-bit negative
cr_assert_eq(cpu->X, (vm_8bit)(ntest - 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_dex(cpu, ztest);
cr_assert_eq(cpu->X, ztest - 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
}
/*
* Similar tests as for DEX, except for the Y register instead of the X.
*/
Test(mos6502_arith, dey)
{
vm_8bit main = 123,
ntest = 0,
ztest = 1;
cpu->Y = main;
cpu->addr_mode = ACC;
mos6502_handle_dey(cpu, cpu->Y);
cr_assert_eq(cpu->Y, main - 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_dey(cpu, ntest);
// Cast ntest - 1 so that the result we compare is 8-bit negative
// and not 32-bit negative
cr_assert_eq(cpu->Y, (vm_8bit)(ntest - 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_dey(cpu, ztest);
cr_assert_eq(cpu->Y, ztest - 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
}
/*
* The INC instruction works similarly to DEC; the same status flags are
* updated. But, of course, we increment rather than decrement.
*/
Test(mos6502_arith, inc)
{
vm_8bit main = 123,
ntest = 0x7F,
ztest = 0xFF;
vm_16bit addr = 0x123;
cpu->A = main;
cpu->addr_mode = ACC;
mos6502_handle_inc(cpu, main);
cr_assert_eq(cpu->A, main + 1);
cpu->eff_addr = addr;
cpu->addr_mode = ABS;
mos6502_handle_inc(cpu, main);
cr_assert_eq(mos6502_get(cpu, addr), main + 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_inc(cpu, ntest);
// Cast ntest - 1 so that the result we compare is 8-bit negative
// and not 32-bit negative
cr_assert_eq(mos6502_get(cpu, addr), (vm_8bit)(ntest + 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_inc(cpu, ztest);
cr_assert_eq(mos6502_get(cpu, addr), (vm_8bit)(ztest + 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
}
Test(mos6502_arith, inx)
{
vm_8bit main = 123,
ntest = 0x7F,
ztest = 0xFF;
cpu->addr_mode = ACC;
mos6502_handle_inx(cpu, main);
cr_assert_eq(cpu->X, main + 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_inx(cpu, ntest);
// Cast ntest - 1 so that the result we compare is 8-bit negative
// and not 32-bit negative
cr_assert_eq(cpu->X, (vm_8bit)(ntest + 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_inx(cpu, ztest);
cr_assert_eq(cpu->X, (vm_8bit)(ztest + 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
}
Test(mos6502_arith, iny)
{
vm_8bit main = 123,
ntest = 0x7F,
ztest = 0xFF;
cpu->addr_mode = ACC;
mos6502_handle_iny(cpu, main);
cr_assert_eq(cpu->Y, main + 1);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_iny(cpu, ntest);
// Cast ntest - 1 so that the result we compare is 8-bit negative
// and not 32-bit negative
cr_assert_eq(cpu->Y, (vm_8bit)(ntest + 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
mos6502_handle_iny(cpu, ztest);
cr_assert_eq(cpu->Y, (vm_8bit)(ztest + 1));
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
}
/*
* SBC has a lot of similarities with the spirit of ADC; it is
* deceptively simple, doing the following:
*
* A = A - DATA if C = 1
* A = A - DATA - 1 if C = 0
*
* Z = 1 if RESULT = 0
* V = 1 if (A ^ DATA) has BIT 7 high AND (A ^ RESULT) has BIT 7 high
* N = 1 if RESULT has BIT 7 high
* C = 1 if (16-BIT) RESULT < 0
*/
Test(mos6502_arith, sbc)
{
vm_8bit start = 90,
main = 60,
ztest = start,
vtest = 0x80,
ntest = 0xff;
// Test with and without carry
cpu->P |= MOS_CARRY;
cpu->A = start;
mos6502_handle_sbc(cpu, main);
cr_assert_eq(cpu->A, start - main);
cpu->P &= ~MOS_CARRY;
cpu->A = start;
mos6502_handle_sbc(cpu, main);
cr_assert_eq(cpu->A, start - main - 1);
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_OVERFLOW, 0);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cpu->A = start;
cpu->P |= MOS_CARRY;
mos6502_handle_sbc(cpu, ztest);
cr_assert_eq(cpu->A, 0);
cr_assert_eq(cpu->P & MOS_ZERO, MOS_ZERO);
cr_assert_eq(cpu->P & MOS_NEGATIVE, 0);
cr_assert_eq(cpu->P & MOS_OVERFLOW, 0);
cr_assert_eq(cpu->P & MOS_CARRY, MOS_CARRY);
cpu->A = start;
cpu->P |= MOS_CARRY;
mos6502_handle_sbc(cpu, vtest);
cr_assert_eq(cpu->A, (vm_8bit)(start - vtest));
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_OVERFLOW, MOS_OVERFLOW);
cr_assert_eq(cpu->P & MOS_CARRY, 0);
cpu->A = start;
cpu->P |= MOS_CARRY;
mos6502_handle_sbc(cpu, ntest);
cr_assert_eq(cpu->A, (vm_8bit)(start - ntest));
cr_assert_eq(cpu->P & MOS_ZERO, 0);
cr_assert_eq(cpu->P & MOS_NEGATIVE, MOS_NEGATIVE);
cr_assert_eq(cpu->P & MOS_OVERFLOW, 0);
cr_assert_eq(cpu->P & MOS_CARRY, 0);
// FIXME: add a decimal test
}
Test(mos6502_arith, sbc_dec)
{
cpu->P = 0;
cpu->A = 0x15;
mos6502_handle_sbc_dec(cpu, 0x6);
cr_assert_eq(cpu->A, 0x8);
cpu->P |= MOS_CARRY;
cpu->A = 0x12;
mos6502_handle_sbc_dec(cpu, 0x2);
cr_assert_eq(cpu->A, 0x10);
cpu->A = 0x2;
mos6502_handle_sbc_dec(cpu, 0x3);
cr_assert_eq(cpu->A, 0x99);
}