erc-c/src/mos6502.branch.c

95 lines
1.6 KiB
C

/*
* mos6502.branch.c
*
* This is all the logic we use for branch instructions, which are used
* for conditional expressions.
*/
#include "mos6502.h"
#include "mos6502.enums.h"
/*
* This is just a minor convenience macro to wrap the logic we use in
* branch situations, which is if `cond` is true, then we set the
* program counter to the last effective address.
*/
#define JUMP_IF(cond) \
if (cond) cpu->PC = cpu->eff_addr; else cpu->PC += 2
/*
* Branch if the carry flag is clear.
*/
DEFINE_INST(bcc)
{
JUMP_IF(~cpu->P & MOS_CARRY);
}
/*
* Branch if carry is set.
*/
DEFINE_INST(bcs)
{
JUMP_IF(cpu->P & MOS_CARRY);
}
/*
* Branch if the zero flag is set (that is, if our last instruction
* resulted in something being _equal to zero_).
*/
DEFINE_INST(beq)
{
JUMP_IF(cpu->P & MOS_ZERO);
}
/*
* Branch if the negative ("minus") flag is set.
*/
DEFINE_INST(bmi)
{
JUMP_IF(cpu->P & MOS_NEGATIVE);
}
/*
* Branch if the zero flag is not set; which is to say, that the last
* operation was _not equal_ to zero.
*/
DEFINE_INST(bne)
{
JUMP_IF(~cpu->P & MOS_ZERO);
}
/*
* Branch if the negative flag is not set (meaning the last operation
* was "plus", which includes zero).
*/
DEFINE_INST(bpl)
{
JUMP_IF(~cpu->P & MOS_NEGATIVE);
}
/*
* This instruction will branch in all cases. It's not a true
* conditional; it's analagous to a relative address mode JMP.
*/
DEFINE_INST(bra)
{
// Always jump!
JUMP_IF(1);
}
/*
* Branch if the overflow bit is clear.
*/
DEFINE_INST(bvc)
{
JUMP_IF(~cpu->P & MOS_OVERFLOW);
}
/*
* Branch if the overflow bit is set.
*/
DEFINE_INST(bvs)
{
JUMP_IF(cpu->P & MOS_OVERFLOW);
}