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BETA 
KickC is currently in beta, and occasionally crash with a cryptic error or create ASM code that 
does not work properly. Feel free to test it and report any problems or errors you encounter. 
Also, be prepared that breaking changes (to syntax, to semantics, etc.) may be implemented in 
the next versions.  
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1 What is KickC? 
KickC is a C-compiler creating optimized and readable 6502 assembler code.  
 
The KickC language is classic C with a few limitations and a few extensions to ensure an 
optimal fit for creating 6502 assembler code.  

The KickC Language 
The language is basically C and it supports many of the basic features of C, so it should be 
quite easy to get started with if you have programmed in C or any similar language. 
 
Here is a simple “hello world” program, that prints “hello world!” at the top of the screen.  
 
import “print” 

void main() { 

print_str(“hello world!”); 

} 

 
The language has some limitations compared to standard C, for example no support for unions 
or reentrant functions. Some features were omitted because they cannot be realized in a way 
that creates optimized 6502 assembler code. Others were omitted simply because they have 
not yet been implemented in the current version. 
 
The language also has a few extensions to standard C. The modifications and extensions were 
included either to allow creation of better 6502 assembler code or for convenience.  
 
All limitations, modifications and extensions are described in the following sections. 

Optimized and Readable 6502 Assembler Code 
The KickC Compiler produces assembler code for the ​MOS Technology 6502 processor. The 
assembler code is produced as source code that can be assembled to binary by the Kick 
Assembler (​http://theweb.dk/KickAssembler​).  
 
The compiler uses a number of modern optimization methods to create 6502 assembler code 
that executes as fast as possible and does not contain unnecessary boilerplate. The 
optimization techniques include  

● Detection of constant values and expressions 
● Optimized allocation of registers to variables 
● Optimized parameter and return value passing to/from functions 
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● Minimizing the number of zero-page addresses used for storing variables 
● Choosing optimal assembler instructions to represent each statement 
● Removing unused functions, variables and code 
● Peephole optimization of the generated assembler code  

 
The optimization techniques are also explained in more detail in later sections. 
 
Below a slightly more complex version of hello world, which prints “hello world!” with an added 
space between each letter on the first and third line of the C64 default screen at 0x400. This 
example illustrates how the KickC compiler creates optimized readable 6502 assembler​. 

helloworld2.c 
char* screen = 0x400; 

 

void main() { 

    char* hello = "hello world!"; 

    print2(screen, hello); 

    print2(screen+2*40, hello); 

} 

 

void print2(char* at, char* msg) { 

    char j=0; 

    for(char i=0; msg[i]; i++) { 

        at[j] = msg[i]; 

        j += 2; 

    } 

} 

 

 

 

 

helloworld2.asm 
.label screen = $400 
main: { 
    lda #<screen 
    sta print2.at 
    lda #>screen 
    sta print2.at+1 
    jsr print2 
    lda #<screen+2*$28 
    sta print2.at 
    lda #>screen+2*$28 
    sta print2.at+1 
    jsr print2 
    rts 
    hello: .text "hello world!@" 
} 
print2: { 
    .label at = 2 
    ldy #0 
    ldx #0 
  b1: 
    lda main.hello,x 
    sta (at),y 
    iny 
    iny 
    inx 
    lda main.hello,x 
    cmp #0 
    bne b1 
    rts 
} 

 
The KickC compiler uses the following insights to optimize the helloworld2 program: 

- The screen pointer is never modified and is therefore a constant location in memory. 
- The second parameter to the ​print2-​function (​msg)​ always has the same value 

main.hello,​ so that can be hardcoded inside the method body instead of parsing it.  
- The contents of ​msg[i]​ (ie. the hardcoded ​main.hello ​string) can be addressed using 

simple indexing. 
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- The ​at​-parameter in ​print2 ​is truly variable, so it is placed on zero-page ($2 and $3) and 
indirect indexing can be used for addressing the contents of ​at[j]​. 

- The X-register is optimal for the ​i​ variable in the ​print2​ function as it is good at indexing 
and incrementing. 

- The Y-register is optimal for the ​j​ variable in the ​print2​ function as it is good at indirect 
indexing and incrementing. 

- When 2 is added to the ​j​-variable it is better to do INY twice than to use addition. 
- The A-register is optimal for holding the current character ​c​ of the message being moved 

to the screen as LDA and STA can be efficiently indexed by X and indirect indexed by Y. 
 
When generating Kick Assembler code the KickC compiler tries to ensure that the assembler 
code is readable and corresponds to the source C program as much as possible. This includes 
using the same names, using scopes and recreating constant calculations in assembler, when 
possible. 
 
The KickC Compiler creates readable 6502 assembler code for the helloworld2 program by: 

- Using the variable and function-names ​screen​,​ hello​, ​main, print2, at ​ in the generated 
code 

- Recreating the calculation of the constant ​screen+2*40​ in the assembler code as 
screen+2*$28 

- Creating a local named scope in the assembler-code for the methods ​main ​and ​print2​ by 
enclosing them in curly braces. 

- Placing method-local data and labels inside the method scope.This allows other 
assembler code to access the local data/labels using dot-syntax eg. ​main.hello​ or 
print2.at  

Getting Started 
The KickC development is hosted on gitlab ​https://gitlab.com/camelot/kickc​. Here it is possible 
to follow the development and to download the latest binary release. 
 
You install KickC on your own computer by: 

1. Download the newest KickC release from  ​https://gitlab.com/camelot/kickc/releases 
2. Unpack the zip-file to a folder of your own choice.  

 
The zip-file contains the following  

○ bin​ Folder containing bat/sh-files for running KickC. 
○ examples​ Folder containing some example KickC programs. 
○ include​ Folder containing header-files for useful library functions usable in your 

own program. 
○ lib​ Folder containing C-files implementing the useful library functions usable in 

your own program. 
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○ jar ​Folder containing the KickC JAR-file​ ​plus a few other JARs needed for 
running KickC (antlr4-runtime, picocli and KickAssembler). 

○ This manual in PDF-format and some files with license-information. 
 
KickC is written in Java. To use  KickC you need to download and install a Java runtime from 
https://www.java.com​. Java must be added to your PATH, or the environment variable 
JAVA_HOME must point to the folder containing the Java installation.  
 
NOTE: KickC runs a lot faster on 64bit Java than on 32bit Java. You are therefore encouraged 
to ensure that your Java is a 64bit version. You can check by executing  ​java -version ​in a 
Terminal/Command Prompt. 
 
After installing KickC and you can compile a simple sample KickC program by doing the 
following:  
 
MacOS 

1. Start a Terminal 
2. cd​ to the folder containing KickC  
3. Enter the command  

bin/kickc.sh examples/helloworld/helloworld.c 

 

Windows 
1. Start a Command Prompt 
2. cd​ to the folder containing KickC  
3. Enter the command  

bin\kickc.bat examples\helloworld\helloworld.c 

 

This compiles the helloworld KickC program ​examples/helloworld/helloworld.c​ and 
produces assembler code in  ​examples/helloworld/helloworld.asm​.  The resulting ASM-file 
can then be assembled using KickAssembler, producing a runnable program, that can be 
executed using an emulator or transfered to the real 8-bit hardware. 
 
To make the workflow convenient KickC has a command line option (​-a​) to compile the resulting 
ASM code with KickAssembler. This is one of the reasons that the KickAssembler JAR is 
bundled with the release of KickC. 
 
For even more convenience KickC also has a command line option (​-e​) that both assembles the 
ASM code and executes the resulting binary program in the VICE Commodore 64 emulator 
(​http://vice-emu.sourceforge.net/​). The option requires VICE ​x64​ to be available in the PATH.  
 
To compile, assemble and execute the example program ​simple-multiplexer.c​ (a sprite 
multiplexer moving 32 balloons in a sinus on the screen) use the following command in the 
kickc-folder (assuming MacOs) 
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bin/kickc.sh -e examples/multiplexer/simple-multiplexer.c   
 
To create your own KickC-programs use any text-editor to create a source file containing a ​void 
main()​ function, save it to the file system (using the ​.c​ extension is recommended) and 
compile it by passing it to ​kickc.sh​ (on MacOs) or ​kickc.bat ​(on Windows). 

2 KickC Language Reference 
KickC is a C-family language, and much of the syntax and semantics is the same as C99. In the 
following the different parts of the language is explained. Finally the differences between KickC 
and standard C are listed.  

Variables 
Variables are declared like in regular C by ​type name​ ​and can include an optional initialization 
assignment. The following declares a signed char variable with the name ​size ​and the initial 
value 12. 
 
char size = 12; 

 
If variables do not have an initial assignment they will be initialized with the default value zero. 
 
It is possible to  declare multiple variables with the same type by separating the names and 
optional initializations with commas. Here two ​unsigned int​ variables ​a​ and​ b​ are declared, ​a 
is initialized to 4 while ​b​ is initialized to the default value (zero). 
 
unsigned int a = 4, b; 

 
In KickC variables can be declared at any point in the program, outside functions or inside 
function declarations.  

Data Types 

Integers 
KickC supports the standard C integer data types (char, short, int, long), but also adds some 
fixed size integer types, that have names more familiar on the 6502 platform (byte, word, 
dword). 
 

Type Name Description 
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char 
unsigned char 
byte 
unsigned byte 

An unsigned 8 bit (1 byte) integer. 
Range is [0;255]. 

signed char 
signed byte 

A signed 8 bit (1 byte) integer in two’s complement.  
Range is [-128;127]. 

unsigned short 
unsigned int 
unsigned 
word 
unsigned word 

An unsigned 16 bit (2 byte) integer  
Range is [0;65,535]. 

short 
signed short 
int 
signed int 
signed 
signed word 

A signed 16 bit (2 byte) integer in two’s complement. 
Range is [−32,767; +32,767]. 

unsigned long 
dword 
unsigned dword 

An unsigned 32 bit (4 byte) integer. 
Range is [0, 4,294,967,295]. 

long 
signed long 
signed dword 

A signed 32 bit (4 byte) integer in two’s complement. 
Range is [−2,147,483,647, 2,147,483,647]. 

 
If the standard C integer types are declared without a unsigned/signed prefix they default to 
signed, except char which defaults to unsigned. If the special 6502-friendly integer types are 
declared without a unsigned/signed prefix they default to unsigned. 
 
Integer literals can be either decimal, hexadecimal or binary. The syntax for hexadecimal integer 
literals support both C syntax (prefixing with ​0x)​ and 6502 assembler syntax (prefixing with $). 
Similarly the syntax for binary supports both prefixing with ​0b​ and ​%​.  
 

Prefix Format Examples 

 Decimal 12 
53280 

0x 
$ 

Hexadecimal 0x40 
$dc01 

0b 
% 

Binary 0b101 
%1100110011001100 
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Character literals are unsigned bytes / chars. The syntax for a character literal is the character 
enclosed in single quotes. Numerically the character is represented by the C64 screen code. 
The following initializes the variable ​c​ to the character ‘c’. 
 
char c = 'c';  

 

Escape sequences can be used to represent special characters such as newline. The following 
character escape sequences are supported 
 

- '\n'​ newline 
- '\r'​ carriage return 
- '\f'​ form feed 
- '\''​ single quote 
- '\​"​'​ double quote 
- '\\'​ backslash 
- '\\'​ backslash 

Booleans 
KickC also has a boolean type called ​bool​. The boolean literals are ​true​ and ​false.​Underlying 
the boolean type is a byte containing either 0 (if  false) or 1 (if true). The following is an example 
of a boolean variable called​ enabled​. 
 
bool enabled = true; 

Pointers 
Pointers to all integer types and booleans are supported and declared using the syntax ​type*​. 
The following is an example, where ​screen ​is a pointer to a char and ​pos​ is a pointer to a signed 
integer. 
 
char* screen;  

int* pos; 

 

Pointers to pointers are also supported. Here an example of a pointer to a pointer to an 
unsigned char. 
 
unsigned char** screenptr = &screen;  

 
For functions it is only possible to use pointers to functions that has no return value and take no 
parameters. 
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Arrays  
Arrays are supported using the syntax ​type a[]​ or ​type a[size]​. For all practical purposes 
array variables are treated exactly like pointers.  
Arrays can be initialized by an array literal written as comma-separated values inside curly 
braces eg. ​{ 1, 2, 3 }​. ​They can also be initialized with all zero values just by declaring the 
array to have a specific size. 
 
String literals can also be used to initialize an array of unsigned bytes. The syntax for a string 
literal is a string enclosed in double quotes. Strings can use escape sequences to represent 
special characters such as newline. See character literals above for a list of the escape 
sequences. Stings are per default zero terminated. It is possible to create a string that is not 
zero terminated by adding the special suffix z after the last double quote.  
 
Arrays that are initialized will allocate the memory needed for the size. 
 
In the following example, ​sums​ is array of 3 signed chars initialized with zeros, ​fibs​ is an array of 
6 signed integers containing the first Fibonacci numbers. ​msg​ is an unsigned char array 
containing the numeric value of the 5 characters ‘h’, ‘e’, ‘l’, ‘l’ and ‘o’ plus a sixth value that is 
zero (because strings are zero terminated) while ​msg2​ only has the 5 characters without the 
final zero. Finally ​bs​ is simply a pointer to a boolean. 
 
signed char sums[3]; 

int fibs[] = { 1, 1, 2, 3, 5, 8 }; 

char msg[] = "hello"; 

char msg2[] = "hello"z; 

bool bs[]; 

 
Arrays of arrays are not supported. 

Constants 
Constants can be declared by using the ​const​ keyword.  
 
const char SIZE = 42; 

 
The compiler is quite good at detecting constants automatically, so it is not strictly necessary to 
declare any constants. However declaring a constant can help make the code more readable 
and will generate an error if any code tries to modify the value.  
 
When an array is declared constant only the pointer to the array is constant. The contents of the 
array can still be modified. 
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No Floating Point Types 
KickC has no floating point types, as the 6502 processor has no instructions for handling these.  

Expressions 
Expressions in KickC consist of operands and operators. Operands are either data type literals 
or names of variables or constants. All well known expression operators from C and similar 
languages also exist in KickC. An example of an expression is ​(bits & $80) != 0 

Arithmetic Operators 
The arithmetic operators support performing simple numeric calculations 

● a + b Addition 
● a - b Subtraction 
● - a Negation 
● + a Positive 
● a * b Multiplication 
● a / b Division 
● a % b Modulo 

 
Multiplication, division and remainder are allowed, however there is limited run-time support for 
these operators as the 6502 has no instructions supporting them. Any 
multiplication/division/remainder that is a part of a calculation of a constant value is allowed. 
There is also runtime-support for unsigned multiplication of a variable by a constant.  

Bitwise Operators 
The bitwise operators operate on the individual bits of the numeric operands. 

● a & b Bitwise and 
● a | b Bitwise or 
● a ^ b Bitwise exclusive or 
● ~ a Bitwise not 
● a << n Bitwise shift left n bits 
● a >> n​ Bitwise shift right n bits 

Relational Operators 
The relational operators compare values and has a boolean value result.  

● a == b Equal to  
● a != b Not equal to 
● a < b Less than 
● a <= b Less than or equal to 
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● a > b Greater than 
● a >= b Greater than or equal to 

Logical Operators 
The logical operators operate on boolean operands and has a boolean result.  

● a && b​ Logical and 
● a || b Logical or 
● ! a Logical not 

 
When ​&&​ and ​||​ are used in ​if, while, do-while​ or similar statements they are short 
circuit-evaluated meaning that if ​a​ evaluates to ​true​ in ​if(a || b) { … } ​then ​b​ is never 
evaluated. Similarly if ​a​ evaluates to ​false​ in ​if(a && b) { … } ​then ​b​ is never evaluated.  

Conditional Operator 
The conditional operator is also called ternary operator because it is the only operator using 
three operands. It is  used to choose between two different values. 
 

● a ? b : c ​Conditional 
 
It evaluates the first operand, which should be boolean. If the first operand evaluates to true it 
returns the value of the second operator. If the first operand evaluates to true it returns the value 
of the third operator. It uses short-circuit-evaluation meaning that only one of the two last 
operands are evaluated depending on the value of the first operand.  
 
In this example d will be set to the value of c if c is positive and to -c if c is negative. 
 
char d = c>0 ? c : -c;  

Comma Operator 
The comma operator can be used to evaluate multiple values in place of an expression. It 
evaluates the first operand and discards the results. Then it evaluates the second operand and 
returns the results. 
 

● a , b Comma 

 
Using it can produce code that is hard to read, however it can come to good use in 
for()-statements to increment multiple variables. Here an example of a for()-loop with two 
loop-variables ​i​ and ​j​.  
 
for(unsigned char i=0, j=0; i<32; i++, j+=2) { … } 
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Assignment Operators 
Assigning a value to a variable is also an expression operator that returns the value assigned. 
This means that assignments can be nested inside expressions, and that they can be chained if 
multiple variables should be assigned the same value like ​a = b = 0. ​An assignment of course 
has side effects, as it modifies the assigned variable.  
 
Compound assignment operators, such as ​a += b​ ​is a convenient shorthand for updating the 
value of a variable. It works exactly like ​a = a + b.  
 

● a = b Assignment 
● a += b Addition assignment 
● a -= b Subtract assignment 
● a *= b Multiply assignment 
● a /= b Divide assignment 
● a %= b Modulo assignment 
● a <<=b Left shift assignment 
● a >>=b Right shift assignment 
● a &= b Bitwise and assignment 
● a |= b Bitwise or assignment 
● a ^= b Bitwise exclusive or assignment 

Increment/decrement Operators 
The pre-increment/decrement and post-increment/decrement operators is a convenient way of 
incrementing/decrementing the value of a numeric variable just before or just after the value is 
used in an expression. 
 

● ++a Pre-increment 
● --a Pre-decrement 
● a++ Post-increment 
● a-- Post-decrement 

Pre-incrementing works just like incrementing the value of c before the statement, meaning that 
a = b + ++c;​ is the same as ​c += 1; a = b + c;​ Similarly post-incrementing works just like 
incrementing the value after the statement, meaning that ​a = b + c--;​ is the same as ​a = b + 
c; c -= 1; 

Pointer and Array Operators  
The two basic pointer operators are the ​&a​ address-of operator, which creates a pointer to  a 
variable and the ​*a​ pointer dereference operator, which supports reading and writing the value 
pointed to by the pointer. 
 

14 



The array indexing operator a[b], which supports reading and writing of array elements, is in fact 
also a pointer operator. Because an array variable is actually a pointer to the start of the array 
the array dereference operator a[b], which is actually shorthand for *(a+b). 
 

● &a Address of  
● *a Pointer dereference 
● a[b] Array indexing 

Low/High Operators 
An extension in KickC is the inclusion of operators that allow addressing the low/high byte of a 
word, and the low/high words of a dword. These are well known from 6502 assemblers. 
 
The low-operator ​<a​ addresses the low-byte of the word ​a​, or the low-word if ​a​ is a dword. 
Similarly the high-operator ​>a​ addresses the high-byte of a word or high-word of a dword. 
 
The low/high operator can also be used on the left side of assignments to modify only the 
low/high byte of a word or low/high word of a dword. 
 

● <a Low part of 
● >a High part of 

 
The following example sets the low part of the word in ​a​ to 0. If ​a​ was $0428 before the 
assignment it will be $0400 afterwards. 
 
<a = 0;  

Function Calls 
Function that returns a value can be called as part of an expression. Functions are called by the 
normal parenthesis-syntax with parameter values separated by commas. Coding functions is 
described in the section ​Functions​. 
 

● f(a,b) Function Call 

Automatic Type Conversion and Type Casting 
KickC handles automatic type conversions differently than standard C. Where standard C 
converts all small integers to ​int​ before evaluating expressions, KickC supports evaluating 
operators for all types and only performs conversions if they are strictly necessary. Limiting the 
number of automatic type conversions helps creating better optimized 6502 assembler. In many 
cases KickC can even handle operators for two values of different type directly. For instance 
adding a byte to a word can be done in more optimal 6502 code than first converting the byte to 
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a word and then adding the two words. In practice the difference to standard C rarely has any 
consequences. 
 
Like standard C, KickC will ensure automatic type conversion (if necessary) as long as the type 
of one value can contain all values of the type of the other. For instance an unsigned char can 
be automatically converted to a signed int as signed ints can hold all possible unsigned char 
values. An unsigned char can not be automatically converted to a signed char, since a signed 
char cannot hold all possible unsigned char values. 
 
The automatic conversions that Kick can perform for each type are the following 
 

Type Can be automatically converted to 

unsigned char unsigned int, signed int, unsigned long, signed long  

signed char signed long, signed long  

unsigned int unsigned long, signed long 

signed int signed long 

unsigned long - 

signed long - 

 
The cast operator can be used to perform explicit type conversion. Casting also allows 
conversions to a type that cannot hold all possible values, and where some information may be 
lost in the conversion, for example casting a signed char to an unsigned char. 
 

● (type)a Casting 
 
For sub-expressions containing only constants the KickC compiler tries to infer the type of the 
sub-expression. This is done by performing the calculation and then checking which types can 
hold the calculated value. For instance the calculation ​$4000/$80​ is inferred to match any 
integer type except signed char (since a signed char cannot hold 128) .  This also differs from 
standard C, where all constant integer numbers are ints unless specified otherwise. 

Operator Precedence and Parenthesis 
Operators precedence decides which operators are applied first when multiple operators are 
combined in an expression. For instance multiplication is performed before addition in ​a*b+c​. ​In 
KickC operators generally have the same precedence as in standard C.  
 
Precedence rules can be overridden by using explicit parentheses in expressions. For instance 
to perform addition before multiplication ​(a+b)*c​. 
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● ( a ) Parenthesis 

 
The following table shows KickC operator precedences. Operators at the top of the table binds 
most tightly. 
 

Precedence Operators Associativity 

1 a++   a--   f( )  a[b] Left-to-right 

2 ++a   --a   +a    ~a  
!a    (t)a  *a    &a 

Right-to-left 

3 a*b   a/b   a%b Left-to-right 

4 a+b   a-b Left-to-right 

5 a<<b  a>>b Left-to-right 

6 <a    >a  Left-to-right 

7 a<b   a<=b  a>b   a>=b Left-to-right 

8 a==b  a!=b Left-to-right 

9 a&b Left-to-right 

10 a^b Left-to-right 

11 a|b Left-to-right 

12 a&&b Left-to-right 

13 a||b Left-to-right 

14 a?b:c Right-to-left 

15 a=b   a+=b  a-=b  a*=b 
a/=b  a%=b  a<<=b a>>=b 
a&=b  a^=b  a|=b 

Right-to-left 

16 a,b Left-to-right 

Statements 
The statements of a KickC program control the flow of execution. KickC supports most 
statements supported by standard C.  
 

17 



Statements are separated by semicolons ​stmt; stmt;​ and can be grouped together in blocks 
using curly braces ​{ stmt; stmt; }​. 

Expressions and Assignments 
All expressions are valid statements.There are two typical ways of using expressions as 
statements. The first is an assignment, which is an expression, modifying the value of a 
variable. 
 
a += 2; 

 
The second is calling a function that has a side effect. 
 
print(“hello”); 

If  
The body of an if-statement is only executed if the condition is ​true​. The if-statement can have 
an else-body, that is executed if the condition is not true. 
 
The following if-statement prints “even” to the screen if ​a​ is even. 
 
if((a&1)==0) { print(“even”); }  

 

The following if-statement increases ​b​ if a is less than 10 and decreases ​b​ otherwise. 
 
if(a<10) { b++; } else { b--; }  

 

If the condition is an integer or pointer expression then a value of zero is considered ​false​ and 
a non-zero value is considered ​true​.  The following if-statement decrements ​i​ if it is non-zero  
 
if(i) i--; 

 

Switch 
 

The switch-statement is used to choose between a number of cases. It is usable when you 
would otherwise use several consecutive if-statements. Switch works by examining a single 
expression and comparing the value to a number of cases labelled with a constant value. The 
execution starts at the case where the label matches the value. Execution then continues 
forward until through the statements of the following cases. A break-statement can be used to 
break out of the switch. At the end a special default-case can be used for catching values that 
were not matched by any other case. 
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The following switch-statement examines the char ​c​ and chooses what to do: if ​c​ is a zero it 
exits the function, if ​c​ is a TAB or newline it prints a space - and for all other values of ​c​ it prints 
c​ itself. 
 

switch(c) { 

case 0: 

return; 

case '\t': 

case '\n': 

print(' '); 

break; 

default 

print(c); 

} 

 

Notice how the TAB case is empty, but since switch continues to execute statements from 
following cases the execution will start at the print(' '). The return-statement in case 0 also 
breaks the execution of the switch. 
 
Switch has the following syntax 
switch​(expr) { 
case const1: 

  body1 

case const2: 

  body2 

… 

default: 

  body3 

} 
 

Where ​expr​ is an expression giving the value to examine and ​const1, const2​, … are 
expressions that must evaluate to constants. Finally ​body1, body2​, … are sequences of 
statements. 

While 
The body of a while-loop is executed repeatedly as long as the condition is still true. The 
while-loop is executed by first evaluating the condition. If the condition is true the body is 
executed and the loop starts over. If the condition is not true execution continues after the loop. 
If the condition is not true the first time the loop is encountered then the body is never executed. 
 
The following while-loop prints ​i​ dots on the screen, while counting i down to zero. 
 
while(i!=0) { print(“.”); i--; } 
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Do-While 
The do-while-loop is very similar to the while-loop. The body of a do-while-loop is executed 
repeatedly as long as the condition is true. In the do-while-loop the body is executed first and 
then the condition is evaluated. If the condition is true the loop starts over. If the condition is not 
true execution continues after the loop.The body of the loop is always executed at least once. 
 
The following do-while-loop keeps scanning the keyboard until the space key is pressed. 
 
do { 

  keyboard_event_scan();  

} while (​keyboard_event_get​()!=​KEY_SPACE​) 

For 
The for-loop is a convenient way of creating a loop, where a loop-variable is initialized, the body 
is executed, the loop-variable is incremented and finally the condition is evaluated to determine 
whether to repeat the loop again. 
 
A for-loop has the following syntax 
 
for​(​init​; ​condition​; ​increment​) { ​body​ } 
 

and is equivalent to the following KickC code 
 

init​; 
while(​condition​) { 
  ​body​; 
  ​increment​; 
}  

 
The condition is evaluated before the body and increment, enabling for-loops where the body 
and increment is never executed.  
 
KickC has an additional convenience syntax for creating simple for-loops that loop over an 
integer range. The following for-loop executes the body 128 times with ​i​ having values 
0,1,...,127 
 
for(char i : 0..127) { body }   
 
And is equivalent to  
 
for(char i=0; i!=127+1; i++) { body }  
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This convenience syntax only accepts constants or expressions evaluating to constants as the 
ends of the integer interval. It can loop both backwards and forwards. 

Break and Continue 
The ​break​ statement terminates a loop or a switch, whereas ​continue​ statement forces the 
next iteration of a loop. These statements are very useful when creating complex loop logic. 
 

The following loop prints a string on the screen, skipping all spaces by using the continue 
statement. When it encounters a zero char in the string it stops printing using the break 
statement​. 
 
char* screen = $400; 

char str[] = "hello brave new world!"; 

for( char i: 0..255) { 

if(str[i]==0) break; 

if(str[i]==' ') continue; 

*screen++ = str[i]; 

} 

Functions 
Functions are named pieces of code that can be reused by calling them and passing different 
parameters. 

Calling functions 
In the following code a function called ​max​ is called 3 times. The max-function takes 2 chars 
parameters and returns the maximal value of the two. After this code ​m​ will have the value 31 
and ​n​ will have the value 47. 
 
char m = max(31, 9 ); 

char n = max(m, max(47, 7));  

 

In general, a function is called using the syntax: 
 
name​(​param1​, ​param2​, …) 

 
Where 

● name​ is the name if the function 
● param1​ is the value of the first parameter 
● param2​ is the value of the second parameter  
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The number of parameters passed must exactly match the number of parameters the function 
expects. 
 
If the function returns a value then the function call can be used as part of any expression. An 
example of this can be seen in the nested call to max above. 

Creating functions 
Functions are created by adding function declarations to your program. The following is a 
declaration of the max-function used above. It expects two char value parameters, finds the 
largest one and returns it. 
 
char max(char a, char b) { 

  if(a>b) { 

    return a; 

  } else { 

    return b; 

  } 

} 

 

In general a function declaration has the following syntax: 
 
return-type​ ​name​(​param-type1 param-name1​, ​param-type1 param-name1​, ...) { ​body​ } 
 

Where 
● return-type​ is the type of value that the function returns 
● name​ is the name if the function 
● param-type1​ is the type of the first parameter 
● param-name​1 is the name of the first parameter 
● param-type​2 is the type of the second parameter 
● param-name​2 is the name of the second parameter 
● body​ is the code performing the task of the function 

 
If a function does not return a value it must declare the return type as ​void​.  
 
The parameter declaration inside the parenthesis describes how many parameters must be 
passed when calling the function, the types of the parameters to be passed and names the 
parameters have inside the functions body code. The max-function above takes 2 chars 
parameters, named ​a​ and ​b​.  
 
The function ​body​ is the code executed when calling the function. In the body code the declared 
parameters can be used as variables and will have the values passed by the call. 
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The special statement ​return​ is used to return a value to the caller. The ​return​ statement 
exits the function immediately.  
 
The following statement exits the function and returns the sum of values a and b. 
 
return a+b; 

The main() function 
All KickC programs must have exactly one function called ​main​. The ​main​ function is the 
starting point of the program. In KickC the main() function takes no parameters and returns no 
value. 
 
The following is a very simple KickC program with a ​main​ function that turns the screen 
background color black and exits. 
 
import "c64" 

 

void main() { 

*BGCOL = BLACK; 

} 

 
When compiling the main-function generates a C64 BASIC program containing a single SYS 
command which starts the execution of the compiled KickC program. 
 
The following is the KickAssembler code resulting from compiling the KickC program above. 
BasicUpstart is KickAssemblers way of creating a BASIC-program with a single SYS command.  
 
.pc = $801 "Basic" 

:BasicUpstart(main) 

.pc = $80d "Program" 

  .label BGCOL = $d021 

  .const BLACK = 0 

main: { 

    lda #BLACK 

    sta BGCOL 

    rts 

} 

Comments 
Two types of comments are supported in KickC. Anything inside a comment has no effect on 
the generated code. 
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Block comments, started with /* and ended with */ can span multiple lines. They can sometimes 
be useful for commenting out large parts of programs. 
 
/* A multi-line 

block comment */ 

 
Single line comments are started with double-slash // and ends at the next newline 
 
// a single-line comment 

Splitting code into multiple files 
Like in C you can split code into multiple files by creating header-files (extension ​.h​) and 
code-files (extension ​.c​). The header-files typically contain only the interface of the module, ie. 
function declarations without body, ​extern​ variable declarations and ​#defines​. 
 
For one C-file to be able to use the functions/variables from another file you can include the 
header using 
 
#include “other.h” 

 
When including files the compiler first searches through the current folder where the file that has 
the ​#include​ statement is located, then it searches each library folder added by the ​-I​ / 
-includedir ​option to the compiler.  
 
Include can be told to look in subfolders by prefixing the filename with a slash-separated path. 
Here is an example where graphics code files are located in a subfolder: 
 
#include “graphics/character.h” 
 
Using ​#include <file.h>​ instead of ​#include “file.h” ​will cause the compiler to not look 
for the file in the current directory, only looking in the search folders. This is useful when 
including libraries. 
 
Unlike a normal C-compiler KickC does not support compiling each C-file individually and linking 
them later. Instead KickC insists on compiling all needed C-files in one go to be able to optimize 
better. 
 
When you include a header-file using ​#include ​the compiler will try to automatically find the 
matching C-file. This is done by looking for a file with the same name, but extension .c in the 
current folder and each library folder added by the ​-L​ / ​-libdir ​option to the compiler.  
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You can also choose to pass multiple C-files directly to the compiler 
 
kickc.sh main.c other.c 

 
KickC also differs from standard C by automatically ensuring that any included file is only 
included once by automatically keeping track of which files have been included. This, combined 
with compiling all files in one go, means that with KickC you can skip the header-files and 
include C-files directly instead. This may be more convenient for you if you do not plan to port 
your code to other C-compilers. 

Variables Directives 
KickC has a number of directives can be used for controlling how a variable works. Variable 
directives are can be added before or after the type of the variable. 

Const 
The ​const​ directive is used to declare that a variable cannot be modified by the program. The 
declaration must also contain an assignment and the compiler will issue an error if the variable 
is assigned anywhere else.  
 
const char SPRITES = 8; 

 

For pointers the ​const​ directive can either be used to declare a constant pointer to a value or a 
pointer to a constant value. Which you declare is determined by the location of the ​const 
keyword relative to the ​*​. 
 
A constant pointer to a value means that the pointer cannot be modified, but the value that it 
points to can be modified. It is declared by placing the keyword after the * 
 
char * const SCREEN = 0x0400 ; 

 
A pointer to a const value means that the program is not allowed to modify whatever the pointer 
points to, but that the pointer itself can be modified. It is declared by placing the keyword before 
the ​* 
 
const char * ROM = 0xA000 ; 

Register 
The ​register​ directive is used to instruct the compiler to optimize a variable, putting it into a 
CPU-register if possible. The compiler is quite good at optimizing register usage, so using this 
directive should not be needed.  
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char register i; 
 
It is also possible to add a specific register in parenthesis to force the variable into a specific 
CPU-register. Using this directive can cause the compiler to fail if it is impossible to compile the 
program with the variable assigned to the register. 
 
char register(X) i; 

Align 
The ​align​ directive is used to control the placement of arrays and strings in memory. For 
instance ​align(0x40)​ will ensure that the memory address where the data is placed is a 
multiple of 0x40 bytes. This can be useful when trying to optimize the performance of your 
program.  
 
char align(0x100) sine[0x100];  

Volatile 
The ​volatile​ directive tells the compiler that the value of the variable might change at any 
time. The ​volatile ​keyword must be used for variables that are shared between code running 
“simultaneously”. An example is when coding with interrupts (see the ​interrupt​ directive).  
The directive prevents the compiler from using all optimizations, where it assumes it can guess 
the value of the variable from the surrounding code. It will also ensure that the compiler does 
not produce code where the value of the variable is held in a register.  
 

volatile char sprite_ypos; 

 

For pointers the location of the ​volatile​ keyword relative to the ​*​ is used to distinguish 
between a volatile pointer and a pointer to volatile data. See ​const​ for a more thorough 
explanation. 

Extern 
The extern keyword on a variable specifies that this variable is defined somewhere else. The 
extern keyword is typically used in header-files, when a variable defined in the C-file should be 
usable by other C-files. 
 
extern char cursor_onoff; 
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Export 
The ​export​ directive tells the compiler that the value of a data-variable must be included in the 
resulting ASM even if it is never used anywhere and would normally be deleted by the optimizer. 
The ​export ​keyword is only usable for global variables containing data, typically arrays.  
The directive prevent the compiler from deleting the variable during optimization. 
 

export char MESSAGE[] = “Hello World!”;  

Function Directives 
KickC also has a few directives that instruct the compiler to treat functions in a specific way.  

Inline 
The ​inline​ function directive instructs the compiler to inline the whole function body 
everywhere the function is called. This can be used for optimizing your code since it allows the 
compiler to optimize the code of each function call independently, for instance by identifying 
constants in each call. It also saves the CPU cycles normally needed to call the function and 
return from it. The trade-off is that your program will compile into more bytes of code.  
 
inline char sum( char a, char b) { 

    return a+b; 

} 

Interrupt 
The ​interrupt​ function directive is used for creating interrupt handler functions.  
 
interrupt(kernel_keyboard) void irq() { 

    *BGCOL = WHITE; 

    *BGCOL = BLACK; 

} 

 
Setting up an interrupt on the C64 is done by assigning a pointer to an interrupt handler function 
to one of the interrupt vectors placed a specific address in the memory. Below is an example of 
setting up the kernal IRQ vector (at $314 in memory) to run the ​irq()​ function declared above. 
When setting up interrupts it is good practice to surround the code with the SEI/CLI instructions 
to prevent any interrupt from occuring during the setup itself.  
 
#include <c64.h> 

 

void main() { 
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    asm { sei } 

    *KERNEL_IRQ = &irq; 

    asm { cli } 

} 

 

Inside the parentheses of the interrupt directive the type of interrupt handler function is 
specified. This controls what kind of code is generated for saving/restoring register values and 
how the interrupt is exited: 

● kernel_keyboard​ Interrupt served by the kernal called through ​0x0314-5​. Will exit 
through the kernal using ​0xea31​, which runs the normal kernal service routine that 
includes checking and handling keyboard input . 

● kernel_min​ Interrupt served by the kernal called through ​0x0314-5​. Will exit through 
the kernal using ​0xea81​, which restores the registers and exits. 

● hardware_all​ Interrupt served directly from hardware through ​0xfffe-f​ or ​0xfffa-b​. 
Will exit through ​RTI​ and will save/restore all registers 

● hardware_stack​ Interrupt served directly from hardware through ​0xfffe-f​ or 
0xfffa-b​. Will exit through ​RTI​ and will save/restore all registers using the stack. 

● hardware_clobber​ Interrupt served directly from hardware through ​0xfffe-f​ or 
0xfffa-b​. Will exit through ​RTI​ and will save necessary registers based on a clobber 
analysis of the interrupt handler code. 

● hardware_none​ Interrupt served directly from hardware through ​0xfffe-f​ or ​0xfffa-b​. 
Will exit through ​RTI​ and will save/restore NO registers. 

 
If your interrupt code needs to utilize global variables to communicate with other parts of the 
program or to store state between interrupt calls these variables should be declared as 
volatile​.  

Inline Assembler Code 
Programs can include inline assembler code inside a function body. This can for instance be 
useful for interfacing to machine code such as the BASIC/KERNAL or for modifying processor 
flags (such as the interrupt flag or decimal flag). 
 
Inline assembler is created using the ​asm​ statement with a body containing the assembler code. 
The following is an example setting the processor interrupt flag. 
 
asm { 

  sei 

} 

 
The assembler language usable within the curly braces is pretty limited standard syntax 6502 
assembler using the same syntax as KickAssembler (and most classical 6502 assemblers). The 
following is supported: 
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● All normal 6502/6510 instructions and addressing modes  
○ Immediate lda #%10101010 

○ Absolute eor 1024 

○ Zeropage rol 2 

○ Relative bne nxt 

○ Absolute indexed X adc $2000,x 

○ Absolute indexed Y cmp sintab,y 

○ Zeropage indexed X sbc 2,x 

○ Zeropage indexed Y stx $fe,y 

○ Zeropage indexed indirect X lda ($20,x) 
○ Zeropage indirect indexed Y ora (14),y 
○ Indirect jmp ($1000) 

○ Implied (no operand) tax 

● Labels 
○ Normal labels next: 

○ Multi labels next!: 

● Data  
○ Bytes .byte $10, $20 

 
The parameters for instructions and the data bytes can be written as expressions supporting 

● Literal numbers in decimal, binary or hexadecimal using the same syntax as KickC literal 
numbers eg. ​1024, $3fff, %10101010 

● Literal characters eg. ​‘q’ 
● Constant variables declared in the C-code eg. ​SCREEN  
● Labels declared within the assembler code 
● Math operators ​+ - * /  < >  << >>  
● Parenthesis using ​[​ and ​]​ to avoid the assembler interpreting them as indirect 

addressing mode. 
 
The ability to reference constant variables declared outside the assembler code allows the inline 
assembler to interact with data in the C-part of the program. The following is an example 
referencing the constant variable ​SCREEN​. 
 
const char* SCREEN = $400; 

 

void main() {  

asm { 

lda #’c’ 

sta SCREEN+40 

} 

} 
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There is also support for referencing labels declared inside inline ASM in other functions using 
the special ​.​ operator (eg.​ clearscreen.fillchar ​) . This makes it possible for ASM in one 
function to modify the code of ASM inside other scopes. 
 

The KickC compiler understands the inline assembler code and attempts to optimize it during 
the compilation process. For instance it can analyze which registers are clobbered by the inline 
assembler, and optimize surrounding KickC-code register usage.  
 
If your inline ASM contains a JSR call the compiler assumes that all registers are clobbered. 
However, it is possible to add a ​clobbers​ directive in parenthesis specifying exactly which 
registers are clobbered by your inline assembler code. Here is an example of inline assembler 
where the directive is used to specify that the JSR only clobbers the A- and X-registers. 
 
void playMusic() { 

asm(clobbers “AX”) { 

jsr $1000 

} 

}  

 
Since the compiler understands the inline assembler it will also modify the assembler code if this 
leads to faster execution, for instance removing an immediate load-instruction that loads a value 
that the register is already guaranteed to contain. 

Inline KickAssembler Code  
The inline assembler code described above can be very useful, but only supports very 
rudimentary assembler features. The limitations allow the compiler to understand the assembler 
code and include it in optimizations. 
 
If you need advanced assembler features in your code such as macros, loops or importing 
binary files or images it is possible to include inline KickAssembler code in your KickC program 
using the ​kickasm​ statement. The body of the ​kickasm​ statement must be enclosed in double 
curly braces and is passed directly to KickAssembler. The KickC compiler does not make any 
attempt to parse or understand the KickAssembler code. All advanced KickAssembler features 
are described in the manual here ​http://theweb.dk/KickAssembler​. 
 
The following is an example of inline KickAssembler code creating assembler for really fast 
screen clearing (1000 STA operations with no looping).  
 
void clearscreen() { 

kickasm(uses screen) {{ 

lda #0 

.for (var i = 0; i < 1000; i++) { 
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sta screen+i 

} 

}} 

}  

 
Inline KickAssembler can reference constant variables declared in the surrounding C-code. To 
ensure that the KickC compiler knows that the inline KickAssembler uses a constant you should 
add a ​uses​ directive in parenthesis. This will ensure that KickC knows that the symbol is used, 
and for instance prevent the compiler from removing the symbol entirely if it is not used 
anywhere else.  
 
Inline KickAssembler is also allowed outside function bodies. Here it allows utilizing 
KickAssemblers powerful macro language to initialize data tables.  
 
const char sintab[] = kickasm(pc sintab) {{ 

.fill $100, 127.5 + 127.5*sin(i*2*PI/256) 

}}; 

 
To specify exactly where the resulting data bytes ends up in memory the ​pc​ directive can be 
specified in parenthesis. Here an example of generating a table with sinus values at a specific 
location. 
 
const char* sintab = $1000; 

kickasm(pc sintab) {{ 

.fill $100, 127.5 + 127.5*sin(toRadians(i*360/256)) 

}} 

 

It is also possible to use inline KickAssembler for loading pictures, music or other binary files 
and generating data bytes from these. When loading binary files in the inline KickAssembler 
code it is necessary to inform the KickC compiler using a ​resource​ directive within 
parentheses. This is needed because KickC may have to copy the used resource files to the 
output directory where the compiled assembler code is written. Here an example of including a 
sprite from a PNG image file and placing it at a specific memory address.  
 

const char* SPRITE = $0c00; 

kickasm(pc SPRITE, resource "balloon.png") {{ 

    .var pic = LoadPicture("balloon.png", List().add($000000, $ffffff)) 

    .for (var y=0; y<21; y++) 

        .for (var x=0;x<3; x++) 

            .byte pic.getSinglecolorByte(x,y) 

}} 
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Comparison with standard C 

Not supported/implemented 
● Floating point types float, double  
● Runtime multiplication a * b 

(except constants) 
● Runtime division a / b 

(except powers of 2) 
● Runtime modulo a % b 
● Union union { char b; int w; } u; 
● Array of arrays char baa[4][4]; 
● Function pointers w. param void(char)*; 
● Function pointers w. return char()*; 
● Recursive functions char fib(byte n) { return fib(n-1)+fib(n-2)} 
● Alignof operator char s = alignof(word); 
● Variadic functions printf(const char* format, ...) 
● C preprocessor (see imports) 
● C standard library (some bits are included, look in stdlib) 

Limitations / Modifications 
● Multiplication and division has limited support.  

○ Multiplication and division is supported for constant values 
○ Multiplication of a variable with an unsigned constant is supported and converted 

to shifts/additions. 
○ There is no general runtime support for multiplication/division without using a 

library and a function call. 
● Arrays and strings are always statically allocated (as data bytes in the resulting 

assembler). 
● Alignment directive align($100) 
● Register directive register(X) 
● Inline assembler asm { SEI CLD }; 
● Main-function void main() { … } 

 

Extensions 
● Imports import “print” 
● Forward referencing variables in the outer scope 
● Ranged for-loops for( char i: 0.. 10) { } 
● Word operator unsigned int w = { hi, lo }; 
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● Lo/hi-byte operator     ​char lo = <w; <w = 12; 

The KickC Libraries 
A limited C standard library: 

- stdlib.h 
- string.h 
- time.h 

 
 
Some libraries 

● print 
● c64 
● c64dtv 
● keyboard 
● division 
● Multiply 
● Fast multiply 
● sinus 
● basic-floats 

3 Working with KickC 

KickC Command Line Reference 

Usage 
  ​kickc​ [-adehSvV] [-Ocoalesce] [-Si] [-Sl] [-vasmoptimize] [-vcreate] 
        [-vfragment] [-vliverange] [-vloop] [-vnonoptimize] [-voptimize] 
        [-vparse] [-vsequence] [-vunroll] [-vuplift] [-F=​<fragmentDir>​] 
        [-fragment=​<fragment>​] [-o=​<asmFileName>​] [-odir=​<outputDir>​] 
        [-Ouplift=​<optimizeUpliftCombinations>​] [-I=​<libDir>​]... [<kcFile>] 
 

Description 
Compiles a KickC source file, creating a KickAssembler source file. KickC is a 
compiler for a C-family language creating optimized and readable 6502 assembler 
code. 
 
See https://gitlab.com/camelot/kickc for detailed information about KickC. 
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Parameters 
      [<kcFile>]             The KickC source file to compile. 

Options 
 ​Options: 
  ​-a​                         Assemble the output file using KickAssembler. Produces 
                               a .prg file. 
      ​-calling​=​<calling>​     Configure calling convention. Default is __phicall. See 
                               #pragma calling 
      ​-cpu​=​<cpu>​             The target CPU. Default is 6502 with illegal opcodes. 
                               See #pragma cpu 
  ​-d​                         Debug the assembled prg file using C64Debugger. 
                               Implicitly assembles the output. 
  ​-e​                         Execute the assembled prg file using VICE. Implicitly 
                               assembles the output. 
  ​-E​                         Only run the preprocessor. Output is sent to standard 
                               out. 
  ​-F​, ​-fragmentdir​=​<fragmentDir> 
                             Path to the ASM fragment folder, where the compiler 
                               looks for ASM fragments. 
      ​-fragment​=​<fragment>​   Print the ASM code for a named fragment. The fragment 
                               is loaded/synthesized and the ASM variations are 
                               written to the output. 
  ​-h​, ​--help​                 Show this help message and exit. 
  ​-I​, ​-includedir​=​<includeDir> 
                             Path to an include folder, where the compiler looks for 
                               included files. This option can be repeated to add 
                               multiple include folders. 
  ​-L​, ​-libdir​=​<libDir>​       Path to a library folder, where the compiler looks for 
                               library files. This option can be repeated to add 
                               multiple library folders. 
  ​-o​, ​-output​=​<outputFileName> 
                             Name of the output file. By default it is the same as 
                               the first input file with the proper extension. 
      ​-Ocache​                Optimization Option. Enables a fragment cache file. 
      ​-Ocoalesce​             Optimization Option. Enables zero-page coalesce pass 
                               which limits zero-page usage significantly, but takes 
                               a lot of compile time. 
      ​-odir​=​<outputDir>​      Path to the output folder, where the compiler places 
                               all generated files. By default the folder of the 
                               output file is used. 
      ​-Oliverangecallpath​    Optimization Option. Enables live ranges per call path 
                               optimization, which limits memory usage and code, but 
                               takes a lot of compile time. 
      ​-Oloophead​             Optimization Option. Enabled experimental loop-head 
                               constant pass which identifies loops where the 
                               condition is constant on the first iteration. 
      ​-Onoloophead​           Optimization Option. Disabled experimental loop-head 
                               constant pass which identifies loops where the 
                               condition is constant on the first iteration. 
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      ​-Onouplift​             Optimization Option. Disable the register uplift 
                               allocation phase. This will be much faster but 
                               produce significantly slower ASM. 
      ​-Ouplift​=​<optimizeUpliftCombinations> 
                             Optimization Option. Number of combinations to test 
                               when uplifting variables to registers in a scope. By 
                               default 100 combinations are tested. 
  ​-S​, ​-Sc​                    Interleave comments with C source code in the generated 
                               ASM. 
      ​-Si​                    Interleave comments with intermediate language code and 
                               ASM fragment names in the generated ASM. 
      ​-Sl​                    Interleave comments with C source file name and line 
                               number in the generated ASM. 
  ​-t​, ​-target​=​<target>​       The target system. Default is C64 with BASIC upstart. 
                               See #pragma target 
  ​-T​, ​-link​=​<linkScript>​     Link using a linker script in KickAss segment format. 
                               See #pragma link 
  ​-v​                         Verbose output describing the compilation process 
  ​-V​, ​--version​              Print version information and exit. 
      ​-var_model​=​<varModel>​  Configure variable optimization/memory area. Default is 
                               ssa_zp. See #pragma var_model 
      ​-vasmoptimize​          Verbosity Option. Assembler optimization. 
      ​-vasmout​               Verbosity Option. Show KickAssembler standard output 
                               during compilation. 
      ​-vcreate​               Verbosity Option. Creation of the Single Static 
                               Assignment Control Flow Graph. 
      ​-vfragment​             Verbosity Option. Synthesis of Assembler fragments. 
      ​-vliverange​            Verbosity Option. Variable Live Range Analysis. 
      ​-vloop​                 Verbosity Option. Loop Analysis. 
      ​-vnonoptimize​          Verbosity Option. Choices not to optimize. 
      ​-voptimize​             Verbosity Option. Control Flow Graph Optimization. 
      ​-vparse​                Verbosity Option. File Parsing. 
      ​-vsequence​             Verbosity Option. Sequence Plan. 
      ​-vsizeinfo​             Verbosity Option. Compiler Data Structure Size 
                               Information. 
      ​-vunroll​               Verbosity Option. Loop Unrolling. 
      ​-vuplift​               Verbosity Option. Variable Register Uplift Combination 
                               Optimization. 
      ​-Warraytype​            Warning Option. Non-standard array syntax produces a 
                               warning instead of an error. 
      ​-Wfragment​             Warning Option. Missing fragments produces a warning 
                               instead of an error. 

The Coding Workflow / Related Tools 
● Assembling 
● Executing (Emulators or The Real Thing)  
● Debugging 
● Editing  
● Reporting Issues 
● The Source Code 
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● Contributing 

Combining KickC and KickAssembler 

Optimizing KickC Code 
● Use do {} while() instead of while() {} 
● Unsigned types are more optimal than signed types. 
● Use array indexing instead of incrementing pointers. 
● Booleans are not always very efficient. Often bytes are better.  
● Use inline functions 
● Use (experimental) inline loops  
● Use normal assembler optimization techniques (putting a calculated result that is used 

multiple times into a variable instead of repeating the calculation, create arrays for 
lookup instead of repeating a calculation many times, loop unrolling, ) 

4 The Compiler Architecture 
The KickC compiler uses the following phases during compilation  
 

1. Loading and Parsing 
Loads the main source file and recursively loads all imported source files. Parses the 
files creating a parse tree representation.  

2. Creating Control Flow Graph and Symbol Table 
Converts the parse tree to a symbol table containing all variables and functions and a 
control flow graph in static single assignment form (SSA form) . SSA form consists of a 1

control flow graph which models all possible execution paths. Each control flow block 
contains a number of statements (mostly assignments). Expressions are broken into a 
number of simple assignments to intermediate variables ensuring that each SSA 
statement only handles a single operator. In SSA form variables are also broken into 
multiple versions to ensure that each variable is assigned a value exactly once in the 
entire program. Finally transitions between blocks are handled through so called 
Phi-functions that describe how variable versions are mapped when execution flows 
from one block to another. SSA form has huge advantages in making a lot of 
optimizations easier to program. 

3. Optimizing the SSA Control Flow Graph 
Optimizes the control flow graph by repeatedly calling 20+ micro-passes. Each 
micro-pass examines the control flow graph and can perform a specific type of 

1 ​https://en.wikipedia.org/wiki/Static_single_assignment_form 
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optimization by modifying the graph. The optimizer keeps cycling through the 
micro-passes until none of them can perform any more optimizations.  

4. Control Flow Graph Analysis 
Performs several analyses of the program in preparation of register allocation. This 
includes call graph analysis (which functions call each other), variable live range analysis 
(where is a variable defined, where is it used and where is it alive, meaning that it will be 
used at a later point) and loop analysis (which loops exist in the code, which loops nest 
each other, how deep is each loop). 

5. Register Allocation 
Allocates registers and memory locations to all variables. Initially in this phase the SSA 
variables are grouped together into groups that will benefit from having the same register 
allocation. The technique used for this is  called PhiLifting and PhiMemCoalesce . The 2

allocation is then essentially done by trying out a lot of different register combinations 
and choosing the one that generates the best assembler code (uses fewest cycles). The 
number of different combinations tested can be controlled by the compiler option 
-Ouplift=nnnn  

6. Assembler Code Generation using Assembler Fragments 
6502 Assembler code is generated by converting each SSA statement to assembler 
code using the chosen register allocation. Because SSA statements can only express 
pretty simple operations ASM generation is essentially done by having a large library of 
ASM fragment files containing the ASM code needed for a specific SSA statement with a 
specific register allocations. This library of ASM fragments is stored in the ​fragment 
folder in the compiler installation. The Fragment sub-system of the compiler loads 
fragments from this folder, but also uses a bunch of rules for synthesizing more 
advanced fragments from simpler ones. Even with the current 500+ fragment-files and 
150+ synthesis-rules the compiler still occasionally runs into SSA statements it does not 
know how to create assembler for. If you encounter this problem you can fix it yourself 
by adding the right fragment-file in the ​fragments​-folder. The fragment sub-system is 
described in more detail below to help you do this in case you need to.  

7. Assembler Code Optimization 
Finally the compiler performs optimization of the generated assembler code. This is also 
done by repeatedly calling a bunch of micro-passes that each knows how to perform a 
simple Assembler Code Optimization. The optimizer keeps cycling through the 
micro-passes until none of them can perform any more optimizations. The assembler 
optimizations include eliminating redundant register loads (eg.LDA #0 when A is already 
zero), replacing double jumps with jumps straight to the destination, removing unused 
labels, eliminating etc. 

 

2 ​http://compilers.cs.ucla.edu/fernando/projects/soc/reports/short_tech.pdf 
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Assembler Fragment Sub System 
Adding missing assembler fragments 
 
The format for the values in the fragment name is: 
 
1. "v" value / "p" pointer 
2. "b" byte / "w" word / "d" dword  
3. "u" unsigned / "s" signed / "o" boolean 
4. "aa" A-register / "xx" X-register / "yy" Y-register / "z1" zeropage {z1} / "c1" constant {c1}. 
 
When {c1} is used for values it is an immediate value, eg. in vbuc1, {c1} is a constant unsigned 
byte value. 
 
When c1 is used for pointers it is an address in main memory, eg. in pbsc1, {c1} is a constant 
pointer to a signed byte. This means that {c1} is effectively an address in main memory. 
 
vwuz1_gt_vbsc1_then_la1 for example means [if] variable word unsigned zero-page value {z1} 
is greater than variable byte signed constant {c1} then [goto] label {la1}. 
 
Fragments can use $ff as temporary storage (and $fe if 2 addresses are needed). 
 
Before adding the fragment try compiling with the -vfragment flag. It will show you all the 
different fragments that the compiler is considering. You only need to implement one and then 
the fragment synthesizer can create what it needs from that. 
 
If you are wondering how a specific fragment looks you can ask the compiler using the 
-fragment​ flag. The following command will show all the different variations of assembler the 
compiler can use when needing to assign an unsigned byte in a zeropage variable {z1} to the 
value found in a table of unsigned bytes {c1} indexed by another unsigned byte variable on 
zeropage {z2}. 
 
kickc.sh -fragment vbuz1=pbuc1_derefidx_vbuz2  

 

You do not need to restore any register values in fragments. In fact that is part of the optimizers 
strength. 
 
The compiler analyses the ASM in each fragment and determines which registers are 
clobbered. When allocating variables to registers it avoids any allocation where a fragment 
clobbers a register holding a variable value that is needed later in the code. So it will avoid 
holding a value in A that is needed after any fragment that clobbers A - and will instead look at 
different options (X, Y or on zeropage).  
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This produces much better ASM than each fragment restoring register values since it allows the 
compiler flexibility in choosing the register/zeropage allocation that minimises the number of 
cycles the code consumes.  
 
This is further improved by the compiler treating each assignment to a variable as a separate 
variable - meaning it often ends up choosing to hold much used variables in different registers 
or on zero page for different parts of the code. 
 
--- 
 
Overall KickC has the following compile process: 
 
1. Loading and Parsing 
2. Creating Control Flow Graph and Symbol Table 
3. Optimizing the SSA Control Flow Graph 
4. Control Flow Graph Analysis & Register Allocation 
5. Assembler Code Generation using Assembler Fragments 
6. Assembler Code Optimization 
 
The Control Flow Graph uses Single Static Assignment (where each variable is only assigned once - and 
where statements are mostly assignments with 1 or 2 arguments and an operator.) See 
https://en.wikipedia.org/wiki/Static_single_assignment_form 
 
The SSA of KickC has been specifically designed to inline pointer derefs or indexed pointer derefs - 
because this improves the ASM that it generates significantly. 
 
The SSA Optimization optimizes the control flow graph by repeatedly calling 20+ micro-passes. This is 
where constants are propagated, unused code is removed and so forth. 
 
Register Allocation decides which variables to put into registers (A/X/Y) and which to store on zeropage. 
This is done based on variable range live range analysis, using PHI-lifting and register clobber analysis - 
plus testing a lot of combinations to find the solution using the fewest CPU cycles. See 
http://compilers.cs.ucla.edu/.../soc/reports/short_tech.pdf  
 
The SSA-statements are then turned into ASM using the fragment system. Each SSA-statement 
combined with a specific register allocation becomes a fragment.  
 
An example is the fragment 
vbuz1=vbuz1_plus_pbuc1_derefidx_vbuxx 
which matches a SSA-statement like  
digit#1 = digit#3 + *(UTOA10_VAL#0 + i#2)  
where digit#1 and digit#3 are unsigned bytes allocated to the same zeropage-address (which is possible 
because digit#3 is never used again after this assignment so digit#1 can overwrite it), UTOA10_VAL#0 is 
a table of unsigned byte values stored in memory at a constant address and i#2 is an index into the table 
allocated to the X-register. 
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The fragment sub-system has two parts. First around 900 files with specific fragment ASM-code. Second 
a fragment synthesizer that can make more complex fragments from simpler fragments.  
 
The fragment above is actually synthesized from vbuaa=vbuaa_plus_vbuz1 (which is just adding a value 
on zeropage to the A-register) using different synthesis rules. 
 
synthesized vbuz1=vbuz1_plus_pbuc1_derefidx_vbuxx < vbuz1=pbuc1_derefidx_vbuxx_plus_vbuz1 < 
vbuaa=pbuc1_derefidx_vbuxx_plus_vbuz1 < vbuaa=vbuz1_plus_pbuc1_derefidx_vbuxx < 
vbuaa=vbuz1_plus_vbuaa < vbuaa=vbuaa_plus_vbuz1 - clobber:A cycles:12.5 
lda {c1},x 
clc 
adc {z1} 
sta {z1} 
 
Finally the resulting ASM is optimized using peephole optimization. 
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