

KickC

Reference Manual

Version 0.5

by Jesper Gravgaard / Rex of Camelot

Contents
Contents 1

1 What is KickC? 3
The KickC Language 3
Optimized and Readable 6502 Assembler Code 3
Getting Started 5

2 KickC Language Reference 6
Variables 7
Data Types 7

Integers 7
Booleans 8
Pointers 8
Arrays 8
Constants 9
No Floating Point Types 9

Expressions 9
Arithmetic Operators 9
Bitwise Operators 10
Relational Operators 10
Logical Operators 10
Assignment Operators 11
Increment/decrement Operators 11
Pointer and Array Operators 12
Low/High Operators 12
Function Calls 13
Automatic Type Conversion and Type Casting 13
Operator Precedence and Parenthesis 14

Statements 15
Expressions and Assignments 15
If 16
While 16
Do-While 16
For 16

Functions 17
Comments 17
Imports 18

1

Directives 18
Inline Assembler 18
Comparison with standard C 18

Supported 18
Not supported/implemented 18
Limitations / Modifications 19
Extensions 19

The KickC Libraries 19

3 Working with KickC 20
The Coding Workflow / Related Tools 20
Combining KickC and KickAssembler 20
Optimizing KickC Code 20
Handling Compiler Errors 20

4 The Compiler Architecture 21
Assembler Fragment Sub System 21

2

1 What is KickC?
KickC is a compiler for a C-family language creating optimized and readable 6502 assembler
code.

The KickC Language

The KickC language is classic C with some limitations, some modifications and some
extensions to ensure an optimal fit for creating 6502 assembler code.

The language has the familiar C syntax and supports many of the basic features of C, so it
should be quite easy to get started with if you have programmed in C or any similar language.
Here is a simple “hello world” program, that prints “hello world!” at the top of the screen.

import “print”

void main() {

print_str(“hello world!@”);

}

The language has a number limitations compared to standard C, for example no support for
structs, enums, unions, pointers to functions or pointers to pointers. Some features were omitted
because they cannot be realized in a way that creates optimized 6502 assembler code. Others
were omitted simply because they have not yet been implemented in the current version.

The language also have some modifications and extensions to standard C. The modifications
and extensions were included either to allow creation of better 6502 assembler code or for
convenience. A significant modification is that the language does not support normal C types
(char, int, long), but instead has its own types specifically aimed at the 6502 (byte, word,
dword).

All limitations, modifications and extensions are described in the following sections.

Optimized and Readable 6502 Assembler Code
The KickC Compiler produces assembler code for the ​MOS Technology 6502 processor. The
assembler code is produced as source code that can be assembled to binary by the Kick Assembler
(​http://theweb.dk/KickAssembler​).

The compiler uses a number of modern optimization methods to create 6502 assembler code that
executes as fast as possible and does not contain unnecessary boilerplate. The optimization
techniques include

3

http://theweb.dk/KickAssembler

● Detection of constant values and expressions
● Optimized allocation of registers to variables
● Optimized parameter and return value passing to/from functions
● Minimizing the number of zero-page addresses used for storing variables
● Choosing optimal assembler instructions to represent each statement
● Removing unused functions, variables and code
● Peephole optimization of the generated assembler code

The optimization techniques are also explained in more detail in later sections.

Below a slightly more complex version of hello world, which prints “hello world!” with an added space
between each letter on the first and third line of the C64 default screen at $400. This example
illustrates how the KickC compiler creates optimized readable 6502 assembler.

helloworld2.kc
byte* screen = $400;

void main() {

 byte* hello = "hello world!@";

 print2(screen, hello);

 print2(screen+2*40, hello);

}

void print2(byte* at, byte* msg) {

 byte j=0;

 for(byte i=0; msg[i]!='@'; i++) {

 at[j] = msg[i];

 j += 2;

 }

}

helloworld2.asm
.label screen = $400
main: {
 lda #<screen
 sta print2.at
 lda #>screen
 sta print2.at+1
 jsr print2
 lda #<screen+2*$28
 sta print2.at
 lda #>screen+2*$28
 sta print2.at+1
 jsr print2
 rts
 hello: .text "hello world!@"
}
print2: {
 .label at = 2
 ldy #0
 ldx #0
 b1:
 lda main.hello,x
 sta (at),y
 iny
 iny
 inx
 lda main.hello,x
 cmp #'@'
 bne b1
 rts
}

The KickC compiler uses the following insights to optimize the helloworld2 program:

- The screen pointer is never modified and is therefore a constant location in memory.
- The second parameter to the ​print2-​function (​msg)​ always has the same value

main.hello,​ so that can be hardcoded inside the method body instead of parsing it.

4

- The contents of ​msg[i]​ (ie. the hardcoded ​main.hello ​string) can be addressed using
simple indexing.

- The ​at​-parameter in ​print2 ​is truly variable, so it is placed on zero-page ($2 and $3) and
indirect indexing can be used for addressing the contents of ​at[j]​.

- The X-register is optimal for the ​i​ variable in the ​print2​ function as it is good at indexing
and incrementing.

- The Y-register is optimal for the ​j​ variable in the ​print2​ function as it is good at indirect
indexing and incrementing.

- When 2 is added to the ​j​-variable it is better to do INY twice than to use addition.
- The A-register is optimal for holding the current character ​c​ of the message being moved

to the screen as LDA and STA can be efficiently indexed by X and indirect indexed by Y.

When generating Kick Assembler code the KickC compiler tries to ensure that the assembler code is
readable and corresponds to the source C program as much as possible. This includes using the
same names, using scopes and recreating constant calculations in assembler, when possible.

The KickC Compiler creates readable 6502 assembler code for the helloworld2 program by:

- Using the variable and function-names ​screen​,​ hello​, ​main, print2, at ​ in the generated
code

- Recreating the calculation of the constant ​screen+2*40​ in the assembler code as
screen+2*$28

- Creating a local named scope in the assembler-code for the methods ​main ​and ​print2​ by
enclosing them in curly braces.

- Placing method-local data and labels inside the method scope.This allows other
assembler code to access the local data/labels using dot-syntax eg. ​main.hello​ or
print2.at

Getting Started
The KickC development is hosted on gitlab ​https://gitlab.com/camelot/kickc​. Here it is possible
to follow the development and to download the newest binary release.

You install KickC on your own computer by:

1. Download the newest KickC release zip-file from ​https://gitlab.com/camelot/kickc/tags
2. Unpack the zip-file to a folder of your own choice.

The zip-file contains the following

○ lib ​Folder containing the KickC JAR-file​ ​plus a few other JARs needed for running
KickC (antlr4-runtime, picocli and KickAssembler).

○ bin​ Folder containing bat/sh-files for running KickC.
○ kclib​ Folder containing KickC-files with useful library functions usable in your own

program.
○ examples​ Folder containing some example KickC programs.

5

https://gitlab.com/camelot/kickc
https://gitlab.com/camelot/kickc/tags

○ This manual in PDF-format and some files with license-information.

KickC is written in Java. To use KickC you need to download and install a Java runtime from
https://www.java.com​. Java must be added to your PATH, or the environment variable
JAVA_HOME must point to the folder containing the Java installation.

After installing KickC and you can compile a simple sample KickC program by doing the
following:

MacOS

1. Start a Terminal
2. cd​ to the folder containing KickC
3. Enter the command

bin/kickc.sh examples/helloworld/helloworld.kc

Windows
1. Start a Command Prompt
2. cd​ to the folder containing KickC
3. Enter the command

bin\kickc.bat examples\helloworld\helloworld.kc

This compiles the helloworld KickC program ​examples/helloworld/helloworld.kc​ and
produces assembler code in ​examples/helloworld/helloworld.asm​. The resulting ASM-file
can then be assembled using KickAssembler, producing a runnable program, that can be
executed using an emulator or transfered to the real 8-bit hardware.

To make the work flow convenient KickC has a command line option (​-a​) to compile the
resulting ASM code with KickAssembler. This is one of the reasons that the KickAssembler JAR
is bundled with the release of KickC.

For even more convenience KickC also has a command line option (​-e​) that both assembles the
ASM code and executes the resulting binary program in the VICE Commodore 64 emulator
(​http://vice-emu.sourceforge.net/​). The option requires VICE ​x64​ to be available in the PATH.

To compile, assemble and execute the example program ​sinus-sprites.kc​ (generates a
sinus using BASIC floats and then moves 7 big sprites around the screen) use the following
command in the kickc-folder (assuming MacOs)

bin/kickc.sh -e examples/sinsprites/sinus-sprites.kc

To create your own KickC-programs use any text-editor to create a source file, save it to the file
system (using the ​.kc​ extension is recommended) and compile it by passing it to ​kickc.sh​ (on
MacOs) or ​kickc.bat ​(on Windows).

6

https://www.java.com/
http://vice-emu.sourceforge.net/

2 KickC Language Reference
KickC is a C-family language, and much of the syntax and semantics is the same as C99. In the
following the different parts of the language is explained. Finally the differences between KickC
and standard C are listed.

Variables
Variables are declared like in regular C by ​type name​ ​and can include an optional initialization
assignment. The following declares a byte variable with the name ​size ​and the initial value 12.

byte size = 12;

In KickC variables can be declared at any point in the program, outside functions or inside
function declarations.

Data Types

Integers
KickC does not support the standard C integer data types. Instead KickC has the following fixed
size integer types, that have names more familiar on the 6502 platform.

Type Name Description

byte
unsigned byte

An unsigned 8 bit (1 byte) integer.
Range is [0;255].

signed byte A signed 8 bit (1 byte) integer in two’s complement.
Range is [-128;127].

word
unsigned word

An unsigned 16 bit (2 byte) integer
Range is [0;65,535].

signed word A signed 16 bit (2 byte) integer in two’s complement.
Range is [−32,767; +32,767].

dword
unsigned dword

An unsigned 32 bit (4 byte) integer.
Range is [0, 4,294,967,295].

signed dword A signed 32 bit (4 byte) integer in two’s complement.
Range is [−2,147,483,647, 2,147,483,647].

7

If the integer types are declared without a unsigned/signed prefix they default to unsigned.

Integer literals can be either decimal, hexadecimal or binary. The syntax for hexadecimal integer
literals support both C syntax (prefixing with ​0x ​for ​)​ 6502 assembler syntax (prefixing with $).
Similarly the syntax for binary supports both prefixing with ​0b​ and ​%​.

Prefix Format Examples

 Decimal 12
53280

0x
$

Hexadecimal 0x40
$dc01

0b
%

Binary 0b101
%1100110011001100

Character literals are unsigned bytes. The syntax for a character literal is the character enclosed
in single quotes. Numerically the character is represented by the C64 screen code. The
following initializes the variable ​c​ to the character ‘c’.

byte c = 'c';

Booleans
KickC also has a boolean type called ​bool​. The boolean literals are ​true​ and ​false.​Underlying
the boolean type is a byte containing either 0 (if false) or 1 (if true). The following is an example
of a boolean variable called​ enabled​.

bool enabled = true;

Pointers
Pointers to all integer types and booleans are supported and declared using the syntax ​type*​.
The following is an example, where ​screen ​is a pointer to a byte and ​pos​ is a pointer to a signed
word.

byte* screen;

signed word* pos;

Pointers to pointers and pointers to functions are not supported.

Arrays
Arrays of integer and boolean types are supported using the syntax ​type[]​ or ​type[size]​. For
all practical purposes array variables are treated exactly like pointers.

8

Arrays can be initialized by an array literal written as comma-separated values inside curly
braces eg. ​{ 1, 2, 3 }​. ​They can also be initialized with all zero values just by declaring the
array to have a specific size.

String literals can also be used to initialize an array of unsigned bytes. The syntax for a string
literal is the string enclosed in double quotes.

Arrays that are initialized will allocate the memory needed for the size.

In the following example, ​sums​ is array of 3 signed bytes initialized with zeros, ​fibs​ is an array of
6 unsigned words containing the first fibonacci numbers and ​msg​ is an unsigned byte array
containing the numeric value of the 5 characters ‘h’, ‘e’, ‘l’, ‘l’ and ‘o’. Finally ​bs​ is simply a
pointer to a boolean.

signed byte[3] sums;

word[] fibs = { 1, 1, 2, 3, 5, 8 };

byte[] msg = "hello";

bool[] bs;

Arrays of arrays and arrays of pointers are not supported.

Constants
Constants can be declared by using the ​const​ keyword.

const byte SIZE = 42;

The compiler is quite good at detecting constants automatically, so it is not strictly necessary to
declare any constants. However declaring a constant can help make the code more readable
and will generate an error if any code tries to modify the value.

When an array is declared constant only the pointer to the array is constant. The contents of the
array can still be modified.

No Floating Point Types
KickC has no floating point types, as the 6502 has no instructions for handling these.

Expressions
Expressions in KickC consist of operands and operators. Operands are either data type literals
or names of variables or constants. All well known expression operators from C and similar
languages also exist in KickC. An example of an expression is ​(bits & $80) != 0

9

Arithmetic Operators
The arithmetic operators support performing simple numeric calculations

● a + b Addition
● a - b Subtraction
● - a Negation
● + a Positive
● a * b Multiplication
● a / b Division
● a % b Modulo

Multiplication, division and remainder are allowed, however there is no run-time support for
these operators as the 6502 has no instructions supporting them. Therefore they can only be
used for calculating values that end up being constant. If they are used in a way that requires
runtime support the compiler will fail with an error.

For convenience plus (addition) can also be used for concatenating strings initializers with other
strings or characters. The following initializes the variable ​msg​ with the text “hello world”.

byte[] msg = "hello"+' '+"world";

Bitwise Operators
The bitwise operators operate on the individual bits of the numeric operands.

● a & b Bitwise and
● a | b Bitwise or
● a ^ b Bitwise exclusive or
● ~ a Bitwise not
● a << n Bitwise shift left n bits
● a >> n​ Bitwise shift right n bits

Relational Operators
The relational operators compare values and has a boolean value result.

● a == b Equal to
● a != b Not equal to
● a < b Less than
● a <= b Less than or equal to
● a > b Greater than
● a >= b Greater than or equal to

10

Logical Operators
The logical operators operate on boolean operands and has a boolean result.

● a && b​ Logical and
● a || b Logical or
● ! a Logical not

When ​&&​ and ​||​ are used in ​if, while, do-while​ or similar statements they are short
circuit-evaluated meaning that if ​a​ evaluates to ​true​ in ​if(a || b) { … } ​then ​b​ is never
evaluated. Similarly if ​a​ evaluates to ​false​ in ​if(a && b) { … } ​then ​b​ is never evaluated.

Assignment Operators
Assigning a value to a variable is also an expression operator that returns the value assigned.
This means that assignments can be nested inside expressions, and that they can be chained if
multiple variables should be assigned the same value like ​a = b = 0. ​An assignment of course
has side effects, as it modifies the assigned variable.

Compound assignment operators, such as ​a += b​ ​is a convenient shorthand for updating the
value of a variable. It works exactly like ​a = a + b.

● a = b Assignment
● a += b Addition assignment
● a -= b Subtract assignment
● a *= b Multiply assignment
● a /= b Divide assignment
● a %= b Modulo assignment
● a <<=b Left shift assignment
● a >>=b Right shift assignment
● a &= b Bitwise and assignment
● a |= b Bitwise or assignment
● a ^= b Bitwise exclusive or assignment

Increment/decrement Operators
The pre-increment/decrement and post-increment/decrement operators is a convenient way of
incrementing/decrementing the value of a numeric variable just before or just after the value is
used in an expression.

● ++a Pre-increment
● --a Pre-decrement
● a++ Post-increment
● a-- Post-decrement

11

Pre-incrementing works just like incrementing the value of c before the statement, meaning that
a = b + ++c;​ is the same as ​c += 1; a = b + c;​ Similarly post-incrementing works just like
incrementing the value after the statement, meaning that ​a = b + c--;​ is the same as ​a = b +
c; c -= 1;

Pointer and Array Operators
The two basic pointer operators are the ​&a​ address-of operator, which creates a pointer to a
variable and the ​*a​ pointer dereference operator, which supports reading and writing the value
pointed to by the pointer.

The array indexing operator a[b], which supports reading and writing of array elements, is in fact
also a pointer operator. Because an array variable is actually a pointer to the start of the array
the array dereference operator a[b], which is actually shorthand for *(a+b).

● &a Address of
● *a Pointer dereference
● a[b] Array indexing

Unlike in standard C, KickC performs both pointer addition and array indexing by number of
bytes. Where standard C automatically handles the size of the element type, the programmer
has to take these into account when using pointers and arrays in KickC.

Expression Standard C KickC

ptr++ Increases the pointer so it points to the
next element in memory.
If the pointer points to a byte it is
increased by 1, if it points to a word it is
increased by 2, etc.

Increases the pointer so it points to
the next byte in memory. The pointer
is increased by 1 byte irregardless of
the size of the element type pointed
to by ​ptr​.

ptr+n Adds ​n​ element sizes to the pointer. If
elements are placed consecutively in
memory this creates a pointer that
points to the ​n​’th element after the
element pointed to by ​ptr​.

Adds ​n​ bytes to the pointer, creating
a pointer that points ​n​ bytes after ​ptr​.

a[i] Addresses the i’th element of the array
a - equivalent to ​*(a+i)​.

Addresses an element ​i​ bytes into
the memory of the array ​a​ -
equivalent to ​*(a+i)​.

KickC only supports array indexing up to 255 bytes after the start of the array. This is to allow
the compiler to always convert array indexing into assembler register X/Y-indexing.

12

Low/High Operators
An extension in KickC is the inclusion of operators that allow addressing the low/high byte of a
word, and the low/high words of a dword. These are well known from 6502 assemblers.

The low-operator ​<a​ addresses the low-byte of the word ​a​, or the low-word if ​a​ is a dword.
Similarly the high-operator ​>a​ addresses the high-byte of a word or high-word of a dword.

The low/high operator can also be used on the left side of assignments to modify only the
low/high byte of a word or low/high word of a dword.

● <a Low part of
● >a High part of

The following example sets the low part of the word in ​a​ to 0. If ​a​ was $0428 before the
assignment it will be $0400 afterwards.

<a = 0;

Function Calls
Function that returns a value can be called as part of an expression. Functions are called by the
normal parenthesis-syntax with parameter values separated by commas. Coding functions is
described in the section ​Functions​.

● f(a,b) Function Call

Automatic Type Conversion and Type Casting
KickC handles automatic type conversions a differently than standard C. Where standard C
converts all small integers to int before evaluating expressions KickC supports evaluating
operators for all types and only performs conversions if they are strictly necessary. Limiting the
number of automatic type conversions helps creating better optimized 6502 assembler. In a
many cases KickC can even handle operators for two values of different type directly. For
instance adding a byte to a word can be done in more optimal 6502 code than first converting
the byte to a word and then adding the two words. In practice the difference to standard C rarely
has any consequences.

Like standard C, KickC will ensure automatic type conversion (if necessary) as long as the type
of one value can contain all values of the type of the other. For instance an unsigned byte can
be automatically converted to a signed word as signed words can hold all possible unsigned
byte values. An unsigned byte can not be automatically converted to an signed byte, since a
signed byte cannot hold all possible byte values.

13

The automatic conversions that Kick can perform for each type are the following

Type Can be automatically converted to

unsigned byte unsigned word, signed word, unsigned dword, signed dword

signed byte signed word, signed dword

unsigned word unsigned dword, signed dword

signed word signed dword

unsigned dword -

signed dword -

The cast operator can be used to perform explicit type conversion. Casting also allows
conversions to a type that cannot hold all possible values, and where some information may be
lost in the conversion, for example casting a signed byte to an unsigned byte.

● (type)a Casting

For sub-expressions containing only constants the KickC compiler tries to infer the type of the
sub-expression. This is done by performing the calculation and then checking which types can
hold the calculated value. For instance the calculation ​$4000/$80​ is inferred to match any
integer type except signed byte (since a signed byte cannot hold 128) . This also differs from
standard C, where all constant integer numbers are ints unless specified otherwise.

Operator Precedence and Parenthesis
Operators precedence decides which operators are applied first when multiple operators are
combined in an expression. For instance multiplication is performed before addition in ​a*b+c​. ​In
KickC operators generally have the same precedence as in standard C.

Precedence rules can be overridden by using explicit parentheses in expressions. For instance
to perform addition before multiplication ​(a+b)*c​.

● (a) Parenthesis

The following table shows KickC operator precedences. Operators at the top of the table binds
most tightly.

Precedence Operators Associativity

14

1 a++ a-- f() a[b] Left-to-right

2 ++a --a +a ~a
!a (t)a *a &a

Right-to-left

3 a*b a/b a%b Left-to-right

4 a+b a-b Left-to-right

5 a<<b a>>b Left-to-right

6 <a >a Left-to-right

7 a<b a<=b a>b a>=b Left-to-right

8 a==b a!=b Left-to-right

9 a&b Left-to-right

10 a^b Left-to-right

11 a|b Left-to-right

12 a&&b Left-to-right

13 a||b Left-to-right

14 a=b a+=b a-=b a*=b
a/=b a%=b a<<=b a>>=b
a&=b a^=b a|=b

Right-to-left

Statements
The statements of a KickC program control the flow of execution. KickC supports most
statements supported by standard C.

Statements are separated by semicolons ​stmt; stmt;​ and can be grouped together in blocks
using curly braces ​{ stmt; stmt; }​.

Expressions and Assignments
All expressions are valid statements.There are two typical ways of using expressions as
statements. The first is an assignment, which is an expression, modifying the value of a
variable.

a += 2;

The second is calling a function that has a side effect.

15

print(“hello”);

If
The body of an if-statement is only executed if the condition is ​true​. The if-statement can have
an else-body, that is executed if the condition is not true.

The following if-statement prints “even” to the screen if ​a​ is even.

if((a&1)==0) { print(“even”); }

The following if-statement increases ​b​ if a is less than 10 and decreases ​b​ otherwise.

if(a<10) { b++; } else { b--; }

While
The body of a while-loop is executed repeatedly as long as the condition is still true. The
while-loop is executed by first evaluating the condition. If the condition is true the body is
executed and the loop starts over. If the condition is not true execution continues after the loop.
If the condition is not true the first time the loop is encountered then the body is never executed.

The following while-loop prints ​i​ dots on the screen, while counting i down to zero.

while(i!=0) { print(“.”); i--; }

Do-While
The do-while-loop is very similar to the while-loop. The body of a do-while-loop is executed
repeatedly as long as the condition is true. In the do-while-loop the body is executed first and
then the condition is evaluated. If the condition is true the loop starts over. If the condition is not
true execution continues after the loop.The body of the loop is always executed at least once.

The following do-while-loop keeps scanning the keyboard until the space key is pressed.

do {

 keyboard_event_scan();

} while (​keyboard_event_get​()!=​KEY_SPACE​)

For
The for-loop is a convenient way of creating a loop, where a loop-variable is initialized, the body
is executed, the loop-variable is incremented and finally the condition is evaluated to determine
whether to repeat the loop again.

16

A for-loop has the following syntax

for(init; condition; increment) { body }

and is equivalent to the following KickC code

init;

do {

 body;

 increment;

} while(condition)

The body and increment is always executed at least once in a KickC for-loop. This differs from
standard C, where the condition is evaluated before the body and increment, enabling for-loops
where the body is never executed. The KickC behavior was chosen because it can create more
efficient 6502 ASM code than the standard C behavior.

KickC has an additional convenience syntax for creating simple for-loops that loop over an
integer range. The following for-loop executes the body 128 times with ​i​ having values
0,1,...,127

for(byte i : 0..127) { body }

And is equivalent to

for(byte i=0; i!=127+1; i++) { body }

This convenience syntax only accepts constants or expressions evaluating to constants as the
ends of the integer interval. It can loop both back wards and forwards.

Functions
● Declarations & parameters
● Returns
● Calls
● The main() function

Comments
● Oneline // …
● Block /* … */

17

Imports
● Importing
● Forward referencing variables

Directives
○ Align
○ Register
○ Inline

Inline Assembler
● Asm { ...}
● Assembler Language

○ Memory Directives (bytes)
○ Labels
○ Instructions and addressing modes
○ Expressions

Comparison with standard C

Supported

Not supported/implemented
● C integer types char, short, int, long
● Floating point types float, double
● Runtime multiplication a * b
● Runtime division a / b
● Runtime modulo a % b
● Enum enum Status { on, off } status;
● Struct struct Point { byte x; byte y; } p;
● Union union { byte b; word w; } u;
● Pointer to pointer byte **pptr;
● Array of arrays byte[4][4] baa;
● Function pointers byte (*fptr)(byte);
● Comma operator byte a=0, b=1;
● Ternary operator (b<4) ? ’a’ : ’b’;
● Heap Allocation dword* dw = malloc(4);

18

● Recursive functions byte fib(byte n) { return fib(n-1)+fib(n-2)}
● Sizeof operator byte s = sizeof (word);
● Alignof operator byte s = alignof (word);
● Variadic functions printf(const byte* format, ...)
● Volatile variables volatile byte b;
● C preprocessor (see imports)
● C standard library

Limitations / Modifications
● Types without a signed/unsigned prefix are assumed to be unsigned.
● Array indexing and pointer incrementing always done by number of bytes. Pointer

arithmetic does not take into account the size of the element type.
● Array indexing can only index up to 256 bytes of memory.
● For-loops always execute the body at least once.
● Multiplication and division only supported for constants (no runtime support for

multiplication/division without using a library and a function call.)
● Arrays and strings are always statically allocated (as data bytes in the resulting

assembler).
● Conditions in ​if, while, do-while​ and similar statements only accept boolean values.

Numeric values are not accepted without casting.
● Alignment directive align($100)
● Register directive register(X)
● Inline assembler asm { SEI CLD };
● Main-function void main() { … }

Extensions
● 6502 types byte, word, dword
● Imports import “print”
● Forward referencing variables in the outer scope
● Ranged for-loops for(byte i: 0.. 10) { }
● Word operator word w = { hi, lo };
● Lo/hi-byte operator ​byte lo = <w; <w = 12;

The KickC Libraries
No runtime library!

Some libraries

● print

19

● c64
● c64dtv
● keyboard
● division
● Multiply
● Fast multiply
● sinus
● basic-floats

3 Working with KickC

The Coding Workflow / Related Tools
● Assembling
● Executing (Emulators or The Real Thing)
● Editing
● Reporting Issues
● The Source Code
● Contributing

Combining KickC and KickAssembler

Optimizing KickC Code
● Use do {} while() instead of while() {}
● Unsigned types are more optimal than signed types.
● Use array indexing instead of incrementing pointers.
● Booleans are not always very efficient. Often bytes are better.
● Use inline functions
● Use (experimental) inline loops
● Use normal assembler optimization techniques (putting a calculated result that is used

multiple times into a variable instead of repeating the calculation, create arrays for
lookup instead of repeating a calculation many times, loop unrolling,)

Handling Compiler Errors
Missing Assembler Fragments

20

4 The Compiler Architecture
1. Loading and Parsing
2. Creating The Single-Static Assignment Control Flow Graph and Symbol Table
3. Optimizing the SSA Control Flow Graph
4. Control Flow Graph Analysis
5. Register Allocation
6. Assembler Code Generation using Assembler Fragments
7. Assembler Code Optimization

Assembler Fragment Sub System
Adding missing assembler fragments

21

