1
0
mirror of https://gitlab.com/camelot/kickc.git synced 2025-01-11 20:30:08 +00:00

Added very naive support for zeropage overflow to main memory upon exhaust. TODO - overflow low priority variables. #712

This commit is contained in:
jespergravgaard 2021-08-17 07:48:58 +02:00
parent 1294d0b7a2
commit 1f133e34e9
12 changed files with 1451 additions and 11 deletions

View File

@ -564,22 +564,16 @@ public class Pass4CodeGeneration {
// Add all memory variables
Collection<Variable> scopeVariables = scope.getAllVariables(false);
for(Variable variable : scopeVariables) {
if(variable.isMemoryAreaMain()) {
Registers.Register allocation = variable.getAllocation();
if(variable.getAllocation() instanceof Registers.RegisterMainMem) {
Registers.RegisterMainMem registerMainMem = (Registers.RegisterMainMem) allocation;
// Skip PHI masters
if(variable.isKindPhiMaster())
continue;
// Skip if already added
if(added.contains(variable.getAsmName())) {
if(added.contains(variable.getAsmName()))
continue;
}
if(variable.isKindLoadStore() || variable.isKindPhiVersion() || variable.isKindIntermediate()) {
Registers.Register allocation = variable.getAllocation();
if(allocation instanceof Registers.RegisterCpuByte)
continue;
if(!(allocation instanceof Registers.RegisterMainMem)) {
throw new InternalError("Expected main memory allocation " + variable.toString(program));
}
Registers.RegisterMainMem registerMainMem = (Registers.RegisterMainMem) allocation;
final Variable mainVar = program.getScope().getVariable(registerMainMem.getVariableRef());
if(registerMainMem.getAddress() == null) {
// Generate into the data segment

View File

@ -175,6 +175,13 @@ public class Pass4RegistersFinalize extends Pass2Base {
register = new Registers.RegisterMainMem(variableRef, variable.getType().getSizeBytes(), null);
} else {
register = allocateNewRegisterZp(variable);
int zp = ((Registers.RegisterZpMem) register).getZp();
int sizeBytes = variable.getType().getSizeBytes();
if(zp + sizeBytes > 0x100) {
// Zero-page exhausted - move to main memory instead (TODO: prioritize!)
register = new Registers.RegisterMainMem(variableRef, variable.getType().getSizeBytes(), null);
getLog().append("Zero-page exhausted. Moving allocation to main memory "+variable.toString());
}
}
equivalenceClass.setRegister(register);
if(before == null || !before.equals(register.toString())) {

View File

@ -1816,9 +1816,14 @@ public class TestProgramsFast extends TestPrograms {
compileAndCompare("array-16bit-lookup.c");
}
@Test
public void testZeropageOverflow() throws IOException {
compileAndCompare("zeropage-overflow.c");
}
@Test
public void testZeropageExhausted() throws IOException {
assertError("zeropage-exhausted.c", "Variables used in program do not fit on zeropage", false);
compileAndCompare("zeropage-exhausted.c");
}
@Test

View File

@ -0,0 +1,25 @@
// Tests that variables overflow to main memory when zeropage is exhausted
// Tell the compiler to use zeropage
#pragma var_model(ssa_zp)
// Start by reserving most of zeropage (254 bytes)
#pragma zp_reserve(1..250)
// And then allocate a bunch of variables
void main() {
int* const SCREEN = (int*)0x0400;
int a, b, c, d, e, f, g, h;
for(char i=0;i<10;i++) {
SCREEN[i] = a++;
SCREEN[i] = b++;
SCREEN[i] = c++;
SCREEN[i] = d++;
SCREEN[i] = e++;
SCREEN[i] = f++;
SCREEN[i] = g++;
SCREEN[i] = h++;
}
}

View File

@ -0,0 +1,47 @@
// Tests warning when running out of zeropage-addresses for variables
// Commodore 64 PRG executable file
.file [name="zeropage-exhausted.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
.segment Code
// And then allocate a 2-byte-variable
main: {
.label SCREEN = $400
lda #<0
sta i
sta i+1
__b1:
// for(__zp int i=0;i<10;i++)
lda i+1
bmi __b2
cmp #>$a
bcc __b2
bne !+
lda i
cmp #<$a
bcc __b2
!:
// }
rts
__b2:
// SCREEN[(char)i] = i
lda i
asl
tay
lda i
sta SCREEN,y
lda i+1
sta SCREEN+1,y
// for(__zp int i=0;i<10;i++)
inc i
bne !+
inc i+1
!:
jmp __b1
.segment Data
i: .word 0
}

View File

@ -0,0 +1,18 @@
void main()
main: scope:[main] from
[0] phi()
to:main::@1
main::@1: scope:[main] from main main::@2
[1] main::i#2 = phi( main/0, main::@2/main::i#1 )
[2] if(main::i#2<$a) goto main::@2
to:main::@return
main::@return: scope:[main] from main::@1
[3] return
to:@return
main::@2: scope:[main] from main::@1
[4] main::$2 = (char)main::i#2
[5] main::$1 = main::$2 << 1
[6] main::SCREEN[main::$1] = main::i#2
[7] main::i#1 = ++ main::i#2
to:main::@1

View File

@ -0,0 +1,302 @@
CONTROL FLOW GRAPH SSA
void main()
main: scope:[main] from __start
main::i#0 = 0
to:main::@1
main::@1: scope:[main] from main main::@2
main::i#2 = phi( main/main::i#0, main::@2/main::i#1 )
main::$0 = main::i#2 < $a
if(main::$0) goto main::@2
to:main::@return
main::@2: scope:[main] from main::@1
main::i#3 = phi( main::@1/main::i#2 )
main::$2 = (char)main::i#3
main::$1 = main::$2 * SIZEOF_INT
main::SCREEN[main::$1] = main::i#3
main::i#1 = ++ main::i#3
to:main::@1
main::@return: scope:[main] from main::@1
return
to:@return
void __start()
__start: scope:[__start] from
call main
to:__start::@1
__start::@1: scope:[__start] from __start
to:__start::@return
__start::@return: scope:[__start] from __start::@1
return
to:@return
SYMBOL TABLE SSA
__constant char SIZEOF_INT = 2
void __start()
void main()
bool main::$0
char main::$1
char main::$2
__constant int * const main::SCREEN = (int *)$400
int main::i
int main::i#0
int main::i#1
int main::i#2
int main::i#3
Adding number conversion cast (snumber) $a in main::$0 = main::i#2 < $a
Successful SSA optimization PassNAddNumberTypeConversions
Simplifying constant pointer cast (int *) 1024
Simplifying constant integer cast $a
Successful SSA optimization PassNCastSimplification
Finalized signed number type (signed char) $a
Successful SSA optimization PassNFinalizeNumberTypeConversions
Alias main::i#2 = main::i#3
Successful SSA optimization Pass2AliasElimination
Simple Condition main::$0 [3] if(main::i#2<$a) goto main::@2
Successful SSA optimization Pass2ConditionalJumpSimplification
Constant main::i#0 = 0
Successful SSA optimization Pass2ConstantIdentification
Removing unused procedure __start
Removing unused procedure block __start
Removing unused procedure block __start::@1
Removing unused procedure block __start::@return
Successful SSA optimization PassNEliminateEmptyStart
Rewriting multiplication to use shift [3] main::$1 = main::$2 * SIZEOF_INT
Successful SSA optimization Pass2MultiplyToShiftRewriting
Inlining constant with var siblings main::i#0
Constant inlined main::i#0 = 0
Successful SSA optimization Pass2ConstantInlining
Eliminating unused constant SIZEOF_INT
Successful SSA optimization PassNEliminateUnusedVars
Adding NOP phi() at start of main
CALL GRAPH
Created 1 initial phi equivalence classes
Coalesced [8] main::i#4 = main::i#1
Coalesced down to 1 phi equivalence classes
Adding NOP phi() at start of main
FINAL CONTROL FLOW GRAPH
void main()
main: scope:[main] from
[0] phi()
to:main::@1
main::@1: scope:[main] from main main::@2
[1] main::i#2 = phi( main/0, main::@2/main::i#1 )
[2] if(main::i#2<$a) goto main::@2
to:main::@return
main::@return: scope:[main] from main::@1
[3] return
to:@return
main::@2: scope:[main] from main::@1
[4] main::$2 = (char)main::i#2
[5] main::$1 = main::$2 << 1
[6] main::SCREEN[main::$1] = main::i#2
[7] main::i#1 = ++ main::i#2
to:main::@1
VARIABLE REGISTER WEIGHTS
void main()
char main::$1 // 22.0
char main::$2 // 22.0
int main::i
int main::i#1 // 22.0
int main::i#2 // 8.8
Initial phi equivalence classes
[ main::i#2 main::i#1 ]
Added variable main::$2 to live range equivalence class [ main::$2 ]
Added variable main::$1 to live range equivalence class [ main::$1 ]
Complete equivalence classes
[ main::i#2 main::i#1 ]
[ main::$2 ]
[ main::$1 ]
Zero-page exhausted. Moving allocation to main memory main::i#2
Allocated mem[2] [ main::i#2 main::i#1 ]
Zero-page exhausted. Moving allocation to main memory main::$2
Allocated mem[1] [ main::$2 ]
Zero-page exhausted. Moving allocation to main memory main::$1
Allocated mem[1] [ main::$1 ]
REGISTER UPLIFT POTENTIAL REGISTERS
Statement [2] if(main::i#2<$a) goto main::@2 [ main::i#2 ] ( [ main::i#2 ] { } ) always clobbers reg byte a
Statement [4] main::$2 = (char)main::i#2 [ main::i#2 main::$2 ] ( [ main::i#2 main::$2 ] { } ) always clobbers reg byte a
Statement [5] main::$1 = main::$2 << 1 [ main::i#2 main::$1 ] ( [ main::i#2 main::$1 ] { } ) always clobbers reg byte a
Statement [6] main::SCREEN[main::$1] = main::i#2 [ main::i#2 ] ( [ main::i#2 ] { } ) always clobbers reg byte a
Potential registers mem[2] [ main::i#2 main::i#1 ] : mem[2] ,
Potential registers mem[1] [ main::$2 ] : mem[1] , reg byte a , reg byte x , reg byte y ,
Potential registers mem[1] [ main::$1 ] : mem[1] , reg byte a , reg byte x , reg byte y ,
REGISTER UPLIFT SCOPES
Uplift Scope [main] 30.8: mem[2] [ main::i#2 main::i#1 ] 22: mem[1] [ main::$2 ] 22: mem[1] [ main::$1 ]
Uplift Scope []
Uplifting [main] best 841 combination mem[2] [ main::i#2 main::i#1 ] reg byte a [ main::$2 ] reg byte a [ main::$1 ]
Uplifting [] best 841 combination
ASSEMBLER BEFORE OPTIMIZATION
// File Comments
// Tests warning when running out of zeropage-addresses for variables
// Upstart
// Commodore 64 PRG executable file
.file [name="zeropage-exhausted.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
// Global Constants & labels
.segment Code
// main
// And then allocate a 2-byte-variable
main: {
.label SCREEN = $400
// [1] phi from main to main::@1 [phi:main->main::@1]
__b1_from_main:
// [1] phi main::i#2 = 0 [phi:main->main::@1#0] -- vwsm1=vwsc1
lda #<0
sta i
lda #>0
sta i+1
jmp __b1
// main::@1
__b1:
// [2] if(main::i#2<$a) goto main::@2 -- vwsm1_lt_vwuc1_then_la1
lda i+1
bmi __b2
cmp #>$a
bcc __b2
bne !+
lda i
cmp #<$a
bcc __b2
!:
jmp __breturn
// main::@return
__breturn:
// [3] return
rts
// main::@2
__b2:
// [4] main::$2 = (char)main::i#2 -- vbuaa=_byte_vwsm1
lda i
// [5] main::$1 = main::$2 << 1 -- vbuaa=vbuaa_rol_1
asl
// [6] main::SCREEN[main::$1] = main::i#2 -- pwsc1_derefidx_vbuaa=vwsm1
tay
lda i
sta SCREEN,y
lda i+1
sta SCREEN+1,y
// [7] main::i#1 = ++ main::i#2 -- vwsm1=_inc_vwsm1
inc i
bne !+
inc i+1
!:
// [1] phi from main::@2 to main::@1 [phi:main::@2->main::@1]
__b1_from___b2:
// [1] phi main::i#2 = main::i#1 [phi:main::@2->main::@1#0] -- register_copy
jmp __b1
.segment Data
i: .word 0
}
// File Data
ASSEMBLER OPTIMIZATIONS
Removing instruction jmp __b1
Removing instruction jmp __breturn
Succesful ASM optimization Pass5NextJumpElimination
Removing instruction lda #>0
Succesful ASM optimization Pass5UnnecesaryLoadElimination
Removing instruction __b1_from_main:
Removing instruction __breturn:
Removing instruction __b1_from___b2:
Succesful ASM optimization Pass5UnusedLabelElimination
FINAL SYMBOL TABLE
void main()
char main::$1 // reg byte a 22.0
char main::$2 // reg byte a 22.0
__constant int * const main::SCREEN = (int *) 1024
int main::i
int main::i#1 // i mem[2] 22.0
int main::i#2 // i mem[2] 8.8
mem[2] [ main::i#2 main::i#1 ]
reg byte a [ main::$2 ]
reg byte a [ main::$1 ]
FINAL ASSEMBLER
Score: 761
// File Comments
// Tests warning when running out of zeropage-addresses for variables
// Upstart
// Commodore 64 PRG executable file
.file [name="zeropage-exhausted.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
// Global Constants & labels
.segment Code
// main
// And then allocate a 2-byte-variable
main: {
.label SCREEN = $400
// [1] phi from main to main::@1 [phi:main->main::@1]
// [1] phi main::i#2 = 0 [phi:main->main::@1#0] -- vwsm1=vwsc1
lda #<0
sta i
sta i+1
// main::@1
__b1:
// for(__zp int i=0;i<10;i++)
// [2] if(main::i#2<$a) goto main::@2 -- vwsm1_lt_vwuc1_then_la1
lda i+1
bmi __b2
cmp #>$a
bcc __b2
bne !+
lda i
cmp #<$a
bcc __b2
!:
// main::@return
// }
// [3] return
rts
// main::@2
__b2:
// SCREEN[(char)i] = i
// [4] main::$2 = (char)main::i#2 -- vbuaa=_byte_vwsm1
lda i
// [5] main::$1 = main::$2 << 1 -- vbuaa=vbuaa_rol_1
asl
// [6] main::SCREEN[main::$1] = main::i#2 -- pwsc1_derefidx_vbuaa=vwsm1
tay
lda i
sta SCREEN,y
lda i+1
sta SCREEN+1,y
// for(__zp int i=0;i<10;i++)
// [7] main::i#1 = ++ main::i#2 -- vwsm1=_inc_vwsm1
inc i
bne !+
inc i+1
!:
// [1] phi from main::@2 to main::@1 [phi:main::@2->main::@1]
// [1] phi main::i#2 = main::i#1 [phi:main::@2->main::@1#0] -- register_copy
jmp __b1
.segment Data
i: .word 0
}
// File Data

View File

@ -0,0 +1,11 @@
void main()
char main::$1 // reg byte a 22.0
char main::$2 // reg byte a 22.0
__constant int * const main::SCREEN = (int *) 1024
int main::i
int main::i#1 // i mem[2] 22.0
int main::i#2 // i mem[2] 8.8
mem[2] [ main::i#2 main::i#1 ]
reg byte a [ main::$2 ]
reg byte a [ main::$1 ]

View File

@ -0,0 +1,134 @@
// Tests that variables overflow to main memory when zeropage is exhausted
// Commodore 64 PRG executable file
.file [name="zeropage-overflow.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
.segment Code
// And then allocate a bunch of variables
main: {
.label SCREEN = $400
.label a = $fb
.label b = $fd
lda #<0
sta h
sta h+1
sta g
sta g+1
sta f
sta f+1
sta e
sta e+1
sta d
sta d+1
sta c
sta c+1
sta.z b
sta.z b+1
sta.z a
sta.z a+1
tay
__b1:
// for(char i=0;i<10;i++)
cpy #$a
bcc __b2
// }
rts
__b2:
// SCREEN[i] = a++
tya
asl
tax
lda.z a
sta SCREEN,x
lda.z a+1
sta SCREEN+1,x
// SCREEN[i] = a++;
inc.z a
bne !+
inc.z a+1
!:
// SCREEN[i] = b++
lda.z b
sta SCREEN,x
lda.z b+1
sta SCREEN+1,x
// SCREEN[i] = b++;
inc.z b
bne !+
inc.z b+1
!:
// SCREEN[i] = c++
lda c
sta SCREEN,x
lda c+1
sta SCREEN+1,x
// SCREEN[i] = c++;
inc c
bne !+
inc c+1
!:
// SCREEN[i] = d++
lda d
sta SCREEN,x
lda d+1
sta SCREEN+1,x
// SCREEN[i] = d++;
inc d
bne !+
inc d+1
!:
// SCREEN[i] = e++
lda e
sta SCREEN,x
lda e+1
sta SCREEN+1,x
// SCREEN[i] = e++;
inc e
bne !+
inc e+1
!:
// SCREEN[i] = f++
lda f
sta SCREEN,x
lda f+1
sta SCREEN+1,x
// SCREEN[i] = f++;
inc f
bne !+
inc f+1
!:
// SCREEN[i] = g++
lda g
sta SCREEN,x
lda g+1
sta SCREEN+1,x
// SCREEN[i] = g++;
inc g
bne !+
inc g+1
!:
// SCREEN[i] = h++
lda h
sta SCREEN,x
lda h+1
sta SCREEN+1,x
// SCREEN[i] = h++;
inc h
bne !+
inc h+1
!:
// for(char i=0;i<10;i++)
iny
jmp __b1
.segment Data
c: .word 0
d: .word 0
e: .word 0
f: .word 0
g: .word 0
h: .word 0
}

View File

@ -0,0 +1,40 @@
void main()
main: scope:[main] from
[0] phi()
to:main::@1
main::@1: scope:[main] from main main::@2
[1] main::h#2 = phi( main/0, main::@2/main::h#1 )
[1] main::g#2 = phi( main/0, main::@2/main::g#1 )
[1] main::f#2 = phi( main/0, main::@2/main::f#1 )
[1] main::e#2 = phi( main/0, main::@2/main::e#1 )
[1] main::d#2 = phi( main/0, main::@2/main::d#1 )
[1] main::c#2 = phi( main/0, main::@2/main::c#1 )
[1] main::b#2 = phi( main/0, main::@2/main::b#1 )
[1] main::a#2 = phi( main/0, main::@2/main::a#1 )
[1] main::i#2 = phi( main/0, main::@2/main::i#1 )
[2] if(main::i#2<$a) goto main::@2
to:main::@return
main::@return: scope:[main] from main::@1
[3] return
to:@return
main::@2: scope:[main] from main::@1
[4] main::$2 = main::i#2 << 1
[5] main::SCREEN[main::$2] = main::a#2
[6] main::a#1 = ++ main::a#2
[7] main::SCREEN[main::$2] = main::b#2
[8] main::b#1 = ++ main::b#2
[9] main::SCREEN[main::$2] = main::c#2
[10] main::c#1 = ++ main::c#2
[11] main::SCREEN[main::$2] = main::d#2
[12] main::d#1 = ++ main::d#2
[13] main::SCREEN[main::$2] = main::e#2
[14] main::e#1 = ++ main::e#2
[15] main::SCREEN[main::$2] = main::f#2
[16] main::f#1 = ++ main::f#2
[17] main::SCREEN[main::$2] = main::g#2
[18] main::g#1 = ++ main::g#2
[19] main::SCREEN[main::$2] = main::h#2
[20] main::h#1 = ++ main::h#2
[21] main::i#1 = ++ main::i#2
to:main::@1

View File

@ -0,0 +1,816 @@
CONTROL FLOW GRAPH SSA
void main()
main: scope:[main] from __start
main::a#0 = 0
main::b#0 = 0
main::c#0 = 0
main::d#0 = 0
main::e#0 = 0
main::f#0 = 0
main::g#0 = 0
main::h#0 = 0
main::i#0 = 0
to:main::@1
main::@1: scope:[main] from main main::@2
main::h#3 = phi( main/main::h#0, main::@2/main::h#1 )
main::g#3 = phi( main/main::g#0, main::@2/main::g#1 )
main::f#3 = phi( main/main::f#0, main::@2/main::f#1 )
main::e#3 = phi( main/main::e#0, main::@2/main::e#1 )
main::d#3 = phi( main/main::d#0, main::@2/main::d#1 )
main::c#3 = phi( main/main::c#0, main::@2/main::c#1 )
main::b#3 = phi( main/main::b#0, main::@2/main::b#1 )
main::a#3 = phi( main/main::a#0, main::@2/main::a#1 )
main::i#2 = phi( main/main::i#0, main::@2/main::i#1 )
main::$0 = main::i#2 < $a
if(main::$0) goto main::@2
to:main::@return
main::@2: scope:[main] from main::@1
main::h#2 = phi( main::@1/main::h#3 )
main::g#2 = phi( main::@1/main::g#3 )
main::f#2 = phi( main::@1/main::f#3 )
main::e#2 = phi( main::@1/main::e#3 )
main::d#2 = phi( main::@1/main::d#3 )
main::c#2 = phi( main::@1/main::c#3 )
main::b#2 = phi( main::@1/main::b#3 )
main::a#2 = phi( main::@1/main::a#3 )
main::i#3 = phi( main::@1/main::i#2 )
main::$1 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$1] = main::a#2
main::a#1 = ++ main::a#2
main::$2 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$2] = main::b#2
main::b#1 = ++ main::b#2
main::$3 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$3] = main::c#2
main::c#1 = ++ main::c#2
main::$4 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$4] = main::d#2
main::d#1 = ++ main::d#2
main::$5 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$5] = main::e#2
main::e#1 = ++ main::e#2
main::$6 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$6] = main::f#2
main::f#1 = ++ main::f#2
main::$7 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$7] = main::g#2
main::g#1 = ++ main::g#2
main::$8 = main::i#3 * SIZEOF_INT
main::SCREEN[main::$8] = main::h#2
main::h#1 = ++ main::h#2
main::i#1 = ++ main::i#3
to:main::@1
main::@return: scope:[main] from main::@1
return
to:@return
void __start()
__start: scope:[__start] from
call main
to:__start::@1
__start::@1: scope:[__start] from __start
to:__start::@return
__start::@return: scope:[__start] from __start::@1
return
to:@return
SYMBOL TABLE SSA
__constant char SIZEOF_INT = 2
void __start()
void main()
bool main::$0
char main::$1
char main::$2
char main::$3
char main::$4
char main::$5
char main::$6
char main::$7
char main::$8
__constant int * const main::SCREEN = (int *)$400
int main::a
int main::a#0
int main::a#1
int main::a#2
int main::a#3
int main::b
int main::b#0
int main::b#1
int main::b#2
int main::b#3
int main::c
int main::c#0
int main::c#1
int main::c#2
int main::c#3
int main::d
int main::d#0
int main::d#1
int main::d#2
int main::d#3
int main::e
int main::e#0
int main::e#1
int main::e#2
int main::e#3
int main::f
int main::f#0
int main::f#1
int main::f#2
int main::f#3
int main::g
int main::g#0
int main::g#1
int main::g#2
int main::g#3
int main::h
int main::h#0
int main::h#1
int main::h#2
int main::h#3
char main::i
char main::i#0
char main::i#1
char main::i#2
char main::i#3
Adding number conversion cast (unumber) $a in main::$0 = main::i#2 < $a
Successful SSA optimization PassNAddNumberTypeConversions
Simplifying constant pointer cast (int *) 1024
Simplifying constant integer cast $a
Successful SSA optimization PassNCastSimplification
Finalized unsigned number type (char) $a
Successful SSA optimization PassNFinalizeNumberTypeConversions
Alias main::i#2 = main::i#3
Alias main::a#2 = main::a#3
Alias main::b#2 = main::b#3
Alias main::c#2 = main::c#3
Alias main::d#2 = main::d#3
Alias main::e#2 = main::e#3
Alias main::f#2 = main::f#3
Alias main::g#2 = main::g#3
Alias main::h#2 = main::h#3
Successful SSA optimization Pass2AliasElimination
Identified duplicate assignment right side [16] main::$2 = main::i#2 * SIZEOF_INT
Identified duplicate assignment right side [19] main::$3 = main::i#2 * SIZEOF_INT
Identified duplicate assignment right side [22] main::$4 = main::i#2 * SIZEOF_INT
Identified duplicate assignment right side [25] main::$5 = main::i#2 * SIZEOF_INT
Identified duplicate assignment right side [28] main::$6 = main::i#2 * SIZEOF_INT
Identified duplicate assignment right side [31] main::$7 = main::i#2 * SIZEOF_INT
Identified duplicate assignment right side [34] main::$8 = main::i#2 * SIZEOF_INT
Successful SSA optimization Pass2DuplicateRValueIdentification
Simple Condition main::$0 [11] if(main::i#2<$a) goto main::@2
Successful SSA optimization Pass2ConditionalJumpSimplification
Constant main::a#0 = 0
Constant main::b#0 = 0
Constant main::c#0 = 0
Constant main::d#0 = 0
Constant main::e#0 = 0
Constant main::f#0 = 0
Constant main::g#0 = 0
Constant main::h#0 = 0
Constant main::i#0 = 0
Successful SSA optimization Pass2ConstantIdentification
Removing unused procedure __start
Removing unused procedure block __start
Removing unused procedure block __start::@1
Removing unused procedure block __start::@return
Successful SSA optimization PassNEliminateEmptyStart
Alias main::$2 = main::$1 main::$3 main::$4 main::$5 main::$6 main::$7 main::$8
Successful SSA optimization Pass2AliasElimination
Rewriting multiplication to use shift [2] main::$2 = main::i#2 * SIZEOF_INT
Successful SSA optimization Pass2MultiplyToShiftRewriting
Inlining constant with var siblings main::a#0
Inlining constant with var siblings main::b#0
Inlining constant with var siblings main::c#0
Inlining constant with var siblings main::d#0
Inlining constant with var siblings main::e#0
Inlining constant with var siblings main::f#0
Inlining constant with var siblings main::g#0
Inlining constant with var siblings main::h#0
Inlining constant with var siblings main::i#0
Constant inlined main::a#0 = 0
Constant inlined main::c#0 = 0
Constant inlined main::b#0 = 0
Constant inlined main::i#0 = 0
Constant inlined main::h#0 = 0
Constant inlined main::e#0 = 0
Constant inlined main::d#0 = 0
Constant inlined main::g#0 = 0
Constant inlined main::f#0 = 0
Successful SSA optimization Pass2ConstantInlining
Eliminating unused constant SIZEOF_INT
Successful SSA optimization PassNEliminateUnusedVars
Adding NOP phi() at start of main
CALL GRAPH
Created 9 initial phi equivalence classes
Coalesced [22] main::i#4 = main::i#1
Coalesced [23] main::a#4 = main::a#1
Coalesced [24] main::b#4 = main::b#1
Coalesced [25] main::c#4 = main::c#1
Coalesced [26] main::d#4 = main::d#1
Coalesced [27] main::e#4 = main::e#1
Coalesced [28] main::f#4 = main::f#1
Coalesced [29] main::g#4 = main::g#1
Coalesced [30] main::h#4 = main::h#1
Coalesced down to 9 phi equivalence classes
Adding NOP phi() at start of main
FINAL CONTROL FLOW GRAPH
void main()
main: scope:[main] from
[0] phi()
to:main::@1
main::@1: scope:[main] from main main::@2
[1] main::h#2 = phi( main/0, main::@2/main::h#1 )
[1] main::g#2 = phi( main/0, main::@2/main::g#1 )
[1] main::f#2 = phi( main/0, main::@2/main::f#1 )
[1] main::e#2 = phi( main/0, main::@2/main::e#1 )
[1] main::d#2 = phi( main/0, main::@2/main::d#1 )
[1] main::c#2 = phi( main/0, main::@2/main::c#1 )
[1] main::b#2 = phi( main/0, main::@2/main::b#1 )
[1] main::a#2 = phi( main/0, main::@2/main::a#1 )
[1] main::i#2 = phi( main/0, main::@2/main::i#1 )
[2] if(main::i#2<$a) goto main::@2
to:main::@return
main::@return: scope:[main] from main::@1
[3] return
to:@return
main::@2: scope:[main] from main::@1
[4] main::$2 = main::i#2 << 1
[5] main::SCREEN[main::$2] = main::a#2
[6] main::a#1 = ++ main::a#2
[7] main::SCREEN[main::$2] = main::b#2
[8] main::b#1 = ++ main::b#2
[9] main::SCREEN[main::$2] = main::c#2
[10] main::c#1 = ++ main::c#2
[11] main::SCREEN[main::$2] = main::d#2
[12] main::d#1 = ++ main::d#2
[13] main::SCREEN[main::$2] = main::e#2
[14] main::e#1 = ++ main::e#2
[15] main::SCREEN[main::$2] = main::f#2
[16] main::f#1 = ++ main::f#2
[17] main::SCREEN[main::$2] = main::g#2
[18] main::g#1 = ++ main::g#2
[19] main::SCREEN[main::$2] = main::h#2
[20] main::h#1 = ++ main::h#2
[21] main::i#1 = ++ main::i#2
to:main::@1
VARIABLE REGISTER WEIGHTS
void main()
char main::$2 // 6.6
int main::a
int main::a#1 // 1.375
int main::a#2 // 8.25
int main::b
int main::b#1 // 1.5714285714285714
int main::b#2 // 5.5
int main::c
int main::c#1 // 1.8333333333333333
int main::c#2 // 4.125
int main::d
int main::d#1 // 2.2
int main::d#2 // 3.3000000000000003
int main::e
int main::e#1 // 2.75
int main::e#2 // 2.75
int main::f
int main::f#1 // 3.6666666666666665
int main::f#2 // 2.357142857142857
int main::g
int main::g#1 // 5.5
int main::g#2 // 2.0625
int main::h
int main::h#1 // 11.0
int main::h#2 // 1.8333333333333335
char main::i
char main::i#1 // 22.0
char main::i#2 // 2.3157894736842106
Initial phi equivalence classes
[ main::i#2 main::i#1 ]
[ main::a#2 main::a#1 ]
[ main::b#2 main::b#1 ]
[ main::c#2 main::c#1 ]
[ main::d#2 main::d#1 ]
[ main::e#2 main::e#1 ]
[ main::f#2 main::f#1 ]
[ main::g#2 main::g#1 ]
[ main::h#2 main::h#1 ]
Added variable main::$2 to live range equivalence class [ main::$2 ]
Complete equivalence classes
[ main::i#2 main::i#1 ]
[ main::a#2 main::a#1 ]
[ main::b#2 main::b#1 ]
[ main::c#2 main::c#1 ]
[ main::d#2 main::d#1 ]
[ main::e#2 main::e#1 ]
[ main::f#2 main::f#1 ]
[ main::g#2 main::g#1 ]
[ main::h#2 main::h#1 ]
[ main::$2 ]
Allocated zp[1]:251 [ main::i#2 main::i#1 ]
Allocated zp[2]:252 [ main::a#2 main::a#1 ]
Allocated zp[2]:254 [ main::b#2 main::b#1 ]
Zero-page exhausted. Moving allocation to main memory main::c#2
Allocated mem[2] [ main::c#2 main::c#1 ]
Zero-page exhausted. Moving allocation to main memory main::d#2
Allocated mem[2] [ main::d#2 main::d#1 ]
Zero-page exhausted. Moving allocation to main memory main::e#2
Allocated mem[2] [ main::e#2 main::e#1 ]
Zero-page exhausted. Moving allocation to main memory main::f#2
Allocated mem[2] [ main::f#2 main::f#1 ]
Zero-page exhausted. Moving allocation to main memory main::g#2
Allocated mem[2] [ main::g#2 main::g#1 ]
Zero-page exhausted. Moving allocation to main memory main::h#2
Allocated mem[2] [ main::h#2 main::h#1 ]
Zero-page exhausted. Moving allocation to main memory main::$2
Allocated mem[1] [ main::$2 ]
REGISTER UPLIFT POTENTIAL REGISTERS
Statement [4] main::$2 = main::i#2 << 1 [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] ( [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] { } ) always clobbers reg byte a
Removing always clobbered register reg byte a as potential for zp[1]:251 [ main::i#2 main::i#1 ]
Statement [5] main::SCREEN[main::$2] = main::a#2 [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] ( [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] { } ) always clobbers reg byte a
Removing always clobbered register reg byte a as potential for mem[1] [ main::$2 ]
Statement [7] main::SCREEN[main::$2] = main::b#2 [ main::i#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::$2 ] ( [ main::i#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::$2 ] { } ) always clobbers reg byte a
Statement [9] main::SCREEN[main::$2] = main::c#2 [ main::i#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::$2 ] ( [ main::i#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::$2 ] { } ) always clobbers reg byte a
Statement [11] main::SCREEN[main::$2] = main::d#2 [ main::i#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::$2 ] ( [ main::i#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::$2 ] { } ) always clobbers reg byte a
Statement [13] main::SCREEN[main::$2] = main::e#2 [ main::i#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::$2 ] ( [ main::i#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::$2 ] { } ) always clobbers reg byte a
Statement [15] main::SCREEN[main::$2] = main::f#2 [ main::i#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::$2 ] ( [ main::i#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::$2 ] { } ) always clobbers reg byte a
Statement [17] main::SCREEN[main::$2] = main::g#2 [ main::i#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::$2 ] ( [ main::i#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::$2 ] { } ) always clobbers reg byte a
Statement [19] main::SCREEN[main::$2] = main::h#2 [ main::i#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::g#1 ] ( [ main::i#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::g#1 ] { } ) always clobbers reg byte a
Statement [4] main::$2 = main::i#2 << 1 [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] ( [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] { } ) always clobbers reg byte a
Statement [5] main::SCREEN[main::$2] = main::a#2 [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] ( [ main::i#2 main::a#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::$2 ] { } ) always clobbers reg byte a
Statement [7] main::SCREEN[main::$2] = main::b#2 [ main::i#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::$2 ] ( [ main::i#2 main::b#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::$2 ] { } ) always clobbers reg byte a
Statement [9] main::SCREEN[main::$2] = main::c#2 [ main::i#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::$2 ] ( [ main::i#2 main::c#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::$2 ] { } ) always clobbers reg byte a
Statement [11] main::SCREEN[main::$2] = main::d#2 [ main::i#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::$2 ] ( [ main::i#2 main::d#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::$2 ] { } ) always clobbers reg byte a
Statement [13] main::SCREEN[main::$2] = main::e#2 [ main::i#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::$2 ] ( [ main::i#2 main::e#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::$2 ] { } ) always clobbers reg byte a
Statement [15] main::SCREEN[main::$2] = main::f#2 [ main::i#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::$2 ] ( [ main::i#2 main::f#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::$2 ] { } ) always clobbers reg byte a
Statement [17] main::SCREEN[main::$2] = main::g#2 [ main::i#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::$2 ] ( [ main::i#2 main::g#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::$2 ] { } ) always clobbers reg byte a
Statement [19] main::SCREEN[main::$2] = main::h#2 [ main::i#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::g#1 ] ( [ main::i#2 main::h#2 main::a#1 main::b#1 main::c#1 main::d#1 main::e#1 main::f#1 main::g#1 ] { } ) always clobbers reg byte a
Potential registers zp[1]:251 [ main::i#2 main::i#1 ] : zp[1]:251 , reg byte x , reg byte y ,
Potential registers zp[2]:252 [ main::a#2 main::a#1 ] : zp[2]:252 ,
Potential registers zp[2]:254 [ main::b#2 main::b#1 ] : zp[2]:254 ,
Potential registers mem[2] [ main::c#2 main::c#1 ] : mem[2] ,
Potential registers mem[2] [ main::d#2 main::d#1 ] : mem[2] ,
Potential registers mem[2] [ main::e#2 main::e#1 ] : mem[2] ,
Potential registers mem[2] [ main::f#2 main::f#1 ] : mem[2] ,
Potential registers mem[2] [ main::g#2 main::g#1 ] : mem[2] ,
Potential registers mem[2] [ main::h#2 main::h#1 ] : mem[2] ,
Potential registers mem[1] [ main::$2 ] : mem[1] , reg byte x , reg byte y ,
REGISTER UPLIFT SCOPES
Uplift Scope [main] 24.32: zp[1]:251 [ main::i#2 main::i#1 ] 12.83: mem[2] [ main::h#2 main::h#1 ] 9.62: zp[2]:252 [ main::a#2 main::a#1 ] 7.56: mem[2] [ main::g#2 main::g#1 ] 7.07: zp[2]:254 [ main::b#2 main::b#1 ] 6.6: mem[1] [ main::$2 ] 6.02: mem[2] [ main::f#2 main::f#1 ] 5.96: mem[2] [ main::c#2 main::c#1 ] 5.5: mem[2] [ main::d#2 main::d#1 ] 5.5: mem[2] [ main::e#2 main::e#1 ]
Uplift Scope []
Uplifting [main] best 3681 combination reg byte y [ main::i#2 main::i#1 ] mem[2] [ main::h#2 main::h#1 ] zp[2]:252 [ main::a#2 main::a#1 ] mem[2] [ main::g#2 main::g#1 ] zp[2]:254 [ main::b#2 main::b#1 ] reg byte x [ main::$2 ] mem[2] [ main::f#2 main::f#1 ] mem[2] [ main::c#2 main::c#1 ] mem[2] [ main::d#2 main::d#1 ] mem[2] [ main::e#2 main::e#1 ]
Uplifting [] best 3681 combination
Allocated (was zp[2]:252) zp[2]:251 [ main::a#2 main::a#1 ]
Allocated (was zp[2]:254) zp[2]:253 [ main::b#2 main::b#1 ]
ASSEMBLER BEFORE OPTIMIZATION
// File Comments
// Tests that variables overflow to main memory when zeropage is exhausted
// Upstart
// Commodore 64 PRG executable file
.file [name="zeropage-overflow.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
// Global Constants & labels
.segment Code
// main
// And then allocate a bunch of variables
main: {
.label SCREEN = $400
.label a = $fb
.label b = $fd
// [1] phi from main to main::@1 [phi:main->main::@1]
__b1_from_main:
// [1] phi main::h#2 = 0 [phi:main->main::@1#0] -- vwsm1=vwsc1
lda #<0
sta h
lda #>0
sta h+1
// [1] phi main::g#2 = 0 [phi:main->main::@1#1] -- vwsm1=vwsc1
lda #<0
sta g
lda #>0
sta g+1
// [1] phi main::f#2 = 0 [phi:main->main::@1#2] -- vwsm1=vwsc1
lda #<0
sta f
lda #>0
sta f+1
// [1] phi main::e#2 = 0 [phi:main->main::@1#3] -- vwsm1=vwsc1
lda #<0
sta e
lda #>0
sta e+1
// [1] phi main::d#2 = 0 [phi:main->main::@1#4] -- vwsm1=vwsc1
lda #<0
sta d
lda #>0
sta d+1
// [1] phi main::c#2 = 0 [phi:main->main::@1#5] -- vwsm1=vwsc1
lda #<0
sta c
lda #>0
sta c+1
// [1] phi main::b#2 = 0 [phi:main->main::@1#6] -- vwsz1=vwsc1
lda #<0
sta.z b
lda #>0
sta.z b+1
// [1] phi main::a#2 = 0 [phi:main->main::@1#7] -- vwsz1=vwsc1
lda #<0
sta.z a
lda #>0
sta.z a+1
// [1] phi main::i#2 = 0 [phi:main->main::@1#8] -- vbuyy=vbuc1
ldy #0
jmp __b1
// main::@1
__b1:
// [2] if(main::i#2<$a) goto main::@2 -- vbuyy_lt_vbuc1_then_la1
cpy #$a
bcc __b2
jmp __breturn
// main::@return
__breturn:
// [3] return
rts
// main::@2
__b2:
// [4] main::$2 = main::i#2 << 1 -- vbuxx=vbuyy_rol_1
tya
asl
tax
// [5] main::SCREEN[main::$2] = main::a#2 -- pwsc1_derefidx_vbuxx=vwsz1
lda.z a
sta SCREEN,x
lda.z a+1
sta SCREEN+1,x
// [6] main::a#1 = ++ main::a#2 -- vwsz1=_inc_vwsz1
inc.z a
bne !+
inc.z a+1
!:
// [7] main::SCREEN[main::$2] = main::b#2 -- pwsc1_derefidx_vbuxx=vwsz1
lda.z b
sta SCREEN,x
lda.z b+1
sta SCREEN+1,x
// [8] main::b#1 = ++ main::b#2 -- vwsz1=_inc_vwsz1
inc.z b
bne !+
inc.z b+1
!:
// [9] main::SCREEN[main::$2] = main::c#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda c
sta SCREEN,x
lda c+1
sta SCREEN+1,x
// [10] main::c#1 = ++ main::c#2 -- vwsm1=_inc_vwsm1
inc c
bne !+
inc c+1
!:
// [11] main::SCREEN[main::$2] = main::d#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda d
sta SCREEN,x
lda d+1
sta SCREEN+1,x
// [12] main::d#1 = ++ main::d#2 -- vwsm1=_inc_vwsm1
inc d
bne !+
inc d+1
!:
// [13] main::SCREEN[main::$2] = main::e#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda e
sta SCREEN,x
lda e+1
sta SCREEN+1,x
// [14] main::e#1 = ++ main::e#2 -- vwsm1=_inc_vwsm1
inc e
bne !+
inc e+1
!:
// [15] main::SCREEN[main::$2] = main::f#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda f
sta SCREEN,x
lda f+1
sta SCREEN+1,x
// [16] main::f#1 = ++ main::f#2 -- vwsm1=_inc_vwsm1
inc f
bne !+
inc f+1
!:
// [17] main::SCREEN[main::$2] = main::g#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda g
sta SCREEN,x
lda g+1
sta SCREEN+1,x
// [18] main::g#1 = ++ main::g#2 -- vwsm1=_inc_vwsm1
inc g
bne !+
inc g+1
!:
// [19] main::SCREEN[main::$2] = main::h#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda h
sta SCREEN,x
lda h+1
sta SCREEN+1,x
// [20] main::h#1 = ++ main::h#2 -- vwsm1=_inc_vwsm1
inc h
bne !+
inc h+1
!:
// [21] main::i#1 = ++ main::i#2 -- vbuyy=_inc_vbuyy
iny
// [1] phi from main::@2 to main::@1 [phi:main::@2->main::@1]
__b1_from___b2:
// [1] phi main::h#2 = main::h#1 [phi:main::@2->main::@1#0] -- register_copy
// [1] phi main::g#2 = main::g#1 [phi:main::@2->main::@1#1] -- register_copy
// [1] phi main::f#2 = main::f#1 [phi:main::@2->main::@1#2] -- register_copy
// [1] phi main::e#2 = main::e#1 [phi:main::@2->main::@1#3] -- register_copy
// [1] phi main::d#2 = main::d#1 [phi:main::@2->main::@1#4] -- register_copy
// [1] phi main::c#2 = main::c#1 [phi:main::@2->main::@1#5] -- register_copy
// [1] phi main::b#2 = main::b#1 [phi:main::@2->main::@1#6] -- register_copy
// [1] phi main::a#2 = main::a#1 [phi:main::@2->main::@1#7] -- register_copy
// [1] phi main::i#2 = main::i#1 [phi:main::@2->main::@1#8] -- register_copy
jmp __b1
.segment Data
c: .word 0
d: .word 0
e: .word 0
f: .word 0
g: .word 0
h: .word 0
}
// File Data
ASSEMBLER OPTIMIZATIONS
Removing instruction jmp __b1
Removing instruction jmp __breturn
Succesful ASM optimization Pass5NextJumpElimination
Removing instruction lda #>0
Removing instruction lda #<0
Removing instruction lda #>0
Removing instruction lda #<0
Removing instruction lda #>0
Removing instruction lda #<0
Removing instruction lda #>0
Removing instruction lda #<0
Removing instruction lda #>0
Removing instruction lda #<0
Removing instruction lda #>0
Removing instruction lda #<0
Removing instruction lda #>0
Removing instruction lda #<0
Removing instruction lda #>0
Replacing instruction ldy #0 with TAY
Succesful ASM optimization Pass5UnnecesaryLoadElimination
Removing instruction __b1_from_main:
Removing instruction __breturn:
Removing instruction __b1_from___b2:
Succesful ASM optimization Pass5UnusedLabelElimination
FINAL SYMBOL TABLE
void main()
char main::$2 // reg byte x 6.6
__constant int * const main::SCREEN = (int *) 1024
int main::a
int main::a#1 // a zp[2]:251 1.375
int main::a#2 // a zp[2]:251 8.25
int main::b
int main::b#1 // b zp[2]:253 1.5714285714285714
int main::b#2 // b zp[2]:253 5.5
int main::c
int main::c#1 // c mem[2] 1.8333333333333333
int main::c#2 // c mem[2] 4.125
int main::d
int main::d#1 // d mem[2] 2.2
int main::d#2 // d mem[2] 3.3000000000000003
int main::e
int main::e#1 // e mem[2] 2.75
int main::e#2 // e mem[2] 2.75
int main::f
int main::f#1 // f mem[2] 3.6666666666666665
int main::f#2 // f mem[2] 2.357142857142857
int main::g
int main::g#1 // g mem[2] 5.5
int main::g#2 // g mem[2] 2.0625
int main::h
int main::h#1 // h mem[2] 11.0
int main::h#2 // h mem[2] 1.8333333333333335
char main::i
char main::i#1 // reg byte y 22.0
char main::i#2 // reg byte y 2.3157894736842106
reg byte y [ main::i#2 main::i#1 ]
zp[2]:251 [ main::a#2 main::a#1 ]
zp[2]:253 [ main::b#2 main::b#1 ]
mem[2] [ main::c#2 main::c#1 ]
mem[2] [ main::d#2 main::d#1 ]
mem[2] [ main::e#2 main::e#1 ]
mem[2] [ main::f#2 main::f#1 ]
mem[2] [ main::g#2 main::g#1 ]
mem[2] [ main::h#2 main::h#1 ]
reg byte x [ main::$2 ]
FINAL ASSEMBLER
Score: 3321
// File Comments
// Tests that variables overflow to main memory when zeropage is exhausted
// Upstart
// Commodore 64 PRG executable file
.file [name="zeropage-overflow.prg", type="prg", segments="Program"]
.segmentdef Program [segments="Basic, Code, Data"]
.segmentdef Basic [start=$0801]
.segmentdef Code [start=$80d]
.segmentdef Data [startAfter="Code"]
.segment Basic
:BasicUpstart(main)
// Global Constants & labels
.segment Code
// main
// And then allocate a bunch of variables
main: {
.label SCREEN = $400
.label a = $fb
.label b = $fd
// [1] phi from main to main::@1 [phi:main->main::@1]
// [1] phi main::h#2 = 0 [phi:main->main::@1#0] -- vwsm1=vwsc1
lda #<0
sta h
sta h+1
// [1] phi main::g#2 = 0 [phi:main->main::@1#1] -- vwsm1=vwsc1
sta g
sta g+1
// [1] phi main::f#2 = 0 [phi:main->main::@1#2] -- vwsm1=vwsc1
sta f
sta f+1
// [1] phi main::e#2 = 0 [phi:main->main::@1#3] -- vwsm1=vwsc1
sta e
sta e+1
// [1] phi main::d#2 = 0 [phi:main->main::@1#4] -- vwsm1=vwsc1
sta d
sta d+1
// [1] phi main::c#2 = 0 [phi:main->main::@1#5] -- vwsm1=vwsc1
sta c
sta c+1
// [1] phi main::b#2 = 0 [phi:main->main::@1#6] -- vwsz1=vwsc1
sta.z b
sta.z b+1
// [1] phi main::a#2 = 0 [phi:main->main::@1#7] -- vwsz1=vwsc1
sta.z a
sta.z a+1
// [1] phi main::i#2 = 0 [phi:main->main::@1#8] -- vbuyy=vbuc1
tay
// main::@1
__b1:
// for(char i=0;i<10;i++)
// [2] if(main::i#2<$a) goto main::@2 -- vbuyy_lt_vbuc1_then_la1
cpy #$a
bcc __b2
// main::@return
// }
// [3] return
rts
// main::@2
__b2:
// SCREEN[i] = a++
// [4] main::$2 = main::i#2 << 1 -- vbuxx=vbuyy_rol_1
tya
asl
tax
// [5] main::SCREEN[main::$2] = main::a#2 -- pwsc1_derefidx_vbuxx=vwsz1
lda.z a
sta SCREEN,x
lda.z a+1
sta SCREEN+1,x
// SCREEN[i] = a++;
// [6] main::a#1 = ++ main::a#2 -- vwsz1=_inc_vwsz1
inc.z a
bne !+
inc.z a+1
!:
// SCREEN[i] = b++
// [7] main::SCREEN[main::$2] = main::b#2 -- pwsc1_derefidx_vbuxx=vwsz1
lda.z b
sta SCREEN,x
lda.z b+1
sta SCREEN+1,x
// SCREEN[i] = b++;
// [8] main::b#1 = ++ main::b#2 -- vwsz1=_inc_vwsz1
inc.z b
bne !+
inc.z b+1
!:
// SCREEN[i] = c++
// [9] main::SCREEN[main::$2] = main::c#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda c
sta SCREEN,x
lda c+1
sta SCREEN+1,x
// SCREEN[i] = c++;
// [10] main::c#1 = ++ main::c#2 -- vwsm1=_inc_vwsm1
inc c
bne !+
inc c+1
!:
// SCREEN[i] = d++
// [11] main::SCREEN[main::$2] = main::d#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda d
sta SCREEN,x
lda d+1
sta SCREEN+1,x
// SCREEN[i] = d++;
// [12] main::d#1 = ++ main::d#2 -- vwsm1=_inc_vwsm1
inc d
bne !+
inc d+1
!:
// SCREEN[i] = e++
// [13] main::SCREEN[main::$2] = main::e#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda e
sta SCREEN,x
lda e+1
sta SCREEN+1,x
// SCREEN[i] = e++;
// [14] main::e#1 = ++ main::e#2 -- vwsm1=_inc_vwsm1
inc e
bne !+
inc e+1
!:
// SCREEN[i] = f++
// [15] main::SCREEN[main::$2] = main::f#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda f
sta SCREEN,x
lda f+1
sta SCREEN+1,x
// SCREEN[i] = f++;
// [16] main::f#1 = ++ main::f#2 -- vwsm1=_inc_vwsm1
inc f
bne !+
inc f+1
!:
// SCREEN[i] = g++
// [17] main::SCREEN[main::$2] = main::g#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda g
sta SCREEN,x
lda g+1
sta SCREEN+1,x
// SCREEN[i] = g++;
// [18] main::g#1 = ++ main::g#2 -- vwsm1=_inc_vwsm1
inc g
bne !+
inc g+1
!:
// SCREEN[i] = h++
// [19] main::SCREEN[main::$2] = main::h#2 -- pwsc1_derefidx_vbuxx=vwsm1
lda h
sta SCREEN,x
lda h+1
sta SCREEN+1,x
// SCREEN[i] = h++;
// [20] main::h#1 = ++ main::h#2 -- vwsm1=_inc_vwsm1
inc h
bne !+
inc h+1
!:
// for(char i=0;i<10;i++)
// [21] main::i#1 = ++ main::i#2 -- vbuyy=_inc_vbuyy
iny
// [1] phi from main::@2 to main::@1 [phi:main::@2->main::@1]
// [1] phi main::h#2 = main::h#1 [phi:main::@2->main::@1#0] -- register_copy
// [1] phi main::g#2 = main::g#1 [phi:main::@2->main::@1#1] -- register_copy
// [1] phi main::f#2 = main::f#1 [phi:main::@2->main::@1#2] -- register_copy
// [1] phi main::e#2 = main::e#1 [phi:main::@2->main::@1#3] -- register_copy
// [1] phi main::d#2 = main::d#1 [phi:main::@2->main::@1#4] -- register_copy
// [1] phi main::c#2 = main::c#1 [phi:main::@2->main::@1#5] -- register_copy
// [1] phi main::b#2 = main::b#1 [phi:main::@2->main::@1#6] -- register_copy
// [1] phi main::a#2 = main::a#1 [phi:main::@2->main::@1#7] -- register_copy
// [1] phi main::i#2 = main::i#1 [phi:main::@2->main::@1#8] -- register_copy
jmp __b1
.segment Data
c: .word 0
d: .word 0
e: .word 0
f: .word 0
g: .word 0
h: .word 0
}
// File Data

View File

@ -0,0 +1,41 @@
void main()
char main::$2 // reg byte x 6.6
__constant int * const main::SCREEN = (int *) 1024
int main::a
int main::a#1 // a zp[2]:251 1.375
int main::a#2 // a zp[2]:251 8.25
int main::b
int main::b#1 // b zp[2]:253 1.5714285714285714
int main::b#2 // b zp[2]:253 5.5
int main::c
int main::c#1 // c mem[2] 1.8333333333333333
int main::c#2 // c mem[2] 4.125
int main::d
int main::d#1 // d mem[2] 2.2
int main::d#2 // d mem[2] 3.3000000000000003
int main::e
int main::e#1 // e mem[2] 2.75
int main::e#2 // e mem[2] 2.75
int main::f
int main::f#1 // f mem[2] 3.6666666666666665
int main::f#2 // f mem[2] 2.357142857142857
int main::g
int main::g#1 // g mem[2] 5.5
int main::g#2 // g mem[2] 2.0625
int main::h
int main::h#1 // h mem[2] 11.0
int main::h#2 // h mem[2] 1.8333333333333335
char main::i
char main::i#1 // reg byte y 22.0
char main::i#2 // reg byte y 2.3157894736842106
reg byte y [ main::i#2 main::i#1 ]
zp[2]:251 [ main::a#2 main::a#1 ]
zp[2]:253 [ main::b#2 main::b#1 ]
mem[2] [ main::c#2 main::c#1 ]
mem[2] [ main::d#2 main::d#1 ]
mem[2] [ main::e#2 main::e#1 ]
mem[2] [ main::f#2 main::f#1 ]
mem[2] [ main::g#2 main::g#1 ]
mem[2] [ main::h#2 main::h#1 ]
reg byte x [ main::$2 ]