package razorvine.ksim65 import razorvine.ksim65.components.Address import razorvine.ksim65.components.BusComponent import razorvine.ksim65.components.MemoryComponent import razorvine.ksim65.components.UByte /** * 6502 cpu simulation (the NMOS version) including the 'illegal' opcodes. * TODO: actually implement the illegal opcodes, see http://www.ffd2.com/fridge/docs/6502-NMOS.extra.opcodes * TODO: add the optional additional cycles to certain instructions and addressing modes */ open class Cpu6502(private val stopOnBrk: Boolean = false) : BusComponent() { open val name = "6502" var tracing: ((state:String) -> Unit)? = null var totalCycles: Long = 0 protected set class InstructionError(msg: String) : RuntimeException(msg) companion object { const val NMI_vector = 0xfffa const val RESET_vector = 0xfffc const val IRQ_vector = 0xfffe const val resetCycles = 8 } protected enum class AddrMode { Imp, Acc, Imm, Zp, Zpr, // special addressing mode used by the 65C02 ZpX, ZpY, Rel, Abs, AbsX, AbsY, Ind, IzX, IzY, Izp, // special addressing mode used by the 65C02 IaX, // special addressing mode used by the 65C02 } class StatusRegister( var C: Boolean = false, var Z: Boolean = false, var I: Boolean = false, var D: Boolean = false, var B: Boolean = false, var V: Boolean = false, var N: Boolean = false ) { fun asByte(): UByte { return (0b00100000 or (if (N) 0b10000000 else 0) or (if (V) 0b01000000 else 0) or (if (B) 0b00010000 else 0) or (if (D) 0b00001000 else 0) or (if (I) 0b00000100 else 0) or (if (Z) 0b00000010 else 0) or (if (C) 0b00000001 else 0) ).toShort() } fun fromByte(byte: Int) { N = (byte and 0b10000000) != 0 V = (byte and 0b01000000) != 0 B = (byte and 0b00010000) != 0 D = (byte and 0b00001000) != 0 I = (byte and 0b00000100) != 0 Z = (byte and 0b00000010) != 0 C = (byte and 0b00000001) != 0 } override fun toString(): String { return asByte().toString(2).padStart(8, '0') } override fun hashCode(): Int = asByte().toInt() override fun equals(other: Any?): Boolean { if (other !is StatusRegister) return false return asByte() == other.asByte() } } protected class Instruction(val mnemonic: String, val mode: AddrMode, val cycles: Int) var regA: Int = 0 var regX: Int = 0 var regY: Int = 0 var regSP: Int = 0 var regPC: Address = 0 val regP = StatusRegister() var currentOpcode: Int = 0 protected set var instrCycles: Int = 0 protected set protected lateinit var currentInstruction: Instruction val currentMnemonic: String get() = currentInstruction.mnemonic // has an interrupt been requested? protected var pendingInterrupt: Pair? = null // data byte from the instruction (only set when addr.mode is Accumulator, Immediate or Implied) protected var fetchedData: Int = 0 // all other addressing modes yield a fetched memory address protected var fetchedAddress: Address = 0 class BreakpointResult(val newPC: Address?, val newOpcode: Int?) private val breakpoints = mutableMapOf BreakpointResult>() fun addBreakpoint(address: Address, action: (cpu: Cpu6502, pc: Address) -> BreakpointResult) { breakpoints[address] = action } fun removeBreakpoint(address: Address) = breakpoints.remove(address) fun hexW(number: Address, allowSingleByte: Boolean = false): String { val msb = number ushr 8 val lsb = number and 0xff return if (msb == 0 && allowSingleByte) hexB(lsb) else hexB(msb) + hexB(lsb) } fun hexB(number: Short): String = hexB(number.toInt()) fun hexB(number: Int): String { val hexdigits = "0123456789abcdef" val loNibble = number and 15 val hiNibble = number ushr 4 return hexdigits[hiNibble].toString() + hexdigits[loNibble] } fun disassemble(component: MemoryComponent, from: Address, to: Address) = disassemble(component.copyOfMem(), component.startAddress, from, to) fun disassemble(memory: Array, baseAddress: Address, from: Address, to: Address): List { var location = from - baseAddress val spacing1 = " " val spacing2 = " " val spacing3 = " " val result = mutableListOf() while (location <= (to - baseAddress)) { val byte = memory[location] var line = "\$${hexW(location+baseAddress)} ${hexB(byte)} " location++ val opcode = instructions[byte.toInt()] when (opcode.mode) { AddrMode.Acc -> { line += "$spacing1 ${opcode.mnemonic} a" } AddrMode.Imp -> { line += "$spacing1 ${opcode.mnemonic}" } AddrMode.Imm -> { val value = memory[location++] line += "${hexB(value)} $spacing2 ${opcode.mnemonic} #\$${hexB(value)}" } AddrMode.Zp -> { val zpAddr = memory[location++] line += "${hexB(zpAddr)} $spacing2 ${opcode.mnemonic} \$${hexB(zpAddr)}" } AddrMode.Zpr -> { // addressing mode used by the 65C02, put here for convenience val zpAddr = memory[location++] val rel = memory[location++] val target = if (rel <= 0x7f) location + rel + baseAddress else location - (256 - rel) + baseAddress line += "${hexB(zpAddr)} ${hexB(rel)} $spacing3 ${opcode.mnemonic} \$${hexB(zpAddr)}, \$${hexW(target, true)}" } AddrMode.Izp -> { // addressing mode used by the 65C02, put here for convenience val zpAddr = memory[location++] line += "${hexB(zpAddr)} $spacing2 ${opcode.mnemonic} \$(${hexB(zpAddr)})" } AddrMode.IaX -> { // addressing mode used by the 65C02, put here for convenience val lo = memory[location++] val hi = memory[location++] val absAddr = lo.toInt() or (hi.toInt() shl 8) line += "${hexB(lo)} ${hexB(hi)} $spacing3 ${opcode.mnemonic} \$(${hexW(absAddr)},x)" } AddrMode.ZpX -> { val zpAddr = memory[location++] line += "${hexB(zpAddr)} $spacing2 ${opcode.mnemonic} \$${hexB(zpAddr)},x" } AddrMode.ZpY -> { val zpAddr = memory[location++] line += "${hexB(zpAddr)} $spacing2 ${opcode.mnemonic} \$${hexB(zpAddr)},y" } AddrMode.Rel -> { val rel = memory[location++] val target = if (rel <= 0x7f) location + rel + baseAddress else location - (256 - rel) + baseAddress line += "${hexB(rel)} $spacing2 ${opcode.mnemonic} \$${hexW(target, true)}" } AddrMode.Abs -> { val lo = memory[location++] val hi = memory[location++] val absAddr = lo.toInt() or (hi.toInt() shl 8) line += "${hexB(lo)} ${hexB(hi)} $spacing3 ${opcode.mnemonic} \$${hexW(absAddr)}" } AddrMode.AbsX -> { val lo = memory[location++] val hi = memory[location++] val absAddr = lo.toInt() or (hi.toInt() shl 8) line += "${hexB(lo)} ${hexB(hi)} $spacing3 ${opcode.mnemonic} \$${hexW(absAddr)},x" } AddrMode.AbsY -> { val lo = memory[location++] val hi = memory[location++] val absAddr = lo.toInt() or (hi.toInt() shl 8) line += "${hexB(lo)} ${hexB(hi)} $spacing3 ${opcode.mnemonic} \$${hexW(absAddr)},y" } AddrMode.Ind -> { val lo = memory[location++] val hi = memory[location++] val indirectAddr = lo.toInt() or (hi.toInt() shl 8) line += "${hexB(lo)} ${hexB(hi)} $spacing3 ${opcode.mnemonic} (\$${hexW(indirectAddr)})" } AddrMode.IzX -> { val zpAddr = memory[location++] line += "${hexB(zpAddr)} $spacing2 ${opcode.mnemonic} (\$${hexB(zpAddr)},x)" } AddrMode.IzY -> { val zpAddr = memory[location++] line += "${hexB(zpAddr)} $spacing2 ${opcode.mnemonic} (\$${hexB(zpAddr)}),y" } } result.add(line) } return result } /** * Reset the cpu */ override fun reset() { regSP = 0xfd regPC = readWord(RESET_vector) regA = 0 regX = 0 regY = 0 regP.C = false regP.Z = false regP.I = true regP.D = false regP.B = false regP.V = false regP.N = false instrCycles = resetCycles // a reset takes time as well currentOpcode = 0 currentInstruction = instructions[0] } /** * Process once clock cycle in the cpu */ override fun clock() { if (instrCycles == 0) { if (pendingInterrupt != null) { // NMI or IRQ interrupt. // handled by the BRK instruction logic. currentOpcode = 0 currentInstruction = instructions[0] } else { // no interrupt, fetch next instruction from memory currentOpcode = read(regPC) currentInstruction = instructions[currentOpcode] tracing?.invoke(logState()) breakpoints[regPC]?.let { breakpoint -> val oldPC = regPC val result = breakpoint(this, regPC) if(result.newPC!=null) regPC = result.newPC if (regPC != oldPC) return clock() else if(result.newOpcode!=null) { currentOpcode = result.newOpcode currentInstruction = instructions[currentOpcode] } } if (stopOnBrk && currentOpcode == 0) { throw InstructionError("stopped on BRK instruction at ${hexW(regPC)}") } } regPC++ instrCycles = currentInstruction.cycles applyAddressingMode(currentInstruction.mode) dispatchOpcode(currentOpcode) } instrCycles-- totalCycles++ } /** * Execute one single complete instruction */ open fun step() { while (instrCycles > 0) clock() clock() while (instrCycles > 0) clock() } fun nmi(source: BusComponent) { pendingInterrupt = Pair(true, source) } fun irq(source: BusComponent) { if (!regP.I) pendingInterrupt = Pair(false, source) } fun logState(): String = "cycle:$totalCycles - pc=${hexW(regPC)} " + "A=${hexB(regA)} " + "X=${hexB(regX)} " + "Y=${hexB(regY)} " + "SP=${hexB(regSP)} " + " n=" + (if (regP.N) "1" else "0") + " v=" + (if (regP.V) "1" else "0") + " b=" + (if (regP.B) "1" else "0") + " d=" + (if (regP.D) "1" else "0") + " i=" + (if (regP.I) "1" else "0") + " z=" + (if (regP.Z) "1" else "0") + " c=" + (if (regP.C) "1" else "0") + " icycles=$instrCycles instr=${hexB(currentOpcode)}:${currentInstruction.mnemonic}" protected fun getFetched() = if (currentInstruction.mode == AddrMode.Imm || currentInstruction.mode == AddrMode.Acc || currentInstruction.mode == AddrMode.Imp ) fetchedData else read(fetchedAddress) protected fun readPc(): Int = bus.read(regPC++).toInt() protected fun pushStackAddr(address: Address) { val lo = address and 0xff val hi = (address ushr 8) pushStack(hi) pushStack(lo) } protected fun pushStack(status: StatusRegister) { pushStack(status.asByte().toInt()) } protected fun pushStack(data: Int) { write(regSP or 0x0100, data) regSP = (regSP - 1) and 0xff } protected fun popStack(): Int { regSP = (regSP + 1) and 0xff return read(regSP or 0x0100) } protected fun popStackAddr(): Address { val lo = popStack() val hi = popStack() return lo or (hi shl 8) } protected fun read(address: Address): Int = bus.read(address).toInt() protected fun readWord(address: Address): Int = bus.read(address).toInt() or (bus.read(address + 1).toInt() shl 8) protected fun write(address: Address, data: Int) = bus.write(address, data.toShort()) // opcodes table from http://www.oxyron.de/html/opcodes02.html protected open val instructions: Array = listOf( /* 00 */ Instruction("brk", AddrMode.Imp, 7), /* 01 */ Instruction("ora", AddrMode.IzX, 6), /* 02 */ Instruction("???", AddrMode.Imp, 2), /* 03 */ Instruction("slo", AddrMode.IzX, 8), /* 04 */ Instruction("nop", AddrMode.Zp, 3), /* 05 */ Instruction("ora", AddrMode.Zp, 3), /* 06 */ Instruction("asl", AddrMode.Zp, 5), /* 07 */ Instruction("slo", AddrMode.Zp, 5), /* 08 */ Instruction("php", AddrMode.Imp, 3), /* 09 */ Instruction("ora", AddrMode.Imm, 2), /* 0a */ Instruction("asl", AddrMode.Acc, 2), /* 0b */ Instruction("anc", AddrMode.Imm, 2), /* 0c */ Instruction("nop", AddrMode.Abs, 4), /* 0d */ Instruction("ora", AddrMode.Abs, 4), /* 0e */ Instruction("asl", AddrMode.Abs, 6), /* 0f */ Instruction("slo", AddrMode.Abs, 6), /* 10 */ Instruction("bpl", AddrMode.Rel, 2), /* 11 */ Instruction("ora", AddrMode.IzY, 5), /* 12 */ Instruction("???", AddrMode.Imp, 2), /* 13 */ Instruction("slo", AddrMode.IzY, 8), /* 14 */ Instruction("nop", AddrMode.ZpX, 4), /* 15 */ Instruction("ora", AddrMode.ZpX, 4), /* 16 */ Instruction("asl", AddrMode.ZpX, 6), /* 17 */ Instruction("slo", AddrMode.ZpX, 6), /* 18 */ Instruction("clc", AddrMode.Imp, 2), /* 19 */ Instruction("ora", AddrMode.AbsY, 4), /* 1a */ Instruction("nop", AddrMode.Imp, 2), /* 1b */ Instruction("slo", AddrMode.AbsY, 7), /* 1c */ Instruction("nop", AddrMode.AbsX, 4), /* 1d */ Instruction("ora", AddrMode.AbsX, 4), /* 1e */ Instruction("asl", AddrMode.AbsX, 7), /* 1f */ Instruction("slo", AddrMode.AbsX, 7), /* 20 */ Instruction("jsr", AddrMode.Abs, 6), /* 21 */ Instruction("and", AddrMode.IzX, 6), /* 22 */ Instruction("???", AddrMode.Imp, 2), /* 23 */ Instruction("rla", AddrMode.IzX, 8), /* 24 */ Instruction("bit", AddrMode.Zp, 3), /* 25 */ Instruction("and", AddrMode.Zp, 3), /* 26 */ Instruction("rol", AddrMode.Zp, 5), /* 27 */ Instruction("rla", AddrMode.Zp, 5), /* 28 */ Instruction("plp", AddrMode.Imp, 4), /* 29 */ Instruction("and", AddrMode.Imm, 2), /* 2a */ Instruction("rol", AddrMode.Acc, 2), /* 2b */ Instruction("anc", AddrMode.Imm, 2), /* 2c */ Instruction("bit", AddrMode.Abs, 4), /* 2d */ Instruction("and", AddrMode.Abs, 4), /* 2e */ Instruction("rol", AddrMode.Abs, 6), /* 2f */ Instruction("rla", AddrMode.Abs, 6), /* 30 */ Instruction("bmi", AddrMode.Rel, 2), /* 31 */ Instruction("and", AddrMode.IzY, 5), /* 32 */ Instruction("???", AddrMode.Imp, 2), /* 33 */ Instruction("rla", AddrMode.IzY, 8), /* 34 */ Instruction("nop", AddrMode.ZpX, 4), /* 35 */ Instruction("and", AddrMode.ZpX, 4), /* 36 */ Instruction("rol", AddrMode.ZpX, 6), /* 37 */ Instruction("rla", AddrMode.ZpX, 6), /* 38 */ Instruction("sec", AddrMode.Imp, 2), /* 39 */ Instruction("and", AddrMode.AbsY, 4), /* 3a */ Instruction("nop", AddrMode.Imp, 2), /* 3b */ Instruction("rla", AddrMode.AbsY, 7), /* 3c */ Instruction("nop", AddrMode.AbsX, 4), /* 3d */ Instruction("and", AddrMode.AbsX, 4), /* 3e */ Instruction("rol", AddrMode.AbsX, 7), /* 3f */ Instruction("rla", AddrMode.AbsX, 7), /* 40 */ Instruction("rti", AddrMode.Imp, 6), /* 41 */ Instruction("eor", AddrMode.IzX, 6), /* 42 */ Instruction("???", AddrMode.Imp, 2), /* 43 */ Instruction("sre", AddrMode.IzX, 8), /* 44 */ Instruction("nop", AddrMode.Zp, 3), /* 45 */ Instruction("eor", AddrMode.Zp, 3), /* 46 */ Instruction("lsr", AddrMode.Zp, 5), /* 47 */ Instruction("sre", AddrMode.Zp, 5), /* 48 */ Instruction("pha", AddrMode.Imp, 3), /* 49 */ Instruction("eor", AddrMode.Imm, 2), /* 4a */ Instruction("lsr", AddrMode.Acc, 2), /* 4b */ Instruction("alr", AddrMode.Imm, 2), /* 4c */ Instruction("jmp", AddrMode.Abs, 3), /* 4d */ Instruction("eor", AddrMode.Abs, 4), /* 4e */ Instruction("lsr", AddrMode.Abs, 6), /* 4f */ Instruction("sre", AddrMode.Abs, 6), /* 50 */ Instruction("bvc", AddrMode.Rel, 2), /* 51 */ Instruction("eor", AddrMode.IzY, 5), /* 52 */ Instruction("???", AddrMode.Imp, 2), /* 53 */ Instruction("sre", AddrMode.IzY, 8), /* 54 */ Instruction("nop", AddrMode.ZpX, 4), /* 55 */ Instruction("eor", AddrMode.ZpX, 4), /* 56 */ Instruction("lsr", AddrMode.ZpX, 6), /* 57 */ Instruction("sre", AddrMode.ZpX, 6), /* 58 */ Instruction("cli", AddrMode.Imp, 2), /* 59 */ Instruction("eor", AddrMode.AbsY, 4), /* 5a */ Instruction("nop", AddrMode.Imp, 2), /* 5b */ Instruction("sre", AddrMode.AbsY, 7), /* 5c */ Instruction("nop", AddrMode.AbsX, 4), /* 5d */ Instruction("eor", AddrMode.AbsX, 4), /* 5e */ Instruction("lsr", AddrMode.AbsX, 7), /* 5f */ Instruction("sre", AddrMode.AbsX, 7), /* 60 */ Instruction("rts", AddrMode.Imp, 6), /* 61 */ Instruction("adc", AddrMode.IzX, 6), /* 62 */ Instruction("???", AddrMode.Imp, 2), /* 63 */ Instruction("rra", AddrMode.IzX, 8), /* 64 */ Instruction("nop", AddrMode.Zp, 3), /* 65 */ Instruction("adc", AddrMode.Zp, 3), /* 66 */ Instruction("ror", AddrMode.Zp, 5), /* 67 */ Instruction("rra", AddrMode.Zp, 5), /* 68 */ Instruction("pla", AddrMode.Imp, 4), /* 69 */ Instruction("adc", AddrMode.Imm, 2), /* 6a */ Instruction("ror", AddrMode.Acc, 2), /* 6b */ Instruction("arr", AddrMode.Imm, 2), /* 6c */ Instruction("jmp", AddrMode.Ind, 5), /* 6d */ Instruction("adc", AddrMode.Abs, 4), /* 6e */ Instruction("ror", AddrMode.Abs, 6), /* 6f */ Instruction("rra", AddrMode.Abs, 6), /* 70 */ Instruction("bvs", AddrMode.Rel, 2), /* 71 */ Instruction("adc", AddrMode.IzY, 5), /* 72 */ Instruction("???", AddrMode.Imp, 2), /* 73 */ Instruction("rra", AddrMode.IzY, 8), /* 74 */ Instruction("nop", AddrMode.ZpX, 4), /* 75 */ Instruction("adc", AddrMode.ZpX, 4), /* 76 */ Instruction("ror", AddrMode.ZpX, 6), /* 77 */ Instruction("rra", AddrMode.ZpX, 6), /* 78 */ Instruction("sei", AddrMode.Imp, 2), /* 79 */ Instruction("adc", AddrMode.AbsY, 4), /* 7a */ Instruction("nop", AddrMode.Imp, 2), /* 7b */ Instruction("rra", AddrMode.AbsY, 7), /* 7c */ Instruction("nop", AddrMode.AbsX, 4), /* 7d */ Instruction("adc", AddrMode.AbsX, 4), /* 7e */ Instruction("ror", AddrMode.AbsX, 7), /* 7f */ Instruction("rra", AddrMode.AbsX, 7), /* 80 */ Instruction("nop", AddrMode.Imm, 2), /* 81 */ Instruction("sta", AddrMode.IzX, 6), /* 82 */ Instruction("nop", AddrMode.Imm, 2), /* 83 */ Instruction("sax", AddrMode.IzX, 6), /* 84 */ Instruction("sty", AddrMode.Zp, 3), /* 85 */ Instruction("sta", AddrMode.Zp, 3), /* 86 */ Instruction("stx", AddrMode.Zp, 3), /* 87 */ Instruction("sax", AddrMode.Zp, 3), /* 88 */ Instruction("dey", AddrMode.Imp, 2), /* 89 */ Instruction("nop", AddrMode.Imm, 2), /* 8a */ Instruction("txa", AddrMode.Imp, 2), /* 8b */ Instruction("xaa", AddrMode.Imm, 2), /* 8c */ Instruction("sty", AddrMode.Abs, 4), /* 8d */ Instruction("sta", AddrMode.Abs, 4), /* 8e */ Instruction("stx", AddrMode.Abs, 4), /* 8f */ Instruction("sax", AddrMode.Abs, 4), /* 90 */ Instruction("bcc", AddrMode.Rel, 2), /* 91 */ Instruction("sta", AddrMode.IzY, 6), /* 92 */ Instruction("???", AddrMode.Imp, 2), /* 93 */ Instruction("ahx", AddrMode.IzY, 6), /* 94 */ Instruction("sty", AddrMode.ZpX, 4), /* 95 */ Instruction("sta", AddrMode.ZpX, 4), /* 96 */ Instruction("stx", AddrMode.ZpY, 4), /* 97 */ Instruction("sax", AddrMode.ZpY, 4), /* 98 */ Instruction("tya", AddrMode.Imp, 2), /* 99 */ Instruction("sta", AddrMode.AbsY, 5), /* 9a */ Instruction("txs", AddrMode.Imp, 2), /* 9b */ Instruction("tas", AddrMode.AbsY, 5), /* 9c */ Instruction("shy", AddrMode.AbsX, 5), /* 9d */ Instruction("sta", AddrMode.AbsX, 5), /* 9e */ Instruction("shx", AddrMode.AbsY, 5), /* 9f */ Instruction("ahx", AddrMode.AbsY, 5), /* a0 */ Instruction("ldy", AddrMode.Imm, 2), /* a1 */ Instruction("lda", AddrMode.IzX, 6), /* a2 */ Instruction("ldx", AddrMode.Imm, 2), /* a3 */ Instruction("lax", AddrMode.IzX, 6), /* a4 */ Instruction("ldy", AddrMode.Zp, 3), /* a5 */ Instruction("lda", AddrMode.Zp, 3), /* a6 */ Instruction("ldx", AddrMode.Zp, 3), /* a7 */ Instruction("lax", AddrMode.Zp, 3), /* a8 */ Instruction("tay", AddrMode.Imp, 2), /* a9 */ Instruction("lda", AddrMode.Imm, 2), /* aa */ Instruction("tax", AddrMode.Imp, 2), /* ab */ Instruction("lax", AddrMode.Imm, 2), /* ac */ Instruction("ldy", AddrMode.Abs, 4), /* ad */ Instruction("lda", AddrMode.Abs, 4), /* ae */ Instruction("ldx", AddrMode.Abs, 4), /* af */ Instruction("lax", AddrMode.Abs, 4), /* b0 */ Instruction("bcs", AddrMode.Rel, 2), /* b1 */ Instruction("lda", AddrMode.IzY, 5), /* b2 */ Instruction("???", AddrMode.Imp, 2), /* b3 */ Instruction("lax", AddrMode.IzY, 5), /* b4 */ Instruction("ldy", AddrMode.ZpX, 4), /* b5 */ Instruction("lda", AddrMode.ZpX, 4), /* b6 */ Instruction("ldx", AddrMode.ZpY, 4), /* b7 */ Instruction("lax", AddrMode.ZpY, 4), /* b8 */ Instruction("clv", AddrMode.Imp, 2), /* b9 */ Instruction("lda", AddrMode.AbsY, 4), /* ba */ Instruction("tsx", AddrMode.Imp, 2), /* bb */ Instruction("las", AddrMode.AbsY, 4), /* bc */ Instruction("ldy", AddrMode.AbsX, 4), /* bd */ Instruction("lda", AddrMode.AbsX, 4), /* be */ Instruction("ldx", AddrMode.AbsY, 4), /* bf */ Instruction("lax", AddrMode.AbsY, 4), /* c0 */ Instruction("cpy", AddrMode.Imm, 2), /* c1 */ Instruction("cmp", AddrMode.IzX, 6), /* c2 */ Instruction("nop", AddrMode.Imm, 2), /* c3 */ Instruction("dcp", AddrMode.IzX, 8), /* c4 */ Instruction("cpy", AddrMode.Zp, 3), /* c5 */ Instruction("cmp", AddrMode.Zp, 3), /* c6 */ Instruction("dec", AddrMode.Zp, 5), /* c7 */ Instruction("dcp", AddrMode.Zp, 5), /* c8 */ Instruction("iny", AddrMode.Imp, 2), /* c9 */ Instruction("cmp", AddrMode.Imm, 2), /* ca */ Instruction("dex", AddrMode.Imp, 2), /* cb */ Instruction("axs", AddrMode.Imm, 2), /* cc */ Instruction("cpy", AddrMode.Abs, 4), /* cd */ Instruction("cmp", AddrMode.Abs, 4), /* ce */ Instruction("dec", AddrMode.Abs, 6), /* cf */ Instruction("dcp", AddrMode.Abs, 6), /* d0 */ Instruction("bne", AddrMode.Rel, 2), /* d1 */ Instruction("cmp", AddrMode.IzY, 5), /* d2 */ Instruction("???", AddrMode.Imp, 2), /* d3 */ Instruction("dcp", AddrMode.IzY, 8), /* d4 */ Instruction("nop", AddrMode.ZpX, 4), /* d5 */ Instruction("cmp", AddrMode.ZpX, 4), /* d6 */ Instruction("dec", AddrMode.ZpX, 6), /* d7 */ Instruction("dcp", AddrMode.ZpX, 6), /* d8 */ Instruction("cld", AddrMode.Imp, 2), /* d9 */ Instruction("cmp", AddrMode.AbsY, 4), /* da */ Instruction("nop", AddrMode.Imp, 2), /* db */ Instruction("dcp", AddrMode.AbsY, 7), /* dc */ Instruction("nop", AddrMode.AbsX, 4), /* dd */ Instruction("cmp", AddrMode.AbsX, 4), /* de */ Instruction("dec", AddrMode.AbsX, 7), /* df */ Instruction("dcp", AddrMode.AbsX, 7), /* e0 */ Instruction("cpx", AddrMode.Imm, 2), /* e1 */ Instruction("sbc", AddrMode.IzX, 6), /* e2 */ Instruction("nop", AddrMode.Imm, 2), /* e3 */ Instruction("isc", AddrMode.IzX, 8), /* e4 */ Instruction("cpx", AddrMode.Zp, 3), /* e5 */ Instruction("sbc", AddrMode.Zp, 3), /* e6 */ Instruction("inc", AddrMode.Zp, 5), /* e7 */ Instruction("isc", AddrMode.Zp, 5), /* e8 */ Instruction("inx", AddrMode.Imp, 2), /* e9 */ Instruction("sbc", AddrMode.Imm, 2), /* ea */ Instruction("nop", AddrMode.Imp, 2), /* eb */ Instruction("sbc", AddrMode.Imm, 2), /* ec */ Instruction("cpx", AddrMode.Abs, 4), /* ed */ Instruction("sbc", AddrMode.Abs, 4), /* ee */ Instruction("inc", AddrMode.Abs, 6), /* ef */ Instruction("isc", AddrMode.Abs, 6), /* f0 */ Instruction("beq", AddrMode.Rel, 2), /* f1 */ Instruction("sbc", AddrMode.IzY, 5), /* f2 */ Instruction("???", AddrMode.Imp, 2), /* f3 */ Instruction("isc", AddrMode.IzY, 8), /* f4 */ Instruction("nop", AddrMode.ZpX, 4), /* f5 */ Instruction("sbc", AddrMode.ZpX, 4), /* f6 */ Instruction("inc", AddrMode.ZpX, 6), /* f7 */ Instruction("isc", AddrMode.ZpX, 6), /* f8 */ Instruction("sed", AddrMode.Imp, 2), /* f9 */ Instruction("sbc", AddrMode.AbsY, 4), /* fa */ Instruction("nop", AddrMode.Imp, 2), /* fb */ Instruction("isc", AddrMode.AbsY, 7), /* fc */ Instruction("nop", AddrMode.AbsX, 4), /* fd */ Instruction("sbc", AddrMode.AbsX, 4), /* fe */ Instruction("inc", AddrMode.AbsX, 7), /* ff */ Instruction("isc", AddrMode.AbsX, 7) ).toTypedArray() protected open fun applyAddressingMode(addrMode: AddrMode) { when (addrMode) { AddrMode.Imp, AddrMode.Acc -> { fetchedData = regA } AddrMode.Imm -> { fetchedData = readPc() } AddrMode.Zp -> { fetchedAddress = readPc() } AddrMode.ZpX -> { // note: zeropage index will not leave Zp when page boundary is crossed fetchedAddress = (readPc() + regX) and 0xff } AddrMode.ZpY -> { // note: zeropage index will not leave Zp when page boundary is crossed fetchedAddress = (readPc() + regY) and 0xff } AddrMode.Rel -> { val relative = readPc() fetchedAddress = if (relative >= 0x80) { regPC - (256 - relative) and 0xffff } else regPC + relative and 0xffff } AddrMode.Abs -> { val lo = readPc() val hi = readPc() fetchedAddress = lo or (hi shl 8) } AddrMode.AbsX -> { val lo = readPc() val hi = readPc() fetchedAddress = regX + (lo or (hi shl 8)) and 0xffff } AddrMode.AbsY -> { val lo = readPc() val hi = readPc() fetchedAddress = regY + (lo or (hi shl 8)) and 0xffff } AddrMode.Ind -> { // not able to fetch an address which crosses the page boundary (6502, fixed in 65C02) var lo = readPc() var hi = readPc() fetchedAddress = lo or (hi shl 8) if (lo == 0xff) { // emulate bug lo = read(fetchedAddress) hi = read(fetchedAddress and 0xff00) } else { // normal behavior lo = read(fetchedAddress) hi = read(fetchedAddress + 1) } fetchedAddress = lo or (hi shl 8) } AddrMode.IzX -> { // note: not able to fetch an adress which crosses the page boundary fetchedAddress = readPc() val lo = read((fetchedAddress + regX) and 0xff) val hi = read((fetchedAddress + regX + 1) and 0xff) fetchedAddress = lo or (hi shl 8) } AddrMode.IzY -> { // note: not able to fetch an adress which crosses the page boundary fetchedAddress = readPc() val lo = read(fetchedAddress) val hi = read((fetchedAddress + 1) and 0xff) fetchedAddress = regY + (lo or (hi shl 8)) and 0xffff } AddrMode.Zpr, AddrMode.Izp, AddrMode.IaX -> { // addressing mode used by the 65C02 only throw InstructionError("65c02 addressing mode not implemented on 6502") } } } protected open fun dispatchOpcode(opcode: Int) { when (opcode) { 0x00 -> iBrk() 0x01 -> iOra() 0x02 -> iInvalid() 0x03 -> iSlo() 0x04 -> iNop() 0x05 -> iOra() 0x06 -> iAsl() 0x07 -> iSlo() 0x08 -> iPhp() 0x09 -> iOra() 0x0a -> iAsl() 0x0b -> iAnc() 0x0c -> iNop() 0x0d -> iOra() 0x0e -> iAsl() 0x0f -> iSlo() 0x10 -> iBpl() 0x11 -> iOra() 0x12 -> iInvalid() 0x13 -> iSlo() 0x14 -> iNop() 0x15 -> iOra() 0x16 -> iAsl() 0x17 -> iSlo() 0x18 -> iClc() 0x19 -> iOra() 0x1a -> iNop() 0x1b -> iSlo() 0x1c -> iNop() 0x1d -> iOra() 0x1e -> iAsl() 0x1f -> iSlo() 0x20 -> iJsr() 0x21 -> iAnd() 0x22 -> iInvalid() 0x23 -> iRla() 0x24 -> iBit() 0x25 -> iAnd() 0x26 -> iRol() 0x27 -> iRla() 0x28 -> iPlp() 0x29 -> iAnd() 0x2a -> iRol() 0x2b -> iAnc() 0x2c -> iBit() 0x2d -> iAnd() 0x2e -> iRol() 0x2f -> iRla() 0x30 -> iBmi() 0x31 -> iAnd() 0x32 -> iInvalid() 0x33 -> iRla() 0x34 -> iNop() 0x35 -> iAnd() 0x36 -> iRol() 0x37 -> iRla() 0x38 -> iSec() 0x39 -> iAnd() 0x3a -> iNop() 0x3b -> iRla() 0x3c -> iNop() 0x3d -> iAnd() 0x3e -> iRol() 0x3f -> iRla() 0x40 -> iRti() 0x41 -> iEor() 0x42 -> iInvalid() 0x43 -> iSre() 0x44 -> iNop() 0x45 -> iEor() 0x46 -> iLsr() 0x47 -> iSre() 0x48 -> iPha() 0x49 -> iEor() 0x4a -> iLsr() 0x4b -> iAlr() 0x4c -> iJmp() 0x4d -> iEor() 0x4e -> iLsr() 0x4f -> iSre() 0x50 -> iBvc() 0x51 -> iEor() 0x52 -> iInvalid() 0x53 -> iSre() 0x54 -> iNop() 0x55 -> iEor() 0x56 -> iLsr() 0x57 -> iSre() 0x58 -> iCli() 0x59 -> iEor() 0x5a -> iNop() 0x5b -> iSre() 0x5c -> iNop() 0x5d -> iEor() 0x5e -> iLsr() 0x5f -> iSre() 0x60 -> iRts() 0x61 -> iAdc() 0x62 -> iInvalid() 0x63 -> iRra() 0x64 -> iNop() 0x65 -> iAdc() 0x66 -> iRor() 0x67 -> iRra() 0x68 -> iPla() 0x69 -> iAdc() 0x6a -> iRor() 0x6b -> iArr() 0x6c -> iJmp() 0x6d -> iAdc() 0x6e -> iRor() 0x6f -> iRra() 0x70 -> iBvs() 0x71 -> iAdc() 0x72 -> iInvalid() 0x73 -> iRra() 0x74 -> iNop() 0x75 -> iAdc() 0x76 -> iRor() 0x77 -> iRra() 0x78 -> iSei() 0x79 -> iAdc() 0x7a -> iNop() 0x7b -> iRra() 0x7c -> iNop() 0x7d -> iAdc() 0x7e -> iRor() 0x7f -> iRra() 0x80 -> iNop() 0x81 -> iSta() 0x82 -> iNop() 0x83 -> iSax() 0x84 -> iSty() 0x85 -> iSta() 0x86 -> iStx() 0x87 -> iSax() 0x88 -> iDey() 0x89 -> iNop() 0x8a -> iTxa() 0x8b -> iXaa() 0x8c -> iSty() 0x8d -> iSta() 0x8e -> iStx() 0x8f -> iSax() 0x90 -> iBcc() 0x91 -> iSta() 0x92 -> iInvalid() 0x93 -> iAhx() 0x94 -> iSty() 0x95 -> iSta() 0x96 -> iStx() 0x97 -> iSax() 0x98 -> iTya() 0x99 -> iSta() 0x9a -> iTxs() 0x9b -> iTas() 0x9c -> iShy() 0x9d -> iSta() 0x9e -> iShx() 0x9f -> iAhx() 0xa0 -> iLdy() 0xa1 -> iLda() 0xa2 -> iLdx() 0xa3 -> iLax() 0xa4 -> iLdy() 0xa5 -> iLda() 0xa6 -> iLdx() 0xa7 -> iLax() 0xa8 -> iTay() 0xa9 -> iLda() 0xaa -> iTax() 0xab -> iLax() 0xac -> iLdy() 0xad -> iLda() 0xae -> iLdx() 0xaf -> iLax() 0xb0 -> iBcs() 0xb1 -> iLda() 0xb2 -> iInvalid() 0xb3 -> iLax() 0xb4 -> iLdy() 0xb5 -> iLda() 0xb6 -> iLdx() 0xb7 -> iLax() 0xb8 -> iClv() 0xb9 -> iLda() 0xba -> iTsx() 0xbb -> iLas() 0xbc -> iLdy() 0xbd -> iLda() 0xbe -> iLdx() 0xbf -> iLax() 0xc0 -> iCpy() 0xc1 -> iCmp() 0xc2 -> iNop() 0xc3 -> iDcp() 0xc4 -> iCpy() 0xc5 -> iCmp() 0xc6 -> iDec() 0xc7 -> iDcp() 0xc8 -> iIny() 0xc9 -> iCmp() 0xca -> iDex() 0xcb -> iAxs() 0xcc -> iCpy() 0xcd -> iCmp() 0xce -> iDec() 0xcf -> iDcp() 0xd0 -> iBne() 0xd1 -> iCmp() 0xd2 -> iInvalid() 0xd3 -> iDcp() 0xd4 -> iNop() 0xd5 -> iCmp() 0xd6 -> iDec() 0xd7 -> iDcp() 0xd8 -> iCld() 0xd9 -> iCmp() 0xda -> iNop() 0xdb -> iDcp() 0xdc -> iNop() 0xdd -> iCmp() 0xde -> iDec() 0xdf -> iDcp() 0xe0 -> iCpx() 0xe1 -> iSbc() 0xe2 -> iNop() 0xe3 -> iIsc() 0xe4 -> iCpx() 0xe5 -> iSbc() 0xe6 -> iInc() 0xe7 -> iIsc() 0xe8 -> iInx() 0xe9 -> iSbc() 0xea -> iNop() 0xeb -> iSbc() 0xec -> iCpx() 0xed -> iSbc() 0xee -> iInc() 0xef -> iIsc() 0xf0 -> iBeq() 0xf1 -> iSbc() 0xf2 -> iInvalid() 0xf3 -> iIsc() 0xf4 -> iNop() 0xf5 -> iSbc() 0xf6 -> iInc() 0xf7 -> iIsc() 0xf8 -> iSed() 0xf9 -> iSbc() 0xfa -> iNop() 0xfb -> iIsc() 0xfc -> iNop() 0xfd -> iSbc() 0xfe -> iInc() 0xff -> iIsc() else -> { /* can't occur */ } } } // official instructions protected open fun iAdc() { val operand = getFetched() if (regP.D) { // BCD add // see http://www.6502.org/tutorials/decimal_mode.html // and http://nesdev.com/6502.txt // and https://sourceforge.net/p/vice-emu/code/HEAD/tree/trunk/vice/src/6510core.c#l598 // (the implementation below is based on the code used by Vice) var tmp = (regA and 0xf) + (operand and 0xf) + (if (regP.C) 1 else 0) if (tmp > 9) tmp += 6 tmp = if (tmp <= 0x0f) { (tmp and 0xf) + (regA and 0xf0) + (operand and 0xf0) } else { (tmp and 0xf) + (regA and 0xf0) + (operand and 0xf0) + 0x10 } regP.Z = regA + operand + (if (regP.C) 1 else 0) and 0xff == 0 regP.N = tmp and 0b10000000 != 0 regP.V = (regA xor tmp) and 0x80 != 0 && (regA xor operand) and 0b10000000 == 0 if (tmp and 0x1f0 > 0x90) tmp += 0x60 regP.C = tmp > 0xf0 // original: (tmp and 0xff0) > 0xf0 regA = tmp and 0xff } else { // normal add val tmp = operand + regA + if (regP.C) 1 else 0 regP.N = (tmp and 0b10000000) != 0 regP.Z = (tmp and 0xff) == 0 regP.V = (regA xor operand).inv() and (regA xor tmp) and 0b10000000 != 0 regP.C = tmp > 0xff regA = tmp and 0xff } } protected fun iAnd() { regA = regA and getFetched() regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } protected fun iAsl() { if (currentInstruction.mode == AddrMode.Acc) { regP.C = (regA and 0b10000000) != 0 regA = (regA shl 1) and 0xff regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } else { val data = read(fetchedAddress) regP.C = (data and 0b10000000) != 0 val shifted = (data shl 1) and 0xff write(fetchedAddress, shifted) regP.Z = shifted == 0 regP.N = (shifted and 0b10000000) != 0 } } protected fun iBcc() { if (!regP.C) regPC = fetchedAddress } protected fun iBcs() { if (regP.C) regPC = fetchedAddress } protected fun iBeq() { if (regP.Z) regPC = fetchedAddress } protected open fun iBit() { val operand = getFetched() regP.Z = (regA and operand) == 0 regP.V = (operand and 0b01000000) != 0 regP.N = (operand and 0b10000000) != 0 } protected fun iBmi() { if (regP.N) regPC = fetchedAddress } protected fun iBne() { if (!regP.Z) regPC = fetchedAddress } protected fun iBpl() { if (!regP.N) regPC = fetchedAddress } protected open fun iBrk() { // handle BRK ('software interrupt') or a real hardware IRQ val interrupt = pendingInterrupt val nmi = interrupt?.first == true if (interrupt != null) { pushStackAddr(regPC - 1) } else { regPC++ pushStackAddr(regPC) } regP.B = interrupt == null pushStack(regP) regP.I = true // interrupts are now disabled // NMOS 6502 doesn't clear the D flag (CMOS 65C02 version does...) regPC = readWord(if (nmi) NMI_vector else IRQ_vector) pendingInterrupt = null } protected fun iBvc() { if (!regP.V) regPC = fetchedAddress } protected fun iBvs() { if (regP.V) regPC = fetchedAddress } protected fun iClc() { regP.C = false } protected fun iCld() { regP.D = false } protected fun iCli() { regP.I = false } protected fun iClv() { regP.V = false } protected fun iCmp() { val fetched = getFetched() regP.C = regA >= fetched regP.Z = regA == fetched regP.N = ((regA - fetched) and 0b10000000) != 0 } protected fun iCpx() { val fetched = getFetched() regP.C = regX >= fetched regP.Z = regX == fetched regP.N = ((regX - fetched) and 0b10000000) != 0 } protected fun iCpy() { val fetched = getFetched() regP.C = regY >= fetched regP.Z = regY == fetched regP.N = ((regY - fetched) and 0b10000000) != 0 } protected open fun iDec() { val data = (read(fetchedAddress) - 1) and 0xff write(fetchedAddress, data) regP.Z = data == 0 regP.N = (data and 0b10000000) != 0 } protected fun iDex() { regX = (regX - 1) and 0xff regP.Z = regX == 0 regP.N = (regX and 0b10000000) != 0 } protected fun iDey() { regY = (regY - 1) and 0xff regP.Z = regY == 0 regP.N = (regY and 0b10000000) != 0 } protected fun iEor() { regA = regA xor getFetched() regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } protected open fun iInc() { val data = (read(fetchedAddress) + 1) and 0xff write(fetchedAddress, data) regP.Z = data == 0 regP.N = (data and 0b10000000) != 0 } protected fun iInx() { regX = (regX + 1) and 0xff regP.Z = regX == 0 regP.N = (regX and 0b10000000) != 0 } protected fun iIny() { regY = (regY + 1) and 0xff regP.Z = regY == 0 regP.N = (regY and 0b10000000) != 0 } protected fun iJmp() { regPC = fetchedAddress } protected fun iJsr() { pushStackAddr(regPC - 1) regPC = fetchedAddress } protected fun iLda() { regA = getFetched() regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } protected fun iLdx() { regX = getFetched() regP.Z = regX == 0 regP.N = (regX and 0b10000000) != 0 } protected fun iLdy() { regY = getFetched() regP.Z = regY == 0 regP.N = (regY and 0b10000000) != 0 } protected fun iLsr() { if (currentInstruction.mode == AddrMode.Acc) { regP.C = (regA and 1) == 1 regA = regA ushr 1 regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } else { val data = read(fetchedAddress) regP.C = (data and 1) == 1 val shifted = data ushr 1 write(fetchedAddress, shifted) regP.Z = shifted == 0 regP.N = (shifted and 0b10000000) != 0 } } protected fun iNop() {} protected fun iOra() { regA = regA or getFetched() regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } protected fun iPha() { pushStack(regA) } protected fun iPhp() { val origBreakflag = regP.B regP.B = true pushStack(regP) regP.B = origBreakflag } protected fun iPla() { regA = popStack() regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } protected fun iPlp() { regP.fromByte(popStack()) regP.B = true // break is always 1 except when pushing on stack } protected fun iRol() { val oldCarry = regP.C if (currentInstruction.mode == AddrMode.Acc) { regP.C = (regA and 0b10000000) != 0 regA = (regA shl 1 and 0xff) or (if (oldCarry) 1 else 0) regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } else { val data = read(fetchedAddress) regP.C = (data and 0b10000000) != 0 val shifted = (data shl 1 and 0xff) or (if (oldCarry) 1 else 0) write(fetchedAddress, shifted) regP.Z = shifted == 0 regP.N = (shifted and 0b10000000) != 0 } } protected fun iRor() { val oldCarry = regP.C if (currentInstruction.mode == AddrMode.Acc) { regP.C = (regA and 1) == 1 regA = (regA ushr 1) or (if (oldCarry) 0b10000000 else 0) regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } else { val data = read(fetchedAddress) regP.C = (data and 1) == 1 val shifted = (data ushr 1) or (if (oldCarry) 0b10000000 else 0) write(fetchedAddress, shifted) regP.Z = shifted == 0 regP.N = (shifted and 0b10000000) != 0 } } protected fun iRti() { regP.fromByte(popStack()) regP.B = true // break is always 1 except when pushing on stack regPC = popStackAddr() } protected fun iRts() { regPC = popStackAddr() regPC = (regPC + 1) and 0xffff } protected open fun iSbc() { val operand = getFetched() val tmp = (regA - operand - if (regP.C) 0 else 1) and 0xffff regP.V = (regA xor operand) and (regA xor tmp) and 0b10000000 != 0 if (regP.D) { // BCD subtract // see http://www.6502.org/tutorials/decimal_mode.html // and http://nesdev.com/6502.txt // and https://sourceforge.net/p/vice-emu/code/HEAD/tree/trunk/vice/src/6510core.c#l1396 // (the implementation below is based on the code used by Vice) var tmpA = ((regA and 0xf) - (operand and 0xf) - if (regP.C) 0 else 1) and 0xffff tmpA = if ((tmpA and 0x10) != 0) { ((tmpA - 6) and 0xf) or (regA and 0xf0) - (operand and 0xf0) - 0x10 } else { (tmpA and 0xf) or (regA and 0xf0) - (operand and 0xf0) } if ((tmpA and 0x100) != 0) tmpA -= 0x60 regA = tmpA and 0xff } else { // normal subtract regA = tmp and 0xff } regP.C = tmp < 0x100 regP.Z = (tmp and 0xff) == 0 regP.N = (tmp and 0b10000000) != 0 } protected fun iSec() { regP.C = true } protected fun iSed() { regP.D = true } protected fun iSei() { regP.I = true } protected fun iSta() { write(fetchedAddress, regA) } protected fun iStx() { write(fetchedAddress, regX) } protected fun iSty() { write(fetchedAddress, regY) } protected fun iTax() { regX = regA regP.Z = regX == 0 regP.N = (regX and 0b10000000) != 0 } protected fun iTay() { regY = regA regP.Z = regY == 0 regP.N = (regY and 0b10000000) != 0 } protected fun iTsx() { regX = regSP regP.Z = regX == 0 regP.N = (regX and 0b10000000) != 0 } protected fun iTxa() { regA = regX regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } protected fun iTxs() { regSP = regX } protected fun iTya() { regA = regY regP.Z = regA == 0 regP.N = (regA and 0b10000000) != 0 } // unofficial/illegal 6502 instructions private fun iAhx() { TODO("ahx - ('illegal' instruction)") } private fun iAlr() { TODO("alr=asr - ('illegal' instruction)") } private fun iAnc() { TODO("anc - ('illegal' instruction)") } private fun iArr() { TODO("arr - ('illegal' instruction)") } private fun iAxs() { TODO("axs - ('illegal' instruction)") } private fun iDcp() { TODO("dcp - ('illegal' instruction)") } private fun iIsc() { TODO("isc=isb - ('illegal' instruction)") } private fun iLas() { TODO("las=lar - ('illegal' instruction)") } private fun iLax() { TODO("lax - ('illegal' instruction)") } private fun iRla() { TODO("rla - ('illegal' instruction)") } private fun iRra() { TODO("rra - ('illegal' instruction)") } private fun iSax() { TODO("sax - ('illegal' instruction)") } private fun iShx() { TODO("shx - ('illegal' instruction)") } private fun iShy() { TODO("shy - ('illegal' instruction)") } private fun iSlo() { TODO("slo=aso - ('illegal' instruction)") } private fun iSre() { TODO("sre=lse - ('illegal' instruction)") } private fun iTas() { TODO("tas - ('illegal' instruction)") } private fun iXaa() { TODO("xaa - ('illegal' instruction)") } // invalid instruction (JAM / KIL) private fun iInvalid() { throw InstructionError( "invalid instruction encountered: opcode=${hexB(currentOpcode)} instr=${currentInstruction.mnemonic}" ) } }