2004-09-01 22:55:40 +00:00
|
|
|
//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
|
2005-04-21 20:48:15 +00:00
|
|
|
//
|
2004-02-28 06:26:20 +00:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-29 19:59:42 +00:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2005-04-21 20:48:15 +00:00
|
|
|
//
|
2004-02-28 06:26:20 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This header contains common, non-processor-specific data structures and
|
|
|
|
// constants for the ELF file format.
|
2005-04-21 20:48:15 +00:00
|
|
|
//
|
2010-07-13 00:24:59 +00:00
|
|
|
// The details of the ELF32 bits in this file are largely based on the Tool
|
|
|
|
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
|
|
|
|
// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
|
|
|
|
// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
|
2004-02-28 06:26:20 +00:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2004-09-01 22:55:40 +00:00
|
|
|
#ifndef LLVM_SUPPORT_ELF_H
|
|
|
|
#define LLVM_SUPPORT_ELF_H
|
|
|
|
|
2010-11-29 18:16:10 +00:00
|
|
|
#include "llvm/Support/DataTypes.h"
|
2004-02-28 06:26:20 +00:00
|
|
|
#include <cstring>
|
|
|
|
|
|
|
|
namespace llvm {
|
|
|
|
|
|
|
|
namespace ELF {
|
|
|
|
|
|
|
|
typedef uint32_t Elf32_Addr; // Program address
|
|
|
|
typedef uint32_t Elf32_Off; // File offset
|
2011-10-13 17:33:52 +00:00
|
|
|
typedef uint16_t Elf32_Half;
|
2004-02-28 06:26:20 +00:00
|
|
|
typedef uint32_t Elf32_Word;
|
2011-10-13 17:33:52 +00:00
|
|
|
typedef int32_t Elf32_Sword;
|
2004-02-28 06:26:20 +00:00
|
|
|
|
2004-02-29 06:30:25 +00:00
|
|
|
typedef uint64_t Elf64_Addr;
|
|
|
|
typedef uint64_t Elf64_Off;
|
2011-10-13 17:33:52 +00:00
|
|
|
typedef uint16_t Elf64_Half;
|
2004-02-29 06:30:25 +00:00
|
|
|
typedef uint32_t Elf64_Word;
|
2011-10-13 17:33:52 +00:00
|
|
|
typedef int32_t Elf64_Sword;
|
2004-02-29 06:30:25 +00:00
|
|
|
typedef uint64_t Elf64_Xword;
|
2011-10-13 17:33:52 +00:00
|
|
|
typedef int64_t Elf64_Sxword;
|
2004-02-29 06:30:25 +00:00
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// Object file magic string.
|
2004-02-28 22:06:03 +00:00
|
|
|
static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
|
2004-02-28 06:26:20 +00:00
|
|
|
|
2010-07-13 00:24:59 +00:00
|
|
|
// e_ident size and indices.
|
|
|
|
enum {
|
|
|
|
EI_MAG0 = 0, // File identification index.
|
|
|
|
EI_MAG1 = 1, // File identification index.
|
|
|
|
EI_MAG2 = 2, // File identification index.
|
|
|
|
EI_MAG3 = 3, // File identification index.
|
|
|
|
EI_CLASS = 4, // File class.
|
|
|
|
EI_DATA = 5, // Data encoding.
|
|
|
|
EI_VERSION = 6, // File version.
|
|
|
|
EI_OSABI = 7, // OS/ABI identification.
|
|
|
|
EI_ABIVERSION = 8, // ABI version.
|
|
|
|
EI_PAD = 9, // Start of padding bytes.
|
|
|
|
EI_NIDENT = 16 // Number of bytes in e_ident.
|
|
|
|
};
|
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
struct Elf32_Ehdr {
|
2010-07-13 00:24:59 +00:00
|
|
|
unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
|
2004-02-28 06:26:20 +00:00
|
|
|
Elf32_Half e_type; // Type of file (see ET_* below)
|
|
|
|
Elf32_Half e_machine; // Required architecture for this file (see EM_*)
|
|
|
|
Elf32_Word e_version; // Must be equal to 1
|
|
|
|
Elf32_Addr e_entry; // Address to jump to in order to start program
|
|
|
|
Elf32_Off e_phoff; // Program header table's file offset, in bytes
|
|
|
|
Elf32_Off e_shoff; // Section header table's file offset, in bytes
|
|
|
|
Elf32_Word e_flags; // Processor-specific flags
|
|
|
|
Elf32_Half e_ehsize; // Size of ELF header, in bytes
|
|
|
|
Elf32_Half e_phentsize; // Size of an entry in the program header table
|
|
|
|
Elf32_Half e_phnum; // Number of entries in the program header table
|
|
|
|
Elf32_Half e_shentsize; // Size of an entry in the section header table
|
|
|
|
Elf32_Half e_shnum; // Number of entries in the section header table
|
|
|
|
Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
|
2010-07-12 21:34:37 +00:00
|
|
|
bool checkMagic() const {
|
2010-07-12 22:36:08 +00:00
|
|
|
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
|
2004-02-28 06:26:20 +00:00
|
|
|
}
|
2010-07-13 00:24:59 +00:00
|
|
|
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
|
|
|
|
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
|
2004-02-28 06:26:20 +00:00
|
|
|
};
|
|
|
|
|
2004-02-29 06:30:25 +00:00
|
|
|
// 64-bit ELF header. Fields are the same as for ELF32, but with different
|
|
|
|
// types (see above).
|
2004-02-29 06:33:28 +00:00
|
|
|
struct Elf64_Ehdr {
|
2010-07-13 00:24:59 +00:00
|
|
|
unsigned char e_ident[EI_NIDENT];
|
2011-10-13 17:33:52 +00:00
|
|
|
Elf64_Half e_type;
|
|
|
|
Elf64_Half e_machine;
|
|
|
|
Elf64_Word e_version;
|
2004-02-29 06:30:25 +00:00
|
|
|
Elf64_Addr e_entry;
|
|
|
|
Elf64_Off e_phoff;
|
|
|
|
Elf64_Off e_shoff;
|
2011-10-13 17:33:52 +00:00
|
|
|
Elf64_Word e_flags;
|
|
|
|
Elf64_Half e_ehsize;
|
|
|
|
Elf64_Half e_phentsize;
|
|
|
|
Elf64_Half e_phnum;
|
|
|
|
Elf64_Half e_shentsize;
|
|
|
|
Elf64_Half e_shnum;
|
|
|
|
Elf64_Half e_shstrndx;
|
2010-07-13 00:24:59 +00:00
|
|
|
bool checkMagic() const {
|
|
|
|
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
|
|
|
|
}
|
|
|
|
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
|
|
|
|
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
|
2004-02-29 06:33:28 +00:00
|
|
|
};
|
2004-02-29 06:30:25 +00:00
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// File types
|
|
|
|
enum {
|
|
|
|
ET_NONE = 0, // No file type
|
|
|
|
ET_REL = 1, // Relocatable file
|
|
|
|
ET_EXEC = 2, // Executable file
|
|
|
|
ET_DYN = 3, // Shared object file
|
|
|
|
ET_CORE = 4, // Core file
|
|
|
|
ET_LOPROC = 0xff00, // Beginning of processor-specific codes
|
|
|
|
ET_HIPROC = 0xffff // Processor-specific
|
|
|
|
};
|
|
|
|
|
2010-04-19 15:40:15 +00:00
|
|
|
// Versioning
|
|
|
|
enum {
|
|
|
|
EV_NONE = 0,
|
|
|
|
EV_CURRENT = 1
|
|
|
|
};
|
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// Machine architectures
|
|
|
|
enum {
|
2011-10-13 00:16:25 +00:00
|
|
|
EM_NONE = 0, // No machine
|
|
|
|
EM_M32 = 1, // AT&T WE 32100
|
|
|
|
EM_SPARC = 2, // SPARC
|
|
|
|
EM_386 = 3, // Intel 386
|
|
|
|
EM_68K = 4, // Motorola 68000
|
|
|
|
EM_88K = 5, // Motorola 88000
|
|
|
|
EM_486 = 6, // Intel 486 (deprecated)
|
|
|
|
EM_860 = 7, // Intel 80860
|
|
|
|
EM_MIPS = 8, // MIPS R3000
|
|
|
|
EM_S370 = 9, // IBM System/370
|
|
|
|
EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
|
|
|
|
EM_PARISC = 15, // Hewlett-Packard PA-RISC
|
|
|
|
EM_VPP500 = 17, // Fujitsu VPP500
|
|
|
|
EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
|
|
|
|
EM_960 = 19, // Intel 80960
|
|
|
|
EM_PPC = 20, // PowerPC
|
|
|
|
EM_PPC64 = 21, // PowerPC64
|
|
|
|
EM_S390 = 22, // IBM System/390
|
|
|
|
EM_SPU = 23, // IBM SPU/SPC
|
|
|
|
EM_V800 = 36, // NEC V800
|
|
|
|
EM_FR20 = 37, // Fujitsu FR20
|
|
|
|
EM_RH32 = 38, // TRW RH-32
|
|
|
|
EM_RCE = 39, // Motorola RCE
|
|
|
|
EM_ARM = 40, // ARM
|
|
|
|
EM_ALPHA = 41, // DEC Alpha
|
|
|
|
EM_SH = 42, // Hitachi SH
|
|
|
|
EM_SPARCV9 = 43, // SPARC V9
|
|
|
|
EM_TRICORE = 44, // Siemens TriCore
|
|
|
|
EM_ARC = 45, // Argonaut RISC Core
|
|
|
|
EM_H8_300 = 46, // Hitachi H8/300
|
|
|
|
EM_H8_300H = 47, // Hitachi H8/300H
|
|
|
|
EM_H8S = 48, // Hitachi H8S
|
|
|
|
EM_H8_500 = 49, // Hitachi H8/500
|
|
|
|
EM_IA_64 = 50, // Intel IA-64 processor architecture
|
|
|
|
EM_MIPS_X = 51, // Stanford MIPS-X
|
|
|
|
EM_COLDFIRE = 52, // Motorola ColdFire
|
|
|
|
EM_68HC12 = 53, // Motorola M68HC12
|
|
|
|
EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
|
|
|
|
EM_PCP = 55, // Siemens PCP
|
|
|
|
EM_NCPU = 56, // Sony nCPU embedded RISC processor
|
|
|
|
EM_NDR1 = 57, // Denso NDR1 microprocessor
|
|
|
|
EM_STARCORE = 58, // Motorola Star*Core processor
|
|
|
|
EM_ME16 = 59, // Toyota ME16 processor
|
|
|
|
EM_ST100 = 60, // STMicroelectronics ST100 processor
|
|
|
|
EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
|
|
|
|
EM_X86_64 = 62, // AMD x86-64 architecture
|
|
|
|
EM_PDSP = 63, // Sony DSP Processor
|
|
|
|
EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
|
|
|
|
EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
|
|
|
|
EM_FX66 = 66, // Siemens FX66 microcontroller
|
|
|
|
EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
|
|
|
|
EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
|
|
|
|
EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
|
|
|
|
EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
|
|
|
|
EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
|
|
|
|
EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
|
|
|
|
EM_SVX = 73, // Silicon Graphics SVx
|
|
|
|
EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
|
|
|
|
EM_VAX = 75, // Digital VAX
|
|
|
|
EM_CRIS = 76, // Axis Communications 32-bit embedded processor
|
|
|
|
EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
|
|
|
|
EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
|
|
|
|
EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
|
|
|
|
EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
|
|
|
|
EM_HUANY = 81, // Harvard University machine-independent object files
|
|
|
|
EM_PRISM = 82, // SiTera Prism
|
|
|
|
EM_AVR = 83, // Atmel AVR 8-bit microcontroller
|
|
|
|
EM_FR30 = 84, // Fujitsu FR30
|
|
|
|
EM_D10V = 85, // Mitsubishi D10V
|
|
|
|
EM_D30V = 86, // Mitsubishi D30V
|
|
|
|
EM_V850 = 87, // NEC v850
|
|
|
|
EM_M32R = 88, // Mitsubishi M32R
|
|
|
|
EM_MN10300 = 89, // Matsushita MN10300
|
|
|
|
EM_MN10200 = 90, // Matsushita MN10200
|
|
|
|
EM_PJ = 91, // picoJava
|
|
|
|
EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
|
|
|
|
EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
|
|
|
|
// spelling/synonym: EM_ARC_A5)
|
|
|
|
EM_XTENSA = 94, // Tensilica Xtensa Architecture
|
|
|
|
EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
|
|
|
|
EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
|
|
|
|
EM_NS32K = 97, // National Semiconductor 32000 series
|
|
|
|
EM_TPC = 98, // Tenor Network TPC processor
|
|
|
|
EM_SNP1K = 99, // Trebia SNP 1000 processor
|
|
|
|
EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
|
|
|
|
EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
|
|
|
|
EM_MAX = 102, // MAX Processor
|
|
|
|
EM_CR = 103, // National Semiconductor CompactRISC microprocessor
|
|
|
|
EM_F2MC16 = 104, // Fujitsu F2MC16
|
|
|
|
EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
|
|
|
|
EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
|
|
|
|
EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
|
|
|
|
EM_SEP = 108, // Sharp embedded microprocessor
|
|
|
|
EM_ARCA = 109, // Arca RISC Microprocessor
|
|
|
|
EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
|
|
|
|
// of Peking University
|
|
|
|
EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
|
|
|
|
EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
|
|
|
|
EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
|
|
|
|
EM_CRX = 114, // National Semiconductor CompactRISC CRX
|
|
|
|
EM_XGATE = 115, // Motorola XGATE embedded processor
|
|
|
|
EM_C166 = 116, // Infineon C16x/XC16x processor
|
|
|
|
EM_M16C = 117, // Renesas M16C series microprocessors
|
|
|
|
EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
|
|
|
|
// Controller
|
|
|
|
EM_CE = 119, // Freescale Communication Engine RISC core
|
|
|
|
EM_M32C = 120, // Renesas M32C series microprocessors
|
|
|
|
EM_TSK3000 = 131, // Altium TSK3000 core
|
|
|
|
EM_RS08 = 132, // Freescale RS08 embedded processor
|
|
|
|
EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
|
|
|
|
// processors
|
|
|
|
EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
|
|
|
|
EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
|
|
|
|
EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
|
|
|
|
EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
|
|
|
|
EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
|
|
|
|
EM_SE_C17 = 139, // Seiko Epson C17 family
|
|
|
|
EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
|
|
|
|
EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
|
|
|
|
EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
|
|
|
|
EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
|
|
|
|
EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
|
|
|
|
EM_R32C = 162, // Renesas R32C series microprocessors
|
|
|
|
EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
|
2012-05-17 16:46:46 +00:00
|
|
|
EM_HEXAGON = 164, // Qualcomm Hexagon processor
|
2011-10-13 00:16:25 +00:00
|
|
|
EM_8051 = 165, // Intel 8051 and variants
|
|
|
|
EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
|
|
|
|
// and extensible RISC processors
|
|
|
|
EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
|
|
|
|
// processor family
|
|
|
|
EM_ECOG1 = 168, // Cyan Technology eCOG1X family
|
|
|
|
EM_ECOG1X = 168, // Cyan Technology eCOG1X family
|
|
|
|
EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
|
|
|
|
EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
|
|
|
|
EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
|
|
|
|
EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
|
|
|
|
EM_RX = 173, // Renesas RX family
|
|
|
|
EM_METAG = 174, // Imagination Technologies META processor
|
|
|
|
// architecture
|
|
|
|
EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
|
|
|
|
EM_ECOG16 = 176, // Cyan Technology eCOG16 family
|
|
|
|
EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
|
|
|
|
// microprocessor
|
|
|
|
EM_ETPU = 178, // Freescale Extended Time Processing Unit
|
|
|
|
EM_SLE9X = 179, // Infineon Technologies SLE9X core
|
|
|
|
EM_L10M = 180, // Intel L10M
|
|
|
|
EM_K10M = 181, // Intel K10M
|
2013-01-31 12:12:40 +00:00
|
|
|
EM_AARCH64 = 183, // ARM AArch64
|
2011-10-13 00:16:25 +00:00
|
|
|
EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
|
|
|
|
EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
|
|
|
|
EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
|
|
|
|
EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
|
|
|
|
EM_CUDA = 190, // NVIDIA CUDA architecture
|
|
|
|
EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
|
|
|
|
EM_CLOUDSHIELD = 192, // CloudShield architecture family
|
|
|
|
EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
|
|
|
|
EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
|
|
|
|
EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
|
|
|
|
EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
|
|
|
|
EM_RL78 = 197, // Renesas RL78 family
|
|
|
|
EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
|
|
|
|
EM_78KOR = 199, // Renesas 78KOR family
|
2013-07-25 18:55:05 +00:00
|
|
|
EM_56800EX = 200 // Freescale 56800EX Digital Signal Controller (DSC)
|
2004-02-28 06:26:20 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
// Object file classes.
|
|
|
|
enum {
|
2011-01-20 06:38:47 +00:00
|
|
|
ELFCLASSNONE = 0,
|
2004-02-28 06:26:20 +00:00
|
|
|
ELFCLASS32 = 1, // 32-bit object file
|
|
|
|
ELFCLASS64 = 2 // 64-bit object file
|
|
|
|
};
|
|
|
|
|
|
|
|
// Object file byte orderings.
|
|
|
|
enum {
|
2010-07-13 00:24:59 +00:00
|
|
|
ELFDATANONE = 0, // Invalid data encoding.
|
2004-02-28 06:26:20 +00:00
|
|
|
ELFDATA2LSB = 1, // Little-endian object file
|
|
|
|
ELFDATA2MSB = 2 // Big-endian object file
|
|
|
|
};
|
|
|
|
|
2010-07-06 18:36:57 +00:00
|
|
|
// OS ABI identification.
|
2010-04-19 15:40:15 +00:00
|
|
|
enum {
|
2010-07-06 18:36:57 +00:00
|
|
|
ELFOSABI_NONE = 0, // UNIX System V ABI
|
|
|
|
ELFOSABI_HPUX = 1, // HP-UX operating system
|
|
|
|
ELFOSABI_NETBSD = 2, // NetBSD
|
2013-06-05 20:55:58 +00:00
|
|
|
ELFOSABI_GNU = 3, // GNU/Linux
|
|
|
|
ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU.
|
2010-07-06 18:36:57 +00:00
|
|
|
ELFOSABI_HURD = 4, // GNU/Hurd
|
|
|
|
ELFOSABI_SOLARIS = 6, // Solaris
|
|
|
|
ELFOSABI_AIX = 7, // AIX
|
|
|
|
ELFOSABI_IRIX = 8, // IRIX
|
|
|
|
ELFOSABI_FREEBSD = 9, // FreeBSD
|
|
|
|
ELFOSABI_TRU64 = 10, // TRU64 UNIX
|
|
|
|
ELFOSABI_MODESTO = 11, // Novell Modesto
|
|
|
|
ELFOSABI_OPENBSD = 12, // OpenBSD
|
|
|
|
ELFOSABI_OPENVMS = 13, // OpenVMS
|
|
|
|
ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
|
|
|
|
ELFOSABI_AROS = 15, // AROS
|
|
|
|
ELFOSABI_FENIXOS = 16, // FenixOS
|
|
|
|
ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
|
|
|
|
ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
|
|
|
|
ELFOSABI_ARM = 97, // ARM
|
|
|
|
ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
|
2010-04-19 15:40:15 +00:00
|
|
|
};
|
|
|
|
|
2010-07-06 18:44:02 +00:00
|
|
|
// X86_64 relocations.
|
|
|
|
enum {
|
|
|
|
R_X86_64_NONE = 0,
|
|
|
|
R_X86_64_64 = 1,
|
|
|
|
R_X86_64_PC32 = 2,
|
|
|
|
R_X86_64_GOT32 = 3,
|
|
|
|
R_X86_64_PLT32 = 4,
|
|
|
|
R_X86_64_COPY = 5,
|
|
|
|
R_X86_64_GLOB_DAT = 6,
|
|
|
|
R_X86_64_JUMP_SLOT = 7,
|
|
|
|
R_X86_64_RELATIVE = 8,
|
|
|
|
R_X86_64_GOTPCREL = 9,
|
|
|
|
R_X86_64_32 = 10,
|
|
|
|
R_X86_64_32S = 11,
|
|
|
|
R_X86_64_16 = 12,
|
|
|
|
R_X86_64_PC16 = 13,
|
|
|
|
R_X86_64_8 = 14,
|
|
|
|
R_X86_64_PC8 = 15,
|
|
|
|
R_X86_64_DTPMOD64 = 16,
|
|
|
|
R_X86_64_DTPOFF64 = 17,
|
|
|
|
R_X86_64_TPOFF64 = 18,
|
|
|
|
R_X86_64_TLSGD = 19,
|
|
|
|
R_X86_64_TLSLD = 20,
|
|
|
|
R_X86_64_DTPOFF32 = 21,
|
|
|
|
R_X86_64_GOTTPOFF = 22,
|
|
|
|
R_X86_64_TPOFF32 = 23,
|
|
|
|
R_X86_64_PC64 = 24,
|
|
|
|
R_X86_64_GOTOFF64 = 25,
|
|
|
|
R_X86_64_GOTPC32 = 26,
|
2011-10-13 00:16:25 +00:00
|
|
|
R_X86_64_GOT64 = 27,
|
|
|
|
R_X86_64_GOTPCREL64 = 28,
|
|
|
|
R_X86_64_GOTPC64 = 29,
|
|
|
|
R_X86_64_GOTPLT64 = 30,
|
|
|
|
R_X86_64_PLTOFF64 = 31,
|
2010-07-06 18:44:02 +00:00
|
|
|
R_X86_64_SIZE32 = 32,
|
|
|
|
R_X86_64_SIZE64 = 33,
|
|
|
|
R_X86_64_GOTPC32_TLSDESC = 34,
|
|
|
|
R_X86_64_TLSDESC_CALL = 35,
|
2013-01-24 02:08:25 +00:00
|
|
|
R_X86_64_TLSDESC = 36,
|
|
|
|
R_X86_64_IRELATIVE = 37
|
2010-07-06 18:44:02 +00:00
|
|
|
};
|
|
|
|
|
2010-08-17 18:20:28 +00:00
|
|
|
// i386 relocations.
|
|
|
|
// TODO: this is just a subset
|
|
|
|
enum {
|
|
|
|
R_386_NONE = 0,
|
|
|
|
R_386_32 = 1,
|
|
|
|
R_386_PC32 = 2,
|
|
|
|
R_386_GOT32 = 3,
|
|
|
|
R_386_PLT32 = 4,
|
|
|
|
R_386_COPY = 5,
|
|
|
|
R_386_GLOB_DAT = 6,
|
|
|
|
R_386_JUMP_SLOT = 7,
|
|
|
|
R_386_RELATIVE = 8,
|
|
|
|
R_386_GOTOFF = 9,
|
|
|
|
R_386_GOTPC = 10,
|
|
|
|
R_386_32PLT = 11,
|
2010-10-27 21:23:52 +00:00
|
|
|
R_386_TLS_TPOFF = 14,
|
|
|
|
R_386_TLS_IE = 15,
|
|
|
|
R_386_TLS_GOTIE = 16,
|
|
|
|
R_386_TLS_LE = 17,
|
|
|
|
R_386_TLS_GD = 18,
|
|
|
|
R_386_TLS_LDM = 19,
|
2010-08-17 18:20:28 +00:00
|
|
|
R_386_16 = 20,
|
|
|
|
R_386_PC16 = 21,
|
|
|
|
R_386_8 = 22,
|
2010-10-27 21:23:52 +00:00
|
|
|
R_386_PC8 = 23,
|
|
|
|
R_386_TLS_GD_32 = 24,
|
|
|
|
R_386_TLS_GD_PUSH = 25,
|
|
|
|
R_386_TLS_GD_CALL = 26,
|
|
|
|
R_386_TLS_GD_POP = 27,
|
|
|
|
R_386_TLS_LDM_32 = 28,
|
|
|
|
R_386_TLS_LDM_PUSH = 29,
|
|
|
|
R_386_TLS_LDM_CALL = 30,
|
|
|
|
R_386_TLS_LDM_POP = 31,
|
|
|
|
R_386_TLS_LDO_32 = 32,
|
|
|
|
R_386_TLS_IE_32 = 33,
|
|
|
|
R_386_TLS_LE_32 = 34,
|
|
|
|
R_386_TLS_DTPMOD32 = 35,
|
|
|
|
R_386_TLS_DTPOFF32 = 36,
|
|
|
|
R_386_TLS_TPOFF32 = 37,
|
|
|
|
R_386_TLS_GOTDESC = 39,
|
|
|
|
R_386_TLS_DESC_CALL = 40,
|
|
|
|
R_386_TLS_DESC = 41,
|
|
|
|
R_386_IRELATIVE = 42,
|
|
|
|
R_386_NUM = 43
|
2010-08-17 18:20:28 +00:00
|
|
|
};
|
|
|
|
|
2012-09-18 16:38:02 +00:00
|
|
|
// ELF Relocation types for PPC32
|
2011-08-02 15:51:38 +00:00
|
|
|
enum {
|
|
|
|
R_PPC_NONE = 0, /* No relocation. */
|
|
|
|
R_PPC_ADDR32 = 1,
|
|
|
|
R_PPC_ADDR24 = 2,
|
|
|
|
R_PPC_ADDR16 = 3,
|
|
|
|
R_PPC_ADDR16_LO = 4,
|
|
|
|
R_PPC_ADDR16_HI = 5,
|
|
|
|
R_PPC_ADDR16_HA = 6,
|
|
|
|
R_PPC_ADDR14 = 7,
|
|
|
|
R_PPC_ADDR14_BRTAKEN = 8,
|
|
|
|
R_PPC_ADDR14_BRNTAKEN = 9,
|
|
|
|
R_PPC_REL24 = 10,
|
|
|
|
R_PPC_REL14 = 11,
|
|
|
|
R_PPC_REL14_BRTAKEN = 12,
|
|
|
|
R_PPC_REL14_BRNTAKEN = 13,
|
2013-06-25 16:49:50 +00:00
|
|
|
R_PPC_GOT16 = 14,
|
|
|
|
R_PPC_GOT16_LO = 15,
|
|
|
|
R_PPC_GOT16_HI = 16,
|
|
|
|
R_PPC_GOT16_HA = 17,
|
2012-11-13 19:24:36 +00:00
|
|
|
R_PPC_REL32 = 26,
|
2013-07-01 22:27:57 +00:00
|
|
|
R_PPC_TLS = 67,
|
2013-07-01 23:33:29 +00:00
|
|
|
R_PPC_DTPMOD32 = 68,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC_TPREL16 = 69,
|
2012-11-13 19:24:36 +00:00
|
|
|
R_PPC_TPREL16_LO = 70,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC_TPREL16_HI = 71,
|
|
|
|
R_PPC_TPREL16_HA = 72,
|
2013-07-01 23:33:29 +00:00
|
|
|
R_PPC_TPREL32 = 73,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC_DTPREL16 = 74,
|
|
|
|
R_PPC_DTPREL16_LO = 75,
|
|
|
|
R_PPC_DTPREL16_HI = 76,
|
|
|
|
R_PPC_DTPREL16_HA = 77,
|
2013-07-01 23:33:29 +00:00
|
|
|
R_PPC_DTPREL32 = 78,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC_GOT_TLSGD16 = 79,
|
|
|
|
R_PPC_GOT_TLSGD16_LO = 80,
|
|
|
|
R_PPC_GOT_TLSGD16_HI = 81,
|
|
|
|
R_PPC_GOT_TLSGD16_HA = 82,
|
|
|
|
R_PPC_GOT_TLSLD16 = 83,
|
|
|
|
R_PPC_GOT_TLSLD16_LO = 84,
|
|
|
|
R_PPC_GOT_TLSLD16_HI = 85,
|
|
|
|
R_PPC_GOT_TLSLD16_HA = 86,
|
2013-07-01 22:27:57 +00:00
|
|
|
R_PPC_GOT_TPREL16 = 87,
|
|
|
|
R_PPC_GOT_TPREL16_LO = 88,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC_GOT_TPREL16_HI = 89,
|
|
|
|
R_PPC_GOT_TPREL16_HA = 90,
|
2013-07-01 22:27:57 +00:00
|
|
|
R_PPC_GOT_DTPREL16 = 91,
|
|
|
|
R_PPC_GOT_DTPREL16_LO = 92,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC_GOT_DTPREL16_HI = 93,
|
2013-06-21 14:44:37 +00:00
|
|
|
R_PPC_GOT_DTPREL16_HA = 94,
|
2013-07-01 22:27:57 +00:00
|
|
|
R_PPC_TLSGD = 95,
|
|
|
|
R_PPC_TLSLD = 96,
|
2013-06-21 14:44:37 +00:00
|
|
|
R_PPC_REL16 = 249,
|
|
|
|
R_PPC_REL16_LO = 250,
|
|
|
|
R_PPC_REL16_HI = 251,
|
|
|
|
R_PPC_REL16_HA = 252
|
2011-08-02 15:51:38 +00:00
|
|
|
};
|
2011-02-04 21:41:11 +00:00
|
|
|
|
2012-09-18 16:38:02 +00:00
|
|
|
// ELF Relocation types for PPC64
|
|
|
|
enum {
|
2013-04-12 04:01:28 +00:00
|
|
|
R_PPC64_NONE = 0,
|
2013-01-04 19:08:13 +00:00
|
|
|
R_PPC64_ADDR32 = 1,
|
2013-05-08 17:50:57 +00:00
|
|
|
R_PPC64_ADDR24 = 2,
|
|
|
|
R_PPC64_ADDR16 = 3,
|
2012-09-18 16:38:02 +00:00
|
|
|
R_PPC64_ADDR16_LO = 4,
|
|
|
|
R_PPC64_ADDR16_HI = 5,
|
2013-05-08 17:50:57 +00:00
|
|
|
R_PPC64_ADDR16_HA = 6,
|
2012-09-18 16:38:02 +00:00
|
|
|
R_PPC64_ADDR14 = 7,
|
2013-05-08 17:50:57 +00:00
|
|
|
R_PPC64_ADDR14_BRTAKEN = 8,
|
|
|
|
R_PPC64_ADDR14_BRNTAKEN = 9,
|
2012-09-18 16:38:02 +00:00
|
|
|
R_PPC64_REL24 = 10,
|
2013-05-08 17:50:57 +00:00
|
|
|
R_PPC64_REL14 = 11,
|
|
|
|
R_PPC64_REL14_BRTAKEN = 12,
|
|
|
|
R_PPC64_REL14_BRNTAKEN = 13,
|
2013-06-25 16:49:50 +00:00
|
|
|
R_PPC64_GOT16 = 14,
|
|
|
|
R_PPC64_GOT16_LO = 15,
|
|
|
|
R_PPC64_GOT16_HI = 16,
|
|
|
|
R_PPC64_GOT16_HA = 17,
|
2013-01-09 17:08:15 +00:00
|
|
|
R_PPC64_REL32 = 26,
|
2012-09-18 16:38:02 +00:00
|
|
|
R_PPC64_ADDR64 = 38,
|
|
|
|
R_PPC64_ADDR16_HIGHER = 39,
|
2013-06-21 14:43:42 +00:00
|
|
|
R_PPC64_ADDR16_HIGHERA = 40,
|
2012-09-18 16:38:02 +00:00
|
|
|
R_PPC64_ADDR16_HIGHEST = 41,
|
2013-06-21 14:43:42 +00:00
|
|
|
R_PPC64_ADDR16_HIGHESTA = 42,
|
2013-01-04 19:08:13 +00:00
|
|
|
R_PPC64_REL64 = 44,
|
2012-09-18 16:38:02 +00:00
|
|
|
R_PPC64_TOC16 = 47,
|
This patch implements medium code model support for 64-bit PowerPC.
The default for 64-bit PowerPC is small code model, in which TOC entries
must be addressable using a 16-bit offset from the TOC pointer. Additionally,
only TOC entries are addressed via the TOC pointer.
With medium code model, TOC entries and data sections can all be addressed
via the TOC pointer using a 32-bit offset. Cooperation with the linker
allows 16-bit offsets to be used when these are sufficient, reducing the
number of extra instructions that need to be executed. Medium code model
also does not generate explicit TOC entries in ".section toc" for variables
that are wholly internal to the compilation unit.
Consider a load of an external 4-byte integer. With small code model, the
compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
With medium model, it instead generates:
addis 3, 2, .LC1@toc@ha
ld 3, .LC1@toc@l(3)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the
32-bit offset of ei's TOC entry from the TOC base pointer. Similarly,
.LC1@toc@l is a relocation requesting the lower 16 bits. Note that if
the linker determines that ei's TOC entry is within a 16-bit offset of
the TOC base pointer, it will replace the "addis" with a "nop", and
replace the "ld" with the identical "ld" instruction from the small
code model example.
Consider next a load of a function-scope static integer. For small code
model, the compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc test_fn_static.si[TC],test_fn_static.si
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
For medium code model, the compiler generates:
addis 3, 2, test_fn_static.si@toc@ha
addi 3, 3, test_fn_static.si@toc@l
lwz 4, 0(3)
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
Again, the linker may replace the "addis" with a "nop", calculating only
a 16-bit offset when this is sufficient.
Note that it would be more efficient for the compiler to generate:
addis 3, 2, test_fn_static.si@toc@ha
lwz 4, test_fn_static.si@toc@l(3)
The current patch does not perform this optimization yet. This will be
addressed as a peephole optimization in a later patch.
For the moment, the default code model for 64-bit PowerPC will remain the
small code model. We plan to eventually change the default to medium code
model, which matches current upstream GCC behavior. Note that the different
code models are ABI-compatible, so code compiled with different models will
be linked and execute correctly.
I've tested the regression suite and the application/benchmark test suite in
two ways: Once with the patch as submitted here, and once with additional
logic to force medium code model as the default. The tests all compile
cleanly, with one exception. The mandel-2 application test fails due to an
unrelated ABI compatibility with passing complex numbers. It just so happens
that small code model was incredibly lucky, in that temporary values in
floating-point registers held the expected values needed by the external
library routine that was called incorrectly. My current thought is to correct
the ABI problems with _Complex before making medium code model the default,
to avoid introducing this "regression."
Here are a few comments on how the patch works, since the selection code
can be difficult to follow:
The existing logic for small code model defines three pseudo-instructions:
LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for
constant pool addresses. These are expanded by SelectCodeCommon(). The
pseudo-instruction approach doesn't work for medium code model, because
we need to generate two instructions when we match the same pattern.
Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY
node for medium code model, and generates an ADDIStocHA followed by either
a LDtocL or an ADDItocL. These new node types correspond naturally to
the sequences described above.
The addis/ld sequence is generated for the following cases:
* Jump table addresses
* Function addresses
* External global variables
* Tentative definitions of global variables (common linkage)
The addis/addi sequence is generated for the following cases:
* Constant pool entries
* File-scope static global variables
* Function-scope static variables
Expanding to the two-instruction sequences at select time exposes the
instructions to subsequent optimization, particularly scheduling.
The rest of the processing occurs at assembly time, in
PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to
a "real" PowerPC instruction. When a TOC entry needs to be created, this
is done here in the same manner as for the existing LDtoc, LDtocJTI, and
LDtocCPT pseudo-instructions (I factored out a new routine to handle this).
I had originally thought that if a TOC entry was needed for LDtocL or
ADDItocL, it would already have been generated for the previous ADDIStocHA.
However, at higher optimization levels, the ADDIStocHA may appear in a
different block, which may be assembled textually following the block
containing the LDtocL or ADDItocL. So it is necessary to include the
possibility of creating a new TOC entry for those two instructions.
Note that for LDtocL, we generate a new form of LD called LDrs. This
allows specifying the @toc@l relocation for the offset field of the LD
instruction (i.e., the offset is replaced by a SymbolLo relocation).
When the peephole optimization described above is added, we will need
to do similar things for all immediate-form load and store operations.
The seven "mcm-n.ll" test cases are kept separate because otherwise the
intermingling of various TOC entries and so forth makes the tests fragile
and hard to understand.
The above assumes use of an external assembler. For use of the
integrated assembler, new relocations are added and used by
PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for
proper generation of the various relocations for the same sequences
tested with the external assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
|
|
|
R_PPC64_TOC16_LO = 48,
|
2013-06-21 14:43:10 +00:00
|
|
|
R_PPC64_TOC16_HI = 49,
|
This patch implements medium code model support for 64-bit PowerPC.
The default for 64-bit PowerPC is small code model, in which TOC entries
must be addressable using a 16-bit offset from the TOC pointer. Additionally,
only TOC entries are addressed via the TOC pointer.
With medium code model, TOC entries and data sections can all be addressed
via the TOC pointer using a 32-bit offset. Cooperation with the linker
allows 16-bit offsets to be used when these are sufficient, reducing the
number of extra instructions that need to be executed. Medium code model
also does not generate explicit TOC entries in ".section toc" for variables
that are wholly internal to the compilation unit.
Consider a load of an external 4-byte integer. With small code model, the
compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
With medium model, it instead generates:
addis 3, 2, .LC1@toc@ha
ld 3, .LC1@toc@l(3)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the
32-bit offset of ei's TOC entry from the TOC base pointer. Similarly,
.LC1@toc@l is a relocation requesting the lower 16 bits. Note that if
the linker determines that ei's TOC entry is within a 16-bit offset of
the TOC base pointer, it will replace the "addis" with a "nop", and
replace the "ld" with the identical "ld" instruction from the small
code model example.
Consider next a load of a function-scope static integer. For small code
model, the compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc test_fn_static.si[TC],test_fn_static.si
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
For medium code model, the compiler generates:
addis 3, 2, test_fn_static.si@toc@ha
addi 3, 3, test_fn_static.si@toc@l
lwz 4, 0(3)
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
Again, the linker may replace the "addis" with a "nop", calculating only
a 16-bit offset when this is sufficient.
Note that it would be more efficient for the compiler to generate:
addis 3, 2, test_fn_static.si@toc@ha
lwz 4, test_fn_static.si@toc@l(3)
The current patch does not perform this optimization yet. This will be
addressed as a peephole optimization in a later patch.
For the moment, the default code model for 64-bit PowerPC will remain the
small code model. We plan to eventually change the default to medium code
model, which matches current upstream GCC behavior. Note that the different
code models are ABI-compatible, so code compiled with different models will
be linked and execute correctly.
I've tested the regression suite and the application/benchmark test suite in
two ways: Once with the patch as submitted here, and once with additional
logic to force medium code model as the default. The tests all compile
cleanly, with one exception. The mandel-2 application test fails due to an
unrelated ABI compatibility with passing complex numbers. It just so happens
that small code model was incredibly lucky, in that temporary values in
floating-point registers held the expected values needed by the external
library routine that was called incorrectly. My current thought is to correct
the ABI problems with _Complex before making medium code model the default,
to avoid introducing this "regression."
Here are a few comments on how the patch works, since the selection code
can be difficult to follow:
The existing logic for small code model defines three pseudo-instructions:
LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for
constant pool addresses. These are expanded by SelectCodeCommon(). The
pseudo-instruction approach doesn't work for medium code model, because
we need to generate two instructions when we match the same pattern.
Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY
node for medium code model, and generates an ADDIStocHA followed by either
a LDtocL or an ADDItocL. These new node types correspond naturally to
the sequences described above.
The addis/ld sequence is generated for the following cases:
* Jump table addresses
* Function addresses
* External global variables
* Tentative definitions of global variables (common linkage)
The addis/addi sequence is generated for the following cases:
* Constant pool entries
* File-scope static global variables
* Function-scope static variables
Expanding to the two-instruction sequences at select time exposes the
instructions to subsequent optimization, particularly scheduling.
The rest of the processing occurs at assembly time, in
PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to
a "real" PowerPC instruction. When a TOC entry needs to be created, this
is done here in the same manner as for the existing LDtoc, LDtocJTI, and
LDtocCPT pseudo-instructions (I factored out a new routine to handle this).
I had originally thought that if a TOC entry was needed for LDtocL or
ADDItocL, it would already have been generated for the previous ADDIStocHA.
However, at higher optimization levels, the ADDIStocHA may appear in a
different block, which may be assembled textually following the block
containing the LDtocL or ADDItocL. So it is necessary to include the
possibility of creating a new TOC entry for those two instructions.
Note that for LDtocL, we generate a new form of LD called LDrs. This
allows specifying the @toc@l relocation for the offset field of the LD
instruction (i.e., the offset is replaced by a SymbolLo relocation).
When the peephole optimization described above is added, we will need
to do similar things for all immediate-form load and store operations.
The seven "mcm-n.ll" test cases are kept separate because otherwise the
intermingling of various TOC entries and so forth makes the tests fragile
and hard to understand.
The above assumes use of an external assembler. For use of the
integrated assembler, new relocations are added and used by
PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for
proper generation of the various relocations for the same sequences
tested with the external assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
|
|
|
R_PPC64_TOC16_HA = 50,
|
2012-09-18 16:38:02 +00:00
|
|
|
R_PPC64_TOC = 51,
|
PowerPC: Simplify handling of fixups.
MCTargetDesc/PPCMCCodeEmitter.cpp current has code like:
if (isSVR4ABI() && is64BitMode())
Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_toc16));
else
Fixups.push_back(MCFixup::Create(0, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_lo16));
This is a problem for the asm parser, since it requires knowledge of
the ABI / 64-bit mode to be set up. However, more fundamentally,
at this point we shouldn't make such distinctions anyway; in an assembler
file, it always ought to be possible to e.g. generate TOC relocations even
when the main ABI is one that doesn't use TOC.
Fortunately, this is actually completely unnecessary; that code was added
to decide whether to generate TOC relocations, but that information is in
fact already encoded in the VariantKind of the underlying symbol.
This commit therefore merges those fixup types into one, and then decides
which relocation to use based on the VariantKind.
No changes in generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178007 91177308-0d34-0410-b5e6-96231b3b80d8
2013-03-26 10:56:47 +00:00
|
|
|
R_PPC64_ADDR16_DS = 56,
|
|
|
|
R_PPC64_ADDR16_LO_DS = 57,
|
2013-06-25 16:49:50 +00:00
|
|
|
R_PPC64_GOT16_DS = 58,
|
|
|
|
R_PPC64_GOT16_LO_DS = 59,
|
This patch implements medium code model support for 64-bit PowerPC.
The default for 64-bit PowerPC is small code model, in which TOC entries
must be addressable using a 16-bit offset from the TOC pointer. Additionally,
only TOC entries are addressed via the TOC pointer.
With medium code model, TOC entries and data sections can all be addressed
via the TOC pointer using a 32-bit offset. Cooperation with the linker
allows 16-bit offsets to be used when these are sufficient, reducing the
number of extra instructions that need to be executed. Medium code model
also does not generate explicit TOC entries in ".section toc" for variables
that are wholly internal to the compilation unit.
Consider a load of an external 4-byte integer. With small code model, the
compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
With medium model, it instead generates:
addis 3, 2, .LC1@toc@ha
ld 3, .LC1@toc@l(3)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the
32-bit offset of ei's TOC entry from the TOC base pointer. Similarly,
.LC1@toc@l is a relocation requesting the lower 16 bits. Note that if
the linker determines that ei's TOC entry is within a 16-bit offset of
the TOC base pointer, it will replace the "addis" with a "nop", and
replace the "ld" with the identical "ld" instruction from the small
code model example.
Consider next a load of a function-scope static integer. For small code
model, the compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc test_fn_static.si[TC],test_fn_static.si
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
For medium code model, the compiler generates:
addis 3, 2, test_fn_static.si@toc@ha
addi 3, 3, test_fn_static.si@toc@l
lwz 4, 0(3)
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
Again, the linker may replace the "addis" with a "nop", calculating only
a 16-bit offset when this is sufficient.
Note that it would be more efficient for the compiler to generate:
addis 3, 2, test_fn_static.si@toc@ha
lwz 4, test_fn_static.si@toc@l(3)
The current patch does not perform this optimization yet. This will be
addressed as a peephole optimization in a later patch.
For the moment, the default code model for 64-bit PowerPC will remain the
small code model. We plan to eventually change the default to medium code
model, which matches current upstream GCC behavior. Note that the different
code models are ABI-compatible, so code compiled with different models will
be linked and execute correctly.
I've tested the regression suite and the application/benchmark test suite in
two ways: Once with the patch as submitted here, and once with additional
logic to force medium code model as the default. The tests all compile
cleanly, with one exception. The mandel-2 application test fails due to an
unrelated ABI compatibility with passing complex numbers. It just so happens
that small code model was incredibly lucky, in that temporary values in
floating-point registers held the expected values needed by the external
library routine that was called incorrectly. My current thought is to correct
the ABI problems with _Complex before making medium code model the default,
to avoid introducing this "regression."
Here are a few comments on how the patch works, since the selection code
can be difficult to follow:
The existing logic for small code model defines three pseudo-instructions:
LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for
constant pool addresses. These are expanded by SelectCodeCommon(). The
pseudo-instruction approach doesn't work for medium code model, because
we need to generate two instructions when we match the same pattern.
Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY
node for medium code model, and generates an ADDIStocHA followed by either
a LDtocL or an ADDItocL. These new node types correspond naturally to
the sequences described above.
The addis/ld sequence is generated for the following cases:
* Jump table addresses
* Function addresses
* External global variables
* Tentative definitions of global variables (common linkage)
The addis/addi sequence is generated for the following cases:
* Constant pool entries
* File-scope static global variables
* Function-scope static variables
Expanding to the two-instruction sequences at select time exposes the
instructions to subsequent optimization, particularly scheduling.
The rest of the processing occurs at assembly time, in
PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to
a "real" PowerPC instruction. When a TOC entry needs to be created, this
is done here in the same manner as for the existing LDtoc, LDtocJTI, and
LDtocCPT pseudo-instructions (I factored out a new routine to handle this).
I had originally thought that if a TOC entry was needed for LDtocL or
ADDItocL, it would already have been generated for the previous ADDIStocHA.
However, at higher optimization levels, the ADDIStocHA may appear in a
different block, which may be assembled textually following the block
containing the LDtocL or ADDItocL. So it is necessary to include the
possibility of creating a new TOC entry for those two instructions.
Note that for LDtocL, we generate a new form of LD called LDrs. This
allows specifying the @toc@l relocation for the offset field of the LD
instruction (i.e., the offset is replaced by a SymbolLo relocation).
When the peephole optimization described above is added, we will need
to do similar things for all immediate-form load and store operations.
The seven "mcm-n.ll" test cases are kept separate because otherwise the
intermingling of various TOC entries and so forth makes the tests fragile
and hard to understand.
The above assumes use of an external assembler. For use of the
integrated assembler, new relocations are added and used by
PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for
proper generation of the various relocations for the same sequences
tested with the external assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
|
|
|
R_PPC64_TOC16_DS = 63,
|
2012-12-04 16:18:08 +00:00
|
|
|
R_PPC64_TOC16_LO_DS = 64,
|
|
|
|
R_PPC64_TLS = 67,
|
2013-07-01 23:33:29 +00:00
|
|
|
R_PPC64_DTPMOD64 = 68,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_TPREL16 = 69,
|
2013-02-25 16:44:35 +00:00
|
|
|
R_PPC64_TPREL16_LO = 70,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_TPREL16_HI = 71,
|
2013-04-12 04:01:28 +00:00
|
|
|
R_PPC64_TPREL16_HA = 72,
|
2013-07-01 23:33:29 +00:00
|
|
|
R_PPC64_TPREL64 = 73,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_DTPREL16 = 74,
|
2012-12-12 19:29:35 +00:00
|
|
|
R_PPC64_DTPREL16_LO = 75,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_DTPREL16_HI = 76,
|
2012-12-12 19:29:35 +00:00
|
|
|
R_PPC64_DTPREL16_HA = 77,
|
2013-07-01 23:33:29 +00:00
|
|
|
R_PPC64_DTPREL64 = 78,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_GOT_TLSGD16 = 79,
|
This patch implements the general dynamic TLS model for 64-bit PowerPC.
Given a thread-local symbol x with global-dynamic access, the generated
code to obtain x's address is:
Instruction Relocation Symbol
addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
<use address in r3>
The implementation borrows from the medium code model work for introducing
special forms of ADDIS and ADDI into the DAG representation. This is made
slightly more complicated by having to introduce a call to the external
function __tls_get_addr. Using the full call machinery is overkill and,
more importantly, makes it difficult to add a special relocation. So I've
introduced another opcode GET_TLS_ADDR to represent the function call, and
surrounded it with register copies to set up the parameter and return value.
Most of the code is pretty straightforward. I ran into one peculiarity
when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like
BL8_NOP_ELF except that it takes another parameter to represent the symbol
("x" above) that requires a relocation on the call. Something in the
TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated
identically during the emit phase, so this second operand was never
visited to generate relocations. This is the reason for the slightly
messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding().
Two new tests are included to demonstrate correct external assembly and
correct generation of relocations using the integrated assembler.
Comments welcome!
Thanks,
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
|
|
|
R_PPC64_GOT_TLSGD16_LO = 80,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_GOT_TLSGD16_HI = 81,
|
This patch implements the general dynamic TLS model for 64-bit PowerPC.
Given a thread-local symbol x with global-dynamic access, the generated
code to obtain x's address is:
Instruction Relocation Symbol
addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
<use address in r3>
The implementation borrows from the medium code model work for introducing
special forms of ADDIS and ADDI into the DAG representation. This is made
slightly more complicated by having to introduce a call to the external
function __tls_get_addr. Using the full call machinery is overkill and,
more importantly, makes it difficult to add a special relocation. So I've
introduced another opcode GET_TLS_ADDR to represent the function call, and
surrounded it with register copies to set up the parameter and return value.
Most of the code is pretty straightforward. I ran into one peculiarity
when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like
BL8_NOP_ELF except that it takes another parameter to represent the symbol
("x" above) that requires a relocation on the call. Something in the
TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated
identically during the emit phase, so this second operand was never
visited to generate relocations. This is the reason for the slightly
messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding().
Two new tests are included to demonstrate correct external assembly and
correct generation of relocations using the integrated assembler.
Comments welcome!
Thanks,
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
|
|
|
R_PPC64_GOT_TLSGD16_HA = 82,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_GOT_TLSLD16 = 83,
|
2012-12-12 19:29:35 +00:00
|
|
|
R_PPC64_GOT_TLSLD16_LO = 84,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_GOT_TLSLD16_HI = 85,
|
2012-12-12 19:29:35 +00:00
|
|
|
R_PPC64_GOT_TLSLD16_HA = 86,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_GOT_TPREL16_DS = 87,
|
This patch improves the 64-bit PowerPC InitialExec TLS support by providing
for a wider range of GOT entries that can hold thread-relative offsets.
This matches the behavior of GCC, which was not documented in the PPC64 TLS
ABI. The ABI will be updated with the new code sequence.
Former sequence:
ld 9,x@got@tprel(2)
add 9,9,x@tls
New sequence:
addis 9,2,x@got@tprel@ha
ld 9,x@got@tprel@l(9)
add 9,9,x@tls
Note that a linker optimization exists to transform the new sequence into
the shorter sequence when appropriate, by replacing the addis with a nop
and modifying the base register and relocation type of the ld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170209 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-14 17:02:38 +00:00
|
|
|
R_PPC64_GOT_TPREL16_LO_DS = 88,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_GOT_TPREL16_HI = 89,
|
This patch improves the 64-bit PowerPC InitialExec TLS support by providing
for a wider range of GOT entries that can hold thread-relative offsets.
This matches the behavior of GCC, which was not documented in the PPC64 TLS
ABI. The ABI will be updated with the new code sequence.
Former sequence:
ld 9,x@got@tprel(2)
add 9,9,x@tls
New sequence:
addis 9,2,x@got@tprel@ha
ld 9,x@got@tprel@l(9)
add 9,9,x@tls
Note that a linker optimization exists to transform the new sequence into
the shorter sequence when appropriate, by replacing the addis with a nop
and modifying the base register and relocation type of the ld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170209 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-14 17:02:38 +00:00
|
|
|
R_PPC64_GOT_TPREL16_HA = 90,
|
2013-06-21 14:44:15 +00:00
|
|
|
R_PPC64_GOT_DTPREL16_DS = 91,
|
|
|
|
R_PPC64_GOT_DTPREL16_LO_DS = 92,
|
|
|
|
R_PPC64_GOT_DTPREL16_HI = 93,
|
|
|
|
R_PPC64_GOT_DTPREL16_HA = 94,
|
|
|
|
R_PPC64_TPREL16_DS = 95,
|
|
|
|
R_PPC64_TPREL16_LO_DS = 96,
|
|
|
|
R_PPC64_TPREL16_HIGHER = 97,
|
|
|
|
R_PPC64_TPREL16_HIGHERA = 98,
|
|
|
|
R_PPC64_TPREL16_HIGHEST = 99,
|
|
|
|
R_PPC64_TPREL16_HIGHESTA = 100,
|
|
|
|
R_PPC64_DTPREL16_DS = 101,
|
|
|
|
R_PPC64_DTPREL16_LO_DS = 102,
|
|
|
|
R_PPC64_DTPREL16_HIGHER = 103,
|
|
|
|
R_PPC64_DTPREL16_HIGHERA = 104,
|
|
|
|
R_PPC64_DTPREL16_HIGHEST = 105,
|
|
|
|
R_PPC64_DTPREL16_HIGHESTA = 106,
|
2012-12-12 19:29:35 +00:00
|
|
|
R_PPC64_TLSGD = 107,
|
2013-06-21 14:44:37 +00:00
|
|
|
R_PPC64_TLSLD = 108,
|
|
|
|
R_PPC64_REL16 = 249,
|
|
|
|
R_PPC64_REL16_LO = 250,
|
|
|
|
R_PPC64_REL16_HI = 251,
|
|
|
|
R_PPC64_REL16_HA = 252
|
2012-09-18 16:38:02 +00:00
|
|
|
};
|
|
|
|
|
2013-01-31 12:12:40 +00:00
|
|
|
// ELF Relocation types for AArch64
|
|
|
|
|
|
|
|
enum {
|
|
|
|
R_AARCH64_NONE = 0x100,
|
|
|
|
|
|
|
|
R_AARCH64_ABS64 = 0x101,
|
|
|
|
R_AARCH64_ABS32 = 0x102,
|
|
|
|
R_AARCH64_ABS16 = 0x103,
|
|
|
|
R_AARCH64_PREL64 = 0x104,
|
|
|
|
R_AARCH64_PREL32 = 0x105,
|
|
|
|
R_AARCH64_PREL16 = 0x106,
|
|
|
|
|
|
|
|
R_AARCH64_MOVW_UABS_G0 = 0x107,
|
|
|
|
R_AARCH64_MOVW_UABS_G0_NC = 0x108,
|
|
|
|
R_AARCH64_MOVW_UABS_G1 = 0x109,
|
|
|
|
R_AARCH64_MOVW_UABS_G1_NC = 0x10a,
|
|
|
|
R_AARCH64_MOVW_UABS_G2 = 0x10b,
|
|
|
|
R_AARCH64_MOVW_UABS_G2_NC = 0x10c,
|
|
|
|
R_AARCH64_MOVW_UABS_G3 = 0x10d,
|
|
|
|
R_AARCH64_MOVW_SABS_G0 = 0x10e,
|
|
|
|
R_AARCH64_MOVW_SABS_G1 = 0x10f,
|
|
|
|
R_AARCH64_MOVW_SABS_G2 = 0x110,
|
|
|
|
|
|
|
|
R_AARCH64_LD_PREL_LO19 = 0x111,
|
|
|
|
R_AARCH64_ADR_PREL_LO21 = 0x112,
|
|
|
|
R_AARCH64_ADR_PREL_PG_HI21 = 0x113,
|
|
|
|
R_AARCH64_ADD_ABS_LO12_NC = 0x115,
|
|
|
|
R_AARCH64_LDST8_ABS_LO12_NC = 0x116,
|
|
|
|
|
|
|
|
R_AARCH64_TSTBR14 = 0x117,
|
|
|
|
R_AARCH64_CONDBR19 = 0x118,
|
|
|
|
R_AARCH64_JUMP26 = 0x11a,
|
|
|
|
R_AARCH64_CALL26 = 0x11b,
|
|
|
|
|
|
|
|
R_AARCH64_LDST16_ABS_LO12_NC = 0x11c,
|
|
|
|
R_AARCH64_LDST32_ABS_LO12_NC = 0x11d,
|
|
|
|
R_AARCH64_LDST64_ABS_LO12_NC = 0x11e,
|
|
|
|
|
|
|
|
R_AARCH64_LDST128_ABS_LO12_NC = 0x12b,
|
|
|
|
|
|
|
|
R_AARCH64_ADR_GOT_PAGE = 0x137,
|
|
|
|
R_AARCH64_LD64_GOT_LO12_NC = 0x138,
|
|
|
|
|
|
|
|
R_AARCH64_TLSLD_MOVW_DTPREL_G2 = 0x20b,
|
|
|
|
R_AARCH64_TLSLD_MOVW_DTPREL_G1 = 0x20c,
|
|
|
|
R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC = 0x20d,
|
|
|
|
R_AARCH64_TLSLD_MOVW_DTPREL_G0 = 0x20e,
|
|
|
|
R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC = 0x20f,
|
|
|
|
R_AARCH64_TLSLD_ADD_DTPREL_HI12 = 0x210,
|
|
|
|
R_AARCH64_TLSLD_ADD_DTPREL_LO12 = 0x211,
|
|
|
|
R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC = 0x212,
|
|
|
|
R_AARCH64_TLSLD_LDST8_DTPREL_LO12 = 0x213,
|
|
|
|
R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC = 0x214,
|
|
|
|
R_AARCH64_TLSLD_LDST16_DTPREL_LO12 = 0x215,
|
|
|
|
R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC = 0x216,
|
|
|
|
R_AARCH64_TLSLD_LDST32_DTPREL_LO12 = 0x217,
|
|
|
|
R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC = 0x218,
|
|
|
|
R_AARCH64_TLSLD_LDST64_DTPREL_LO12 = 0x219,
|
|
|
|
R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC = 0x21a,
|
|
|
|
|
|
|
|
R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 = 0x21b,
|
|
|
|
R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC = 0x21c,
|
|
|
|
R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 = 0x21d,
|
|
|
|
R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC = 0x21e,
|
|
|
|
R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 = 0x21f,
|
|
|
|
|
|
|
|
R_AARCH64_TLSLE_MOVW_TPREL_G2 = 0x220,
|
|
|
|
R_AARCH64_TLSLE_MOVW_TPREL_G1 = 0x221,
|
|
|
|
R_AARCH64_TLSLE_MOVW_TPREL_G1_NC = 0x222,
|
|
|
|
R_AARCH64_TLSLE_MOVW_TPREL_G0 = 0x223,
|
|
|
|
R_AARCH64_TLSLE_MOVW_TPREL_G0_NC = 0x224,
|
|
|
|
R_AARCH64_TLSLE_ADD_TPREL_HI12 = 0x225,
|
|
|
|
R_AARCH64_TLSLE_ADD_TPREL_LO12 = 0x226,
|
|
|
|
R_AARCH64_TLSLE_ADD_TPREL_LO12_NC = 0x227,
|
|
|
|
R_AARCH64_TLSLE_LDST8_TPREL_LO12 = 0x228,
|
|
|
|
R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC = 0x229,
|
|
|
|
R_AARCH64_TLSLE_LDST16_TPREL_LO12 = 0x22a,
|
|
|
|
R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC = 0x22b,
|
|
|
|
R_AARCH64_TLSLE_LDST32_TPREL_LO12 = 0x22c,
|
|
|
|
R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC = 0x22d,
|
|
|
|
R_AARCH64_TLSLE_LDST64_TPREL_LO12 = 0x22e,
|
|
|
|
R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC = 0x22f,
|
|
|
|
|
|
|
|
R_AARCH64_TLSDESC_ADR_PAGE = 0x232,
|
|
|
|
R_AARCH64_TLSDESC_LD64_LO12_NC = 0x233,
|
|
|
|
R_AARCH64_TLSDESC_ADD_LO12_NC = 0x234,
|
|
|
|
|
|
|
|
R_AARCH64_TLSDESC_CALL = 0x239
|
|
|
|
};
|
|
|
|
|
2011-02-04 21:41:11 +00:00
|
|
|
// ARM Specific e_flags
|
2013-01-30 02:24:33 +00:00
|
|
|
enum {
|
2013-03-14 08:01:36 +00:00
|
|
|
EF_ARM_SOFT_FLOAT = 0x00000200U,
|
|
|
|
EF_ARM_VFP_FLOAT = 0x00000400U,
|
2013-01-30 02:24:33 +00:00
|
|
|
EF_ARM_EABI_UNKNOWN = 0x00000000U,
|
|
|
|
EF_ARM_EABI_VER1 = 0x01000000U,
|
|
|
|
EF_ARM_EABI_VER2 = 0x02000000U,
|
|
|
|
EF_ARM_EABI_VER3 = 0x03000000U,
|
|
|
|
EF_ARM_EABI_VER4 = 0x04000000U,
|
|
|
|
EF_ARM_EABI_VER5 = 0x05000000U,
|
|
|
|
EF_ARM_EABIMASK = 0xFF000000U
|
|
|
|
};
|
2011-02-04 21:41:11 +00:00
|
|
|
|
2010-11-23 19:40:36 +00:00
|
|
|
// ELF Relocation types for ARM
|
|
|
|
// Meets 2.08 ABI Specs.
|
|
|
|
|
|
|
|
enum {
|
|
|
|
R_ARM_NONE = 0x00,
|
|
|
|
R_ARM_PC24 = 0x01,
|
|
|
|
R_ARM_ABS32 = 0x02,
|
|
|
|
R_ARM_REL32 = 0x03,
|
|
|
|
R_ARM_LDR_PC_G0 = 0x04,
|
|
|
|
R_ARM_ABS16 = 0x05,
|
|
|
|
R_ARM_ABS12 = 0x06,
|
|
|
|
R_ARM_THM_ABS5 = 0x07,
|
|
|
|
R_ARM_ABS8 = 0x08,
|
|
|
|
R_ARM_SBREL32 = 0x09,
|
|
|
|
R_ARM_THM_CALL = 0x0a,
|
|
|
|
R_ARM_THM_PC8 = 0x0b,
|
|
|
|
R_ARM_BREL_ADJ = 0x0c,
|
|
|
|
R_ARM_TLS_DESC = 0x0d,
|
|
|
|
R_ARM_THM_SWI8 = 0x0e,
|
|
|
|
R_ARM_XPC25 = 0x0f,
|
|
|
|
R_ARM_THM_XPC22 = 0x10,
|
|
|
|
R_ARM_TLS_DTPMOD32 = 0x11,
|
|
|
|
R_ARM_TLS_DTPOFF32 = 0x12,
|
|
|
|
R_ARM_TLS_TPOFF32 = 0x13,
|
|
|
|
R_ARM_COPY = 0x14,
|
|
|
|
R_ARM_GLOB_DAT = 0x15,
|
|
|
|
R_ARM_JUMP_SLOT = 0x16,
|
|
|
|
R_ARM_RELATIVE = 0x17,
|
|
|
|
R_ARM_GOTOFF32 = 0x18,
|
|
|
|
R_ARM_BASE_PREL = 0x19,
|
|
|
|
R_ARM_GOT_BREL = 0x1a,
|
|
|
|
R_ARM_PLT32 = 0x1b,
|
|
|
|
R_ARM_CALL = 0x1c,
|
|
|
|
R_ARM_JUMP24 = 0x1d,
|
|
|
|
R_ARM_THM_JUMP24 = 0x1e,
|
|
|
|
R_ARM_BASE_ABS = 0x1f,
|
|
|
|
R_ARM_ALU_PCREL_7_0 = 0x20,
|
|
|
|
R_ARM_ALU_PCREL_15_8 = 0x21,
|
|
|
|
R_ARM_ALU_PCREL_23_15 = 0x22,
|
|
|
|
R_ARM_LDR_SBREL_11_0_NC = 0x23,
|
|
|
|
R_ARM_ALU_SBREL_19_12_NC = 0x24,
|
|
|
|
R_ARM_ALU_SBREL_27_20_CK = 0x25,
|
|
|
|
R_ARM_TARGET1 = 0x26,
|
|
|
|
R_ARM_SBREL31 = 0x27,
|
|
|
|
R_ARM_V4BX = 0x28,
|
|
|
|
R_ARM_TARGET2 = 0x29,
|
|
|
|
R_ARM_PREL31 = 0x2a,
|
|
|
|
R_ARM_MOVW_ABS_NC = 0x2b,
|
|
|
|
R_ARM_MOVT_ABS = 0x2c,
|
|
|
|
R_ARM_MOVW_PREL_NC = 0x2d,
|
|
|
|
R_ARM_MOVT_PREL = 0x2e,
|
|
|
|
R_ARM_THM_MOVW_ABS_NC = 0x2f,
|
|
|
|
R_ARM_THM_MOVT_ABS = 0x30,
|
|
|
|
R_ARM_THM_MOVW_PREL_NC = 0x31,
|
|
|
|
R_ARM_THM_MOVT_PREL = 0x32,
|
|
|
|
R_ARM_THM_JUMP19 = 0x33,
|
|
|
|
R_ARM_THM_JUMP6 = 0x34,
|
|
|
|
R_ARM_THM_ALU_PREL_11_0 = 0x35,
|
|
|
|
R_ARM_THM_PC12 = 0x36,
|
|
|
|
R_ARM_ABS32_NOI = 0x37,
|
|
|
|
R_ARM_REL32_NOI = 0x38,
|
|
|
|
R_ARM_ALU_PC_G0_NC = 0x39,
|
|
|
|
R_ARM_ALU_PC_G0 = 0x3a,
|
|
|
|
R_ARM_ALU_PC_G1_NC = 0x3b,
|
|
|
|
R_ARM_ALU_PC_G1 = 0x3c,
|
|
|
|
R_ARM_ALU_PC_G2 = 0x3d,
|
|
|
|
R_ARM_LDR_PC_G1 = 0x3e,
|
|
|
|
R_ARM_LDR_PC_G2 = 0x3f,
|
|
|
|
R_ARM_LDRS_PC_G0 = 0x40,
|
|
|
|
R_ARM_LDRS_PC_G1 = 0x41,
|
|
|
|
R_ARM_LDRS_PC_G2 = 0x42,
|
|
|
|
R_ARM_LDC_PC_G0 = 0x43,
|
|
|
|
R_ARM_LDC_PC_G1 = 0x44,
|
|
|
|
R_ARM_LDC_PC_G2 = 0x45,
|
|
|
|
R_ARM_ALU_SB_G0_NC = 0x46,
|
|
|
|
R_ARM_ALU_SB_G0 = 0x47,
|
|
|
|
R_ARM_ALU_SB_G1_NC = 0x48,
|
|
|
|
R_ARM_ALU_SB_G1 = 0x49,
|
|
|
|
R_ARM_ALU_SB_G2 = 0x4a,
|
|
|
|
R_ARM_LDR_SB_G0 = 0x4b,
|
|
|
|
R_ARM_LDR_SB_G1 = 0x4c,
|
|
|
|
R_ARM_LDR_SB_G2 = 0x4d,
|
|
|
|
R_ARM_LDRS_SB_G0 = 0x4e,
|
|
|
|
R_ARM_LDRS_SB_G1 = 0x4f,
|
|
|
|
R_ARM_LDRS_SB_G2 = 0x50,
|
|
|
|
R_ARM_LDC_SB_G0 = 0x51,
|
|
|
|
R_ARM_LDC_SB_G1 = 0x52,
|
|
|
|
R_ARM_LDC_SB_G2 = 0x53,
|
|
|
|
R_ARM_MOVW_BREL_NC = 0x54,
|
|
|
|
R_ARM_MOVT_BREL = 0x55,
|
|
|
|
R_ARM_MOVW_BREL = 0x56,
|
|
|
|
R_ARM_THM_MOVW_BREL_NC = 0x57,
|
|
|
|
R_ARM_THM_MOVT_BREL = 0x58,
|
|
|
|
R_ARM_THM_MOVW_BREL = 0x59,
|
|
|
|
R_ARM_TLS_GOTDESC = 0x5a,
|
|
|
|
R_ARM_TLS_CALL = 0x5b,
|
|
|
|
R_ARM_TLS_DESCSEQ = 0x5c,
|
|
|
|
R_ARM_THM_TLS_CALL = 0x5d,
|
|
|
|
R_ARM_PLT32_ABS = 0x5e,
|
|
|
|
R_ARM_GOT_ABS = 0x5f,
|
|
|
|
R_ARM_GOT_PREL = 0x60,
|
|
|
|
R_ARM_GOT_BREL12 = 0x61,
|
|
|
|
R_ARM_GOTOFF12 = 0x62,
|
|
|
|
R_ARM_GOTRELAX = 0x63,
|
|
|
|
R_ARM_GNU_VTENTRY = 0x64,
|
|
|
|
R_ARM_GNU_VTINHERIT = 0x65,
|
|
|
|
R_ARM_THM_JUMP11 = 0x66,
|
|
|
|
R_ARM_THM_JUMP8 = 0x67,
|
|
|
|
R_ARM_TLS_GD32 = 0x68,
|
|
|
|
R_ARM_TLS_LDM32 = 0x69,
|
|
|
|
R_ARM_TLS_LDO32 = 0x6a,
|
|
|
|
R_ARM_TLS_IE32 = 0x6b,
|
|
|
|
R_ARM_TLS_LE32 = 0x6c,
|
|
|
|
R_ARM_TLS_LDO12 = 0x6d,
|
|
|
|
R_ARM_TLS_LE12 = 0x6e,
|
|
|
|
R_ARM_TLS_IE12GP = 0x6f,
|
|
|
|
R_ARM_PRIVATE_0 = 0x70,
|
|
|
|
R_ARM_PRIVATE_1 = 0x71,
|
|
|
|
R_ARM_PRIVATE_2 = 0x72,
|
|
|
|
R_ARM_PRIVATE_3 = 0x73,
|
|
|
|
R_ARM_PRIVATE_4 = 0x74,
|
|
|
|
R_ARM_PRIVATE_5 = 0x75,
|
|
|
|
R_ARM_PRIVATE_6 = 0x76,
|
|
|
|
R_ARM_PRIVATE_7 = 0x77,
|
|
|
|
R_ARM_PRIVATE_8 = 0x78,
|
|
|
|
R_ARM_PRIVATE_9 = 0x79,
|
|
|
|
R_ARM_PRIVATE_10 = 0x7a,
|
|
|
|
R_ARM_PRIVATE_11 = 0x7b,
|
|
|
|
R_ARM_PRIVATE_12 = 0x7c,
|
|
|
|
R_ARM_PRIVATE_13 = 0x7d,
|
|
|
|
R_ARM_PRIVATE_14 = 0x7e,
|
|
|
|
R_ARM_PRIVATE_15 = 0x7f,
|
|
|
|
R_ARM_ME_TOO = 0x80,
|
|
|
|
R_ARM_THM_TLS_DESCSEQ16 = 0x81,
|
|
|
|
R_ARM_THM_TLS_DESCSEQ32 = 0x82
|
|
|
|
};
|
|
|
|
|
2011-11-23 22:18:04 +00:00
|
|
|
// Mips Specific e_flags
|
|
|
|
enum {
|
|
|
|
EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
|
|
|
|
EF_MIPS_PIC = 0x00000002, // Position independent code
|
|
|
|
EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
|
2013-02-19 22:29:00 +00:00
|
|
|
EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
|
2013-02-19 22:14:34 +00:00
|
|
|
|
2013-02-19 22:04:37 +00:00
|
|
|
//ARCH_ASE
|
|
|
|
EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
|
2013-02-19 22:14:34 +00:00
|
|
|
EF_MIPS_ARCH_ASE_M16 =
|
|
|
|
0x04000000, // Has Mips-16 ISA extensions
|
2013-02-19 22:04:37 +00:00
|
|
|
//ARCH
|
2011-11-23 22:18:04 +00:00
|
|
|
EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
|
|
|
|
EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
|
|
|
|
EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
|
|
|
|
EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
|
|
|
|
EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
|
2012-04-02 19:25:22 +00:00
|
|
|
EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h
|
|
|
|
EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h
|
2011-11-23 22:18:04 +00:00
|
|
|
EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2
|
2013-02-19 22:14:34 +00:00
|
|
|
EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2
|
|
|
|
EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
|
2011-11-23 22:18:04 +00:00
|
|
|
};
|
|
|
|
|
2011-10-14 02:43:18 +00:00
|
|
|
// ELF Relocation types for Mips
|
2011-11-23 22:18:04 +00:00
|
|
|
// .
|
2011-10-14 02:43:18 +00:00
|
|
|
enum {
|
|
|
|
R_MIPS_NONE = 0,
|
|
|
|
R_MIPS_16 = 1,
|
|
|
|
R_MIPS_32 = 2,
|
|
|
|
R_MIPS_REL32 = 3,
|
|
|
|
R_MIPS_26 = 4,
|
|
|
|
R_MIPS_HI16 = 5,
|
|
|
|
R_MIPS_LO16 = 6,
|
|
|
|
R_MIPS_GPREL16 = 7,
|
|
|
|
R_MIPS_LITERAL = 8,
|
|
|
|
R_MIPS_GOT16 = 9,
|
2011-12-07 00:28:57 +00:00
|
|
|
R_MIPS_GOT = 9,
|
2011-10-14 02:43:18 +00:00
|
|
|
R_MIPS_PC16 = 10,
|
|
|
|
R_MIPS_CALL16 = 11,
|
|
|
|
R_MIPS_GPREL32 = 12,
|
2013-07-24 01:58:40 +00:00
|
|
|
R_MIPS_UNUSED1 = 13,
|
|
|
|
R_MIPS_UNUSED2 = 14,
|
2011-10-14 02:43:18 +00:00
|
|
|
R_MIPS_SHIFT5 = 16,
|
|
|
|
R_MIPS_SHIFT6 = 17,
|
|
|
|
R_MIPS_64 = 18,
|
|
|
|
R_MIPS_GOT_DISP = 19,
|
|
|
|
R_MIPS_GOT_PAGE = 20,
|
|
|
|
R_MIPS_GOT_OFST = 21,
|
|
|
|
R_MIPS_GOT_HI16 = 22,
|
|
|
|
R_MIPS_GOT_LO16 = 23,
|
|
|
|
R_MIPS_SUB = 24,
|
|
|
|
R_MIPS_INSERT_A = 25,
|
|
|
|
R_MIPS_INSERT_B = 26,
|
|
|
|
R_MIPS_DELETE = 27,
|
|
|
|
R_MIPS_HIGHER = 28,
|
|
|
|
R_MIPS_HIGHEST = 29,
|
|
|
|
R_MIPS_CALL_HI16 = 30,
|
|
|
|
R_MIPS_CALL_LO16 = 31,
|
|
|
|
R_MIPS_SCN_DISP = 32,
|
|
|
|
R_MIPS_REL16 = 33,
|
|
|
|
R_MIPS_ADD_IMMEDIATE = 34,
|
|
|
|
R_MIPS_PJUMP = 35,
|
|
|
|
R_MIPS_RELGOT = 36,
|
|
|
|
R_MIPS_JALR = 37,
|
|
|
|
R_MIPS_TLS_DTPMOD32 = 38,
|
|
|
|
R_MIPS_TLS_DTPREL32 = 39,
|
|
|
|
R_MIPS_TLS_DTPMOD64 = 40,
|
|
|
|
R_MIPS_TLS_DTPREL64 = 41,
|
|
|
|
R_MIPS_TLS_GD = 42,
|
|
|
|
R_MIPS_TLS_LDM = 43,
|
|
|
|
R_MIPS_TLS_DTPREL_HI16 = 44,
|
|
|
|
R_MIPS_TLS_DTPREL_LO16 = 45,
|
|
|
|
R_MIPS_TLS_GOTTPREL = 46,
|
|
|
|
R_MIPS_TLS_TPREL32 = 47,
|
|
|
|
R_MIPS_TLS_TPREL64 = 48,
|
|
|
|
R_MIPS_TLS_TPREL_HI16 = 49,
|
|
|
|
R_MIPS_TLS_TPREL_LO16 = 50,
|
|
|
|
R_MIPS_GLOB_DAT = 51,
|
|
|
|
R_MIPS_COPY = 126,
|
|
|
|
R_MIPS_JUMP_SLOT = 127,
|
|
|
|
R_MIPS_NUM = 218
|
|
|
|
};
|
2010-11-21 22:06:28 +00:00
|
|
|
|
2013-02-19 22:04:37 +00:00
|
|
|
// Special values for the st_other field in the symbol table entry for MIPS.
|
|
|
|
enum {
|
|
|
|
STO_MIPS_MICROMIPS = 0x80 // MIPS Specific ISA for MicroMips
|
|
|
|
};
|
|
|
|
|
2012-10-30 02:26:15 +00:00
|
|
|
// Hexagon Specific e_flags
|
|
|
|
// Release 5 ABI
|
|
|
|
enum {
|
|
|
|
// Object processor version flags, bits[3:0]
|
|
|
|
EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2
|
|
|
|
EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3
|
|
|
|
EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4
|
|
|
|
EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5
|
|
|
|
|
|
|
|
// Highest ISA version flags
|
|
|
|
EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[3:0]
|
|
|
|
// of e_flags
|
|
|
|
EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA
|
|
|
|
EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA
|
|
|
|
EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA
|
|
|
|
EF_HEXAGON_ISA_V5 = 0x00000040 // Hexagon V5 ISA
|
|
|
|
};
|
|
|
|
|
|
|
|
// Hexagon specific Section indexes for common small data
|
2013-02-12 21:29:39 +00:00
|
|
|
// Release 5 ABI
|
2012-10-30 02:26:15 +00:00
|
|
|
enum {
|
|
|
|
SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes
|
|
|
|
SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
|
|
|
|
SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
|
|
|
|
SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
|
|
|
|
SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access
|
2013-02-12 21:29:39 +00:00
|
|
|
};
|
2012-10-30 02:26:15 +00:00
|
|
|
|
2012-06-23 14:46:18 +00:00
|
|
|
// ELF Relocation types for Hexagon
|
2012-10-30 02:26:15 +00:00
|
|
|
// Release 5 ABI
|
2012-06-23 14:46:18 +00:00
|
|
|
enum {
|
|
|
|
R_HEX_NONE = 0,
|
|
|
|
R_HEX_B22_PCREL = 1,
|
|
|
|
R_HEX_B15_PCREL = 2,
|
|
|
|
R_HEX_B7_PCREL = 3,
|
|
|
|
R_HEX_LO16 = 4,
|
|
|
|
R_HEX_HI16 = 5,
|
|
|
|
R_HEX_32 = 6,
|
|
|
|
R_HEX_16 = 7,
|
|
|
|
R_HEX_8 = 8,
|
|
|
|
R_HEX_GPREL16_0 = 9,
|
|
|
|
R_HEX_GPREL16_1 = 10,
|
|
|
|
R_HEX_GPREL16_2 = 11,
|
|
|
|
R_HEX_GPREL16_3 = 12,
|
|
|
|
R_HEX_HL16 = 13,
|
|
|
|
R_HEX_B13_PCREL = 14,
|
|
|
|
R_HEX_B9_PCREL = 15,
|
|
|
|
R_HEX_B32_PCREL_X = 16,
|
|
|
|
R_HEX_32_6_X = 17,
|
|
|
|
R_HEX_B22_PCREL_X = 18,
|
|
|
|
R_HEX_B15_PCREL_X = 19,
|
|
|
|
R_HEX_B13_PCREL_X = 20,
|
|
|
|
R_HEX_B9_PCREL_X = 21,
|
|
|
|
R_HEX_B7_PCREL_X = 22,
|
|
|
|
R_HEX_16_X = 23,
|
|
|
|
R_HEX_12_X = 24,
|
|
|
|
R_HEX_11_X = 25,
|
|
|
|
R_HEX_10_X = 26,
|
|
|
|
R_HEX_9_X = 27,
|
|
|
|
R_HEX_8_X = 28,
|
|
|
|
R_HEX_7_X = 29,
|
|
|
|
R_HEX_6_X = 30,
|
|
|
|
R_HEX_32_PCREL = 31,
|
|
|
|
R_HEX_COPY = 32,
|
|
|
|
R_HEX_GLOB_DAT = 33,
|
|
|
|
R_HEX_JMP_SLOT = 34,
|
|
|
|
R_HEX_RELATIVE = 35,
|
|
|
|
R_HEX_PLT_B22_PCREL = 36,
|
|
|
|
R_HEX_GOTREL_LO16 = 37,
|
|
|
|
R_HEX_GOTREL_HI16 = 38,
|
|
|
|
R_HEX_GOTREL_32 = 39,
|
|
|
|
R_HEX_GOT_LO16 = 40,
|
|
|
|
R_HEX_GOT_HI16 = 41,
|
|
|
|
R_HEX_GOT_32 = 42,
|
|
|
|
R_HEX_GOT_16 = 43,
|
|
|
|
R_HEX_DTPMOD_32 = 44,
|
|
|
|
R_HEX_DTPREL_LO16 = 45,
|
|
|
|
R_HEX_DTPREL_HI16 = 46,
|
|
|
|
R_HEX_DTPREL_32 = 47,
|
|
|
|
R_HEX_DTPREL_16 = 48,
|
|
|
|
R_HEX_GD_PLT_B22_PCREL = 49,
|
|
|
|
R_HEX_GD_GOT_LO16 = 50,
|
|
|
|
R_HEX_GD_GOT_HI16 = 51,
|
|
|
|
R_HEX_GD_GOT_32 = 52,
|
|
|
|
R_HEX_GD_GOT_16 = 53,
|
|
|
|
R_HEX_IE_LO16 = 54,
|
|
|
|
R_HEX_IE_HI16 = 55,
|
|
|
|
R_HEX_IE_32 = 56,
|
|
|
|
R_HEX_IE_GOT_LO16 = 57,
|
|
|
|
R_HEX_IE_GOT_HI16 = 58,
|
|
|
|
R_HEX_IE_GOT_32 = 59,
|
|
|
|
R_HEX_IE_GOT_16 = 60,
|
|
|
|
R_HEX_TPREL_LO16 = 61,
|
|
|
|
R_HEX_TPREL_HI16 = 62,
|
|
|
|
R_HEX_TPREL_32 = 63,
|
|
|
|
R_HEX_TPREL_16 = 64,
|
|
|
|
R_HEX_6_PCREL_X = 65,
|
|
|
|
R_HEX_GOTREL_32_6_X = 66,
|
|
|
|
R_HEX_GOTREL_16_X = 67,
|
|
|
|
R_HEX_GOTREL_11_X = 68,
|
|
|
|
R_HEX_GOT_32_6_X = 69,
|
|
|
|
R_HEX_GOT_16_X = 70,
|
|
|
|
R_HEX_GOT_11_X = 71,
|
|
|
|
R_HEX_DTPREL_32_6_X = 72,
|
|
|
|
R_HEX_DTPREL_16_X = 73,
|
|
|
|
R_HEX_DTPREL_11_X = 74,
|
|
|
|
R_HEX_GD_GOT_32_6_X = 75,
|
|
|
|
R_HEX_GD_GOT_16_X = 76,
|
|
|
|
R_HEX_GD_GOT_11_X = 77,
|
|
|
|
R_HEX_IE_32_6_X = 78,
|
|
|
|
R_HEX_IE_16_X = 79,
|
|
|
|
R_HEX_IE_GOT_32_6_X = 80,
|
|
|
|
R_HEX_IE_GOT_16_X = 81,
|
|
|
|
R_HEX_IE_GOT_11_X = 82,
|
|
|
|
R_HEX_TPREL_32_6_X = 83,
|
|
|
|
R_HEX_TPREL_16_X = 84,
|
|
|
|
R_HEX_TPREL_11_X = 85
|
|
|
|
};
|
|
|
|
|
2013-05-03 11:11:15 +00:00
|
|
|
// ELF Relocation types for S390/zSeries
|
|
|
|
enum {
|
|
|
|
R_390_NONE = 0,
|
|
|
|
R_390_8 = 1,
|
|
|
|
R_390_12 = 2,
|
|
|
|
R_390_16 = 3,
|
|
|
|
R_390_32 = 4,
|
|
|
|
R_390_PC32 = 5,
|
|
|
|
R_390_GOT12 = 6,
|
|
|
|
R_390_GOT32 = 7,
|
|
|
|
R_390_PLT32 = 8,
|
|
|
|
R_390_COPY = 9,
|
|
|
|
R_390_GLOB_DAT = 10,
|
|
|
|
R_390_JMP_SLOT = 11,
|
|
|
|
R_390_RELATIVE = 12,
|
|
|
|
R_390_GOTOFF = 13,
|
|
|
|
R_390_GOTPC = 14,
|
|
|
|
R_390_GOT16 = 15,
|
|
|
|
R_390_PC16 = 16,
|
|
|
|
R_390_PC16DBL = 17,
|
|
|
|
R_390_PLT16DBL = 18,
|
|
|
|
R_390_PC32DBL = 19,
|
|
|
|
R_390_PLT32DBL = 20,
|
|
|
|
R_390_GOTPCDBL = 21,
|
|
|
|
R_390_64 = 22,
|
|
|
|
R_390_PC64 = 23,
|
|
|
|
R_390_GOT64 = 24,
|
|
|
|
R_390_PLT64 = 25,
|
|
|
|
R_390_GOTENT = 26,
|
|
|
|
R_390_GOTOFF16 = 27,
|
|
|
|
R_390_GOTOFF64 = 28,
|
|
|
|
R_390_GOTPLT12 = 29,
|
|
|
|
R_390_GOTPLT16 = 30,
|
|
|
|
R_390_GOTPLT32 = 31,
|
|
|
|
R_390_GOTPLT64 = 32,
|
|
|
|
R_390_GOTPLTENT = 33,
|
|
|
|
R_390_PLTOFF16 = 34,
|
|
|
|
R_390_PLTOFF32 = 35,
|
|
|
|
R_390_PLTOFF64 = 36,
|
|
|
|
R_390_TLS_LOAD = 37,
|
|
|
|
R_390_TLS_GDCALL = 38,
|
|
|
|
R_390_TLS_LDCALL = 39,
|
|
|
|
R_390_TLS_GD32 = 40,
|
|
|
|
R_390_TLS_GD64 = 41,
|
|
|
|
R_390_TLS_GOTIE12 = 42,
|
|
|
|
R_390_TLS_GOTIE32 = 43,
|
|
|
|
R_390_TLS_GOTIE64 = 44,
|
|
|
|
R_390_TLS_LDM32 = 45,
|
|
|
|
R_390_TLS_LDM64 = 46,
|
|
|
|
R_390_TLS_IE32 = 47,
|
|
|
|
R_390_TLS_IE64 = 48,
|
|
|
|
R_390_TLS_IEENT = 49,
|
|
|
|
R_390_TLS_LE32 = 50,
|
|
|
|
R_390_TLS_LE64 = 51,
|
|
|
|
R_390_TLS_LDO32 = 52,
|
|
|
|
R_390_TLS_LDO64 = 53,
|
|
|
|
R_390_TLS_DTPMOD = 54,
|
|
|
|
R_390_TLS_DTPOFF = 55,
|
|
|
|
R_390_TLS_TPOFF = 56,
|
|
|
|
R_390_20 = 57,
|
|
|
|
R_390_GOT20 = 58,
|
|
|
|
R_390_GOTPLT20 = 59,
|
|
|
|
R_390_TLS_GOTIE20 = 60,
|
|
|
|
R_390_IRELATIVE = 61
|
|
|
|
};
|
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// Section header.
|
|
|
|
struct Elf32_Shdr {
|
|
|
|
Elf32_Word sh_name; // Section name (index into string table)
|
|
|
|
Elf32_Word sh_type; // Section type (SHT_*)
|
|
|
|
Elf32_Word sh_flags; // Section flags (SHF_*)
|
|
|
|
Elf32_Addr sh_addr; // Address where section is to be loaded
|
|
|
|
Elf32_Off sh_offset; // File offset of section data, in bytes
|
|
|
|
Elf32_Word sh_size; // Size of section, in bytes
|
2005-04-21 20:48:15 +00:00
|
|
|
Elf32_Word sh_link; // Section type-specific header table index link
|
2004-02-28 06:26:20 +00:00
|
|
|
Elf32_Word sh_info; // Section type-specific extra information
|
|
|
|
Elf32_Word sh_addralign; // Section address alignment
|
|
|
|
Elf32_Word sh_entsize; // Size of records contained within the section
|
|
|
|
};
|
|
|
|
|
2004-02-29 06:30:25 +00:00
|
|
|
// Section header for ELF64 - same fields as ELF32, different types.
|
2004-02-29 06:33:28 +00:00
|
|
|
struct Elf64_Shdr {
|
2011-10-13 17:33:52 +00:00
|
|
|
Elf64_Word sh_name;
|
|
|
|
Elf64_Word sh_type;
|
2004-02-29 06:30:25 +00:00
|
|
|
Elf64_Xword sh_flags;
|
|
|
|
Elf64_Addr sh_addr;
|
|
|
|
Elf64_Off sh_offset;
|
|
|
|
Elf64_Xword sh_size;
|
2011-10-13 17:33:52 +00:00
|
|
|
Elf64_Word sh_link;
|
|
|
|
Elf64_Word sh_info;
|
2004-02-29 06:30:25 +00:00
|
|
|
Elf64_Xword sh_addralign;
|
|
|
|
Elf64_Xword sh_entsize;
|
2004-02-29 06:33:28 +00:00
|
|
|
};
|
2004-02-29 06:30:25 +00:00
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// Special section indices.
|
|
|
|
enum {
|
|
|
|
SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
|
|
|
|
SHN_LORESERVE = 0xff00, // Lowest reserved index
|
|
|
|
SHN_LOPROC = 0xff00, // Lowest processor-specific index
|
|
|
|
SHN_HIPROC = 0xff1f, // Highest processor-specific index
|
2011-10-13 00:16:25 +00:00
|
|
|
SHN_LOOS = 0xff20, // Lowest operating system-specific index
|
|
|
|
SHN_HIOS = 0xff3f, // Highest operating system-specific index
|
2004-02-28 06:26:20 +00:00
|
|
|
SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
|
|
|
|
SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
|
2010-10-31 00:16:26 +00:00
|
|
|
SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
|
2004-02-28 06:26:20 +00:00
|
|
|
SHN_HIRESERVE = 0xffff // Highest reserved index
|
|
|
|
};
|
|
|
|
|
|
|
|
// Section types.
|
|
|
|
enum {
|
2010-07-20 20:52:18 +00:00
|
|
|
SHT_NULL = 0, // No associated section (inactive entry).
|
|
|
|
SHT_PROGBITS = 1, // Program-defined contents.
|
|
|
|
SHT_SYMTAB = 2, // Symbol table.
|
|
|
|
SHT_STRTAB = 3, // String table.
|
|
|
|
SHT_RELA = 4, // Relocation entries; explicit addends.
|
|
|
|
SHT_HASH = 5, // Symbol hash table.
|
|
|
|
SHT_DYNAMIC = 6, // Information for dynamic linking.
|
|
|
|
SHT_NOTE = 7, // Information about the file.
|
|
|
|
SHT_NOBITS = 8, // Data occupies no space in the file.
|
|
|
|
SHT_REL = 9, // Relocation entries; no explicit addends.
|
|
|
|
SHT_SHLIB = 10, // Reserved.
|
|
|
|
SHT_DYNSYM = 11, // Symbol table.
|
2011-06-13 11:11:39 +00:00
|
|
|
SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
|
2010-07-20 20:52:18 +00:00
|
|
|
SHT_FINI_ARRAY = 15, // Pointers to termination functions.
|
|
|
|
SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
|
|
|
|
SHT_GROUP = 17, // Section group.
|
2011-06-13 11:11:39 +00:00
|
|
|
SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
|
2010-07-20 20:52:18 +00:00
|
|
|
SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
|
2012-07-18 14:12:32 +00:00
|
|
|
SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes.
|
|
|
|
SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
|
2012-03-09 20:59:52 +00:00
|
|
|
SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
|
|
|
|
SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
|
|
|
|
SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
|
2010-07-20 20:52:18 +00:00
|
|
|
SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
|
2013-02-12 21:29:39 +00:00
|
|
|
SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
|
2010-10-25 17:50:35 +00:00
|
|
|
// Fixme: All this is duplicated in MCSectionELF. Why??
|
|
|
|
// Exception Index table
|
|
|
|
SHT_ARM_EXIDX = 0x70000001U,
|
|
|
|
// BPABI DLL dynamic linking pre-emption map
|
|
|
|
SHT_ARM_PREEMPTMAP = 0x70000002U,
|
|
|
|
// Object file compatibility attributes
|
|
|
|
SHT_ARM_ATTRIBUTES = 0x70000003U,
|
|
|
|
SHT_ARM_DEBUGOVERLAY = 0x70000004U,
|
|
|
|
SHT_ARM_OVERLAYSECTION = 0x70000005U,
|
2013-02-12 21:29:39 +00:00
|
|
|
SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in
|
2013-01-09 16:34:46 +00:00
|
|
|
// this section based on their sizes
|
2011-01-23 05:43:40 +00:00
|
|
|
SHT_X86_64_UNWIND = 0x70000001, // Unwind information
|
|
|
|
|
2013-01-18 21:20:38 +00:00
|
|
|
SHT_MIPS_REGINFO = 0x70000006, // Register usage information
|
|
|
|
SHT_MIPS_OPTIONS = 0x7000000d, // General options
|
|
|
|
|
2013-02-12 21:29:39 +00:00
|
|
|
SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
|
2010-07-20 20:52:18 +00:00
|
|
|
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
|
|
|
|
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
|
2004-02-28 06:26:20 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
// Section flags.
|
|
|
|
enum {
|
2011-01-23 04:43:11 +00:00
|
|
|
// Section data should be writable during execution.
|
|
|
|
SHF_WRITE = 0x1,
|
|
|
|
|
|
|
|
// Section occupies memory during program execution.
|
|
|
|
SHF_ALLOC = 0x2,
|
|
|
|
|
|
|
|
// Section contains executable machine instructions.
|
|
|
|
SHF_EXECINSTR = 0x4,
|
|
|
|
|
|
|
|
// The data in this section may be merged.
|
|
|
|
SHF_MERGE = 0x10,
|
|
|
|
|
|
|
|
// The data in this section is null-terminated strings.
|
|
|
|
SHF_STRINGS = 0x20,
|
|
|
|
|
|
|
|
// A field in this section holds a section header table index.
|
|
|
|
SHF_INFO_LINK = 0x40U,
|
|
|
|
|
|
|
|
// Adds special ordering requirements for link editors.
|
|
|
|
SHF_LINK_ORDER = 0x80U,
|
|
|
|
|
|
|
|
// This section requires special OS-specific processing to avoid incorrect
|
|
|
|
// behavior.
|
|
|
|
SHF_OS_NONCONFORMING = 0x100U,
|
|
|
|
|
|
|
|
// This section is a member of a section group.
|
|
|
|
SHF_GROUP = 0x200U,
|
|
|
|
|
|
|
|
// This section holds Thread-Local Storage.
|
|
|
|
SHF_TLS = 0x400U,
|
|
|
|
|
|
|
|
// Start of target-specific flags.
|
|
|
|
|
|
|
|
/// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped
|
|
|
|
/// together by the linker to form the constant pool and the cp register is
|
|
|
|
/// set to the start of the constant pool by the boot code.
|
|
|
|
XCORE_SHF_CP_SECTION = 0x800U,
|
|
|
|
|
|
|
|
/// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped
|
|
|
|
/// together by the linker to form the data section and the dp register is
|
|
|
|
/// set to the start of the section by the boot code.
|
|
|
|
XCORE_SHF_DP_SECTION = 0x1000U,
|
|
|
|
|
2011-10-13 00:16:25 +00:00
|
|
|
SHF_MASKOS = 0x0ff00000,
|
|
|
|
|
2011-01-23 04:43:11 +00:00
|
|
|
// Bits indicating processor-specific flags.
|
2011-10-13 00:16:25 +00:00
|
|
|
SHF_MASKPROC = 0xf0000000,
|
|
|
|
|
|
|
|
// If an object file section does not have this flag set, then it may not hold
|
|
|
|
// more than 2GB and can be freely referred to in objects using smaller code
|
|
|
|
// models. Otherwise, only objects using larger code models can refer to them.
|
|
|
|
// For example, a medium code model object can refer to data in a section that
|
|
|
|
// sets this flag besides being able to refer to data in a section that does
|
|
|
|
// not set it; likewise, a small code model object can refer only to code in a
|
|
|
|
// section that does not set this flag.
|
2013-01-09 16:34:46 +00:00
|
|
|
SHF_X86_64_LARGE = 0x10000000,
|
|
|
|
|
2013-02-12 21:29:39 +00:00
|
|
|
// All sections with the GPREL flag are grouped into a global data area
|
2013-01-09 16:34:46 +00:00
|
|
|
// for faster accesses
|
2013-01-18 21:20:38 +00:00
|
|
|
SHF_HEX_GPREL = 0x10000000,
|
2013-01-09 16:34:46 +00:00
|
|
|
|
2013-01-18 21:20:38 +00:00
|
|
|
// Do not strip this section. FIXME: We need target specific SHF_ enums.
|
|
|
|
SHF_MIPS_NOSTRIP = 0x8000000
|
2004-02-28 06:26:20 +00:00
|
|
|
};
|
|
|
|
|
2010-11-11 18:13:52 +00:00
|
|
|
// Section Group Flags
|
|
|
|
enum {
|
|
|
|
GRP_COMDAT = 0x1,
|
|
|
|
GRP_MASKOS = 0x0ff00000,
|
|
|
|
GRP_MASKPROC = 0xf0000000
|
|
|
|
};
|
|
|
|
|
2010-07-13 00:24:59 +00:00
|
|
|
// Symbol table entries for ELF32.
|
2004-02-28 06:26:20 +00:00
|
|
|
struct Elf32_Sym {
|
|
|
|
Elf32_Word st_name; // Symbol name (index into string table)
|
|
|
|
Elf32_Addr st_value; // Value or address associated with the symbol
|
|
|
|
Elf32_Word st_size; // Size of the symbol
|
|
|
|
unsigned char st_info; // Symbol's type and binding attributes
|
|
|
|
unsigned char st_other; // Must be zero; reserved
|
|
|
|
Elf32_Half st_shndx; // Which section (header table index) it's defined in
|
2005-04-21 20:48:15 +00:00
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// These accessors and mutators correspond to the ELF32_ST_BIND,
|
|
|
|
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
|
2010-07-12 22:36:08 +00:00
|
|
|
unsigned char getBinding() const { return st_info >> 4; }
|
|
|
|
unsigned char getType() const { return st_info & 0x0f; }
|
|
|
|
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
|
|
|
|
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
|
|
|
|
void setBindingAndType(unsigned char b, unsigned char t) {
|
2004-02-28 06:26:20 +00:00
|
|
|
st_info = (b << 4) + (t & 0x0f);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2010-07-13 00:24:59 +00:00
|
|
|
// Symbol table entries for ELF64.
|
|
|
|
struct Elf64_Sym {
|
|
|
|
Elf64_Word st_name; // Symbol name (index into string table)
|
|
|
|
unsigned char st_info; // Symbol's type and binding attributes
|
|
|
|
unsigned char st_other; // Must be zero; reserved
|
2013-02-12 21:29:39 +00:00
|
|
|
Elf64_Half st_shndx; // Which section (header tbl index) it's defined in
|
2010-07-13 00:24:59 +00:00
|
|
|
Elf64_Addr st_value; // Value or address associated with the symbol
|
|
|
|
Elf64_Xword st_size; // Size of the symbol
|
|
|
|
|
|
|
|
// These accessors and mutators are identical to those defined for ELF32
|
|
|
|
// symbol table entries.
|
|
|
|
unsigned char getBinding() const { return st_info >> 4; }
|
|
|
|
unsigned char getType() const { return st_info & 0x0f; }
|
|
|
|
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
|
|
|
|
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
|
|
|
|
void setBindingAndType(unsigned char b, unsigned char t) {
|
|
|
|
st_info = (b << 4) + (t & 0x0f);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2010-08-16 18:35:43 +00:00
|
|
|
// The size (in bytes) of symbol table entries.
|
|
|
|
enum {
|
|
|
|
SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
|
|
|
|
SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
|
|
|
|
};
|
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// Symbol bindings.
|
|
|
|
enum {
|
|
|
|
STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
|
|
|
|
STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
|
|
|
|
STB_WEAK = 2, // Weak symbol, like global but lower-precedence
|
2011-10-13 00:16:25 +00:00
|
|
|
STB_LOOS = 10, // Lowest operating system-specific binding type
|
|
|
|
STB_HIOS = 12, // Highest operating system-specific binding type
|
2004-02-28 06:26:20 +00:00
|
|
|
STB_LOPROC = 13, // Lowest processor-specific binding type
|
|
|
|
STB_HIPROC = 15 // Highest processor-specific binding type
|
|
|
|
};
|
|
|
|
|
|
|
|
// Symbol types.
|
|
|
|
enum {
|
|
|
|
STT_NOTYPE = 0, // Symbol's type is not specified
|
|
|
|
STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
|
|
|
|
STT_FUNC = 2, // Symbol is executable code (function, etc.)
|
|
|
|
STT_SECTION = 3, // Symbol refers to a section
|
|
|
|
STT_FILE = 4, // Local, absolute symbol that refers to a file
|
2011-06-13 11:11:39 +00:00
|
|
|
STT_COMMON = 5, // An uninitialized common block
|
2010-07-16 07:48:07 +00:00
|
|
|
STT_TLS = 6, // Thread local data object
|
2011-10-13 00:16:25 +00:00
|
|
|
STT_LOOS = 7, // Lowest operating system-specific symbol type
|
|
|
|
STT_HIOS = 8, // Highest operating system-specific symbol type
|
2011-12-12 17:34:04 +00:00
|
|
|
STT_GNU_IFUNC = 10, // GNU indirect function
|
2004-02-28 06:26:20 +00:00
|
|
|
STT_LOPROC = 13, // Lowest processor-specific symbol type
|
|
|
|
STT_HIPROC = 15 // Highest processor-specific symbol type
|
|
|
|
};
|
|
|
|
|
2010-07-16 07:48:07 +00:00
|
|
|
enum {
|
|
|
|
STV_DEFAULT = 0, // Visibility is specified by binding type
|
|
|
|
STV_INTERNAL = 1, // Defined by processor supplements
|
|
|
|
STV_HIDDEN = 2, // Not visible to other components
|
|
|
|
STV_PROTECTED = 3 // Visible in other components but not preemptable
|
|
|
|
};
|
|
|
|
|
2013-02-16 01:56:36 +00:00
|
|
|
// Symbol number.
|
|
|
|
enum {
|
|
|
|
STN_UNDEF = 0
|
|
|
|
};
|
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// Relocation entry, without explicit addend.
|
|
|
|
struct Elf32_Rel {
|
2005-04-21 20:48:15 +00:00
|
|
|
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
|
2004-02-28 06:26:20 +00:00
|
|
|
Elf32_Word r_info; // Symbol table index and type of relocation to apply
|
2005-04-21 20:48:15 +00:00
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
|
|
|
|
// and ELF32_R_INFO macros defined in the ELF specification:
|
2010-07-12 22:36:08 +00:00
|
|
|
Elf32_Word getSymbol() const { return (r_info >> 8); }
|
|
|
|
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
|
|
|
|
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
|
|
|
|
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
|
|
|
|
void setSymbolAndType(Elf32_Word s, unsigned char t) {
|
2004-02-28 06:26:20 +00:00
|
|
|
r_info = (s << 8) + t;
|
2010-07-16 15:03:23 +00:00
|
|
|
}
|
2004-02-28 06:26:20 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
// Relocation entry with explicit addend.
|
|
|
|
struct Elf32_Rela {
|
2005-04-21 20:48:15 +00:00
|
|
|
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
|
2004-02-28 06:26:20 +00:00
|
|
|
Elf32_Word r_info; // Symbol table index and type of relocation to apply
|
|
|
|
Elf32_Sword r_addend; // Compute value for relocatable field by adding this
|
2005-04-21 20:48:15 +00:00
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
|
|
|
|
// and ELF32_R_INFO macros defined in the ELF specification:
|
2010-07-12 22:36:08 +00:00
|
|
|
Elf32_Word getSymbol() const { return (r_info >> 8); }
|
|
|
|
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
|
|
|
|
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
|
|
|
|
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
|
|
|
|
void setSymbolAndType(Elf32_Word s, unsigned char t) {
|
2004-02-28 06:26:20 +00:00
|
|
|
r_info = (s << 8) + t;
|
2010-07-16 15:03:23 +00:00
|
|
|
}
|
2004-02-28 06:26:20 +00:00
|
|
|
};
|
|
|
|
|
2010-07-06 18:44:02 +00:00
|
|
|
// Relocation entry, without explicit addend.
|
|
|
|
struct Elf64_Rel {
|
|
|
|
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
|
|
|
|
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
|
|
|
|
|
|
|
|
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
|
|
|
|
// and ELF64_R_INFO macros defined in the ELF specification:
|
2013-01-22 12:01:43 +00:00
|
|
|
Elf64_Word getSymbol() const { return (r_info >> 32); }
|
|
|
|
Elf64_Word getType() const {
|
|
|
|
return (Elf64_Word) (r_info & 0xffffffffL);
|
2010-07-06 18:44:02 +00:00
|
|
|
}
|
2013-01-22 12:01:43 +00:00
|
|
|
void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
|
|
|
|
void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
|
|
|
|
void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
|
|
|
|
r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
|
2010-07-16 15:03:23 +00:00
|
|
|
}
|
2010-07-06 18:44:02 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
// Relocation entry with explicit addend.
|
|
|
|
struct Elf64_Rela {
|
|
|
|
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
|
|
|
|
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
|
|
|
|
Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
|
|
|
|
|
|
|
|
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
|
|
|
|
// and ELF64_R_INFO macros defined in the ELF specification:
|
2013-01-22 12:01:43 +00:00
|
|
|
Elf64_Word getSymbol() const { return (r_info >> 32); }
|
|
|
|
Elf64_Word getType() const {
|
|
|
|
return (Elf64_Word) (r_info & 0xffffffffL);
|
2010-07-06 18:44:02 +00:00
|
|
|
}
|
2013-01-22 12:01:43 +00:00
|
|
|
void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
|
|
|
|
void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
|
|
|
|
void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
|
|
|
|
r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
|
2010-07-16 15:03:23 +00:00
|
|
|
}
|
2010-07-06 18:44:02 +00:00
|
|
|
};
|
|
|
|
|
2010-07-13 00:24:59 +00:00
|
|
|
// Program header for ELF32.
|
2004-02-28 06:26:20 +00:00
|
|
|
struct Elf32_Phdr {
|
|
|
|
Elf32_Word p_type; // Type of segment
|
|
|
|
Elf32_Off p_offset; // File offset where segment is located, in bytes
|
|
|
|
Elf32_Addr p_vaddr; // Virtual address of beginning of segment
|
|
|
|
Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
|
|
|
|
Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
|
|
|
|
Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
|
|
|
|
Elf32_Word p_flags; // Segment flags
|
|
|
|
Elf32_Word p_align; // Segment alignment constraint
|
|
|
|
};
|
|
|
|
|
2010-07-13 00:24:59 +00:00
|
|
|
// Program header for ELF64.
|
|
|
|
struct Elf64_Phdr {
|
|
|
|
Elf64_Word p_type; // Type of segment
|
|
|
|
Elf64_Word p_flags; // Segment flags
|
|
|
|
Elf64_Off p_offset; // File offset where segment is located, in bytes
|
|
|
|
Elf64_Addr p_vaddr; // Virtual address of beginning of segment
|
2013-02-12 21:29:39 +00:00
|
|
|
Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific)
|
2010-07-13 00:24:59 +00:00
|
|
|
Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
|
|
|
|
Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
|
|
|
|
Elf64_Xword p_align; // Segment alignment constraint
|
|
|
|
};
|
|
|
|
|
2009-04-05 09:07:08 +00:00
|
|
|
// Segment types.
|
2004-02-28 06:26:20 +00:00
|
|
|
enum {
|
|
|
|
PT_NULL = 0, // Unused segment.
|
|
|
|
PT_LOAD = 1, // Loadable segment.
|
|
|
|
PT_DYNAMIC = 2, // Dynamic linking information.
|
|
|
|
PT_INTERP = 3, // Interpreter pathname.
|
|
|
|
PT_NOTE = 4, // Auxiliary information.
|
|
|
|
PT_SHLIB = 5, // Reserved.
|
|
|
|
PT_PHDR = 6, // The program header table itself.
|
2011-10-13 00:16:25 +00:00
|
|
|
PT_TLS = 7, // The thread-local storage template.
|
|
|
|
PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
|
2012-10-31 09:10:56 +00:00
|
|
|
PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
|
|
|
|
PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
|
|
|
|
PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
|
2011-10-13 00:16:25 +00:00
|
|
|
|
|
|
|
// x86-64 program header types.
|
|
|
|
// These all contain stack unwind tables.
|
|
|
|
PT_GNU_EH_FRAME = 0x6474e550,
|
|
|
|
PT_SUNW_EH_FRAME = 0x6474e550,
|
|
|
|
PT_SUNW_UNWIND = 0x6464e550,
|
|
|
|
|
2012-07-18 14:12:32 +00:00
|
|
|
PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
|
|
|
|
PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
|
|
|
|
|
2012-10-31 09:10:56 +00:00
|
|
|
// ARM program header types.
|
2013-02-12 21:29:39 +00:00
|
|
|
PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
|
2012-10-31 09:10:56 +00:00
|
|
|
// These all contain stack unwind tables.
|
|
|
|
PT_ARM_EXIDX = 0x70000001,
|
|
|
|
PT_ARM_UNWIND = 0x70000001
|
2004-02-28 06:26:20 +00:00
|
|
|
};
|
|
|
|
|
2009-04-05 09:07:08 +00:00
|
|
|
// Segment flag bits.
|
|
|
|
enum {
|
|
|
|
PF_X = 1, // Execute
|
|
|
|
PF_W = 2, // Write
|
|
|
|
PF_R = 4, // Read
|
2011-10-13 00:16:25 +00:00
|
|
|
PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics.
|
|
|
|
PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
|
2009-04-05 09:07:08 +00:00
|
|
|
};
|
|
|
|
|
2010-07-13 00:24:59 +00:00
|
|
|
// Dynamic table entry for ELF32.
|
|
|
|
struct Elf32_Dyn
|
|
|
|
{
|
|
|
|
Elf32_Sword d_tag; // Type of dynamic table entry.
|
|
|
|
union
|
|
|
|
{
|
|
|
|
Elf32_Word d_val; // Integer value of entry.
|
|
|
|
Elf32_Addr d_ptr; // Pointer value of entry.
|
|
|
|
} d_un;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Dynamic table entry for ELF64.
|
|
|
|
struct Elf64_Dyn
|
|
|
|
{
|
|
|
|
Elf64_Sxword d_tag; // Type of dynamic table entry.
|
|
|
|
union
|
|
|
|
{
|
|
|
|
Elf64_Xword d_val; // Integer value of entry.
|
|
|
|
Elf64_Addr d_ptr; // Pointer value of entry.
|
|
|
|
} d_un;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Dynamic table entry tags.
|
|
|
|
enum {
|
|
|
|
DT_NULL = 0, // Marks end of dynamic array.
|
|
|
|
DT_NEEDED = 1, // String table offset of needed library.
|
|
|
|
DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
|
|
|
|
DT_PLTGOT = 3, // Address associated with linkage table.
|
|
|
|
DT_HASH = 4, // Address of symbolic hash table.
|
|
|
|
DT_STRTAB = 5, // Address of dynamic string table.
|
|
|
|
DT_SYMTAB = 6, // Address of dynamic symbol table.
|
|
|
|
DT_RELA = 7, // Address of relocation table (Rela entries).
|
|
|
|
DT_RELASZ = 8, // Size of Rela relocation table.
|
|
|
|
DT_RELAENT = 9, // Size of a Rela relocation entry.
|
|
|
|
DT_STRSZ = 10, // Total size of the string table.
|
|
|
|
DT_SYMENT = 11, // Size of a symbol table entry.
|
|
|
|
DT_INIT = 12, // Address of initialization function.
|
|
|
|
DT_FINI = 13, // Address of termination function.
|
|
|
|
DT_SONAME = 14, // String table offset of a shared objects name.
|
|
|
|
DT_RPATH = 15, // String table offset of library search path.
|
|
|
|
DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
|
|
|
|
DT_REL = 17, // Address of relocation table (Rel entries).
|
|
|
|
DT_RELSZ = 18, // Size of Rel relocation table.
|
|
|
|
DT_RELENT = 19, // Size of a Rel relocation entry.
|
|
|
|
DT_PLTREL = 20, // Type of relocation entry used for linking.
|
|
|
|
DT_DEBUG = 21, // Reserved for debugger.
|
2011-06-13 11:11:39 +00:00
|
|
|
DT_TEXTREL = 22, // Relocations exist for non-writable segments.
|
2010-07-13 00:24:59 +00:00
|
|
|
DT_JMPREL = 23, // Address of relocations associated with PLT.
|
|
|
|
DT_BIND_NOW = 24, // Process all relocations before execution.
|
|
|
|
DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
|
|
|
|
DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
|
|
|
|
DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
|
|
|
|
DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
|
2011-10-13 00:16:25 +00:00
|
|
|
DT_RUNPATH = 29, // String table offset of lib search path.
|
|
|
|
DT_FLAGS = 30, // Flags.
|
|
|
|
DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules
|
|
|
|
// for the interpretation of the d_un union.
|
|
|
|
|
|
|
|
DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions.
|
|
|
|
DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.
|
|
|
|
|
2010-07-13 00:24:59 +00:00
|
|
|
DT_LOOS = 0x60000000, // Start of environment specific tags.
|
|
|
|
DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
|
|
|
|
DT_LOPROC = 0x70000000, // Start of processor specific tags.
|
2012-07-18 14:12:32 +00:00
|
|
|
DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags.
|
|
|
|
|
|
|
|
DT_RELACOUNT = 0x6FFFFFF9, // ELF32_Rela count.
|
|
|
|
DT_RELCOUNT = 0x6FFFFFFA, // ELF32_Rel count.
|
|
|
|
|
|
|
|
DT_FLAGS_1 = 0X6FFFFFFB, // Flags_1.
|
|
|
|
DT_VERDEF = 0X6FFFFFFC, // The address of the version definition table.
|
|
|
|
DT_VERDEFNUM = 0X6FFFFFFD, // The number of entries in DT_VERDEF.
|
|
|
|
DT_VERNEED = 0X6FFFFFFE, // The address of the version Dependency table.
|
2013-05-28 20:48:56 +00:00
|
|
|
DT_VERNEEDNUM = 0X6FFFFFFF, // The number of entries in DT_VERNEED.
|
|
|
|
|
|
|
|
// Mips specific dynamic table entry tags.
|
|
|
|
DT_MIPS_RLD_VERSION = 0x70000001, // 32 bit version number for runtime
|
|
|
|
// linker interface.
|
|
|
|
DT_MIPS_TIME_STAMP = 0x70000002, // Time stamp.
|
|
|
|
DT_MIPS_ICHECKSUM = 0x70000003, // Checksum of external strings
|
|
|
|
// and common sizes.
|
|
|
|
DT_MIPS_IVERSION = 0x70000004, // Index of version string
|
|
|
|
// in string table.
|
|
|
|
DT_MIPS_FLAGS = 0x70000005, // 32 bits of flags.
|
|
|
|
DT_MIPS_BASE_ADDRESS = 0x70000006, // Base address of the segment.
|
|
|
|
DT_MIPS_MSYM = 0x70000007, // Address of .msym section.
|
|
|
|
DT_MIPS_CONFLICT = 0x70000008, // Address of .conflict section.
|
|
|
|
DT_MIPS_LIBLIST = 0x70000009, // Address of .liblist section.
|
|
|
|
DT_MIPS_LOCAL_GOTNO = 0x7000000a, // Number of local global offset
|
|
|
|
// table entries.
|
|
|
|
DT_MIPS_CONFLICTNO = 0x7000000b, // Number of entries
|
|
|
|
// in the .conflict section.
|
|
|
|
DT_MIPS_LIBLISTNO = 0x70000010, // Number of entries
|
|
|
|
// in the .liblist section.
|
|
|
|
DT_MIPS_SYMTABNO = 0x70000011, // Number of entries
|
|
|
|
// in the .dynsym section.
|
|
|
|
DT_MIPS_UNREFEXTNO = 0x70000012, // Index of first external dynamic symbol
|
|
|
|
// not referenced locally.
|
|
|
|
DT_MIPS_GOTSYM = 0x70000013, // Index of first dynamic symbol
|
|
|
|
// in global offset table.
|
|
|
|
DT_MIPS_HIPAGENO = 0x70000014, // Number of page table entries
|
|
|
|
// in global offset table.
|
|
|
|
DT_MIPS_RLD_MAP = 0x70000016, // Address of run time loader map,
|
|
|
|
// used for debugging.
|
|
|
|
DT_MIPS_DELTA_CLASS = 0x70000017, // Delta C++ class definition.
|
|
|
|
DT_MIPS_DELTA_CLASS_NO = 0x70000018, // Number of entries
|
|
|
|
// in DT_MIPS_DELTA_CLASS.
|
|
|
|
DT_MIPS_DELTA_INSTANCE = 0x70000019, // Delta C++ class instances.
|
|
|
|
DT_MIPS_DELTA_INSTANCE_NO = 0x7000001A, // Number of entries
|
|
|
|
// in DT_MIPS_DELTA_INSTANCE.
|
|
|
|
DT_MIPS_DELTA_RELOC = 0x7000001B, // Delta relocations.
|
|
|
|
DT_MIPS_DELTA_RELOC_NO = 0x7000001C, // Number of entries
|
|
|
|
// in DT_MIPS_DELTA_RELOC.
|
|
|
|
DT_MIPS_DELTA_SYM = 0x7000001D, // Delta symbols that Delta
|
|
|
|
// relocations refer to.
|
|
|
|
DT_MIPS_DELTA_SYM_NO = 0x7000001E, // Number of entries
|
|
|
|
// in DT_MIPS_DELTA_SYM.
|
|
|
|
DT_MIPS_DELTA_CLASSSYM = 0x70000020, // Delta symbols that hold
|
|
|
|
// class declarations.
|
|
|
|
DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021, // Number of entries
|
|
|
|
// in DT_MIPS_DELTA_CLASSSYM.
|
|
|
|
DT_MIPS_CXX_FLAGS = 0x70000022, // Flags indicating information
|
|
|
|
// about C++ flavor.
|
|
|
|
DT_MIPS_PIXIE_INIT = 0x70000023, // Pixie information.
|
|
|
|
DT_MIPS_SYMBOL_LIB = 0x70000024, // Address of .MIPS.symlib
|
|
|
|
DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025, // The GOT index of the first PTE
|
|
|
|
// for a segment
|
|
|
|
DT_MIPS_LOCAL_GOTIDX = 0x70000026, // The GOT index of the first PTE
|
|
|
|
// for a local symbol
|
|
|
|
DT_MIPS_HIDDEN_GOTIDX = 0x70000027, // The GOT index of the first PTE
|
|
|
|
// for a hidden symbol
|
|
|
|
DT_MIPS_PROTECTED_GOTIDX = 0x70000028, // The GOT index of the first PTE
|
|
|
|
// for a protected symbol
|
|
|
|
DT_MIPS_OPTIONS = 0x70000029, // Address of `.MIPS.options'.
|
|
|
|
DT_MIPS_INTERFACE = 0x7000002A, // Address of `.interface'.
|
|
|
|
DT_MIPS_DYNSTR_ALIGN = 0x7000002B, // Unknown.
|
|
|
|
DT_MIPS_INTERFACE_SIZE = 0x7000002C, // Size of the .interface section.
|
|
|
|
DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002D, // Size of rld_text_resolve
|
|
|
|
// function stored in the GOT.
|
|
|
|
DT_MIPS_PERF_SUFFIX = 0x7000002E, // Default suffix of DSO to be added
|
|
|
|
// by rld on dlopen() calls.
|
|
|
|
DT_MIPS_COMPACT_SIZE = 0x7000002F, // Size of compact relocation
|
|
|
|
// section (O32).
|
|
|
|
DT_MIPS_GP_VALUE = 0x70000030, // GP value for auxiliary GOTs.
|
|
|
|
DT_MIPS_AUX_DYNAMIC = 0x70000031, // Address of auxiliary .dynamic.
|
|
|
|
DT_MIPS_PLTGOT = 0x70000032, // Address of the base of the PLTGOT.
|
|
|
|
DT_MIPS_RWPLT = 0x70000034 // Points to the base
|
|
|
|
// of a writable PLT.
|
2010-07-13 00:24:59 +00:00
|
|
|
};
|
|
|
|
|
2011-10-13 00:16:25 +00:00
|
|
|
// DT_FLAGS values.
|
|
|
|
enum {
|
|
|
|
DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
|
|
|
|
DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
|
|
|
|
DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
|
|
|
|
DF_BIND_NOW = 0x08, // Process all relocations on load.
|
|
|
|
DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
|
|
|
|
};
|
|
|
|
|
2012-07-18 14:12:32 +00:00
|
|
|
// State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
|
|
|
|
enum {
|
|
|
|
DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object.
|
|
|
|
DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object.
|
|
|
|
DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object.
|
|
|
|
DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object.
|
|
|
|
DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime.
|
|
|
|
DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
|
|
|
|
DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object.
|
|
|
|
DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled.
|
|
|
|
DF_1_DIRECT = 0x00000100, // Direct binding enabled.
|
|
|
|
DF_1_TRANS = 0x00000200,
|
|
|
|
DF_1_INTERPOSE = 0x00000400, // Object is used to interpose.
|
|
|
|
DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path.
|
|
|
|
DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed.
|
|
|
|
DF_1_CONFALT = 0x00002000, // Configuration alternative created.
|
|
|
|
DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search.
|
|
|
|
DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
|
|
|
|
DF_1_DISPRELPND = 0x00010000 // Disp reloc applied at run-time.
|
|
|
|
};
|
|
|
|
|
2013-05-28 20:48:56 +00:00
|
|
|
// DT_MIPS_FLAGS values.
|
|
|
|
enum {
|
|
|
|
RHF_NONE = 0x00000000, // No flags.
|
|
|
|
RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers.
|
|
|
|
RHF_NOTPOT = 0x00000002, // Hash size is not a power of two.
|
|
|
|
RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH.
|
|
|
|
RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated.
|
|
|
|
RHF_SGI_ONLY = 0x00000010, // SGI specific features.
|
|
|
|
RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish
|
|
|
|
// executing before any non-init
|
|
|
|
// code in DSO is called.
|
|
|
|
RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code.
|
|
|
|
RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start
|
|
|
|
// executing before any non-init
|
|
|
|
// code in DSO is called.
|
|
|
|
RHF_PIXIE = 0x00000100, // Generated by pixie.
|
|
|
|
RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default.
|
|
|
|
RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted
|
|
|
|
RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted
|
|
|
|
RHF_CORD = 0x00001000, // Generated by cord.
|
|
|
|
RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved
|
|
|
|
// undef symbols.
|
|
|
|
RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order.
|
|
|
|
};
|
|
|
|
|
2012-03-09 20:59:52 +00:00
|
|
|
// ElfXX_VerDef structure version (GNU versioning)
|
|
|
|
enum {
|
|
|
|
VER_DEF_NONE = 0,
|
|
|
|
VER_DEF_CURRENT = 1
|
|
|
|
};
|
|
|
|
|
|
|
|
// VerDef Flags (ElfXX_VerDef::vd_flags)
|
|
|
|
enum {
|
|
|
|
VER_FLG_BASE = 0x1,
|
|
|
|
VER_FLG_WEAK = 0x2,
|
|
|
|
VER_FLG_INFO = 0x4
|
|
|
|
};
|
|
|
|
|
|
|
|
// Special constants for the version table. (SHT_GNU_versym/.gnu.version)
|
|
|
|
enum {
|
|
|
|
VER_NDX_LOCAL = 0, // Unversioned local symbol
|
|
|
|
VER_NDX_GLOBAL = 1, // Unversioned global symbol
|
|
|
|
VERSYM_VERSION = 0x7fff, // Version Index mask
|
|
|
|
VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version)
|
|
|
|
};
|
|
|
|
|
|
|
|
// ElfXX_VerNeed structure version (GNU versioning)
|
|
|
|
enum {
|
|
|
|
VER_NEED_NONE = 0,
|
|
|
|
VER_NEED_CURRENT = 1
|
|
|
|
};
|
|
|
|
|
2004-02-28 06:26:20 +00:00
|
|
|
} // end namespace ELF
|
|
|
|
|
|
|
|
} // end namespace llvm
|
2004-09-01 22:55:40 +00:00
|
|
|
|
|
|
|
#endif
|