llvm-6502/lib/IR/Pass.cpp

291 lines
8.5 KiB
C++
Raw Normal View History

//===- Pass.cpp - LLVM Pass Infrastructure Implementation -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM Pass infrastructure. It is primarily
// responsible with ensuring that passes are executed and batched together
// optimally.
//
//===----------------------------------------------------------------------===//
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206822 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-21 22:55:11 +00:00
#define DEBUG_TYPE "ir"
//===----------------------------------------------------------------------===//
// Pass Implementation
//
// Force out-of-line virtual method.
Pass::~Pass() {
delete Resolver;
}
// Force out-of-line virtual method.
ModulePass::~ModulePass() { }
Pass *ModulePass::createPrinterPass(raw_ostream &O,
const std::string &Banner) const {
return createPrintModulePass(O, Banner);
}
PassManagerType ModulePass::getPotentialPassManagerType() const {
return PMT_ModulePassManager;
}
bool Pass::mustPreserveAnalysisID(char &AID) const {
return Resolver->getAnalysisIfAvailable(&AID, true) != nullptr;
}
// dumpPassStructure - Implement the -debug-pass=Structure option
void Pass::dumpPassStructure(unsigned Offset) {
dbgs().indent(Offset*2) << getPassName() << "\n";
}
/// getPassName - Return a nice clean name for a pass. This usually
/// implemented in terms of the name that is registered by one of the
/// Registration templates, but can be overloaded directly.
///
const char *Pass::getPassName() const {
AnalysisID AID = getPassID();
const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(AID);
if (PI)
return PI->getPassName();
return "Unnamed pass: implement Pass::getPassName()";
}
void Pass::preparePassManager(PMStack &) {
// By default, don't do anything.
}
PassManagerType Pass::getPotentialPassManagerType() const {
// Default implementation.
return PMT_Unknown;
}
void Pass::getAnalysisUsage(AnalysisUsage &) const {
// By default, no analysis results are used, all are invalidated.
}
void Pass::releaseMemory() {
// By default, don't do anything.
}
void Pass::verifyAnalysis() const {
// By default, don't do anything.
}
void *Pass::getAdjustedAnalysisPointer(AnalysisID AID) {
return this;
}
ImmutablePass *Pass::getAsImmutablePass() {
return nullptr;
}
PMDataManager *Pass::getAsPMDataManager() {
return nullptr;
}
void Pass::setResolver(AnalysisResolver *AR) {
assert(!Resolver && "Resolver is already set");
Resolver = AR;
}
// print - Print out the internal state of the pass. This is called by Analyze
// to print out the contents of an analysis. Otherwise it is not necessary to
// implement this method.
//
void Pass::print(raw_ostream &O,const Module*) const {
O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n";
}
// dump - call print(cerr);
void Pass::dump() const {
print(dbgs(), nullptr);
}
//===----------------------------------------------------------------------===//
// ImmutablePass Implementation
//
// Force out-of-line virtual method.
ImmutablePass::~ImmutablePass() { }
void ImmutablePass::initializePass() {
// By default, don't do anything.
}
//===----------------------------------------------------------------------===//
// FunctionPass Implementation
//
Pass *FunctionPass::createPrinterPass(raw_ostream &O,
const std::string &Banner) const {
return createPrintFunctionPass(O, Banner);
}
PassManagerType FunctionPass::getPotentialPassManagerType() const {
return PMT_FunctionPassManager;
}
bool FunctionPass::skipOptnoneFunction(const Function &F) const {
if (F.hasFnAttribute(Attribute::OptimizeNone)) {
DEBUG(dbgs() << "Skipping pass '" << getPassName()
<< "' on function " << F.getName() << "\n");
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// BasicBlockPass Implementation
//
Pass *BasicBlockPass::createPrinterPass(raw_ostream &O,
const std::string &Banner) const {
return createPrintBasicBlockPass(O, Banner);
}
bool BasicBlockPass::doInitialization(Function &) {
// By default, don't do anything.
return false;
}
bool BasicBlockPass::doFinalization(Function &) {
// By default, don't do anything.
return false;
}
bool BasicBlockPass::skipOptnoneFunction(const BasicBlock &BB) const {
const Function *F = BB.getParent();
if (F && F->hasFnAttribute(Attribute::OptimizeNone)) {
// Report this only once per function.
if (&BB == &F->getEntryBlock())
DEBUG(dbgs() << "Skipping pass '" << getPassName()
<< "' on function " << F->getName() << "\n");
return true;
}
return false;
}
PassManagerType BasicBlockPass::getPotentialPassManagerType() const {
return PMT_BasicBlockPassManager;
}
const PassInfo *Pass::lookupPassInfo(const void *TI) {
return PassRegistry::getPassRegistry()->getPassInfo(TI);
}
const PassInfo *Pass::lookupPassInfo(StringRef Arg) {
return PassRegistry::getPassRegistry()->getPassInfo(Arg);
}
Pass *Pass::createPass(AnalysisID ID) {
const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(ID);
if (!PI)
return nullptr;
return PI->createPass();
}
//===----------------------------------------------------------------------===//
// Analysis Group Implementation Code
//===----------------------------------------------------------------------===//
// RegisterAGBase implementation
//
RegisterAGBase::RegisterAGBase(const char *Name, const void *InterfaceID,
const void *PassID, bool isDefault)
: PassInfo(Name, InterfaceID) {
PassRegistry::getPassRegistry()->registerAnalysisGroup(InterfaceID, PassID,
*this, isDefault);
}
//===----------------------------------------------------------------------===//
// PassRegistrationListener implementation
//
// enumeratePasses - Iterate over the registered passes, calling the
// passEnumerate callback on each PassInfo object.
//
void PassRegistrationListener::enumeratePasses() {
PassRegistry::getPassRegistry()->enumerateWith(this);
}
PassNameParser::PassNameParser()
: Opt(nullptr) {
PassRegistry::getPassRegistry()->addRegistrationListener(this);
}
PassNameParser::~PassNameParser() {
// This only gets called during static destruction, in which case the
// PassRegistry will have already been destroyed by llvm_shutdown(). So
// attempting to remove the registration listener is an error.
}
//===----------------------------------------------------------------------===//
// AnalysisUsage Class Implementation
//
namespace {
struct GetCFGOnlyPasses : public PassRegistrationListener {
typedef AnalysisUsage::VectorType VectorType;
VectorType &CFGOnlyList;
GetCFGOnlyPasses(VectorType &L) : CFGOnlyList(L) {}
void passEnumerate(const PassInfo *P) override {
if (P->isCFGOnlyPass())
CFGOnlyList.push_back(P->getTypeInfo());
}
};
}
// setPreservesCFG - This function should be called to by the pass, iff they do
// not:
//
// 1. Add or remove basic blocks from the function
// 2. Modify terminator instructions in any way.
//
// This function annotates the AnalysisUsage info object to say that analyses
// that only depend on the CFG are preserved by this pass.
//
void AnalysisUsage::setPreservesCFG() {
// Since this transformation doesn't modify the CFG, it preserves all analyses
// that only depend on the CFG (like dominators, loop info, etc...)
GetCFGOnlyPasses(Preserved).enumeratePasses();
}
AnalysisUsage &AnalysisUsage::addPreserved(StringRef Arg) {
const PassInfo *PI = Pass::lookupPassInfo(Arg);
// If the pass exists, preserve it. Otherwise silently do nothing.
if (PI) Preserved.push_back(PI->getTypeInfo());
return *this;
}
AnalysisUsage &AnalysisUsage::addRequiredID(const void *ID) {
Required.push_back(ID);
return *this;
}
AnalysisUsage &AnalysisUsage::addRequiredID(char &ID) {
Required.push_back(&ID);
return *this;
}
AnalysisUsage &AnalysisUsage::addRequiredTransitiveID(char &ID) {
Required.push_back(&ID);
RequiredTransitive.push_back(&ID);
return *this;
}