llvm-6502/lib/VMCore/Instructions.cpp

823 lines
31 KiB
C++
Raw Normal View History

//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM instructions...
//
//===----------------------------------------------------------------------===//
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// CallInst Implementation
//===----------------------------------------------------------------------===//
void CallInst::init(Value *Func, const std::vector<Value*> &Params)
{
Operands.reserve(1+Params.size());
Operands.push_back(Use(Func, this));
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((Params.size() == FTy->getNumParams() ||
(FTy->isVarArg() && Params.size() > FTy->getNumParams())) &&
"Calling a function with bad signature");
for (unsigned i = 0; i != Params.size(); i++)
Operands.push_back(Use(Params[i], this));
}
void CallInst::init(Value *Func, Value *Actual1, Value *Actual2)
{
Operands.reserve(3);
Operands.push_back(Use(Func, this));
const FunctionType *MTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((MTy->getNumParams() == 2 ||
(MTy->isVarArg() && MTy->getNumParams() == 0)) &&
"Calling a function with bad signature");
Operands.push_back(Use(Actual1, this));
Operands.push_back(Use(Actual2, this));
}
void CallInst::init(Value *Func, Value *Actual)
{
Operands.reserve(2);
Operands.push_back(Use(Func, this));
const FunctionType *MTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((MTy->getNumParams() == 1 ||
(MTy->isVarArg() && MTy->getNumParams() == 0)) &&
"Calling a function with bad signature");
Operands.push_back(Use(Actual, this));
}
void CallInst::init(Value *Func)
{
Operands.reserve(1);
Operands.push_back(Use(Func, this));
const FunctionType *MTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert(MTy->getNumParams() == 0 && "Calling a function with bad signature");
}
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
const std::string &Name, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertBefore) {
init(Func, Params);
}
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertAtEnd) {
init(Func, Params);
}
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
const std::string &Name, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertBefore) {
init(Func, Actual1, Actual2);
}
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertAtEnd) {
init(Func, Actual1, Actual2);
}
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertBefore) {
init(Func, Actual);
}
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertAtEnd) {
init(Func, Actual);
}
CallInst::CallInst(Value *Func, const std::string &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertBefore) {
init(Func);
}
CallInst::CallInst(Value *Func, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, Name, InsertAtEnd) {
init(Func);
}
CallInst::CallInst(const CallInst &CI)
: Instruction(CI.getType(), Instruction::Call) {
Operands.reserve(CI.Operands.size());
for (unsigned i = 0; i < CI.Operands.size(); ++i)
Operands.push_back(Use(CI.Operands[i], this));
}
//===----------------------------------------------------------------------===//
// InvokeInst Implementation
//===----------------------------------------------------------------------===//
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params)
{
Operands.reserve(3+Params.size());
Operands.push_back(Use(Fn, this));
Operands.push_back(Use((Value*)IfNormal, this));
Operands.push_back(Use((Value*)IfException, this));
const FunctionType *MTy =
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
assert((Params.size() == MTy->getNumParams()) ||
(MTy->isVarArg() && Params.size() > MTy->getNumParams()) &&
"Calling a function with bad signature");
for (unsigned i = 0; i < Params.size(); i++)
Operands.push_back(Use(Params[i], this));
}
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
BasicBlock *IfException,
const std::vector<Value*> &Params,
const std::string &Name, Instruction *InsertBefore)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
->getElementType())->getReturnType(),
Instruction::Invoke, Name, InsertBefore) {
init(Fn, IfNormal, IfException, Params);
}
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
BasicBlock *IfException,
const std::vector<Value*> &Params,
const std::string &Name, BasicBlock *InsertAtEnd)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
->getElementType())->getReturnType(),
Instruction::Invoke, Name, InsertAtEnd) {
init(Fn, IfNormal, IfException, Params);
}
InvokeInst::InvokeInst(const InvokeInst &CI)
: TerminatorInst(CI.getType(), Instruction::Invoke) {
Operands.reserve(CI.Operands.size());
for (unsigned i = 0; i < CI.Operands.size(); ++i)
Operands.push_back(Use(CI.Operands[i], this));
}
//===----------------------------------------------------------------------===//
// ReturnInst Implementation
//===----------------------------------------------------------------------===//
void ReturnInst::init(Value* RetVal) {
if (RetVal && RetVal->getType() != Type::VoidTy) {
assert(!isa<BasicBlock>(RetVal) &&
"Cannot return basic block. Probably using the incorrect ctor");
Operands.reserve(1);
Operands.push_back(Use(RetVal, this));
}
}
// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
// emit the vtable for the class in this translation unit.
void ReturnInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "ReturnInst has no successors!");
}
//===----------------------------------------------------------------------===//
// UnwindInst Implementation
//===----------------------------------------------------------------------===//
// Likewise for UnwindInst
void UnwindInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "UnwindInst has no successors!");
}
//===----------------------------------------------------------------------===//
// UnreachableInst Implementation
//===----------------------------------------------------------------------===//
void UnreachableInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "UnreachableInst has no successors!");
}
//===----------------------------------------------------------------------===//
// BranchInst Implementation
//===----------------------------------------------------------------------===//
void BranchInst::init(BasicBlock *IfTrue)
{
assert(IfTrue != 0 && "Branch destination may not be null!");
Operands.reserve(1);
Operands.push_back(Use(IfTrue, this));
}
void BranchInst::init(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond)
{
assert(IfTrue && IfFalse && Cond &&
"Branch destinations and condition may not be null!");
assert(Cond && Cond->getType() == Type::BoolTy &&
"May only branch on boolean predicates!");
Operands.reserve(3);
Operands.push_back(Use(IfTrue, this));
Operands.push_back(Use(IfFalse, this));
Operands.push_back(Use(Cond, this));
}
BranchInst::BranchInst(const BranchInst &BI) : TerminatorInst(Instruction::Br) {
Operands.reserve(BI.Operands.size());
Operands.push_back(Use(BI.Operands[0], this));
if (BI.Operands.size() != 1) {
assert(BI.Operands.size() == 3 && "BR can have 1 or 3 operands!");
Operands.push_back(Use(BI.Operands[1], this));
Operands.push_back(Use(BI.Operands[2], this));
}
}
//===----------------------------------------------------------------------===//
// AllocationInst Implementation
//===----------------------------------------------------------------------===//
void AllocationInst::init(const Type *Ty, Value *ArraySize, unsigned iTy) {
assert(Ty != Type::VoidTy && "Cannot allocate void elements!");
// ArraySize defaults to 1.
if (!ArraySize) ArraySize = ConstantUInt::get(Type::UIntTy, 1);
Operands.reserve(1);
assert(ArraySize->getType() == Type::UIntTy &&
"Malloc/Allocation array size != UIntTy!");
Operands.push_back(Use(ArraySize, this));
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name,
Instruction *InsertBefore)
: Instruction(PointerType::get(Ty), iTy, Name, InsertBefore) {
init(Ty, ArraySize, iTy);
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(PointerType::get(Ty), iTy, Name, InsertAtEnd) {
init(Ty, ArraySize, iTy);
}
bool AllocationInst::isArrayAllocation() const {
return getOperand(0) != ConstantUInt::get(Type::UIntTy, 1);
}
const Type *AllocationInst::getAllocatedType() const {
return getType()->getElementType();
}
AllocaInst::AllocaInst(const AllocaInst &AI)
: AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
Instruction::Alloca) {
}
MallocInst::MallocInst(const MallocInst &MI)
: AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
Instruction::Malloc) {
}
//===----------------------------------------------------------------------===//
// FreeInst Implementation
//===----------------------------------------------------------------------===//
void FreeInst::init(Value *Ptr)
{
assert(Ptr && isa<PointerType>(Ptr->getType()) && "Can't free nonpointer!");
Operands.reserve(1);
Operands.push_back(Use(Ptr, this));
}
FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
: Instruction(Type::VoidTy, Free, "", InsertBefore) {
init(Ptr);
}
FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Free, "", InsertAtEnd) {
init(Ptr);
}
//===----------------------------------------------------------------------===//
// LoadInst Implementation
//===----------------------------------------------------------------------===//
void LoadInst::init(Value *Ptr) {
assert(Ptr && isa<PointerType>(Ptr->getType()) &&
"Ptr must have pointer type.");
Operands.reserve(1);
Operands.push_back(Use(Ptr, this));
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertBef), Volatile(false) {
init(Ptr);
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertAE), Volatile(false) {
init(Ptr);
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
Instruction *InsertBef)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertBef), Volatile(isVolatile) {
init(Ptr);
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
BasicBlock *InsertAE)
: Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Name, InsertAE), Volatile(isVolatile) {
init(Ptr);
}
//===----------------------------------------------------------------------===//
// StoreInst Implementation
//===----------------------------------------------------------------------===//
StoreInst::StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(false) {
init(Val, Ptr);
}
StoreInst::StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(false) {
init(Val, Ptr);
}
StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile,
Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(isVolatile) {
init(Val, Ptr);
}
StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile,
BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(isVolatile) {
init(Val, Ptr);
}
void StoreInst::init(Value *Val, Value *Ptr) {
assert(isa<PointerType>(Ptr->getType()) && "Ptr must have pointer type!");
assert(Val->getType() == cast<PointerType>(Ptr->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
Operands.reserve(2);
Operands.push_back(Use(Val, this));
Operands.push_back(Use(Ptr, this));
}
//===----------------------------------------------------------------------===//
// GetElementPtrInst Implementation
//===----------------------------------------------------------------------===//
// checkType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
static inline const Type *checkType(const Type *Ty) {
assert(Ty && "Invalid indices for type!");
return Ty;
}
void GetElementPtrInst::init(Value *Ptr, const std::vector<Value*> &Idx)
{
Operands.reserve(1+Idx.size());
Operands.push_back(Use(Ptr, this));
for (unsigned i = 0, E = Idx.size(); i != E; ++i)
Operands.push_back(Use(Idx[i], this));
}
void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
Operands.reserve(3);
Operands.push_back(Use(Ptr, this));
Operands.push_back(Use(Idx0, this));
Operands.push_back(Use(Idx1, this));
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, Name, InBe) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, Name, IAE) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx0, Idx1, true))),
GetElementPtr, Name, InBe) {
init(Ptr, Idx0, Idx1);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx0, Idx1, true))),
GetElementPtr, Name, IAE) {
init(Ptr, Idx0, Idx1);
}
// getIndexedType - Returns the type of the element that would be loaded with
// a load instruction with the specified parameters.
//
// A null type is returned if the indices are invalid for the specified
// pointer type.
//
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
const std::vector<Value*> &Idx,
bool AllowCompositeLeaf) {
if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
// Handle the special case of the empty set index set...
if (Idx.empty())
if (AllowCompositeLeaf ||
cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
return cast<PointerType>(Ptr)->getElementType();
else
return 0;
unsigned CurIdx = 0;
while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
if (Idx.size() == CurIdx) {
if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
return 0; // Can't load a whole structure or array!?!?
}
Value *Index = Idx[CurIdx++];
if (isa<PointerType>(CT) && CurIdx != 1)
return 0; // Can only index into pointer types at the first index!
if (!CT->indexValid(Index)) return 0;
Ptr = CT->getTypeAtIndex(Index);
// If the new type forwards to another type, then it is in the middle
// of being refined to another type (and hence, may have dropped all
// references to what it was using before). So, use the new forwarded
// type.
if (const Type * Ty = Ptr->getForwardedType()) {
Ptr = Ty;
}
}
return CurIdx == Idx.size() ? Ptr : 0;
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
Value *Idx0, Value *Idx1,
bool AllowCompositeLeaf) {
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
if (!PTy) return 0; // Type isn't a pointer type!
// Check the pointer index.
if (!PTy->indexValid(Idx0)) return 0;
const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
if (!CT || !CT->indexValid(Idx1)) return 0;
const Type *ElTy = CT->getTypeAtIndex(Idx1);
if (AllowCompositeLeaf || ElTy->isFirstClassType())
return ElTy;
return 0;
}
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
void BinaryOperator::init(BinaryOps iType, Value *S1, Value *S2)
{
Operands.reserve(2);
Operands.push_back(Use(S1, this));
Operands.push_back(Use(S2, this));
assert(S1 && S2 && S1->getType() == S2->getType());
#ifndef NDEBUG
switch (iType) {
case Add: case Sub:
case Mul: case Div:
case Rem:
assert(getType() == S1->getType() &&
"Arithmetic operation should return same type as operands!");
assert((getType()->isInteger() ||
getType()->isFloatingPoint() ||
isa<PackedType>(getType()) ) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case And: case Or:
case Xor:
assert(getType() == S1->getType() &&
"Logical operation should return same type as operands!");
assert(getType()->isIntegral() &&
"Tried to create an logical operation on a non-integral type!");
break;
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
assert(getType() == Type::BoolTy && "Setcc must return bool!");
default:
break;
}
#endif
}
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
switch (Op) {
// Binary comparison operators...
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
return new SetCondInst(Op, S1, S2, Name, InsertBefore);
default:
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
}
}
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
BasicBlock *InsertAtEnd) {
BinaryOperator *Res = create(Op, S1, S2, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertBefore);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertAtEnd);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
return new BinaryOperator(Instruction::Xor, Op,
ConstantIntegral::getAllOnesValue(Op->getType()),
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd) {
return new BinaryOperator(Instruction::Xor, Op,
ConstantIntegral::getAllOnesValue(Op->getType()),
Op->getType(), Name, InsertAtEnd);
}
// isConstantAllOnes - Helper function for several functions below
static inline bool isConstantAllOnes(const Value *V) {
return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
}
bool BinaryOperator::isNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
if (!V->getType()->isFloatingPoint())
return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
else
return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
return false;
}
bool BinaryOperator::isNot(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
return (Bop->getOpcode() == Instruction::Xor &&
(isConstantAllOnes(Bop->getOperand(1)) ||
isConstantAllOnes(Bop->getOperand(0))));
return false;
}
Value *BinaryOperator::getNegArgument(BinaryOperator *Bop) {
assert(isNeg(Bop) && "getNegArgument from non-'neg' instruction!");
return Bop->getOperand(1);
}
const Value *BinaryOperator::getNegArgument(const BinaryOperator *Bop) {
return getNegArgument((BinaryOperator*)Bop);
}
Value *BinaryOperator::getNotArgument(BinaryOperator *Bop) {
assert(isNot(Bop) && "getNotArgument on non-'not' instruction!");
Value *Op0 = Bop->getOperand(0);
Value *Op1 = Bop->getOperand(1);
if (isConstantAllOnes(Op0)) return Op1;
assert(isConstantAllOnes(Op1));
return Op0;
}
const Value *BinaryOperator::getNotArgument(const BinaryOperator *Bop) {
return getNotArgument((BinaryOperator*)Bop);
}
// swapOperands - Exchange the two operands to this instruction. This
// instruction is safe to use on any binary instruction and does not
// modify the semantics of the instruction. If the instruction is
// order dependent (SetLT f.e.) the opcode is changed.
//
bool BinaryOperator::swapOperands() {
if (isCommutative())
; // If the instruction is commutative, it is safe to swap the operands
else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
/// FIXME: SetCC instructions shouldn't all have different opcodes.
setOpcode(SCI->getSwappedCondition());
else
return true; // Can't commute operands
std::swap(Operands[0], Operands[1]);
return false;
}
//===----------------------------------------------------------------------===//
// SetCondInst Class
//===----------------------------------------------------------------------===//
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
const std::string &Name, Instruction *InsertBefore)
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {
// Make sure it's a valid type... getInverseCondition will assert out if not.
assert(getInverseCondition(Opcode));
}
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
const std::string &Name, BasicBlock *InsertAtEnd)
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) {
// Make sure it's a valid type... getInverseCondition will assert out if not.
assert(getInverseCondition(Opcode));
}
// getInverseCondition - Return the inverse of the current condition opcode.
// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
//
Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
switch (Opcode) {
default:
assert(0 && "Unknown setcc opcode!");
case SetEQ: return SetNE;
case SetNE: return SetEQ;
case SetGT: return SetLE;
case SetLT: return SetGE;
case SetGE: return SetLT;
case SetLE: return SetGT;
}
}
// getSwappedCondition - Return the condition opcode that would be the result
// of exchanging the two operands of the setcc instruction without changing
// the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
//
Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case SetEQ: case SetNE: return Opcode;
case SetGT: return SetLT;
case SetLT: return SetGT;
case SetGE: return SetLE;
case SetLE: return SetGE;
}
}
//===----------------------------------------------------------------------===//
// SwitchInst Implementation
//===----------------------------------------------------------------------===//
void SwitchInst::init(Value *Value, BasicBlock *Default)
{
assert(Value && Default);
Operands.push_back(Use(Value, this));
Operands.push_back(Use(Default, this));
}
SwitchInst::SwitchInst(const SwitchInst &SI)
: TerminatorInst(Instruction::Switch) {
Operands.reserve(SI.Operands.size());
for (unsigned i = 0, E = SI.Operands.size(); i != E; i+=2) {
Operands.push_back(Use(SI.Operands[i], this));
Operands.push_back(Use(SI.Operands[i+1], this));
}
}
/// addCase - Add an entry to the switch instruction...
///
void SwitchInst::addCase(Constant *OnVal, BasicBlock *Dest) {
Operands.push_back(Use((Value*)OnVal, this));
Operands.push_back(Use((Value*)Dest, this));
}
/// removeCase - This method removes the specified successor from the switch
/// instruction. Note that this cannot be used to remove the default
/// destination (successor #0).
///
void SwitchInst::removeCase(unsigned idx) {
assert(idx != 0 && "Cannot remove the default case!");
assert(idx*2 < Operands.size() && "Successor index out of range!!!");
Operands.erase(Operands.begin()+idx*2, Operands.begin()+(idx+1)*2);
}
// Define these methods here so vtables don't get emitted into every translation
// unit that uses these classes.
GetElementPtrInst *GetElementPtrInst::clone() const {
return new GetElementPtrInst(*this);
}
BinaryOperator *BinaryOperator::clone() const {
return create(getOpcode(), Operands[0], Operands[1]);
}
MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
FreeInst *FreeInst::clone() const { return new FreeInst(Operands[0]); }
LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
CastInst *CastInst::clone() const { return new CastInst(*this); }
CallInst *CallInst::clone() const { return new CallInst(*this); }
ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); }
SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
VANextInst *VANextInst::clone() const { return new VANextInst(*this); }
VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
PHINode *PHINode::clone() const { return new PHINode(*this); }
ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}