llvm-6502/test/CodeGen/Mips/msa/basic_operations.ll

808 lines
25 KiB
LLVM
Raw Normal View History

; RUN: llc -march=mips -mattr=+msa,+fp64 < %s | FileCheck -check-prefix=MIPS32-AE -check-prefix=MIPS32-BE %s
; RUN: llc -march=mipsel -mattr=+msa,+fp64 < %s | FileCheck -check-prefix=MIPS32-AE -check-prefix=MIPS32-LE %s
@v4i8 = global <4 x i8> <i8 0, i8 0, i8 0, i8 0>
@v16i8 = global <16 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0>
@v8i16 = global <8 x i16> <i16 0, i16 0, i16 0, i16 0, i16 0, i16 0, i16 0, i16 0>
@v4i32 = global <4 x i32> <i32 0, i32 0, i32 0, i32 0>
@v2i64 = global <2 x i64> <i64 0, i64 0>
@i32 = global i32 0
@i64 = global i64 0
define void @const_v16i8() nounwind {
; MIPS32-AE-LABEL: const_v16i8:
store volatile <16 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0, i8 0>, <16 x i8>*@v16i8
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 0
store volatile <16 x i8> <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>, <16 x i8>*@v16i8
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 1
store volatile <16 x i8> <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 31>, <16 x i8>*@v16i8
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.b [[R1:\$w[0-9]+]], 0([[G_PTR]])
store volatile <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 0, i8 1, i8 2, i8 3, i8 4, i8 5, i8 6>, <16 x i8>*@v16i8
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.b [[R1:\$w[0-9]+]], 0([[G_PTR]])
[mips][msa] Build all the tests in little and big endian modes and correct an incorrect test. Summary: This patch (correctly) breaks some MSA tests by exposing the cases when SelectionDAG::getConstant() produces illegal types. These have been temporarily marked XFAIL and the XFAIL flag will be removed when SelectionDAG::getConstant() is fixed. There are three categories of failure: * Immediate instructions are not selected in one endian mode. * Immediates used in ldi.[bhwd] must be different according to endianness. (this only affects cases where the 'wrong' ldi is used to load the correct bitpattern. E.g. (bitcast:v2i64 (build_vector:v4i32 ...))) * Non-immediate instructions that rely on immediates affected by the previous two categories as part of their match pattern. For example, the bset match pattern is the vector equivalent of 'ws | (1 << wt)'. One test needed correcting to expect different output depending on whether big or little endian was in use. This test was test/CodeGen/Mips/msa/basic_operations.ll and experiences the second category of failure shown above. The little endian version of this test is named basic_operations_little.ll and will be merged back into basic_operations.ll in a follow up commit now that FileCheck supports multiple check prefixes. Reviewers: bkramer, jacksprat, dsanders Reviewed By: dsanders CC: llvm-commits Differential Revision: http://llvm-reviews.chandlerc.com/D1972 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194806 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-15 11:04:16 +00:00
store volatile <16 x i8> <i8 1, i8 0, i8 1, i8 0, i8 1, i8 0, i8 1, i8 0, i8 1, i8 0, i8 1, i8 0, i8 1, i8 0, i8 1, i8 0>, <16 x i8>*@v16i8
; MIPS32-BE: ldi.h [[R1:\$w[0-9]+]], 256
; MIPS32-LE: ldi.h [[R1:\$w[0-9]+]], 1
store volatile <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 1, i8 2, i8 3, i8 4, i8 1, i8 2, i8 3, i8 4, i8 1, i8 2, i8 3, i8 4>, <16 x i8>*@v16i8
; MIPS32-BE-DAG: lui [[R2:\$[0-9]+]], 258
; MIPS32-LE-DAG: lui [[R2:\$[0-9]+]], 1027
; MIPS32-BE-DAG: ori [[R2]], [[R2]], 772
; MIPS32-LE-DAG: ori [[R2]], [[R2]], 513
; MIPS32-AE-DAG: fill.w [[R1:\$w[0-9]+]], [[R2]]
store volatile <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8>, <16 x i8>*@v16i8
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.b [[R1:\$w[0-9]+]], 0([[G_PTR]])
ret void
; MIPS32-AE: .size const_v16i8
}
define void @const_v8i16() nounwind {
; MIPS32-AE-LABEL: const_v8i16:
store volatile <8 x i16> <i16 0, i16 0, i16 0, i16 0, i16 0, i16 0, i16 0, i16 0>, <8 x i16>*@v8i16
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 0
store volatile <8 x i16> <i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1>, <8 x i16>*@v8i16
; MIPS32-AE: ldi.h [[R1:\$w[0-9]+]], 1
store volatile <8 x i16> <i16 1, i16 1, i16 1, i16 2, i16 1, i16 1, i16 1, i16 31>, <8 x i16>*@v8i16
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.h [[R1:\$w[0-9]+]], 0([[G_PTR]])
store volatile <8 x i16> <i16 1028, i16 1028, i16 1028, i16 1028, i16 1028, i16 1028, i16 1028, i16 1028>, <8 x i16>*@v8i16
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 4
store volatile <8 x i16> <i16 1, i16 2, i16 1, i16 2, i16 1, i16 2, i16 1, i16 2>, <8 x i16>*@v8i16
; MIPS32-BE-DAG: lui [[R2:\$[0-9]+]], 1
; MIPS32-LE-DAG: lui [[R2:\$[0-9]+]], 2
; MIPS32-BE-DAG: ori [[R2]], [[R2]], 2
; MIPS32-LE-DAG: ori [[R2]], [[R2]], 1
; MIPS32-AE-DAG: fill.w [[R1:\$w[0-9]+]], [[R2]]
store volatile <8 x i16> <i16 1, i16 2, i16 3, i16 4, i16 1, i16 2, i16 3, i16 4>, <8 x i16>*@v8i16
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.h [[R1:\$w[0-9]+]], 0([[G_PTR]])
ret void
; MIPS32-AE: .size const_v8i16
}
define void @const_v4i32() nounwind {
; MIPS32-AE-LABEL: const_v4i32:
store volatile <4 x i32> <i32 0, i32 0, i32 0, i32 0>, <4 x i32>*@v4i32
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 0
store volatile <4 x i32> <i32 1, i32 1, i32 1, i32 1>, <4 x i32>*@v4i32
; MIPS32-AE: ldi.w [[R1:\$w[0-9]+]], 1
store volatile <4 x i32> <i32 1, i32 1, i32 1, i32 31>, <4 x i32>*@v4i32
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.w [[R1:\$w[0-9]+]], 0([[G_PTR]])
store volatile <4 x i32> <i32 16843009, i32 16843009, i32 16843009, i32 16843009>, <4 x i32>*@v4i32
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 1
store volatile <4 x i32> <i32 65537, i32 65537, i32 65537, i32 65537>, <4 x i32>*@v4i32
; MIPS32-AE: ldi.h [[R1:\$w[0-9]+]], 1
store volatile <4 x i32> <i32 1, i32 2, i32 1, i32 2>, <4 x i32>*@v4i32
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.w [[R1:\$w[0-9]+]], 0([[G_PTR]])
store volatile <4 x i32> <i32 3, i32 4, i32 5, i32 6>, <4 x i32>*@v4i32
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.w [[R1:\$w[0-9]+]], 0([[G_PTR]])
ret void
; MIPS32-AE: .size const_v4i32
}
define void @const_v2i64() nounwind {
; MIPS32-AE-LABEL: const_v2i64:
store volatile <2 x i64> <i64 0, i64 0>, <2 x i64>*@v2i64
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 0
store volatile <2 x i64> <i64 72340172838076673, i64 72340172838076673>, <2 x i64>*@v2i64
; MIPS32-AE: ldi.b [[R1:\$w[0-9]+]], 1
store volatile <2 x i64> <i64 281479271743489, i64 281479271743489>, <2 x i64>*@v2i64
; MIPS32-AE: ldi.h [[R1:\$w[0-9]+]], 1
store volatile <2 x i64> <i64 4294967297, i64 4294967297>, <2 x i64>*@v2i64
; MIPS32-AE: ldi.w [[R1:\$w[0-9]+]], 1
store volatile <2 x i64> <i64 1, i64 1>, <2 x i64>*@v2i64
; MIPS32-AE: ldi.d [[R1:\$w[0-9]+]], 1
store volatile <2 x i64> <i64 1, i64 31>, <2 x i64>*@v2i64
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.w [[R1:\$w[0-9]+]], 0([[G_PTR]])
store volatile <2 x i64> <i64 3, i64 4>, <2 x i64>*@v2i64
; MIPS32-AE: addiu [[G_PTR:\$[0-9]+]], {{.*}}, %lo($
; MIPS32-AE: ld.w [[R1:\$w[0-9]+]], 0([[G_PTR]])
ret void
; MIPS32-AE: .size const_v2i64
}
define void @nonconst_v16i8(i8 %a, i8 %b, i8 %c, i8 %d, i8 %e, i8 %f, i8 %g, i8 %h) nounwind {
; MIPS32-AE-LABEL: nonconst_v16i8:
%1 = insertelement <16 x i8> undef, i8 %a, i32 0
%2 = insertelement <16 x i8> %1, i8 %b, i32 1
%3 = insertelement <16 x i8> %2, i8 %c, i32 2
%4 = insertelement <16 x i8> %3, i8 %d, i32 3
%5 = insertelement <16 x i8> %4, i8 %e, i32 4
%6 = insertelement <16 x i8> %5, i8 %f, i32 5
%7 = insertelement <16 x i8> %6, i8 %g, i32 6
%8 = insertelement <16 x i8> %7, i8 %h, i32 7
%9 = insertelement <16 x i8> %8, i8 %h, i32 8
%10 = insertelement <16 x i8> %9, i8 %h, i32 9
%11 = insertelement <16 x i8> %10, i8 %h, i32 10
%12 = insertelement <16 x i8> %11, i8 %h, i32 11
%13 = insertelement <16 x i8> %12, i8 %h, i32 12
%14 = insertelement <16 x i8> %13, i8 %h, i32 13
%15 = insertelement <16 x i8> %14, i8 %h, i32 14
%16 = insertelement <16 x i8> %15, i8 %h, i32 15
; MIPS32-AE-DAG: insert.b [[R1:\$w[0-9]+]][0], $4
; MIPS32-AE-DAG: insert.b [[R1]][1], $5
; MIPS32-AE-DAG: insert.b [[R1]][2], $6
; MIPS32-AE-DAG: insert.b [[R1]][3], $7
; MIPS32-BE-DAG: lbu [[R2:\$[0-9]+]], 19($sp)
; MIPS32-LE-DAG: lbu [[R2:\$[0-9]+]], 16($sp)
; MIPS32-AE-DAG: insert.b [[R1]][4], [[R2]]
; MIPS32-BE-DAG: lbu [[R3:\$[0-9]+]], 23($sp)
; MIPS32-LE-DAG: lbu [[R3:\$[0-9]+]], 20($sp)
; MIPS32-AE-DAG: insert.b [[R1]][5], [[R3]]
; MIPS32-BE-DAG: lbu [[R4:\$[0-9]+]], 27($sp)
; MIPS32-LE-DAG: lbu [[R4:\$[0-9]+]], 24($sp)
; MIPS32-AE-DAG: insert.b [[R1]][6], [[R4]]
; MIPS32-BE-DAG: lbu [[R5:\$[0-9]+]], 31($sp)
; MIPS32-LE-DAG: lbu [[R5:\$[0-9]+]], 28($sp)
; MIPS32-AE-DAG: insert.b [[R1]][7], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][8], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][9], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][10], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][11], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][12], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][13], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][14], [[R5]]
; MIPS32-AE-DAG: insert.b [[R1]][15], [[R5]]
store volatile <16 x i8> %16, <16 x i8>*@v16i8
ret void
; MIPS32-AE: .size nonconst_v16i8
}
define void @nonconst_v8i16(i16 %a, i16 %b, i16 %c, i16 %d, i16 %e, i16 %f, i16 %g, i16 %h) nounwind {
; MIPS32-AE-LABEL: nonconst_v8i16:
%1 = insertelement <8 x i16> undef, i16 %a, i32 0
%2 = insertelement <8 x i16> %1, i16 %b, i32 1
%3 = insertelement <8 x i16> %2, i16 %c, i32 2
%4 = insertelement <8 x i16> %3, i16 %d, i32 3
%5 = insertelement <8 x i16> %4, i16 %e, i32 4
%6 = insertelement <8 x i16> %5, i16 %f, i32 5
%7 = insertelement <8 x i16> %6, i16 %g, i32 6
%8 = insertelement <8 x i16> %7, i16 %h, i32 7
; MIPS32-AE-DAG: insert.h [[R1:\$w[0-9]+]][0], $4
; MIPS32-AE-DAG: insert.h [[R1]][1], $5
; MIPS32-AE-DAG: insert.h [[R1]][2], $6
; MIPS32-AE-DAG: insert.h [[R1]][3], $7
; MIPS32-BE-DAG: lhu [[R2:\$[0-9]+]], 18($sp)
; MIPS32-LE-DAG: lhu [[R2:\$[0-9]+]], 16($sp)
; MIPS32-AE-DAG: insert.h [[R1]][4], [[R2]]
; MIPS32-BE-DAG: lhu [[R2:\$[0-9]+]], 22($sp)
; MIPS32-LE-DAG: lhu [[R2:\$[0-9]+]], 20($sp)
; MIPS32-AE-DAG: insert.h [[R1]][5], [[R2]]
; MIPS32-BE-DAG: lhu [[R2:\$[0-9]+]], 26($sp)
; MIPS32-LE-DAG: lhu [[R2:\$[0-9]+]], 24($sp)
; MIPS32-AE-DAG: insert.h [[R1]][6], [[R2]]
; MIPS32-BE-DAG: lhu [[R2:\$[0-9]+]], 30($sp)
; MIPS32-LE-DAG: lhu [[R2:\$[0-9]+]], 28($sp)
; MIPS32-AE-DAG: insert.h [[R1]][7], [[R2]]
store volatile <8 x i16> %8, <8 x i16>*@v8i16
ret void
; MIPS32-AE: .size nonconst_v8i16
}
define void @nonconst_v4i32(i32 %a, i32 %b, i32 %c, i32 %d) nounwind {
; MIPS32-AE-LABEL: nonconst_v4i32:
%1 = insertelement <4 x i32> undef, i32 %a, i32 0
%2 = insertelement <4 x i32> %1, i32 %b, i32 1
%3 = insertelement <4 x i32> %2, i32 %c, i32 2
%4 = insertelement <4 x i32> %3, i32 %d, i32 3
; MIPS32-AE: insert.w [[R1:\$w[0-9]+]][0], $4
; MIPS32-AE: insert.w [[R1]][1], $5
; MIPS32-AE: insert.w [[R1]][2], $6
; MIPS32-AE: insert.w [[R1]][3], $7
store volatile <4 x i32> %4, <4 x i32>*@v4i32
ret void
; MIPS32-AE: .size nonconst_v4i32
}
define void @nonconst_v2i64(i64 %a, i64 %b) nounwind {
; MIPS32-AE-LABEL: nonconst_v2i64:
%1 = insertelement <2 x i64> undef, i64 %a, i32 0
%2 = insertelement <2 x i64> %1, i64 %b, i32 1
; MIPS32-AE: insert.w [[R1:\$w[0-9]+]][0], $4
; MIPS32-AE: insert.w [[R1]][1], $5
; MIPS32-AE: insert.w [[R1]][2], $6
; MIPS32-AE: insert.w [[R1]][3], $7
store volatile <2 x i64> %2, <2 x i64>*@v2i64
ret void
; MIPS32-AE: .size nonconst_v2i64
}
define i32 @extract_sext_v16i8() nounwind {
; MIPS32-AE-LABEL: extract_sext_v16i8:
%1 = load <16 x i8>* @v16i8
; MIPS32-AE-DAG: ld.b [[R1:\$w[0-9]+]],
%2 = add <16 x i8> %1, %1
; MIPS32-AE-DAG: addv.b [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <16 x i8> %2, i32 1
%4 = sext i8 %3 to i32
; MIPS32-AE-DAG: copy_s.b [[R3:\$[0-9]+]], [[R1]][1]
; MIPS32-AE-NOT: sll
; MIPS32-AE-NOT: sra
ret i32 %4
; MIPS32-AE: .size extract_sext_v16i8
}
define i32 @extract_sext_v8i16() nounwind {
; MIPS32-AE-LABEL: extract_sext_v8i16:
%1 = load <8 x i16>* @v8i16
; MIPS32-AE-DAG: ld.h [[R1:\$w[0-9]+]],
%2 = add <8 x i16> %1, %1
; MIPS32-AE-DAG: addv.h [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <8 x i16> %2, i32 1
%4 = sext i16 %3 to i32
; MIPS32-AE-DAG: copy_s.h [[R3:\$[0-9]+]], [[R1]][1]
; MIPS32-AE-NOT: sll
; MIPS32-AE-NOT: sra
ret i32 %4
; MIPS32-AE: .size extract_sext_v8i16
}
define i32 @extract_sext_v4i32() nounwind {
; MIPS32-AE-LABEL: extract_sext_v4i32:
%1 = load <4 x i32>* @v4i32
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]],
%2 = add <4 x i32> %1, %1
; MIPS32-AE-DAG: addv.w [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <4 x i32> %2, i32 1
; MIPS32-AE-DAG: copy_s.w [[R3:\$[0-9]+]], [[R1]][1]
ret i32 %3
; MIPS32-AE: .size extract_sext_v4i32
}
define i64 @extract_sext_v2i64() nounwind {
; MIPS32-AE-LABEL: extract_sext_v2i64:
%1 = load <2 x i64>* @v2i64
; MIPS32-AE-DAG: ld.d [[R1:\$w[0-9]+]],
%2 = add <2 x i64> %1, %1
; MIPS32-AE-DAG: addv.d [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <2 x i64> %2, i32 1
; MIPS32-AE-DAG: copy_s.w [[R3:\$[0-9]+]], [[R1]][2]
; MIPS32-AE-DAG: copy_s.w [[R4:\$[0-9]+]], [[R1]][3]
; MIPS32-AE-NOT: sll
; MIPS32-AE-NOT: sra
ret i64 %3
; MIPS32-AE: .size extract_sext_v2i64
}
define i32 @extract_zext_v16i8() nounwind {
; MIPS32-AE-LABEL: extract_zext_v16i8:
%1 = load <16 x i8>* @v16i8
; MIPS32-AE-DAG: ld.b [[R1:\$w[0-9]+]],
%2 = add <16 x i8> %1, %1
; MIPS32-AE-DAG: addv.b [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <16 x i8> %2, i32 1
%4 = zext i8 %3 to i32
; MIPS32-AE-DAG: copy_u.b [[R3:\$[0-9]+]], [[R1]][1]
; MIPS32-AE-NOT: andi
ret i32 %4
; MIPS32-AE: .size extract_zext_v16i8
}
define i32 @extract_zext_v8i16() nounwind {
; MIPS32-AE-LABEL: extract_zext_v8i16:
%1 = load <8 x i16>* @v8i16
; MIPS32-AE-DAG: ld.h [[R1:\$w[0-9]+]],
%2 = add <8 x i16> %1, %1
; MIPS32-AE-DAG: addv.h [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <8 x i16> %2, i32 1
%4 = zext i16 %3 to i32
; MIPS32-AE-DAG: copy_u.h [[R3:\$[0-9]+]], [[R1]][1]
; MIPS32-AE-NOT: andi
ret i32 %4
; MIPS32-AE: .size extract_zext_v8i16
}
define i32 @extract_zext_v4i32() nounwind {
; MIPS32-AE-LABEL: extract_zext_v4i32:
%1 = load <4 x i32>* @v4i32
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]],
%2 = add <4 x i32> %1, %1
; MIPS32-AE-DAG: addv.w [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <4 x i32> %2, i32 1
; MIPS32-AE-DAG: copy_{{[su]}}.w [[R3:\$[0-9]+]], [[R1]][1]
ret i32 %3
; MIPS32-AE: .size extract_zext_v4i32
}
define i64 @extract_zext_v2i64() nounwind {
; MIPS32-AE-LABEL: extract_zext_v2i64:
%1 = load <2 x i64>* @v2i64
; MIPS32-AE-DAG: ld.d [[R1:\$w[0-9]+]],
%2 = add <2 x i64> %1, %1
; MIPS32-AE-DAG: addv.d [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = extractelement <2 x i64> %2, i32 1
; MIPS32-AE-DAG: copy_{{[su]}}.w [[R3:\$[0-9]+]], [[R1]][2]
; MIPS32-AE-DAG: copy_{{[su]}}.w [[R4:\$[0-9]+]], [[R1]][3]
; MIPS32-AE-NOT: andi
ret i64 %3
; MIPS32-AE: .size extract_zext_v2i64
}
define i32 @extract_sext_v16i8_vidx() nounwind {
; MIPS32-AE-LABEL: extract_sext_v16i8_vidx:
%1 = load <16 x i8>* @v16i8
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v16i8)(
; MIPS32-AE-DAG: ld.b [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <16 x i8> %1, %1
; MIPS32-AE-DAG: addv.b [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <16 x i8> %2, i32 %3
%5 = sext i8 %4 to i32
; MIPS32-AE-DAG: splat.b $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-DAG: sra [[R6:\$[0-9]+]], [[R5]], 24
ret i32 %5
; MIPS32-AE: .size extract_sext_v16i8_vidx
}
define i32 @extract_sext_v8i16_vidx() nounwind {
; MIPS32-AE-LABEL: extract_sext_v8i16_vidx:
%1 = load <8 x i16>* @v8i16
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v8i16)(
; MIPS32-AE-DAG: ld.h [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <8 x i16> %1, %1
; MIPS32-AE-DAG: addv.h [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <8 x i16> %2, i32 %3
%5 = sext i16 %4 to i32
; MIPS32-AE-DAG: splat.h $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-DAG: sra [[R6:\$[0-9]+]], [[R5]], 16
ret i32 %5
; MIPS32-AE: .size extract_sext_v8i16_vidx
}
define i32 @extract_sext_v4i32_vidx() nounwind {
; MIPS32-AE-LABEL: extract_sext_v4i32_vidx:
%1 = load <4 x i32>* @v4i32
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v4i32)(
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <4 x i32> %1, %1
; MIPS32-AE-DAG: addv.w [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <4 x i32> %2, i32 %3
; MIPS32-AE-DAG: splat.w $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-NOT: sra
ret i32 %4
; MIPS32-AE: .size extract_sext_v4i32_vidx
}
define i64 @extract_sext_v2i64_vidx() nounwind {
; MIPS32-AE-LABEL: extract_sext_v2i64_vidx:
%1 = load <2 x i64>* @v2i64
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v2i64)(
; MIPS32-AE-DAG: ld.d [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <2 x i64> %1, %1
; MIPS32-AE-DAG: addv.d [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <2 x i64> %2, i32 %3
; MIPS32-AE-DAG: splat.w $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-DAG: splat.w $w[[R4:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R6:\$[0-9]+]], $f[[R4]]
; MIPS32-AE-NOT: sra
ret i64 %4
; MIPS32-AE: .size extract_sext_v2i64_vidx
}
define i32 @extract_zext_v16i8_vidx() nounwind {
; MIPS32-AE-LABEL: extract_zext_v16i8_vidx:
%1 = load <16 x i8>* @v16i8
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v16i8)(
; MIPS32-AE-DAG: ld.b [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <16 x i8> %1, %1
; MIPS32-AE-DAG: addv.b [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <16 x i8> %2, i32 %3
%5 = zext i8 %4 to i32
; MIPS32-AE-DAG: splat.b $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-DAG: srl [[R6:\$[0-9]+]], [[R5]], 24
ret i32 %5
; MIPS32-AE: .size extract_zext_v16i8_vidx
}
define i32 @extract_zext_v8i16_vidx() nounwind {
; MIPS32-AE-LABEL: extract_zext_v8i16_vidx:
%1 = load <8 x i16>* @v8i16
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v8i16)(
; MIPS32-AE-DAG: ld.h [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <8 x i16> %1, %1
; MIPS32-AE-DAG: addv.h [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <8 x i16> %2, i32 %3
%5 = zext i16 %4 to i32
; MIPS32-AE-DAG: splat.h $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-DAG: srl [[R6:\$[0-9]+]], [[R5]], 16
ret i32 %5
; MIPS32-AE: .size extract_zext_v8i16_vidx
}
define i32 @extract_zext_v4i32_vidx() nounwind {
; MIPS32-AE-LABEL: extract_zext_v4i32_vidx:
%1 = load <4 x i32>* @v4i32
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v4i32)(
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <4 x i32> %1, %1
; MIPS32-AE-DAG: addv.w [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <4 x i32> %2, i32 %3
; MIPS32-AE-DAG: splat.w $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-NOT: srl
ret i32 %4
; MIPS32-AE: .size extract_zext_v4i32_vidx
}
define i64 @extract_zext_v2i64_vidx() nounwind {
; MIPS32-AE-LABEL: extract_zext_v2i64_vidx:
%1 = load <2 x i64>* @v2i64
; MIPS32-AE-DAG: lw [[PTR_V:\$[0-9]+]], %got(v2i64)(
; MIPS32-AE-DAG: ld.d [[R1:\$w[0-9]+]], 0([[PTR_V]])
%2 = add <2 x i64> %1, %1
; MIPS32-AE-DAG: addv.d [[R2:\$w[0-9]+]], [[R1]], [[R1]]
%3 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%4 = extractelement <2 x i64> %2, i32 %3
; MIPS32-AE-DAG: splat.w $w[[R3:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R5:\$[0-9]+]], $f[[R3]]
; MIPS32-AE-DAG: splat.w $w[[R4:[0-9]+]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: mfc1 [[R6:\$[0-9]+]], $f[[R4]]
; MIPS32-AE-NOT: srl
ret i64 %4
; MIPS32-AE: .size extract_zext_v2i64_vidx
}
define void @insert_v16i8(i32 %a) nounwind {
; MIPS32-AE-LABEL: insert_v16i8:
%1 = load <16 x i8>* @v16i8
; MIPS32-AE-DAG: ld.b [[R1:\$w[0-9]+]],
%a2 = trunc i32 %a to i8
%a3 = sext i8 %a2 to i32
%a4 = trunc i32 %a3 to i8
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%2 = insertelement <16 x i8> %1, i8 %a4, i32 1
; MIPS32-AE-DAG: insert.b [[R1]][1], $4
store <16 x i8> %2, <16 x i8>* @v16i8
; MIPS32-AE-DAG: st.b [[R1]]
ret void
; MIPS32-AE: .size insert_v16i8
}
define void @insert_v8i16(i32 %a) nounwind {
; MIPS32-AE-LABEL: insert_v8i16:
%1 = load <8 x i16>* @v8i16
; MIPS32-AE-DAG: ld.h [[R1:\$w[0-9]+]],
%a2 = trunc i32 %a to i16
%a3 = sext i16 %a2 to i32
%a4 = trunc i32 %a3 to i16
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%2 = insertelement <8 x i16> %1, i16 %a4, i32 1
; MIPS32-AE-DAG: insert.h [[R1]][1], $4
store <8 x i16> %2, <8 x i16>* @v8i16
; MIPS32-AE-DAG: st.h [[R1]]
ret void
; MIPS32-AE: .size insert_v8i16
}
define void @insert_v4i32(i32 %a) nounwind {
; MIPS32-AE-LABEL: insert_v4i32:
%1 = load <4 x i32>* @v4i32
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]],
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%2 = insertelement <4 x i32> %1, i32 %a, i32 1
; MIPS32-AE-DAG: insert.w [[R1]][1], $4
store <4 x i32> %2, <4 x i32>* @v4i32
; MIPS32-AE-DAG: st.w [[R1]]
ret void
; MIPS32-AE: .size insert_v4i32
}
define void @insert_v2i64(i64 %a) nounwind {
; MIPS32-AE-LABEL: insert_v2i64:
%1 = load <2 x i64>* @v2i64
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]],
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%2 = insertelement <2 x i64> %1, i64 %a, i32 1
; MIPS32-AE-DAG: insert.w [[R1]][2], $4
; MIPS32-AE-DAG: insert.w [[R1]][3], $5
store <2 x i64> %2, <2 x i64>* @v2i64
; MIPS32-AE-DAG: st.w [[R1]]
ret void
; MIPS32-AE: .size insert_v2i64
}
define void @insert_v16i8_vidx(i32 %a) nounwind {
; MIPS32-AE: insert_v16i8_vidx:
%1 = load <16 x i8>* @v16i8
; MIPS32-AE-DAG: ld.b [[R1:\$w[0-9]+]],
%2 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%a2 = trunc i32 %a to i8
%a3 = sext i8 %a2 to i32
%a4 = trunc i32 %a3 to i8
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%3 = insertelement <16 x i8> %1, i8 %a4, i32 %2
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[IDX]]]
; MIPS32-AE-DAG: insert.b [[R1]][0], $4
; MIPS32-AE-DAG: neg [[NIDX:\$[0-9]+]], [[IDX]]
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[NIDX]]]
store <16 x i8> %3, <16 x i8>* @v16i8
; MIPS32-AE-DAG: st.b [[R1]]
ret void
; MIPS32-AE: .size insert_v16i8_vidx
}
define void @insert_v8i16_vidx(i32 %a) nounwind {
; MIPS32-AE: insert_v8i16_vidx:
%1 = load <8 x i16>* @v8i16
; MIPS32-AE-DAG: ld.h [[R1:\$w[0-9]+]],
%2 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
%a2 = trunc i32 %a to i16
%a3 = sext i16 %a2 to i32
%a4 = trunc i32 %a3 to i16
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%3 = insertelement <8 x i16> %1, i16 %a4, i32 %2
; MIPS32-AE-DAG: sll [[BIDX:\$[0-9]+]], [[IDX]], 1
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[BIDX]]]
; MIPS32-AE-DAG: insert.h [[R1]][0], $4
; MIPS32-AE-DAG: neg [[NIDX:\$[0-9]+]], [[BIDX]]
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[NIDX]]]
store <8 x i16> %3, <8 x i16>* @v8i16
; MIPS32-AE-DAG: st.h [[R1]]
ret void
; MIPS32-AE: .size insert_v8i16_vidx
}
define void @insert_v4i32_vidx(i32 %a) nounwind {
; MIPS32-AE: insert_v4i32_vidx:
%1 = load <4 x i32>* @v4i32
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]],
%2 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%3 = insertelement <4 x i32> %1, i32 %a, i32 %2
; MIPS32-AE-DAG: sll [[BIDX:\$[0-9]+]], [[IDX]], 2
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[BIDX]]]
; MIPS32-AE-DAG: insert.w [[R1]][0], $4
; MIPS32-AE-DAG: neg [[NIDX:\$[0-9]+]], [[BIDX]]
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[NIDX]]]
store <4 x i32> %3, <4 x i32>* @v4i32
; MIPS32-AE-DAG: st.w [[R1]]
ret void
; MIPS32-AE: .size insert_v4i32_vidx
}
define void @insert_v2i64_vidx(i64 %a) nounwind {
; MIPS32-AE: insert_v2i64_vidx:
%1 = load <2 x i64>* @v2i64
; MIPS32-AE-DAG: ld.w [[R1:\$w[0-9]+]],
%2 = load i32* @i32
; MIPS32-AE-DAG: lw [[PTR_I:\$[0-9]+]], %got(i32)(
; MIPS32-AE-DAG: lw [[IDX:\$[0-9]+]], 0([[PTR_I]])
; MIPS32-AE-NOT: andi
; MIPS32-AE-NOT: sra
%3 = insertelement <2 x i64> %1, i64 %a, i32 %2
; TODO: This code could be a lot better but it works. The legalizer splits
; 64-bit inserts into two 32-bit inserts because there is no i64 type on
; MIPS32. The obvious optimisation is to perform both insert.w's at once while
; the vector is rotated.
; MIPS32-AE-DAG: sll [[BIDX:\$[0-9]+]], [[IDX]], 2
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[BIDX]]]
; MIPS32-AE-DAG: insert.w [[R1]][0], $4
; MIPS32-AE-DAG: neg [[NIDX:\$[0-9]+]], [[BIDX]]
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[NIDX]]]
; MIPS32-AE-DAG: addiu [[IDX2:\$[0-9]+]], [[IDX]], 1
; MIPS32-AE-DAG: sll [[BIDX:\$[0-9]+]], [[IDX2]], 2
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[BIDX]]]
; MIPS32-AE-DAG: insert.w [[R1]][0], $5
; MIPS32-AE-DAG: neg [[NIDX:\$[0-9]+]], [[BIDX]]
; MIPS32-AE-DAG: sld.b [[R1]], [[R1]]{{\[}}[[NIDX]]]
store <2 x i64> %3, <2 x i64>* @v2i64
; MIPS32-AE-DAG: st.w [[R1]]
ret void
; MIPS32-AE: .size insert_v2i64_vidx
}
define void @truncstore() nounwind {
; MIPS32-AE-LABEL: truncstore:
store volatile <4 x i8> <i8 -1, i8 -1, i8 -1, i8 -1>, <4 x i8>*@v4i8
; TODO: What code should be emitted?
ret void
; MIPS32-AE: .size truncstore
}