llvm-6502/lib/CodeGen/RegisterPressure.cpp

725 lines
26 KiB
C++
Raw Normal View History

//===-- RegisterPressure.cpp - Dynamic Register Pressure ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the RegisterPressure class which can be used to track
// MachineInstr level register pressure.
//
//===----------------------------------------------------------------------===//
#include "RegisterClassInfo.h"
#include "RegisterPressure.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
/// Increase register pressure for each set impacted by this register class.
static void increaseSetPressure(std::vector<unsigned> &CurrSetPressure,
std::vector<unsigned> &MaxSetPressure,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
for (const int *PSet = TRI->getRegClassPressureSets(RC);
*PSet != -1; ++PSet) {
CurrSetPressure[*PSet] += Weight;
if (&CurrSetPressure != &MaxSetPressure
&& CurrSetPressure[*PSet] > MaxSetPressure[*PSet]) {
MaxSetPressure[*PSet] = CurrSetPressure[*PSet];
}
}
}
/// Decrease register pressure for each set impacted by this register class.
static void decreaseSetPressure(std::vector<unsigned> &CurrSetPressure,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
for (const int *PSet = TRI->getRegClassPressureSets(RC);
*PSet != -1; ++PSet) {
assert(CurrSetPressure[*PSet] >= Weight && "register pressure underflow");
CurrSetPressure[*PSet] -= Weight;
}
}
/// Directly increase pressure only within this RegisterPressure result.
void RegisterPressure::increase(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
increaseSetPressure(MaxSetPressure, MaxSetPressure, RC, TRI);
}
/// Directly decrease pressure only within this RegisterPressure result.
void RegisterPressure::decrease(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
decreaseSetPressure(MaxSetPressure, RC, TRI);
}
/// Increase the current pressure as impacted by these physical registers and
/// bump the high water mark if needed.
void RegPressureTracker::increasePhysRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
increaseSetPressure(CurrSetPressure, P.MaxSetPressure,
TRI->getMinimalPhysRegClass(Regs[I]), TRI);
}
/// Simply decrease the current pressure as impacted by these physcial
/// registers.
void RegPressureTracker::decreasePhysRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
decreaseSetPressure(CurrSetPressure, TRI->getMinimalPhysRegClass(Regs[I]),
TRI);
}
/// Increase the current pressure as impacted by these virtual registers and
/// bump the high water mark if needed.
void RegPressureTracker::increaseVirtRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
increaseSetPressure(CurrSetPressure, P.MaxSetPressure,
MRI->getRegClass(Regs[I]), TRI);
}
/// Simply decrease the current pressure as impacted by these virtual registers.
void RegPressureTracker::decreaseVirtRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
decreaseSetPressure(CurrSetPressure, MRI->getRegClass(Regs[I]), TRI);
}
/// Clear the result so it can be used for another round of pressure tracking.
void IntervalPressure::reset() {
TopIdx = BottomIdx = SlotIndex();
MaxSetPressure.clear();
LiveInRegs.clear();
LiveOutRegs.clear();
}
/// Clear the result so it can be used for another round of pressure tracking.
void RegionPressure::reset() {
TopPos = BottomPos = MachineBasicBlock::const_iterator();
MaxSetPressure.clear();
LiveInRegs.clear();
LiveOutRegs.clear();
}
/// If the current top is not less than or equal to the next index, open it.
/// We happen to need the SlotIndex for the next top for pressure update.
void IntervalPressure::openTop(SlotIndex NextTop) {
if (TopIdx <= NextTop)
return;
TopIdx = SlotIndex();
LiveInRegs.clear();
}
/// If the current top is the previous instruction (before receding), open it.
void RegionPressure::openTop(MachineBasicBlock::const_iterator PrevTop) {
if (TopPos != PrevTop)
return;
TopPos = MachineBasicBlock::const_iterator();
LiveInRegs.clear();
}
/// If the current bottom is not greater than the previous index, open it.
void IntervalPressure::openBottom(SlotIndex PrevBottom) {
if (BottomIdx > PrevBottom)
return;
BottomIdx = SlotIndex();
LiveInRegs.clear();
}
/// If the current bottom is the previous instr (before advancing), open it.
void RegionPressure::openBottom(MachineBasicBlock::const_iterator PrevBottom) {
if (BottomPos != PrevBottom)
return;
BottomPos = MachineBasicBlock::const_iterator();
LiveInRegs.clear();
}
/// Setup the RegPressureTracker.
///
/// TODO: Add support for pressure without LiveIntervals.
void RegPressureTracker::init(const MachineFunction *mf,
const RegisterClassInfo *rci,
const LiveIntervals *lis,
const MachineBasicBlock *mbb,
MachineBasicBlock::const_iterator pos)
{
MF = mf;
TRI = MF->getTarget().getRegisterInfo();
RCI = rci;
MRI = &MF->getRegInfo();
MBB = mbb;
if (RequireIntervals) {
assert(lis && "IntervalPressure requires LiveIntervals");
LIS = lis;
}
CurrPos = pos;
while (CurrPos != MBB->end() && CurrPos->isDebugValue())
++CurrPos;
CurrSetPressure.assign(TRI->getNumRegPressureSets(), 0);
if (RequireIntervals)
static_cast<IntervalPressure&>(P).reset();
else
static_cast<RegionPressure&>(P).reset();
P.MaxSetPressure = CurrSetPressure;
LivePhysRegs.clear();
LivePhysRegs.setUniverse(TRI->getNumRegs());
LiveVirtRegs.clear();
LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
}
/// Does this pressure result have a valid top position and live ins.
bool RegPressureTracker::isTopClosed() const {
if (RequireIntervals)
return static_cast<IntervalPressure&>(P).TopIdx.isValid();
return (static_cast<RegionPressure&>(P).TopPos ==
MachineBasicBlock::const_iterator());
}
/// Does this pressure result have a valid bottom position and live outs.
bool RegPressureTracker::isBottomClosed() const {
if (RequireIntervals)
return static_cast<IntervalPressure&>(P).BottomIdx.isValid();
return (static_cast<RegionPressure&>(P).BottomPos ==
MachineBasicBlock::const_iterator());
}
/// Set the boundary for the top of the region and summarize live ins.
void RegPressureTracker::closeTop() {
if (RequireIntervals)
static_cast<IntervalPressure&>(P).TopIdx =
LIS->getInstructionIndex(CurrPos).getRegSlot();
else
static_cast<RegionPressure&>(P).TopPos = CurrPos;
assert(P.LiveInRegs.empty() && "inconsistent max pressure result");
P.LiveInRegs.reserve(LivePhysRegs.size() + LiveVirtRegs.size());
P.LiveInRegs.append(LivePhysRegs.begin(), LivePhysRegs.end());
for (SparseSet<unsigned>::const_iterator I =
LiveVirtRegs.begin(), E = LiveVirtRegs.end(); I != E; ++I)
P.LiveInRegs.push_back(*I);
std::sort(P.LiveInRegs.begin(), P.LiveInRegs.end());
P.LiveInRegs.erase(std::unique(P.LiveInRegs.begin(), P.LiveInRegs.end()),
P.LiveInRegs.end());
}
/// Set the boundary for the bottom of the region and summarize live outs.
void RegPressureTracker::closeBottom() {
if (RequireIntervals)
if (CurrPos == MBB->end())
static_cast<IntervalPressure&>(P).BottomIdx = LIS->getMBBEndIdx(MBB);
else
static_cast<IntervalPressure&>(P).BottomIdx =
LIS->getInstructionIndex(CurrPos).getRegSlot();
else
static_cast<RegionPressure&>(P).BottomPos = CurrPos;
assert(P.LiveOutRegs.empty() && "inconsistent max pressure result");
P.LiveOutRegs.reserve(LivePhysRegs.size() + LiveVirtRegs.size());
P.LiveOutRegs.append(LivePhysRegs.begin(), LivePhysRegs.end());
for (SparseSet<unsigned>::const_iterator I =
LiveVirtRegs.begin(), E = LiveVirtRegs.end(); I != E; ++I)
P.LiveOutRegs.push_back(*I);
std::sort(P.LiveOutRegs.begin(), P.LiveOutRegs.end());
P.LiveOutRegs.erase(std::unique(P.LiveOutRegs.begin(), P.LiveOutRegs.end()),
P.LiveOutRegs.end());
}
/// Finalize the region boundaries and record live ins and live outs.
void RegPressureTracker::closeRegion() {
if (!isTopClosed() && !isBottomClosed()) {
assert(LivePhysRegs.empty() && LiveVirtRegs.empty() &&
"no region boundary");
return;
}
if (!isBottomClosed())
closeBottom();
else if (!isTopClosed())
closeTop();
// If both top and bottom are closed, do nothing.
}
/// Return true if Reg aliases a register in Regs SparseSet.
static bool hasRegAlias(unsigned Reg, SparseSet<unsigned> &Regs,
const TargetRegisterInfo *TRI) {
assert(!TargetRegisterInfo::isVirtualRegister(Reg) && "only for physregs");
for (const uint16_t *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
if (Regs.count(*Alias))
return true;
}
return false;
}
/// Return true if Reg aliases a register in unsorted Regs SmallVector.
/// This is only valid for physical registers.
static SmallVectorImpl<unsigned>::iterator
findRegAlias(unsigned Reg, SmallVectorImpl<unsigned> &Regs,
const TargetRegisterInfo *TRI) {
for (const uint16_t *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
SmallVectorImpl<unsigned>::iterator I =
std::find(Regs.begin(), Regs.end(), *Alias);
if (I != Regs.end())
return I;
}
return Regs.end();
}
/// Return true if Reg can be inserted into Regs SmallVector. For virtual
/// register, do a linear search. For physical registers check for aliases.
static SmallVectorImpl<unsigned>::iterator
findReg(unsigned Reg, bool isVReg, SmallVectorImpl<unsigned> &Regs,
const TargetRegisterInfo *TRI) {
if(isVReg)
return std::find(Regs.begin(), Regs.end(), Reg);
return findRegAlias(Reg, Regs, TRI);
}
/// Collect this instruction's unique uses and defs into SmallVectors for
/// processing defs and uses in order.
template<bool isVReg>
struct RegisterOperands {
SmallVector<unsigned, 8> Uses;
SmallVector<unsigned, 8> Defs;
SmallVector<unsigned, 8> DeadDefs;
/// Push this operand's register onto the correct vector.
void collect(const MachineOperand &MO, const TargetRegisterInfo *TRI) {
if (MO.readsReg()) {
if (findReg(MO.getReg(), isVReg, Uses, TRI) == Uses.end())
Uses.push_back(MO.getReg());
}
if (MO.isDef()) {
if (MO.isDead()) {
if (findReg(MO.getReg(), isVReg, DeadDefs, TRI) == DeadDefs.end())
DeadDefs.push_back(MO.getReg());
}
else {
if (findReg(MO.getReg(), isVReg, Defs, TRI) == Defs.end())
Defs.push_back(MO.getReg());
}
}
}
};
typedef RegisterOperands<false> PhysRegOperands;
typedef RegisterOperands<true> VirtRegOperands;
/// Collect physical and virtual register operands.
static void collectOperands(const MachineInstr *MI,
PhysRegOperands &PhysRegOpers,
VirtRegOperands &VirtRegOpers,
const TargetRegisterInfo *TRI,
const RegisterClassInfo *RCI) {
for(ConstMIBundleOperands OperI(MI); OperI.isValid(); ++OperI) {
const MachineOperand &MO = *OperI;
if (!MO.isReg() || !MO.getReg())
continue;
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
VirtRegOpers.collect(MO, TRI);
else if (RCI->isAllocatable(MO.getReg()))
PhysRegOpers.collect(MO, TRI);
}
// Remove redundant physreg dead defs.
for (unsigned i = PhysRegOpers.DeadDefs.size(); i > 0; --i) {
unsigned Reg = PhysRegOpers.DeadDefs[i-1];
if (findRegAlias(Reg, PhysRegOpers.Defs, TRI) != PhysRegOpers.Defs.end())
PhysRegOpers.DeadDefs.erase(&PhysRegOpers.DeadDefs[i-1]);
}
}
/// Add PhysReg to the live in set and increase max pressure.
void RegPressureTracker::discoverPhysLiveIn(unsigned Reg) {
assert(!LivePhysRegs.count(Reg) && "avoid bumping max pressure twice");
if (findRegAlias(Reg, P.LiveInRegs, TRI) == P.LiveInRegs.end())
return;
// At live in discovery, unconditionally increase the high water mark.
P.LiveInRegs.push_back(Reg);
P.increase(TRI->getMinimalPhysRegClass(Reg), TRI);
}
/// Add PhysReg to the live out set and increase max pressure.
void RegPressureTracker::discoverPhysLiveOut(unsigned Reg) {
assert(!LivePhysRegs.count(Reg) && "avoid bumping max pressure twice");
if (findRegAlias(Reg, P.LiveOutRegs, TRI) == P.LiveOutRegs.end())
return;
// At live out discovery, unconditionally increase the high water mark.
P.LiveOutRegs.push_back(Reg);
P.increase(TRI->getMinimalPhysRegClass(Reg), TRI);
}
/// Add VirtReg to the live in set and increase max pressure.
void RegPressureTracker::discoverVirtLiveIn(unsigned Reg) {
assert(!LiveVirtRegs.count(Reg) && "avoid bumping max pressure twice");
if (std::find(P.LiveInRegs.begin(), P.LiveInRegs.end(), Reg) !=
P.LiveInRegs.end())
return;
// At live in discovery, unconditionally increase the high water mark.
P.LiveInRegs.push_back(Reg);
P.increase(MRI->getRegClass(Reg), TRI);
}
/// Add VirtReg to the live out set and increase max pressure.
void RegPressureTracker::discoverVirtLiveOut(unsigned Reg) {
assert(!LiveVirtRegs.count(Reg) && "avoid bumping max pressure twice");
if (std::find(P.LiveOutRegs.begin(), P.LiveOutRegs.end(), Reg) !=
P.LiveOutRegs.end())
return;
// At live out discovery, unconditionally increase the high water mark.
P.LiveOutRegs.push_back(Reg);
P.increase(MRI->getRegClass(Reg), TRI);
}
/// Recede across the previous instruction.
bool RegPressureTracker::recede() {
// Check for the top of the analyzable region.
if (CurrPos == MBB->begin()) {
closeRegion();
return false;
}
if (!isBottomClosed())
closeBottom();
// Open the top of the region using block iterators.
if (!RequireIntervals && isTopClosed())
static_cast<RegionPressure&>(P).openTop(CurrPos);
// Find the previous instruction.
do
--CurrPos;
while (CurrPos != MBB->begin() && CurrPos->isDebugValue());
if (CurrPos->isDebugValue()) {
closeRegion();
return false;
}
SlotIndex SlotIdx;
if (RequireIntervals)
SlotIdx = LIS->getInstructionIndex(CurrPos).getRegSlot();
// Open the top of the region using slot indexes.
if (RequireIntervals && isTopClosed())
static_cast<IntervalPressure&>(P).openTop(SlotIdx);
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(CurrPos, PhysRegOpers, VirtRegOpers, TRI, RCI);
// Boost pressure for all dead defs together.
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
// Kill liveness at live defs.
// TODO: consider earlyclobbers?
for (unsigned i = 0, e = PhysRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Defs[i];
if (LivePhysRegs.erase(Reg))
decreasePhysRegPressure(Reg);
else
discoverPhysLiveOut(Reg);
}
for (unsigned i = 0, e = VirtRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Defs[i];
if (LiveVirtRegs.erase(Reg))
decreaseVirtRegPressure(Reg);
else
discoverVirtLiveOut(Reg);
}
// Generate liveness for uses.
for (unsigned i = 0, e = PhysRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Uses[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI)) {
increasePhysRegPressure(Reg);
LivePhysRegs.insert(Reg);
}
}
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
if (!LiveVirtRegs.count(Reg)) {
// Adjust liveouts if LiveIntervals are available.
if (RequireIntervals) {
const LiveInterval *LI = &LIS->getInterval(Reg);
if (!LI->killedAt(SlotIdx))
discoverVirtLiveOut(Reg);
}
increaseVirtRegPressure(Reg);
LiveVirtRegs.insert(Reg);
}
}
return true;
}
/// Advance across the current instruction.
bool RegPressureTracker::advance() {
// Check for the bottom of the analyzable region.
if (CurrPos == MBB->end()) {
closeRegion();
return false;
}
if (!isTopClosed())
closeTop();
SlotIndex SlotIdx;
if (RequireIntervals)
SlotIdx = LIS->getInstructionIndex(CurrPos).getRegSlot();
// Open the bottom of the region using slot indexes.
if (isBottomClosed()) {
if (RequireIntervals)
static_cast<IntervalPressure&>(P).openBottom(SlotIdx);
else
static_cast<RegionPressure&>(P).openBottom(CurrPos);
}
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(CurrPos, PhysRegOpers, VirtRegOpers, TRI, RCI);
// Kill liveness at last uses.
for (unsigned i = 0, e = PhysRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Uses[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI))
discoverPhysLiveIn(Reg);
else {
// Allocatable physregs are always single-use before regalloc.
decreasePhysRegPressure(Reg);
LivePhysRegs.erase(Reg);
}
}
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
if (RequireIntervals) {
const LiveInterval *LI = &LIS->getInterval(Reg);
if (LI->killedAt(SlotIdx)) {
if (LiveVirtRegs.erase(Reg))
decreaseVirtRegPressure(Reg);
else
discoverVirtLiveIn(Reg);
}
}
else if (!LiveVirtRegs.count(Reg)) {
discoverVirtLiveIn(Reg);
increaseVirtRegPressure(Reg);
}
}
// Generate liveness for defs.
for (unsigned i = 0, e = PhysRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Defs[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI)) {
increasePhysRegPressure(Reg);
LivePhysRegs.insert(Reg);
}
}
for (unsigned i = 0, e = VirtRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Defs[i];
if (LiveVirtRegs.insert(Reg).second)
increaseVirtRegPressure(Reg);
}
// Boost pressure for all dead defs together.
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
// Find the next instruction.
do
++CurrPos;
while (CurrPos != MBB->end() && CurrPos->isDebugValue());
return true;
}
// Find the max change in excess pressure across all sets.
static int computeMaxPressureDelta(ArrayRef<unsigned> OldPressureVec,
ArrayRef<unsigned> NewPressureVec,
unsigned &PSetID,
const TargetRegisterInfo *TRI) {
int ExcessUnits = 0;
for (unsigned i = 0, e = OldPressureVec.size(); i < e; ++i) {
unsigned POld = OldPressureVec[i];
unsigned PNew = NewPressureVec[i];
int PDiff = (int)PNew - (int)POld;
if (!PDiff) // No change in this set in the common case.
continue;
// Only consider change beyond the limit.
unsigned Limit = TRI->getRegPressureSetLimit(i);
if (Limit > POld) {
if (Limit > PNew)
PDiff = 0; // Under the limit
else
PDiff = PNew - Limit; // Just exceeded limit.
}
else if (Limit > PNew)
PDiff = Limit - POld; // Just obeyed limit.
if (std::abs(PDiff) > std::abs(ExcessUnits)) {
ExcessUnits = PDiff;
PSetID = i;
}
}
return ExcessUnits;
}
/// Consider the pressure increase caused by traversing this instruction
/// bottom-up. Find the pressure set with the most change beyond its pressure
/// limit based on the tracker's current pressure, and return the change in
/// number of register units of that pressure set introduced by this
/// instruction.
///
/// This assumes that the current LiveOut set is sufficient.
///
/// FIXME: This is expensive for an on-the-fly query. We need to cache the
/// result per-SUnit with enough information to adjust for the current
/// scheduling position. But this works as a proof of concept.
void RegPressureTracker::
getMaxUpwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta) {
// Account for register pressure similar to RegPressureTracker::recede().
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(MI, PhysRegOpers, VirtRegOpers, TRI, RCI);
// Snapshot Pressure.
std::vector<unsigned> SavedPressure = CurrSetPressure;
std::vector<unsigned> SavedMaxPressure = P.MaxSetPressure;
// Boost max pressure for all dead defs together.
// Since CurrSetPressure and MaxSetPressure
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
// Kill liveness at live defs.
// TODO: consider earlyclobbers?
for (unsigned i = 0; i < PhysRegOpers.Defs.size(); ++i) {
unsigned Reg = PhysRegOpers.Defs[i];
if (LivePhysRegs.erase(Reg))
decreasePhysRegPressure(Reg);
else
discoverPhysLiveOut(Reg);
}
for (unsigned i = 0; i < VirtRegOpers.Defs.size(); ++i) {
unsigned Reg = VirtRegOpers.Defs[i];
if (LiveVirtRegs.erase(Reg))
decreaseVirtRegPressure(Reg);
else
discoverVirtLiveOut(Reg);
}
// Generate liveness for uses.
for (unsigned i = 0, e = PhysRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Uses[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI)) {
increasePhysRegPressure(Reg);
LivePhysRegs.insert(Reg);
}
}
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
if (!LiveVirtRegs.count(Reg)) {
increaseVirtRegPressure(Reg);
}
}
Delta.ExcessUnits =
computeMaxPressureDelta(SavedPressure, CurrSetPressure,
Delta.ExcessSetID, TRI);
Delta.MaxUnitIncrease =
computeMaxPressureDelta(SavedMaxPressure, P.MaxSetPressure,
Delta.MaxSetID, TRI);
assert(Delta.MaxUnitIncrease >= 0 && "cannot increase max pressure");
// Restore the tracker's state.
P.MaxSetPressure.swap(SavedMaxPressure);
CurrSetPressure.swap(SavedPressure);
}
/// Helper to find a vreg use between two indices [PriorUseIdx, NextUseIdx).
static bool findUseBetween(unsigned Reg,
SlotIndex PriorUseIdx, SlotIndex NextUseIdx,
const MachineRegisterInfo *MRI,
const LiveIntervals *LIS) {
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(Reg), UE = MRI->use_nodbg_end();
UI != UE; UI.skipInstruction()) {
const MachineInstr* MI = &*UI;
SlotIndex InstSlot = LIS->getInstructionIndex(MI).getRegSlot();
if (InstSlot >= PriorUseIdx && InstSlot < NextUseIdx)
return true;
}
return false;
}
/// Consider the pressure increase caused by traversing this instruction
/// top-down. Find the register class with the most change in its pressure limit
/// based on the tracker's current pressure, and return the number of excess
/// register units of that pressure set introduced by this instruction.
///
/// This assumes that the current LiveIn set is sufficient.
void RegPressureTracker::
getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta) {
// Account for register pressure similar to RegPressureTracker::recede().
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(MI, PhysRegOpers, VirtRegOpers, TRI, RCI);
// Snapshot Pressure.
std::vector<unsigned> SavedPressure = CurrSetPressure;
std::vector<unsigned> SavedMaxPressure = P.MaxSetPressure;
// Kill liveness at last uses. Assume allocatable physregs are single-use
// rather than checking LiveIntervals.
decreasePhysRegPressure(PhysRegOpers.Uses);
if (RequireIntervals) {
SlotIndex SlotIdx = LIS->getInstructionIndex(MI).getRegSlot();
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
const LiveInterval *LI = &LIS->getInterval(Reg);
// FIXME: allow the caller to pass in the list of vreg uses that remain to
// be top-scheduled to avoid searching uses at each query.
SlotIndex CurrIdx = LIS->getInstructionIndex(CurrPos).getRegSlot();
if (LI->killedAt(SlotIdx)
&& !findUseBetween(Reg, CurrIdx, SlotIdx, MRI, LIS)) {
decreaseVirtRegPressure(Reg);
}
}
}
// Generate liveness for defs.
increasePhysRegPressure(PhysRegOpers.Defs);
increaseVirtRegPressure(VirtRegOpers.Defs);
// Boost pressure for all dead defs together.
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
Delta.ExcessUnits =
computeMaxPressureDelta(SavedPressure, CurrSetPressure,
Delta.ExcessSetID, TRI);
Delta.MaxUnitIncrease =
computeMaxPressureDelta(SavedMaxPressure, P.MaxSetPressure,
Delta.MaxSetID, TRI);
// Restore the tracker's state.
P.MaxSetPressure.swap(SavedMaxPressure);
CurrSetPressure.swap(SavedPressure);
}