llvm-6502/include/llvm/CallGraphSCCPass.h

73 lines
2.6 KiB
C
Raw Normal View History

//===- CallGraphSCCPass.h - Pass that operates BU on call graph -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CallGraphSCCPass class, which is used for passes which
// are implemented as bottom-up traversals on the call graph. Because there may
// be cycles in the call graph, passes of this type operate on the call-graph in
// SCC order: that is, they process function bottom-up, except for recursive
// functions, which they process all at once.
//
// These passes are inherently interprocedural, and are required to keep the
// call graph up-to-date if they do anything which could modify it.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CALL_GRAPH_SCC_PASS_H
#define LLVM_CALL_GRAPH_SCC_PASS_H
#include "llvm/Pass.h"
namespace llvm {
class CallGraphNode;
class CallGraph;
class PMStack;
struct CallGraphSCCPass : public Pass {
explicit CallGraphSCCPass(intptr_t pid) : Pass(pid) {}
/// doInitialization - This method is called before the SCC's of the program
/// has been processed, allowing the pass to do initialization as necessary.
virtual bool doInitialization(CallGraph &CG) {
return false;
}
/// runOnSCC - This method should be implemented by the subclass to perform
/// whatever action is necessary for the specified SCC. Note that
/// non-recursive (or only self-recursive) functions will have an SCC size of
/// 1, where recursive portions of the call graph will have SCC size > 1.
///
virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC) = 0;
/// doFinalization - This method is called after the SCC's of the program has
/// been processed, allowing the pass to do final cleanup as necessary.
virtual bool doFinalization(CallGraph &CG) {
return false;
}
/// Assign pass manager to manager this pass
virtual void assignPassManager(PMStack &PMS,
PassManagerType PMT = PMT_CallGraphPassManager);
/// Return what kind of Pass Manager can manage this pass.
virtual PassManagerType getPotentialPassManagerType() const {
return PMT_CallGraphPassManager;
}
/// getAnalysisUsage - For this class, we declare that we require and preserve
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
virtual void getAnalysisUsage(AnalysisUsage &Info) const;
};
} // End llvm namespace
#endif