llvm-6502/lib/VMCore/AutoUpgrade.cpp

741 lines
29 KiB
C++
Raw Normal View History

//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the auto-upgrade helper functions
//
//===----------------------------------------------------------------------===//
#include "llvm/AutoUpgrade.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/IRBuilder.h"
#include <cstring>
using namespace llvm;
static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
assert(F && "Illegal to upgrade a non-existent Function.");
// Get the Function's name.
const std::string& Name = F->getName();
// Convenience
const FunctionType *FTy = F->getFunctionType();
// Quickly eliminate it, if it's not a candidate.
if (Name.length() <= 8 || Name[0] != 'l' || Name[1] != 'l' ||
Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.')
return false;
Module *M = F->getParent();
switch (Name[5]) {
default: break;
case 'a':
// This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss,
// and atomics with default address spaces to their new names to their new
// function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32)
if (Name.compare(5,7,"atomic.",7) == 0) {
if (Name.compare(12,3,"lcs",3) == 0) {
std::string::size_type delim = Name.find('.',12);
F->setName("llvm.atomic.cmp.swap" + Name.substr(delim) +
".p0" + Name.substr(delim+1));
NewFn = F;
return true;
}
else if (Name.compare(12,3,"las",3) == 0) {
std::string::size_type delim = Name.find('.',12);
F->setName("llvm.atomic.load.add"+Name.substr(delim)
+ ".p0" + Name.substr(delim+1));
NewFn = F;
return true;
}
else if (Name.compare(12,3,"lss",3) == 0) {
std::string::size_type delim = Name.find('.',12);
F->setName("llvm.atomic.load.sub"+Name.substr(delim)
+ ".p0" + Name.substr(delim+1));
NewFn = F;
return true;
}
else if (Name.rfind(".p") == std::string::npos) {
// We don't have an address space qualifier so this has be upgraded
// to the new name. Copy the type name at the end of the intrinsic
// and add to it
std::string::size_type delim = Name.find_last_of('.');
assert(delim != std::string::npos && "can not find type");
F->setName(Name + ".p0" + Name.substr(delim+1));
NewFn = F;
return true;
}
}
break;
case 'b':
// This upgrades the name of the llvm.bswap intrinsic function to only use
// a single type name for overloading. We only care about the old format
// 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being
// a '.' after 'bswap.'
if (Name.compare(5,6,"bswap.",6) == 0) {
std::string::size_type delim = Name.find('.',11);
if (delim != std::string::npos) {
// Construct the new name as 'llvm.bswap' + '.i*'
F->setName(Name.substr(0,10)+Name.substr(delim));
NewFn = F;
return true;
}
}
break;
case 'c':
// We only want to fix the 'llvm.ct*' intrinsics which do not have the
// correct return type, so we check for the name, and then check if the
// return type does not match the parameter type.
if ( (Name.compare(5,5,"ctpop",5) == 0 ||
Name.compare(5,4,"ctlz",4) == 0 ||
Name.compare(5,4,"cttz",4) == 0) &&
FTy->getReturnType() != FTy->getParamType(0)) {
// We first need to change the name of the old (bad) intrinsic, because
// its type is incorrect, but we cannot overload that name. We
// arbitrarily unique it here allowing us to construct a correctly named
// and typed function below.
F->setName("");
// Now construct the new intrinsic with the correct name and type. We
// leave the old function around in order to query its type, whatever it
// may be, and correctly convert up to the new type.
NewFn = cast<Function>(M->getOrInsertFunction(Name,
FTy->getParamType(0),
FTy->getParamType(0),
(Type *)0));
return true;
}
break;
case 'e':
// The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector.
if (Name.compare("llvm.eh.selector.i32") == 0) {
F->setName("llvm.eh.selector");
NewFn = F;
return true;
}
// The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for.
if (Name.compare("llvm.eh.typeid.for.i32") == 0) {
F->setName("llvm.eh.typeid.for");
NewFn = F;
return true;
}
// Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector.
if (Name.compare("llvm.eh.selector.i64") == 0) {
NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_selector);
return true;
}
// Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for.
if (Name.compare("llvm.eh.typeid.for.i64") == 0) {
NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_typeid_for);
return true;
}
break;
case 'm': {
// This upgrades the llvm.memcpy, llvm.memmove, and llvm.memset to the
// new format that allows overloading the pointer for different address
// space (e.g., llvm.memcpy.i16 => llvm.memcpy.p0i8.p0i8.i16)
const char* NewFnName = NULL;
if (Name.compare(5,8,"memcpy.i",8) == 0) {
if (Name[13] == '8')
NewFnName = "llvm.memcpy.p0i8.p0i8.i8";
else if (Name.compare(13,2,"16") == 0)
NewFnName = "llvm.memcpy.p0i8.p0i8.i16";
else if (Name.compare(13,2,"32") == 0)
NewFnName = "llvm.memcpy.p0i8.p0i8.i32";
else if (Name.compare(13,2,"64") == 0)
NewFnName = "llvm.memcpy.p0i8.p0i8.i64";
} else if (Name.compare(5,9,"memmove.i",9) == 0) {
if (Name[14] == '8')
NewFnName = "llvm.memmove.p0i8.p0i8.i8";
else if (Name.compare(14,2,"16") == 0)
NewFnName = "llvm.memmove.p0i8.p0i8.i16";
else if (Name.compare(14,2,"32") == 0)
NewFnName = "llvm.memmove.p0i8.p0i8.i32";
else if (Name.compare(14,2,"64") == 0)
NewFnName = "llvm.memmove.p0i8.p0i8.i64";
}
else if (Name.compare(5,8,"memset.i",8) == 0) {
if (Name[13] == '8')
NewFnName = "llvm.memset.p0i8.i8";
else if (Name.compare(13,2,"16") == 0)
NewFnName = "llvm.memset.p0i8.i16";
else if (Name.compare(13,2,"32") == 0)
NewFnName = "llvm.memset.p0i8.i32";
else if (Name.compare(13,2,"64") == 0)
NewFnName = "llvm.memset.p0i8.i64";
}
if (NewFnName) {
const FunctionType *FTy = F->getFunctionType();
NewFn = cast<Function>(M->getOrInsertFunction(NewFnName,
FTy->getReturnType(),
FTy->getParamType(0),
FTy->getParamType(1),
FTy->getParamType(2),
FTy->getParamType(3),
Type::getInt1Ty(F->getContext()),
(Type *)0));
return true;
}
break;
}
case 'p':
// This upgrades the llvm.part.select overloaded intrinsic names to only
// use one type specifier in the name. We only care about the old format
// 'llvm.part.select.i*.i*', and solve as above with bswap.
if (Name.compare(5,12,"part.select.",12) == 0) {
std::string::size_type delim = Name.find('.',17);
if (delim != std::string::npos) {
// Construct a new name as 'llvm.part.select' + '.i*'
F->setName(Name.substr(0,16)+Name.substr(delim));
NewFn = F;
return true;
}
break;
}
// This upgrades the llvm.part.set intrinsics similarly as above, however
// we care about 'llvm.part.set.i*.i*.i*', but only the first two types
// must match. There is an additional type specifier after these two
// matching types that we must retain when upgrading. Thus, we require
// finding 2 periods, not just one, after the intrinsic name.
if (Name.compare(5,9,"part.set.",9) == 0) {
std::string::size_type delim = Name.find('.',14);
if (delim != std::string::npos &&
Name.find('.',delim+1) != std::string::npos) {
// Construct a new name as 'llvm.part.select' + '.i*.i*'
F->setName(Name.substr(0,13)+Name.substr(delim));
NewFn = F;
return true;
}
break;
}
break;
case 'x':
// This fixes all MMX shift intrinsic instructions to take a
// v1i64 instead of a v2i32 as the second parameter.
if (Name.compare(5,10,"x86.mmx.ps",10) == 0 &&
(Name.compare(13,4,"psll", 4) == 0 ||
Name.compare(13,4,"psra", 4) == 0 ||
Name.compare(13,4,"psrl", 4) == 0) && Name[17] != 'i') {
const llvm::Type *VT =
VectorType::get(IntegerType::get(FTy->getContext(), 64), 1);
// We don't have to do anything if the parameter already has
// the correct type.
if (FTy->getParamType(1) == VT)
break;
// We first need to change the name of the old (bad) intrinsic, because
// its type is incorrect, but we cannot overload that name. We
// arbitrarily unique it here allowing us to construct a correctly named
// and typed function below.
F->setName("");
assert(FTy->getNumParams() == 2 && "MMX shift intrinsics take 2 args!");
// Now construct the new intrinsic with the correct name and type. We
// leave the old function around in order to query its type, whatever it
// may be, and correctly convert up to the new type.
NewFn = cast<Function>(M->getOrInsertFunction(Name,
FTy->getReturnType(),
FTy->getParamType(0),
VT,
(Type *)0));
return true;
} else if (Name.compare(5,17,"x86.sse2.loadh.pd",17) == 0 ||
Name.compare(5,17,"x86.sse2.loadl.pd",17) == 0 ||
Name.compare(5,16,"x86.sse2.movl.dq",16) == 0 ||
Name.compare(5,15,"x86.sse2.movs.d",15) == 0 ||
Name.compare(5,16,"x86.sse2.shuf.pd",16) == 0 ||
Name.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 ||
Name.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 ||
Name.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 ||
Name.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) {
// Calls to these intrinsics are transformed into ShuffleVector's.
NewFn = 0;
return true;
} else if (Name.compare(5, 16, "x86.sse41.pmulld", 16) == 0) {
// Calls to these intrinsics are transformed into vector multiplies.
NewFn = 0;
return true;
} else if (Name.compare(5, 18, "x86.ssse3.palign.r", 18) == 0 ||
Name.compare(5, 22, "x86.ssse3.palign.r.128", 22) == 0) {
// Calls to these intrinsics are transformed into vector shuffles, shifts,
// or 0.
NewFn = 0;
return true;
}
break;
}
// This may not belong here. This function is effectively being overloaded
// to both detect an intrinsic which needs upgrading, and to provide the
// upgraded form of the intrinsic. We should perhaps have two separate
// functions for this.
return false;
}
bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) {
NewFn = 0;
bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn);
// Upgrade intrinsic attributes. This does not change the function.
if (NewFn)
F = NewFn;
if (unsigned id = F->getIntrinsicID())
F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id));
return Upgraded;
}
// UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
// upgraded intrinsic. All argument and return casting must be provided in
// order to seamlessly integrate with existing context.
void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Function *F = CI->getCalledFunction();
LLVMContext &C = CI->getContext();
ImmutableCallSite CS(CI);
assert(F && "CallInst has no function associated with it.");
if (!NewFn) {
bool isLoadH = false, isLoadL = false, isMovL = false;
bool isMovSD = false, isShufPD = false;
bool isUnpckhPD = false, isUnpcklPD = false;
bool isPunpckhQPD = false, isPunpcklQPD = false;
if (F->getName() == "llvm.x86.sse2.loadh.pd")
isLoadH = true;
else if (F->getName() == "llvm.x86.sse2.loadl.pd")
isLoadL = true;
else if (F->getName() == "llvm.x86.sse2.movl.dq")
isMovL = true;
else if (F->getName() == "llvm.x86.sse2.movs.d")
isMovSD = true;
else if (F->getName() == "llvm.x86.sse2.shuf.pd")
isShufPD = true;
else if (F->getName() == "llvm.x86.sse2.unpckh.pd")
isUnpckhPD = true;
else if (F->getName() == "llvm.x86.sse2.unpckl.pd")
isUnpcklPD = true;
else if (F->getName() == "llvm.x86.sse2.punpckh.qdq")
isPunpckhQPD = true;
else if (F->getName() == "llvm.x86.sse2.punpckl.qdq")
isPunpcklQPD = true;
if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD ||
isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
std::vector<Constant*> Idxs;
Value *Op0 = CI->getArgOperand(0);
ShuffleVectorInst *SI = NULL;
if (isLoadH || isLoadL) {
Value *Op1 = UndefValue::get(Op0->getType());
Value *Addr = new BitCastInst(CI->getArgOperand(1),
Type::getDoublePtrTy(C),
"upgraded.", CI);
Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI);
Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0);
Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI);
if (isLoadH) {
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
} else {
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
}
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
} else if (isMovL) {
Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0);
Idxs.push_back(Zero);
Idxs.push_back(Zero);
Idxs.push_back(Zero);
Idxs.push_back(Zero);
Value *ZeroV = ConstantVector::get(Idxs);
Idxs.clear();
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI);
} else if (isMovSD ||
isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
Value *Op1 = CI->getArgOperand(1);
if (isMovSD) {
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
} else if (isUnpckhPD || isPunpckhQPD) {
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
} else {
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
}
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
} else if (isShufPD) {
Value *Op1 = CI->getArgOperand(1);
unsigned MaskVal = cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue();
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1));
Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C),
((MaskVal >> 1) & 1)+2));
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
}
assert(SI && "Unexpected!");
// Handle any uses of the old CallInst.
if (!CI->use_empty())
// Replace all uses of the old call with the new cast which has the
// correct type.
CI->replaceAllUsesWith(SI);
// Clean up the old call now that it has been completely upgraded.
CI->eraseFromParent();
} else if (F->getName() == "llvm.x86.sse41.pmulld") {
// Upgrade this set of intrinsics into vector multiplies.
Instruction *Mul = BinaryOperator::CreateMul(CI->getArgOperand(0),
CI->getArgOperand(1),
CI->getName(),
CI);
// Fix up all the uses with our new multiply.
if (!CI->use_empty())
CI->replaceAllUsesWith(Mul);
// Remove upgraded multiply.
CI->eraseFromParent();
} else if (F->getName() == "llvm.x86.ssse3.palign.r") {
Value *Op1 = CI->getArgOperand(0);
Value *Op2 = CI->getArgOperand(1);
Value *Op3 = CI->getArgOperand(2);
unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue();
Value *Rep;
IRBuilder<> Builder(C);
Builder.SetInsertPoint(CI->getParent(), CI);
// If palignr is shifting the pair of input vectors less than 9 bytes,
// emit a shuffle instruction.
if (shiftVal <= 8) {
const Type *IntTy = Type::getInt32Ty(C);
const Type *EltTy = Type::getInt8Ty(C);
const Type *VecTy = VectorType::get(EltTy, 8);
Op2 = Builder.CreateBitCast(Op2, VecTy);
Op1 = Builder.CreateBitCast(Op1, VecTy);
llvm::SmallVector<llvm::Constant*, 8> Indices;
for (unsigned i = 0; i != 8; ++i)
Indices.push_back(ConstantInt::get(IntTy, shiftVal + i));
Value *SV = ConstantVector::get(Indices.begin(), Indices.size());
Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr");
Rep = Builder.CreateBitCast(Rep, F->getReturnType());
}
// If palignr is shifting the pair of input vectors more than 8 but less
// than 16 bytes, emit a logical right shift of the destination.
else if (shiftVal < 16) {
// MMX has these as 1 x i64 vectors for some odd optimization reasons.
const Type *EltTy = Type::getInt64Ty(C);
const Type *VecTy = VectorType::get(EltTy, 1);
Op1 = Builder.CreateBitCast(Op1, VecTy, "cast");
Op2 = ConstantInt::get(VecTy, (shiftVal-8) * 8);
// create i32 constant
Function *I =
Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_mmx_psrl_q);
Rep = Builder.CreateCall2(I, Op1, Op2, "palignr");
}
// If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
else {
Rep = Constant::getNullValue(F->getReturnType());
}
// Replace any uses with our new instruction.
if (!CI->use_empty())
CI->replaceAllUsesWith(Rep);
// Remove upgraded instruction.
CI->eraseFromParent();
} else if (F->getName() == "llvm.x86.ssse3.palign.r.128") {
Value *Op1 = CI->getArgOperand(0);
Value *Op2 = CI->getArgOperand(1);
Value *Op3 = CI->getArgOperand(2);
unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue();
Value *Rep;
IRBuilder<> Builder(C);
Builder.SetInsertPoint(CI->getParent(), CI);
// If palignr is shifting the pair of input vectors less than 17 bytes,
// emit a shuffle instruction.
if (shiftVal <= 16) {
const Type *IntTy = Type::getInt32Ty(C);
const Type *EltTy = Type::getInt8Ty(C);
const Type *VecTy = VectorType::get(EltTy, 16);
Op2 = Builder.CreateBitCast(Op2, VecTy);
Op1 = Builder.CreateBitCast(Op1, VecTy);
llvm::SmallVector<llvm::Constant*, 16> Indices;
for (unsigned i = 0; i != 16; ++i)
Indices.push_back(ConstantInt::get(IntTy, shiftVal + i));
Value *SV = ConstantVector::get(Indices.begin(), Indices.size());
Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr");
Rep = Builder.CreateBitCast(Rep, F->getReturnType());
}
// If palignr is shifting the pair of input vectors more than 16 but less
// than 32 bytes, emit a logical right shift of the destination.
else if (shiftVal < 32) {
const Type *EltTy = Type::getInt64Ty(C);
const Type *VecTy = VectorType::get(EltTy, 2);
const Type *IntTy = Type::getInt32Ty(C);
Op1 = Builder.CreateBitCast(Op1, VecTy, "cast");
Op2 = ConstantInt::get(IntTy, (shiftVal-16) * 8);
// create i32 constant
Function *I =
Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse2_psrl_dq);
Rep = Builder.CreateCall2(I, Op1, Op2, "palignr");
}
// If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
else {
Rep = Constant::getNullValue(F->getReturnType());
}
// Replace any uses with our new instruction.
if (!CI->use_empty())
CI->replaceAllUsesWith(Rep);
// Remove upgraded instruction.
CI->eraseFromParent();
} else {
llvm_unreachable("Unknown function for CallInst upgrade.");
}
return;
}
switch (NewFn->getIntrinsicID()) {
default: llvm_unreachable("Unknown function for CallInst upgrade.");
case Intrinsic::x86_mmx_psll_d:
case Intrinsic::x86_mmx_psll_q:
case Intrinsic::x86_mmx_psll_w:
case Intrinsic::x86_mmx_psra_d:
case Intrinsic::x86_mmx_psra_w:
case Intrinsic::x86_mmx_psrl_d:
case Intrinsic::x86_mmx_psrl_q:
case Intrinsic::x86_mmx_psrl_w: {
Value *Operands[2];
Operands[0] = CI->getArgOperand(0);
// Cast the second parameter to the correct type.
BitCastInst *BC = new BitCastInst(CI->getArgOperand(1),
NewFn->getFunctionType()->getParamType(1),
"upgraded.", CI);
Operands[1] = BC;
// Construct a new CallInst
CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+2,
"upgraded."+CI->getName(), CI);
NewCI->setTailCall(CI->isTailCall());
NewCI->setCallingConv(CI->getCallingConv());
// Handle any uses of the old CallInst.
if (!CI->use_empty())
// Replace all uses of the old call with the new cast which has the
// correct type.
CI->replaceAllUsesWith(NewCI);
// Clean up the old call now that it has been completely upgraded.
CI->eraseFromParent();
break;
}
case Intrinsic::ctlz:
case Intrinsic::ctpop:
case Intrinsic::cttz: {
// Build a small vector of the original arguments.
SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end());
// Construct a new CallInst
CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(),
"upgraded."+CI->getName(), CI);
NewCI->setTailCall(CI->isTailCall());
NewCI->setCallingConv(CI->getCallingConv());
// Handle any uses of the old CallInst.
if (!CI->use_empty()) {
// Check for sign extend parameter attributes on the return values.
bool SrcSExt = NewFn->getAttributes().paramHasAttr(0, Attribute::SExt);
bool DestSExt = F->getAttributes().paramHasAttr(0, Attribute::SExt);
// Construct an appropriate cast from the new return type to the old.
CastInst *RetCast = CastInst::Create(
CastInst::getCastOpcode(NewCI, SrcSExt,
F->getReturnType(),
DestSExt),
NewCI, F->getReturnType(),
NewCI->getName(), CI);
NewCI->moveBefore(RetCast);
// Replace all uses of the old call with the new cast which has the
// correct type.
CI->replaceAllUsesWith(RetCast);
}
// Clean up the old call now that it has been completely upgraded.
CI->eraseFromParent();
}
break;
case Intrinsic::eh_selector:
case Intrinsic::eh_typeid_for: {
// Only the return type changed.
SmallVector<Value*, 8> Operands(CS.arg_begin(), CS.arg_end());
CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(),
"upgraded." + CI->getName(), CI);
NewCI->setTailCall(CI->isTailCall());
NewCI->setCallingConv(CI->getCallingConv());
// Handle any uses of the old CallInst.
if (!CI->use_empty()) {
// Construct an appropriate cast from the new return type to the old.
CastInst *RetCast =
CastInst::Create(CastInst::getCastOpcode(NewCI, true,
F->getReturnType(), true),
NewCI, F->getReturnType(), NewCI->getName(), CI);
CI->replaceAllUsesWith(RetCast);
}
CI->eraseFromParent();
}
break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset: {
// Add isVolatile
const llvm::Type *I1Ty = llvm::Type::getInt1Ty(CI->getContext());
Value *Operands[5] = { CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), CI->getArgOperand(3),
llvm::ConstantInt::get(I1Ty, 0) };
CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+5,
CI->getName(), CI);
NewCI->setTailCall(CI->isTailCall());
NewCI->setCallingConv(CI->getCallingConv());
// Handle any uses of the old CallInst.
if (!CI->use_empty())
// Replace all uses of the old call with the new cast which has the
// correct type.
CI->replaceAllUsesWith(NewCI);
// Clean up the old call now that it has been completely upgraded.
CI->eraseFromParent();
break;
}
}
}
// This tests each Function to determine if it needs upgrading. When we find
// one we are interested in, we then upgrade all calls to reflect the new
// function.
void llvm::UpgradeCallsToIntrinsic(Function* F) {
assert(F && "Illegal attempt to upgrade a non-existent intrinsic.");
// Upgrade the function and check if it is a totaly new function.
Function* NewFn;
if (UpgradeIntrinsicFunction(F, NewFn)) {
if (NewFn != F) {
// Replace all uses to the old function with the new one if necessary.
for (Value::use_iterator UI = F->use_begin(), UE = F->use_end();
UI != UE; ) {
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, NewFn);
}
// Remove old function, no longer used, from the module.
F->eraseFromParent();
}
}
}
/// This function strips all debug info intrinsics, except for llvm.dbg.declare.
/// If an llvm.dbg.declare intrinsic is invalid, then this function simply
/// strips that use.
void llvm::CheckDebugInfoIntrinsics(Module *M) {
if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
while (!FuncStart->use_empty()) {
CallInst *CI = cast<CallInst>(FuncStart->use_back());
CI->eraseFromParent();
}
FuncStart->eraseFromParent();
}
if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
while (!StopPoint->use_empty()) {
CallInst *CI = cast<CallInst>(StopPoint->use_back());
CI->eraseFromParent();
}
StopPoint->eraseFromParent();
}
if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
while (!RegionStart->use_empty()) {
CallInst *CI = cast<CallInst>(RegionStart->use_back());
CI->eraseFromParent();
}
RegionStart->eraseFromParent();
}
if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
while (!RegionEnd->use_empty()) {
CallInst *CI = cast<CallInst>(RegionEnd->use_back());
CI->eraseFromParent();
}
RegionEnd->eraseFromParent();
}
if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
if (!Declare->use_empty()) {
DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
if (!isa<MDNode>(DDI->getArgOperand(0)) ||
!isa<MDNode>(DDI->getArgOperand(1))) {
while (!Declare->use_empty()) {
CallInst *CI = cast<CallInst>(Declare->use_back());
CI->eraseFromParent();
}
Declare->eraseFromParent();
}
}
}
}