2009-10-10 09:04:27 +00:00
|
|
|
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the SSAUpdater class.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
|
|
#include "llvm/Instructions.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
|
|
#include "llvm/Support/CFG.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/ValueHandle.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
typedef DenseMap<BasicBlock*, TrackingVH<Value> > AvailableValsTy;
|
|
|
|
typedef std::vector<std::pair<BasicBlock*, TrackingVH<Value> > >
|
|
|
|
IncomingPredInfoTy;
|
|
|
|
|
|
|
|
static AvailableValsTy &getAvailableVals(void *AV) {
|
|
|
|
return *static_cast<AvailableValsTy*>(AV);
|
|
|
|
}
|
|
|
|
|
|
|
|
static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
|
|
|
|
return *static_cast<IncomingPredInfoTy*>(IPI);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-10-10 23:15:24 +00:00
|
|
|
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
|
|
|
|
: AV(0), PrototypeValue(0), IPI(0), InsertedPHIs(NewPHI) {}
|
2009-10-10 09:04:27 +00:00
|
|
|
|
|
|
|
SSAUpdater::~SSAUpdater() {
|
|
|
|
delete &getAvailableVals(AV);
|
|
|
|
delete &getIncomingPredInfo(IPI);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Initialize - Reset this object to get ready for a new set of SSA
|
|
|
|
/// updates. ProtoValue is the value used to name PHI nodes.
|
|
|
|
void SSAUpdater::Initialize(Value *ProtoValue) {
|
|
|
|
if (AV == 0)
|
|
|
|
AV = new AvailableValsTy();
|
|
|
|
else
|
|
|
|
getAvailableVals(AV).clear();
|
|
|
|
|
|
|
|
if (IPI == 0)
|
|
|
|
IPI = new IncomingPredInfoTy();
|
|
|
|
else
|
|
|
|
getIncomingPredInfo(IPI).clear();
|
|
|
|
PrototypeValue = ProtoValue;
|
|
|
|
}
|
|
|
|
|
2009-10-10 23:41:48 +00:00
|
|
|
/// HasValueForBlock - Return true if the SSAUpdater already has a value for
|
|
|
|
/// the specified block.
|
|
|
|
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
|
|
|
|
return getAvailableVals(AV).count(BB);
|
|
|
|
}
|
|
|
|
|
2009-10-10 09:04:27 +00:00
|
|
|
/// AddAvailableValue - Indicate that a rewritten value is available in the
|
|
|
|
/// specified block with the specified value.
|
|
|
|
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
|
|
|
|
assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
|
|
|
|
assert(PrototypeValue->getType() == V->getType() &&
|
|
|
|
"All rewritten values must have the same type");
|
|
|
|
getAvailableVals(AV)[BB] = V;
|
|
|
|
}
|
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
|
|
|
|
/// live at the end of the specified block.
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
|
2009-10-10 09:04:27 +00:00
|
|
|
assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *Res = GetValueAtEndOfBlockInternal(BB);
|
2009-10-10 09:04:27 +00:00
|
|
|
assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
|
|
|
|
return Res;
|
|
|
|
}
|
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
|
|
|
|
/// is live in the middle of the specified block.
|
|
|
|
///
|
|
|
|
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
|
|
|
|
/// important case: if there is a definition of the rewritten value after the
|
|
|
|
/// 'use' in BB. Consider code like this:
|
|
|
|
///
|
|
|
|
/// X1 = ...
|
|
|
|
/// SomeBB:
|
|
|
|
/// use(X)
|
|
|
|
/// X2 = ...
|
|
|
|
/// br Cond, SomeBB, OutBB
|
|
|
|
///
|
|
|
|
/// In this case, there are two values (X1 and X2) added to the AvailableVals
|
|
|
|
/// set by the client of the rewriter, and those values are both live out of
|
|
|
|
/// their respective blocks. However, the use of X happens in the *middle* of
|
|
|
|
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
|
|
|
|
/// merge the appropriate values, and this value isn't live out of the block.
|
|
|
|
///
|
|
|
|
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
|
|
|
|
// If there is no definition of the renamed variable in this block, just use
|
|
|
|
// GetValueAtEndOfBlock to do our work.
|
|
|
|
if (!getAvailableVals(AV).count(BB))
|
|
|
|
return GetValueAtEndOfBlock(BB);
|
|
|
|
|
|
|
|
// Otherwise, we have the hard case. Get the live-in values for each
|
|
|
|
// predecessor.
|
|
|
|
SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
|
|
|
|
Value *SingularValue = 0;
|
|
|
|
|
|
|
|
// We can get our predecessor info by walking the pred_iterator list, but it
|
|
|
|
// is relatively slow. If we already have PHI nodes in this block, walk one
|
|
|
|
// of them to get the predecessor list instead.
|
|
|
|
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
|
|
|
for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
|
|
|
|
Value *PredVal = GetValueAtEndOfBlock(PredBB);
|
|
|
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
|
|
|
|
|
|
|
// Compute SingularValue.
|
|
|
|
if (i == 0)
|
|
|
|
SingularValue = PredVal;
|
|
|
|
else if (PredVal != SingularValue)
|
|
|
|
SingularValue = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
bool isFirstPred = true;
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
|
|
BasicBlock *PredBB = *PI;
|
|
|
|
Value *PredVal = GetValueAtEndOfBlock(PredBB);
|
|
|
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
|
|
|
|
|
|
|
// Compute SingularValue.
|
|
|
|
if (isFirstPred) {
|
|
|
|
SingularValue = PredVal;
|
|
|
|
isFirstPred = false;
|
|
|
|
} else if (PredVal != SingularValue)
|
|
|
|
SingularValue = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are no predecessors, just return undef.
|
|
|
|
if (PredValues.empty())
|
|
|
|
return UndefValue::get(PrototypeValue->getType());
|
|
|
|
|
|
|
|
// Otherwise, if all the merged values are the same, just use it.
|
|
|
|
if (SingularValue != 0)
|
|
|
|
return SingularValue;
|
|
|
|
|
|
|
|
// Otherwise, we do need a PHI: insert one now.
|
|
|
|
PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
|
|
|
|
PrototypeValue->getName(),
|
|
|
|
&BB->front());
|
|
|
|
InsertedPHI->reserveOperandSpace(PredValues.size());
|
|
|
|
|
|
|
|
// Fill in all the predecessors of the PHI.
|
|
|
|
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
|
|
|
|
InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
|
|
|
|
|
|
|
|
// See if the PHI node can be merged to a single value. This can happen in
|
|
|
|
// loop cases when we get a PHI of itself and one other value.
|
|
|
|
if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
|
|
|
|
InsertedPHI->eraseFromParent();
|
|
|
|
return ConstVal;
|
|
|
|
}
|
2009-10-10 23:15:24 +00:00
|
|
|
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
|
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
|
|
|
return InsertedPHI;
|
|
|
|
}
|
|
|
|
|
2009-10-10 09:04:27 +00:00
|
|
|
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
|
|
|
|
/// which use their value in the corresponding predecessor.
|
|
|
|
void SSAUpdater::RewriteUse(Use &U) {
|
|
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
|
|
BasicBlock *UseBB = User->getParent();
|
|
|
|
if (PHINode *UserPN = dyn_cast<PHINode>(User))
|
|
|
|
UseBB = UserPN->getIncomingBlock(U);
|
|
|
|
|
2009-10-10 23:00:11 +00:00
|
|
|
U.set(GetValueInMiddleOfBlock(UseBB));
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-10-10 22:41:58 +00:00
|
|
|
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
|
|
|
/// for the specified BB and if so, return it. If not, construct SSA form by
|
|
|
|
/// walking predecessors inserting PHI nodes as needed until we get to a block
|
|
|
|
/// where the value is available.
|
2009-10-10 09:04:27 +00:00
|
|
|
///
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
|
2009-10-10 09:04:27 +00:00
|
|
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
|
|
|
|
|
|
|
// Query AvailableVals by doing an insertion of null.
|
|
|
|
std::pair<AvailableValsTy::iterator, bool> InsertRes =
|
|
|
|
AvailableVals.insert(std::make_pair(BB, WeakVH()));
|
|
|
|
|
|
|
|
// Handle the case when the insertion fails because we have already seen BB.
|
|
|
|
if (!InsertRes.second) {
|
|
|
|
// If the insertion failed, there are two cases. The first case is that the
|
|
|
|
// value is already available for the specified block. If we get this, just
|
|
|
|
// return the value.
|
|
|
|
if (InsertRes.first->second != 0)
|
|
|
|
return InsertRes.first->second;
|
|
|
|
|
|
|
|
// Otherwise, if the value we find is null, then this is the value is not
|
|
|
|
// known but it is being computed elsewhere in our recursion. This means
|
|
|
|
// that we have a cycle. Handle this by inserting a PHI node and returning
|
|
|
|
// it. When we get back to the first instance of the recursion we will fill
|
|
|
|
// in the PHI node.
|
|
|
|
return InsertRes.first->second =
|
|
|
|
PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(),
|
|
|
|
&BB->front());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, the value isn't in the map and we just inserted a null in the entry
|
|
|
|
// to indicate that we're processing the block. Since we have no idea what
|
|
|
|
// value is in this block, we have to recurse through our predecessors.
|
|
|
|
//
|
|
|
|
// While we're walking our predecessors, we keep track of them in a vector,
|
|
|
|
// then insert a PHI node in the end if we actually need one. We could use a
|
|
|
|
// smallvector here, but that would take a lot of stack space for every level
|
|
|
|
// of the recursion, just use IncomingPredInfo as an explicit stack.
|
|
|
|
IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
|
|
|
|
unsigned FirstPredInfoEntry = IncomingPredInfo.size();
|
|
|
|
|
|
|
|
// As we're walking the predecessors, keep track of whether they are all
|
|
|
|
// producing the same value. If so, this value will capture it, if not, it
|
|
|
|
// will get reset to null. We distinguish the no-predecessor case explicitly
|
|
|
|
// below.
|
|
|
|
TrackingVH<Value> SingularValue;
|
|
|
|
|
|
|
|
// We can get our predecessor info by walking the pred_iterator list, but it
|
|
|
|
// is relatively slow. If we already have PHI nodes in this block, walk one
|
|
|
|
// of them to get the predecessor list instead.
|
|
|
|
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
|
|
|
for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
|
2009-10-10 09:04:27 +00:00
|
|
|
IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
|
|
|
|
|
|
|
|
// Compute SingularValue.
|
|
|
|
if (i == 0)
|
|
|
|
SingularValue = PredVal;
|
|
|
|
else if (PredVal != SingularValue)
|
|
|
|
SingularValue = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
bool isFirstPred = true;
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
|
|
BasicBlock *PredBB = *PI;
|
2009-10-10 22:41:58 +00:00
|
|
|
Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
|
2009-10-10 09:04:27 +00:00
|
|
|
IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
|
|
|
|
|
|
|
|
// Compute SingularValue.
|
|
|
|
if (isFirstPred) {
|
|
|
|
SingularValue = PredVal;
|
|
|
|
isFirstPred = false;
|
|
|
|
} else if (PredVal != SingularValue)
|
|
|
|
SingularValue = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are no predecessors, then we must have found an unreachable block
|
|
|
|
// just return 'undef'. Since there are no predecessors, InsertRes must not
|
|
|
|
// be invalidated.
|
|
|
|
if (IncomingPredInfo.size() == FirstPredInfoEntry)
|
|
|
|
return InsertRes.first->second = UndefValue::get(PrototypeValue->getType());
|
|
|
|
|
|
|
|
/// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
|
|
|
|
/// this block is involved in a loop, a no-entry PHI node will have been
|
|
|
|
/// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
|
|
|
|
/// above.
|
|
|
|
TrackingVH<Value> &InsertedVal = AvailableVals[BB];
|
|
|
|
|
|
|
|
// If all the predecessor values are the same then we don't need to insert a
|
|
|
|
// PHI. This is the simple and common case.
|
|
|
|
if (SingularValue) {
|
|
|
|
// If a PHI node got inserted, replace it with the singlar value and delete
|
|
|
|
// it.
|
|
|
|
if (InsertedVal) {
|
|
|
|
PHINode *OldVal = cast<PHINode>(InsertedVal);
|
|
|
|
// Be careful about dead loops. These RAUW's also update InsertedVal.
|
|
|
|
if (InsertedVal != SingularValue)
|
|
|
|
OldVal->replaceAllUsesWith(SingularValue);
|
|
|
|
else
|
|
|
|
OldVal->replaceAllUsesWith(UndefValue::get(InsertedVal->getType()));
|
|
|
|
OldVal->eraseFromParent();
|
|
|
|
} else {
|
|
|
|
InsertedVal = SingularValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Drop the entries we added in IncomingPredInfo to restore the stack.
|
|
|
|
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
|
|
|
|
IncomingPredInfo.end());
|
|
|
|
return InsertedVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, we do need a PHI: insert one now if we don't already have one.
|
|
|
|
if (InsertedVal == 0)
|
|
|
|
InsertedVal = PHINode::Create(PrototypeValue->getType(),
|
|
|
|
PrototypeValue->getName(), &BB->front());
|
|
|
|
|
|
|
|
PHINode *InsertedPHI = cast<PHINode>(InsertedVal);
|
|
|
|
InsertedPHI->reserveOperandSpace(IncomingPredInfo.size()-FirstPredInfoEntry);
|
|
|
|
|
|
|
|
// Fill in all the predecessors of the PHI.
|
2009-10-10 09:09:20 +00:00
|
|
|
for (IncomingPredInfoTy::iterator I =
|
|
|
|
IncomingPredInfo.begin()+FirstPredInfoEntry,
|
|
|
|
E = IncomingPredInfo.end(); I != E; ++I)
|
2009-10-10 09:04:27 +00:00
|
|
|
InsertedPHI->addIncoming(I->second, I->first);
|
|
|
|
|
|
|
|
// Drop the entries we added in IncomingPredInfo to restore the stack.
|
|
|
|
IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
|
|
|
|
IncomingPredInfo.end());
|
|
|
|
|
|
|
|
// See if the PHI node can be merged to a single value. This can happen in
|
|
|
|
// loop cases when we get a PHI of itself and one other value.
|
|
|
|
if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
|
|
|
|
InsertedPHI->replaceAllUsesWith(ConstVal);
|
|
|
|
InsertedPHI->eraseFromParent();
|
|
|
|
InsertedVal = ConstVal;
|
|
|
|
} else {
|
|
|
|
DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
2009-10-10 23:15:24 +00:00
|
|
|
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
|
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
2009-10-10 09:04:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return InsertedVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
|