llvm-6502/test/CodeGen/R600/shl_add_ptr.ll

287 lines
12 KiB
LLVM
Raw Normal View History

; XFAIL: *
; Enable when patch to perform shl + add constant generic DAG combiner patch is in.
; RUN: llc -march=r600 -mcpu=SI -verify-machineinstrs < %s | FileCheck -check-prefix=SI %s
; Test that doing a shift of a pointer with a constant add will be
; folded into the constant offset addressing mode even if the add has
; multiple uses. This is relevant to accessing 2 separate, adjacent
; LDS globals.
declare i32 @llvm.r600.read.tidig.x() #1
@lds0 = addrspace(3) global [512 x float] zeroinitializer, align 4
@lds1 = addrspace(3) global [512 x float] zeroinitializer, align 4
; Make sure the (add tid, 2) << 2 gets folded into the ds's offset as (tid << 2) + 8
; SI-LABEL: @load_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x8, [M0]
; SI: S_ENDPGM
define void @load_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
%val0 = load float addrspace(3)* %arrayidx0, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
store float %val0, float addrspace(1)* %out
ret void
}
; Make sure once the first use is folded into the addressing mode, the
; remaining add use goes through the normal shl + add constant fold.
; SI-LABEL: @load_shl_base_lds_1
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_READ_B32 [[RESULT:v[0-9]+]], [[PTR]], 0x8, [M0]
; SI: V_ADD_I32_e32 [[ADDUSE:v[0-9]+]], 8, v{{[0-9]+}}
; SI-DAG: BUFFER_STORE_DWORD [[RESULT]]
; SI-DAG: BUFFER_STORE_DWORD [[ADDUSE]]
; SI: S_ENDPGM
define void @load_shl_base_lds_1(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
%val0 = load float addrspace(3)* %arrayidx0, align 4
%shl_add_use = shl i32 %idx.0, 2
store i32 %shl_add_use, i32 addrspace(1)* %add_use, align 4
store float %val0, float addrspace(1)* %out
ret void
}
@maxlds = addrspace(3) global [65536 x i8] zeroinitializer, align 4
; SI-LABEL: @load_shl_base_lds_max_offset
; SI: DS_READ_U8 v{{[0-9]+}}, v{{[0-9]+}}, 0xffff
; SI: S_ENDPGM
define void @load_shl_base_lds_max_offset(i8 addrspace(1)* %out, i8 addrspace(3)* %lds, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 65535
%arrayidx0 = getelementptr inbounds [65536 x i8] addrspace(3)* @maxlds, i32 0, i32 %idx.0
%val0 = load i8 addrspace(3)* %arrayidx0
store i32 %idx.0, i32 addrspace(1)* %add_use
store i8 %val0, i8 addrspace(1)* %out
ret void
}
; The two globals are placed adjacent in memory, so the same base
; pointer can be used with an offset into the second one.
; SI-LABEL: @load_shl_base_lds_2
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI-NEXT: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x100, [M0]
; SI-NEXT: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x900, [M0]
; SI: S_ENDPGM
define void @load_shl_base_lds_2(float addrspace(1)* %out) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 64
%arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
%val0 = load float addrspace(3)* %arrayidx0, align 4
%arrayidx1 = getelementptr inbounds [512 x float] addrspace(3)* @lds1, i32 0, i32 %idx.0
%val1 = load float addrspace(3)* %arrayidx1, align 4
%sum = fadd float %val0, %val1
store float %sum, float addrspace(1)* %out, align 4
ret void
}
; SI-LABEL: @store_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_WRITE_B32 [[PTR]], {{v[0-9]+}}, 0x8 [M0]
; SI: S_ENDPGM
define void @store_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0
store float 1.0, float addrspace(3)* %arrayidx0, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; --------------------------------------------------------------------------------
; Atomics.
@lds2 = addrspace(3) global [512 x i32] zeroinitializer, align 4
; define void @atomic_load_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
; %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
; %idx.0 = add nsw i32 %tid.x, 2
; %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
; %val = load atomic i32 addrspace(3)* %arrayidx0 seq_cst, align 4
; store i32 %val, i32 addrspace(1)* %out, align 4
; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
; ret void
; }
; SI-LABEL: @atomic_cmpxchg_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_CMPST_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_cmpxchg_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use, i32 %swap) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%pair = cmpxchg i32 addrspace(3)* %arrayidx0, i32 7, i32 %swap seq_cst monotonic
%result = extractvalue { i32, i1 } %pair, 0
store i32 %result, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_swap_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_WRXCHG_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_swap_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw xchg i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_add_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_ADD_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_add_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw add i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_sub_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_SUB_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_sub_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw sub i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_and_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_AND_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_and_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw and i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_or_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_OR_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_or_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw or i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_xor_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_XOR_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_xor_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw xor i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; define void @atomic_nand_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
; %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
; %idx.0 = add nsw i32 %tid.x, 2
; %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
; %val = atomicrmw nand i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
; store i32 %val, i32 addrspace(1)* %out, align 4
; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
; ret void
; }
; SI-LABEL: @atomic_min_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_MIN_RTN_I32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_min_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw min i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_max_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_MAX_RTN_I32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_max_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw max i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_umin_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_MIN_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_umin_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw umin i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
; SI-LABEL: @atomic_umax_shl_base_lds_0
; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}}
; SI: DS_MAX_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8
; SI: S_ENDPGM
define void @atomic_umax_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 {
%tid.x = tail call i32 @llvm.r600.read.tidig.x() #1
%idx.0 = add nsw i32 %tid.x, 2
%arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0
%val = atomicrmw umax i32 addrspace(3)* %arrayidx0, i32 3 seq_cst
store i32 %val, i32 addrspace(1)* %out, align 4
store i32 %idx.0, i32 addrspace(1)* %add_use, align 4
ret void
}
attributes #0 = { nounwind }
attributes #1 = { nounwind readnone }