llvm-6502/lib/ExecutionEngine/MCJIT/MCJIT.cpp

533 lines
17 KiB
C++
Raw Normal View History

//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCJIT.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
namespace {
static struct RegisterJIT {
RegisterJIT() { MCJIT::Register(); }
} JITRegistrator;
}
extern "C" void LLVMLinkInMCJIT() {
}
ExecutionEngine *MCJIT::createJIT(Module *M,
std::string *ErrorStr,
RTDyldMemoryManager *MemMgr,
bool GVsWithCode,
TargetMachine *TM) {
// Try to register the program as a source of symbols to resolve against.
//
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
return new MCJIT(M, TM, MemMgr ? MemMgr : new SectionMemoryManager(),
GVsWithCode);
}
MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
bool AllocateGVsWithCode)
: ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(this, MM), Dyld(&MemMgr),
ObjCache(0) {
ModuleStates[m] = ModuleAdded;
setDataLayout(TM->getDataLayout());
}
MCJIT::~MCJIT() {
LoadedObjectMap::iterator it, end = LoadedObjects.end();
for (it = LoadedObjects.begin(); it != end; ++it) {
ObjectImage *Obj = it->second;
if (Obj) {
NotifyFreeingObject(*Obj);
delete Obj;
}
}
LoadedObjects.clear();
delete TM;
}
void MCJIT::addModule(Module *M) {
Modules.push_back(M);
ModuleStates[M] = MCJITModuleState();
}
void MCJIT::setObjectCache(ObjectCache* NewCache) {
ObjCache = NewCache;
}
ObjectBufferStream* MCJIT::emitObject(Module *M) {
// This must be a module which has already been added to this MCJIT instance.
assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end());
assert(ModuleStates.find(M) != ModuleStates.end());
// Get a thread lock to make sure we aren't trying to compile multiple times
MutexGuard locked(lock);
// Re-compilation is not supported
assert(!ModuleStates[M].hasBeenEmitted());
PassManager PM;
PM.add(new DataLayout(*TM->getDataLayout()));
// The RuntimeDyld will take ownership of this shortly
OwningPtr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) {
report_fatal_error("Target does not support MC emission!");
}
// Initialize passes.
PM.run(*M);
// Flush the output buffer to get the generated code into memory
CompiledObject->flush();
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
OwningPtr<MemoryBuffer> MB(CompiledObject->getMemBuffer());
ObjCache->notifyObjectCompiled(M, MB.get());
}
return CompiledObject.take();
}
void MCJIT::generateCodeForModule(Module *M) {
// This must be a module which has already been added to this MCJIT instance.
assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end());
assert(ModuleStates.find(M) != ModuleStates.end());
// Get a thread lock to make sure we aren't trying to load multiple times
MutexGuard locked(lock);
// Re-compilation is not supported
if (ModuleStates[M].hasBeenLoaded())
return;
OwningPtr<ObjectBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
if (0 != ObjCache) {
OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M));
if (0 != PreCompiledObject.get())
ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take()));
}
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
ObjectToLoad.reset(emitObject(M));
assert(ObjectToLoad.get() && "Compilation did not produce an object.");
}
// Load the object into the dynamic linker.
// MCJIT now owns the ObjectImage pointer (via its LoadedObjects map).
ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.take());
LoadedObjects[M] = LoadedObject;
if (!LoadedObject)
report_fatal_error(Dyld.getErrorString());
// FIXME: Make this optional, maybe even move it to a JIT event listener
LoadedObject->registerWithDebugger();
NotifyObjectEmitted(*LoadedObject);
ModuleStates[M] = ModuleLoaded;
}
void MCJIT::finalizeLoadedModules() {
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
// Register EH frame data for any module we own which has been loaded
SmallVector<Module *, 1>::iterator end = Modules.end();
SmallVector<Module *, 1>::iterator it;
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
assert(ModuleStates.find(M) != ModuleStates.end());
if (ModuleStates[M].hasBeenLoaded() &&
!ModuleStates[M].hasBeenFinalized()) {
// FIXME: This should be module specific!
StringRef EHData = Dyld.getEHFrameSection();
if (!EHData.empty())
MemMgr.registerEHFrames(EHData);
ModuleStates[M] = ModuleFinalized;
}
}
// Set page permissions.
MemMgr.finalizeMemory();
}
// FIXME: Rename this.
void MCJIT::finalizeObject() {
// FIXME: This is a temporary hack to get around problems with calling
// finalize multiple times.
bool finalizeNeeded = false;
SmallVector<Module *, 1>::iterator end = Modules.end();
SmallVector<Module *, 1>::iterator it;
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
assert(ModuleStates.find(M) != ModuleStates.end());
if (!ModuleStates[M].hasBeenFinalized())
finalizeNeeded = true;
// I don't really like this, but the C API depends on this behavior.
// I suppose it's OK for a deprecated function.
if (!ModuleStates[M].hasBeenLoaded())
generateCodeForModule(M);
}
if (!finalizeNeeded)
return;
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
// Register EH frame data for any module we own which has been loaded
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
assert(ModuleStates.find(M) != ModuleStates.end());
if (ModuleStates[M].hasBeenLoaded() &&
!ModuleStates[M].hasBeenFinalized()) {
// FIXME: This should be module specific!
StringRef EHData = Dyld.getEHFrameSection();
if (!EHData.empty())
MemMgr.registerEHFrames(EHData);
ModuleStates[M] = ModuleFinalized;
}
}
// Set page permissions.
MemMgr.finalizeMemory();
}
void MCJIT::finalizeModule(Module *M) {
// This must be a module which has already been added to this MCJIT instance.
assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end());
assert(ModuleStates.find(M) != ModuleStates.end());
if (ModuleStates[M].hasBeenFinalized())
return;
// If the module hasn't been compiled, just do that.
if (!ModuleStates[M].hasBeenLoaded())
generateCodeForModule(M);
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
// FIXME: Should this be module specific?
StringRef EHData = Dyld.getEHFrameSection();
if (!EHData.empty())
MemMgr.registerEHFrames(EHData);
// Set page permissions.
MemMgr.finalizeMemory();
ModuleStates[M] = ModuleFinalized;
}
void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
report_fatal_error("not yet implemented");
}
uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) {
// Check with the RuntimeDyld to see if we already have this symbol.
if (Name[0] == '\1')
return Dyld.getSymbolLoadAddress(Name.substr(1));
return Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ Name));
}
Module *MCJIT::findModuleForSymbol(const std::string &Name,
bool CheckFunctionsOnly) {
// If it hasn't already been generated, see if it's in one of our modules.
SmallVector<Module *, 1>::iterator end = Modules.end();
SmallVector<Module *, 1>::iterator it;
for (it = Modules.begin(); it != end; ++it) {
Module *M = *it;
Function *F = M->getFunction(Name);
if (F && !F->empty())
return M;
if (!CheckFunctionsOnly) {
GlobalVariable *G = M->getGlobalVariable(Name);
if (G)
return M;
// FIXME: Do we need to worry about global aliases?
}
}
// We didn't find the symbol in any of our modules.
return NULL;
}
uint64_t MCJIT::getSymbolAddress(const std::string &Name,
bool CheckFunctionsOnly)
{
// First, check to see if we already have this symbol.
uint64_t Addr = getExistingSymbolAddress(Name);
if (Addr)
return Addr;
// If it hasn't already been generated, see if it's in one of our modules.
Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
if (!M)
return 0;
// If this is in one of our modules, generate code for that module.
assert(ModuleStates.find(M) != ModuleStates.end());
// If the module code has already been generated, we won't find the symbol.
if (ModuleStates[M].hasBeenLoaded())
return 0;
// FIXME: We probably need to make sure we aren't in the process of
// loading or finalizing this module.
generateCodeForModule(M);
// Check the RuntimeDyld table again, it should be there now.
return getExistingSymbolAddress(Name);
}
uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
uint64_t Result = getSymbolAddress(Name, false);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
uint64_t Result = getSymbolAddress(Name, true);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
// Deprecated. Use getFunctionAddress instead.
void *MCJIT::getPointerToFunction(Function *F) {
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
addGlobalMapping(F, Addr);
return Addr;
}
// If this function doesn't belong to one of our modules, we're done.
Module *M = F->getParent();
if (std::find(Modules.begin(), Modules.end(), M) == Modules.end())
return NULL;
assert(ModuleStates.find(M) != ModuleStates.end());
// Make sure the relevant module has been compiled and loaded.
if (!ModuleStates[M].hasBeenLoaded())
generateCodeForModule(M);
// FIXME: Should the Dyld be retaining module information? Probably not.
// FIXME: Should we be using the mangler for this? Probably.
//
// This is the accessor for the target address, so make sure to check the
// load address of the symbol, not the local address.
StringRef BaseName = F->getName();
if (BaseName[0] == '\1')
return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1));
return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ BaseName).str());
}
void *MCJIT::recompileAndRelinkFunction(Function *F) {
report_fatal_error("not yet implemented");
}
void MCJIT::freeMachineCodeForFunction(Function *F) {
report_fatal_error("not yet implemented");
}
GenericValue MCJIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
FunctionType *FTy = F->getFunctionType();
Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() == ArgValues.size() ||
(FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
"Wrong number of arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy() &&
FTy->getParamType(2)->isPointerTy()) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy()) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0)->isIntegerTy(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
llvm_unreachable("long double not supported yet");
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
llvm_unreachable("Full-featured argument passing not supported yet!");
}
void *MCJIT::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
if (!isSymbolSearchingDisabled()) {
void *ptr = MemMgr.getPointerToNamedFunction(Name, false);
if (ptr)
return ptr;
}
/// If a LazyFunctionCreator is installed, use it to get/create the function.
if (LazyFunctionCreator)
if (void *RP = LazyFunctionCreator(Name))
return RP;
if (AbortOnFailure) {
report_fatal_error("Program used external function '"+Name+
"' which could not be resolved!");
}
return 0;
}
void MCJIT::RegisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
EventListeners.push_back(L);
}
void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
SmallVector<JITEventListener*, 2>::reverse_iterator I=
std::find(EventListeners.rbegin(), EventListeners.rend(), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
}
}
void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyObjectEmitted(Obj);
}
}
void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyFreeingObject(Obj);
}
}
uint64_t LinkingMemoryManager::getSymbolAddress(const std::string &Name) {
uint64_t Result = ParentEngine->getSymbolAddress(Name, false);
if (Result)
return Result;
return ClientMM->getSymbolAddress(Name);
}