llvm-6502/lib/Transforms/InstCombine/InstCombineCalls.cpp

1283 lines
50 KiB
C++
Raw Normal View History

//===- InstCombineCalls.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitCall and visitInvoke functions.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
/// getPromotedType - Return the specified type promoted as it would be to pass
/// though a va_arg area.
static const Type *getPromotedType(const Type *Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
if (ITy->getBitWidth() < 32)
return Type::getInt32Ty(Ty->getContext());
}
return Ty;
}
/// EnforceKnownAlignment - If the specified pointer points to an object that
/// we control, modify the object's alignment to PrefAlign. This isn't
/// often possible though. If alignment is important, a more reliable approach
/// is to simply align all global variables and allocation instructions to
/// their preferred alignment from the beginning.
///
static unsigned EnforceKnownAlignment(Value *V,
unsigned Align, unsigned PrefAlign) {
User *U = dyn_cast<User>(V);
if (!U) return Align;
switch (Operator::getOpcode(U)) {
default: break;
case Instruction::BitCast:
return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
case Instruction::GetElementPtr: {
// If all indexes are zero, it is just the alignment of the base pointer.
bool AllZeroOperands = true;
for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
if (!isa<Constant>(*i) ||
!cast<Constant>(*i)->isNullValue()) {
AllZeroOperands = false;
break;
}
if (AllZeroOperands) {
// Treat this like a bitcast.
return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
}
return Align;
}
case Instruction::Alloca: {
AllocaInst *AI = cast<AllocaInst>(V);
// If there is a requested alignment and if this is an alloca, round up.
if (AI->getAlignment() >= PrefAlign)
return AI->getAlignment();
AI->setAlignment(PrefAlign);
return PrefAlign;
}
}
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// If there is a large requested alignment and we can, bump up the alignment
// of the global.
if (GV->isDeclaration()) return Align;
if (GV->getAlignment() >= PrefAlign)
return GV->getAlignment();
// We can only increase the alignment of the global if it has no alignment
// specified or if it is not assigned a section. If it is assigned a
// section, the global could be densely packed with other objects in the
// section, increasing the alignment could cause padding issues.
if (!GV->hasSection() || GV->getAlignment() == 0)
GV->setAlignment(PrefAlign);
return GV->getAlignment();
}
return Align;
}
/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
unsigned PrefAlign) {
unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
sizeof(PrefAlign) * CHAR_BIT;
APInt Mask = APInt::getAllOnesValue(BitWidth);
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
unsigned TrailZ = KnownZero.countTrailingOnes();
unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
if (PrefAlign > Align)
Align = EnforceKnownAlignment(V, Align, PrefAlign);
// We don't need to make any adjustment.
return Align;
}
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
unsigned MinAlign = std::min(DstAlign, SrcAlign);
unsigned CopyAlign = MI->getAlignment();
if (CopyAlign < MinAlign) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
MinAlign, false));
return MI;
}
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
// load/store.
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
if (MemOpLength == 0) return 0;
// Source and destination pointer types are always "i8*" for intrinsic. See
// if the size is something we can handle with a single primitive load/store.
// A single load+store correctly handles overlapping memory in the memmove
// case.
unsigned Size = MemOpLength->getZExtValue();
if (Size == 0) return MI; // Delete this mem transfer.
if (Size > 8 || (Size&(Size-1)))
return 0; // If not 1/2/4/8 bytes, exit.
// Use an integer load+store unless we can find something better.
unsigned SrcAddrSp =
cast<PointerType>(MI->getOperand(2)->getType())->getAddressSpace();
unsigned DstAddrSp =
cast<PointerType>(MI->getOperand(1)->getType())->getAddressSpace();
const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
// Memcpy forces the use of i8* for the source and destination. That means
// that if you're using memcpy to move one double around, you'll get a cast
// from double* to i8*. We'd much rather use a double load+store rather than
// an i64 load+store, here because this improves the odds that the source or
// dest address will be promotable. See if we can find a better type than the
// integer datatype.
Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
if (StrippedDest != MI->getOperand(1)) {
const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
->getElementType();
if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
// down through these levels if so.
while (!SrcETy->isSingleValueType()) {
if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
if (STy->getNumElements() == 1)
SrcETy = STy->getElementType(0);
else
break;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
if (ATy->getNumElements() == 1)
SrcETy = ATy->getElementType();
else
break;
} else
break;
}
if (SrcETy->isSingleValueType()) {
NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
}
}
}
// If the memcpy/memmove provides better alignment info than we can
// infer, use it.
SrcAlign = std::max(SrcAlign, CopyAlign);
DstAlign = std::max(DstAlign, CopyAlign);
Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewSrcPtrTy);
Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewDstPtrTy);
Instruction *L = new LoadInst(Src, "tmp", MI->isVolatile(), SrcAlign);
InsertNewInstBefore(L, *MI);
InsertNewInstBefore(new StoreInst(L, Dest, MI->isVolatile(), DstAlign),
*MI);
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
return MI;
}
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
if (MI->getAlignment() < Alignment) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Alignment, false));
return MI;
}
// Extract the length and alignment and fill if they are constant.
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
return 0;
uint64_t Len = LenC->getZExtValue();
Alignment = MI->getAlignment();
// If the length is zero, this is a no-op
if (Len == 0) return MI; // memset(d,c,0,a) -> noop
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
// Alignment 0 is identity for alignment 1 for memset, but not store.
if (Alignment == 0) Alignment = 1;
// Extract the fill value and store.
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
Dest, false, Alignment), *MI);
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(LenC->getType()));
return MI;
}
return 0;
}
/// visitCallInst - CallInst simplification. This mostly only handles folding
/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
/// the heavy lifting.
///
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (isFreeCall(&CI))
return visitFree(CI);
// If the caller function is nounwind, mark the call as nounwind, even if the
// callee isn't.
if (CI.getParent()->getParent()->doesNotThrow() &&
!CI.doesNotThrow()) {
CI.setDoesNotThrow();
return &CI;
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
if (!II) return visitCallSite(&CI);
// Intrinsics cannot occur in an invoke, so handle them here instead of in
// visitCallSite.
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
bool Changed = false;
// memmove/cpy/set of zero bytes is a noop.
if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
if (CI->getZExtValue() == 1) {
// Replace the instruction with just byte operations. We would
// transform other cases to loads/stores, but we don't know if
// alignment is sufficient.
}
}
// If we have a memmove and the source operation is a constant global,
// then the source and dest pointers can't alias, so we can change this
// into a call to memcpy.
if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
if (GVSrc->isConstant()) {
Module *M = CI.getParent()->getParent()->getParent();
Intrinsic::ID MemCpyID = Intrinsic::memcpy;
const Type *Tys[3] = { CI.getOperand(1)->getType(),
CI.getOperand(2)->getType(),
CI.getOperand(3)->getType() };
CI.setCalledFunction(
Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
Changed = true;
}
}
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
// memmove(x,x,size) -> noop.
if (MTI->getSource() == MTI->getDest())
return EraseInstFromFunction(CI);
}
// If we can determine a pointer alignment that is bigger than currently
// set, update the alignment.
if (isa<MemTransferInst>(MI)) {
if (Instruction *I = SimplifyMemTransfer(MI))
return I;
} else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
if (Instruction *I = SimplifyMemSet(MSI))
return I;
}
if (Changed) return II;
}
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::objectsize: {
// We need target data for just about everything so depend on it.
if (!TD) break;
const Type *ReturnTy = CI.getType();
bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
// Get to the real allocated thing and offset as fast as possible.
Value *Op1 = II->getOperand(1)->stripPointerCasts();
// If we've stripped down to a single global variable that we
// can know the size of then just return that.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
if (GV->hasDefinitiveInitializer()) {
Constant *C = GV->getInitializer();
uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
} else {
// Can't determine size of the GV.
Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
return ReplaceInstUsesWith(CI, RetVal);
}
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
// Get alloca size.
if (AI->getAllocatedType()->isSized()) {
uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
if (AI->isArrayAllocation()) {
const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
if (!C) break;
AllocaSize *= C->getZExtValue();
}
return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
}
} else if (CallInst *MI = extractMallocCall(Op1)) {
const Type* MallocType = getMallocAllocatedType(MI);
// Get alloca size.
if (MallocType && MallocType->isSized()) {
if (Value *NElems = getMallocArraySize(MI, TD, true)) {
if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy,
(NElements->getZExtValue() * TD->getTypeAllocSize(MallocType))));
}
}
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
// Only handle constant GEPs here.
if (CE->getOpcode() != Instruction::GetElementPtr) break;
GEPOperator *GEP = cast<GEPOperator>(CE);
// Make sure we're not a constant offset from an external
// global.
Value *Operand = GEP->getPointerOperand();
Operand = Operand->stripPointerCasts();
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
if (!GV->hasDefinitiveInitializer()) break;
// Get what we're pointing to and its size.
const PointerType *BaseType =
cast<PointerType>(Operand->getType());
uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
// Get the current byte offset into the thing. Use the original
// operand in case we're looking through a bitcast.
SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
const PointerType *OffsetType =
cast<PointerType>(GEP->getPointerOperand()->getType());
uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
if (Size < Offset) {
// Out of bound reference? Negative index normalized to large
// index? Just return "I don't know".
Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
return ReplaceInstUsesWith(CI, RetVal);
}
Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
return ReplaceInstUsesWith(CI, RetVal);
}
// Do not return "I don't know" here. Later optimization passes could
// make it possible to evaluate objectsize to a constant.
break;
}
case Intrinsic::bswap:
// bswap(bswap(x)) -> x
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
if (Operand->getIntrinsicID() == Intrinsic::bswap)
return ReplaceInstUsesWith(CI, Operand->getOperand(1));
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
if (Operand->getIntrinsicID() == Intrinsic::bswap) {
unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
TI->getType()->getPrimitiveSizeInBits();
Value *CV = ConstantInt::get(Operand->getType(), C);
Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
return new TruncInst(V, TI->getType());
}
}
break;
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
// powi(x, 0) -> 1.0
if (Power->isZero())
return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
// powi(x, 1) -> x
if (Power->isOne())
return ReplaceInstUsesWith(CI, II->getOperand(1));
// powi(x, -1) -> 1/x
if (Power->isAllOnesValue())
return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
II->getOperand(1));
}
break;
case Intrinsic::cttz: {
// If all bits below the first known one are known zero,
// this value is constant.
const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
KnownZero, KnownOne);
unsigned TrailingZeros = KnownOne.countTrailingZeros();
APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, TrailingZeros)));
}
break;
case Intrinsic::ctlz: {
// If all bits above the first known one are known zero,
// this value is constant.
const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
KnownZero, KnownOne);
unsigned LeadingZeros = KnownOne.countLeadingZeros();
APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, LeadingZeros)));
}
break;
case Intrinsic::uadd_with_overflow: {
Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
uint32_t BitWidth = IT->getBitWidth();
APInt Mask = APInt::getSignBit(BitWidth);
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
if (LHSKnownNegative || LHSKnownPositive) {
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
if (LHSKnownNegative && RHSKnownNegative) {
// The sign bit is set in both cases: this MUST overflow.
// Create a simple add instruction, and insert it into the struct.
Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
Worklist.Add(Add);
Constant *V[] = {
UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
};
Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
return InsertValueInst::Create(Struct, Add, 0);
}
if (LHSKnownPositive && RHSKnownPositive) {
// The sign bit is clear in both cases: this CANNOT overflow.
// Create a simple add instruction, and insert it into the struct.
Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
Worklist.Add(Add);
Constant *V[] = {
UndefValue::get(LHS->getType()),
ConstantInt::getFalse(II->getContext())
};
Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
return InsertValueInst::Create(Struct, Add, 0);
}
}
}
// FALL THROUGH uadd into sadd
case Intrinsic::sadd_with_overflow:
// Canonicalize constants into the RHS.
if (isa<Constant>(II->getOperand(1)) &&
!isa<Constant>(II->getOperand(2))) {
Value *LHS = II->getOperand(1);
II->setOperand(1, II->getOperand(2));
II->setOperand(2, LHS);
return II;
}
// X + undef -> undef
if (isa<UndefValue>(II->getOperand(2)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
// X + 0 -> {X, false}
if (RHS->isZero()) {
Constant *V[] = {
UndefValue::get(II->getCalledValue()->getType()),
ConstantInt::getFalse(II->getContext())
};
Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
return InsertValueInst::Create(Struct, II->getOperand(1), 0);
}
}
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
// undef - X -> undef
// X - undef -> undef
if (isa<UndefValue>(II->getOperand(1)) ||
isa<UndefValue>(II->getOperand(2)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
// X - 0 -> {X, false}
if (RHS->isZero()) {
Constant *V[] = {
UndefValue::get(II->getOperand(1)->getType()),
ConstantInt::getFalse(II->getContext())
};
Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
return InsertValueInst::Create(Struct, II->getOperand(1), 0);
}
}
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
// Canonicalize constants into the RHS.
if (isa<Constant>(II->getOperand(1)) &&
!isa<Constant>(II->getOperand(2))) {
Value *LHS = II->getOperand(1);
II->setOperand(1, II->getOperand(2));
II->setOperand(2, LHS);
return II;
}
// X * undef -> undef
if (isa<UndefValue>(II->getOperand(2)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
// X*0 -> {0, false}
if (RHSI->isZero())
return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
// X * 1 -> {X, false}
if (RHSI->equalsInt(1)) {
Constant *V[] = {
UndefValue::get(II->getOperand(1)->getType()),
ConstantInt::getFalse(II->getContext())
};
Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
return InsertValueInst::Create(Struct, II->getOperand(1), 0);
}
}
break;
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
case Intrinsic::x86_sse_loadu_ps:
case Intrinsic::x86_sse2_loadu_pd:
case Intrinsic::x86_sse2_loadu_dq:
// Turn PPC lvx -> load if the pointer is known aligned.
// Turn X86 loadups -> load if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
PointerType::getUnqual(II->getType()));
return new LoadInst(Ptr);
}
break;
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
const Type *OpPtrTy =
PointerType::getUnqual(II->getOperand(1)->getType());
Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
return new StoreInst(II->getOperand(1), Ptr);
}
break;
case Intrinsic::x86_sse_storeu_ps:
case Intrinsic::x86_sse2_storeu_pd:
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
const Type *OpPtrTy =
PointerType::getUnqual(II->getOperand(2)->getType());
Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
return new StoreInst(II->getOperand(2), Ptr);
}
break;
case Intrinsic::x86_sse_cvttss2si: {
// These intrinsics only demands the 0th element of its input vector. If
// we can simplify the input based on that, do so now.
unsigned VWidth =
cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
APInt DemandedElts(VWidth, 1);
APInt UndefElts(VWidth, 0);
if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
UndefElts)) {
II->setOperand(1, V);
return II;
}
break;
}
case Intrinsic::ppc_altivec_vperm:
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
// Check that all of the elements are integer constants or undefs.
bool AllEltsOk = true;
for (unsigned i = 0; i != 16; ++i) {
if (!isa<ConstantInt>(Mask->getOperand(i)) &&
!isa<UndefValue>(Mask->getOperand(i))) {
AllEltsOk = false;
break;
}
}
if (AllEltsOk) {
// Cast the input vectors to byte vectors.
Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
Value *Result = UndefValue::get(Op0->getType());
// Only extract each element once.
Value *ExtractedElts[32];
memset(ExtractedElts, 0, sizeof(ExtractedElts));
for (unsigned i = 0; i != 16; ++i) {
if (isa<UndefValue>(Mask->getOperand(i)))
continue;
unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
Idx &= 31; // Match the hardware behavior.
if (ExtractedElts[Idx] == 0) {
ExtractedElts[Idx] =
Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
ConstantInt::get(Type::getInt32Ty(II->getContext()),
Idx&15, false), "tmp");
}
// Insert this value into the result vector.
Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
ConstantInt::get(Type::getInt32Ty(II->getContext()),
i, false), "tmp");
}
return CastInst::Create(Instruction::BitCast, Result, CI.getType());
}
}
break;
case Intrinsic::stackrestore: {
// If the save is right next to the restore, remove the restore. This can
// happen when variable allocas are DCE'd.
if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
if (SS->getIntrinsicID() == Intrinsic::stacksave) {
BasicBlock::iterator BI = SS;
if (&*++BI == II)
return EraseInstFromFunction(CI);
}
}
// Scan down this block to see if there is another stack restore in the
// same block without an intervening call/alloca.
BasicBlock::iterator BI = II;
TerminatorInst *TI = II->getParent()->getTerminator();
bool CannotRemove = false;
for (++BI; &*BI != TI; ++BI) {
if (isa<AllocaInst>(BI) || isMalloc(BI)) {
CannotRemove = true;
break;
}
if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
// If there is a stackrestore below this one, remove this one.
if (II->getIntrinsicID() == Intrinsic::stackrestore)
return EraseInstFromFunction(CI);
// Otherwise, ignore the intrinsic.
} else {
// If we found a non-intrinsic call, we can't remove the stack
// restore.
CannotRemove = true;
break;
}
}
}
// If the stack restore is in a return/unwind block and if there are no
// allocas or calls between the restore and the return, nuke the restore.
if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
return EraseInstFromFunction(CI);
break;
}
}
return visitCallSite(II);
}
// InvokeInst simplification
//
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
return visitCallSite(&II);
}
/// isSafeToEliminateVarargsCast - If this cast does not affect the value
/// passed through the varargs area, we can eliminate the use of the cast.
static bool isSafeToEliminateVarargsCast(const CallSite CS,
const CastInst * const CI,
const TargetData * const TD,
const int ix) {
if (!CI->isLosslessCast())
return false;
// The size of ByVal arguments is derived from the type, so we
// can't change to a type with a different size. If the size were
// passed explicitly we could avoid this check.
if (!CS.paramHasAttr(ix, Attribute::ByVal))
return true;
const Type* SrcTy =
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
return false;
if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
return false;
return true;
}
namespace {
class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
InstCombiner *IC;
protected:
void replaceCall(Value *With) {
NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
}
bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(SizeCIOp))) {
if (SizeCI->isAllOnesValue())
return true;
if (isString)
return SizeCI->getZExtValue() >=
GetStringLength(CI->getOperand(SizeArgOp));
if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getOperand(SizeArgOp)))
return SizeCI->getZExtValue() >= Arg->getZExtValue();
}
return false;
}
public:
InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
Instruction *NewInstruction;
};
} // end anonymous namespace
// Try to fold some different type of calls here.
// Currently we're only working with the checking functions, memcpy_chk,
// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
// strcat_chk and strncat_chk.
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
if (CI->getCalledFunction() == 0) return 0;
InstCombineFortifiedLibCalls Simplifier(this);
Simplifier.fold(CI, TD);
return Simplifier.NewInstruction;
}
// visitCallSite - Improvements for call and invoke instructions.
//
Instruction *InstCombiner::visitCallSite(CallSite CS) {
bool Changed = false;
// If the callee is a constexpr cast of a function, attempt to move the cast
// to the arguments of the call/invoke.
if (transformConstExprCastCall(CS)) return 0;
Value *Callee = CS.getCalledValue();
if (Function *CalleeF = dyn_cast<Function>(Callee))
// If the call and callee calling conventions don't match, this call must
// be unreachable, as the call is undefined.
if (CalleeF->getCallingConv() != CS.getCallingConv() &&
// Only do this for calls to a function with a body. A prototype may
// not actually end up matching the implementation's calling conv for a
// variety of reasons (e.g. it may be written in assembly).
!CalleeF->isDeclaration()) {
Instruction *OldCall = CS.getInstruction();
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
OldCall);
// If OldCall dues not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!OldCall->getType()->isVoidTy())
OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
if (isa<CallInst>(OldCall))
return EraseInstFromFunction(*OldCall);
// We cannot remove an invoke, because it would change the CFG, just
// change the callee to a null pointer.
cast<InvokeInst>(OldCall)->setCalledFunction(
Constant::getNullValue(CalleeF->getType()));
return 0;
}
if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
// This instruction is not reachable, just remove it. We insert a store to
// undef so that we know that this code is not reachable, despite the fact
// that we can't modify the CFG here.
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
CS.getInstruction());
// If CS dues not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!CS.getInstruction()->getType()->isVoidTy())
CS.getInstruction()->
replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
// Don't break the CFG, insert a dummy cond branch.
BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
ConstantInt::getTrue(Callee->getContext()), II);
}
return EraseInstFromFunction(*CS.getInstruction());
}
if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
if (In->getIntrinsicID() == Intrinsic::init_trampoline)
return transformCallThroughTrampoline(CS);
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
if (FTy->isVarArg()) {
int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
// See if we can optimize any arguments passed through the varargs area of
// the call.
for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
E = CS.arg_end(); I != E; ++I, ++ix) {
CastInst *CI = dyn_cast<CastInst>(*I);
if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
*I = CI->getOperand(0);
Changed = true;
}
}
}
if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
// Inline asm calls cannot throw - mark them 'nounwind'.
CS.setDoesNotThrow();
Changed = true;
}
// Try to optimize the call if possible, we require TargetData for most of
// this. None of these calls are seen as possibly dead so go ahead and
// delete the instruction now.
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
Instruction *I = tryOptimizeCall(CI, TD);
// If we changed something return the result, etc. Otherwise let
// the fallthrough check.
if (I) return EraseInstFromFunction(*I);
}
return Changed ? CS.getInstruction() : 0;
}
// transformConstExprCastCall - If the callee is a constexpr cast of a function,
// attempt to move the cast to the arguments of the call/invoke.
//
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
if (CE->getOpcode() != Instruction::BitCast ||
!isa<Function>(CE->getOperand(0)))
return false;
Function *Callee = cast<Function>(CE->getOperand(0));
Instruction *Caller = CS.getInstruction();
const AttrListPtr &CallerPAL = CS.getAttributes();
// Okay, this is a cast from a function to a different type. Unless doing so
// would cause a type conversion of one of our arguments, change this call to
// be a direct call with arguments casted to the appropriate types.
//
const FunctionType *FT = Callee->getFunctionType();
const Type *OldRetTy = Caller->getType();
const Type *NewRetTy = FT->getReturnType();
if (NewRetTy->isStructTy())
return false; // TODO: Handle multiple return values.
// Check to see if we are changing the return type...
if (OldRetTy != NewRetTy) {
if (Callee->isDeclaration() &&
// Conversion is ok if changing from one pointer type to another or from
// a pointer to an integer of the same size.
!((OldRetTy->isPointerTy() || !TD ||
OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
(NewRetTy->isPointerTy() || !TD ||
NewRetTy == TD->getIntPtrType(Caller->getContext()))))
return false; // Cannot transform this return value.
if (!Caller->use_empty() &&
// void -> non-void is handled specially
!NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
return false; // Cannot transform this return value.
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Attributes RAttrs = CallerPAL.getRetAttributes();
if (RAttrs & Attribute::typeIncompatible(NewRetTy))
return false; // Attribute not compatible with transformed value.
}
// If the callsite is an invoke instruction, and the return value is used by
// a PHI node in a successor, we cannot change the return type of the call
// because there is no place to put the cast instruction (without breaking
// the critical edge). Bail out in this case.
if (!Caller->use_empty())
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
UI != E; ++UI)
if (PHINode *PN = dyn_cast<PHINode>(*UI))
if (PN->getParent() == II->getNormalDest() ||
PN->getParent() == II->getUnwindDest())
return false;
}
unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
CallSite::arg_iterator AI = CS.arg_begin();
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
const Type *ParamTy = FT->getParamType(i);
const Type *ActTy = (*AI)->getType();
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
if (CallerPAL.getParamAttributes(i + 1)
& Attribute::typeIncompatible(ParamTy))
return false; // Attribute not compatible with transformed value.
// Converting from one pointer type to another or between a pointer and an
// integer of the same size is safe even if we do not have a body.
bool isConvertible = ActTy == ParamTy ||
(TD && ((ParamTy->isPointerTy() ||
ParamTy == TD->getIntPtrType(Caller->getContext())) &&
(ActTy->isPointerTy() ||
ActTy == TD->getIntPtrType(Caller->getContext()))));
if (Callee->isDeclaration() && !isConvertible) return false;
}
if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
Callee->isDeclaration())
return false; // Do not delete arguments unless we have a function body.
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
!CallerPAL.isEmpty())
// In this case we have more arguments than the new function type, but we
// won't be dropping them. Check that these extra arguments have attributes
// that are compatible with being a vararg call argument.
for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
break;
Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
if (PAttrs & Attribute::VarArgsIncompatible)
return false;
}
// Okay, we decided that this is a safe thing to do: go ahead and start
// inserting cast instructions as necessary...
std::vector<Value*> Args;
Args.reserve(NumActualArgs);
SmallVector<AttributeWithIndex, 8> attrVec;
attrVec.reserve(NumCommonArgs);
// Get any return attributes.
Attributes RAttrs = CallerPAL.getRetAttributes();
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
// Add the new return attributes.
if (RAttrs)
attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
const Type *ParamTy = FT->getParamType(i);
if ((*AI)->getType() == ParamTy) {
Args.push_back(*AI);
} else {
Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
false, ParamTy, false);
Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
}
// Add any parameter attributes.
if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
}
// If the function takes more arguments than the call was taking, add them
// now.
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
Args.push_back(Constant::getNullValue(FT->getParamType(i)));
// If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
if (!FT->isVarArg()) {
errs() << "WARNING: While resolving call to function '"
<< Callee->getName() << "' arguments were dropped!\n";
} else {
// Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
const Type *PTy = getPromotedType((*AI)->getType());
if (PTy != (*AI)->getType()) {
// Must promote to pass through va_arg area!
Instruction::CastOps opcode =
CastInst::getCastOpcode(*AI, false, PTy, false);
Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
} else {
Args.push_back(*AI);
}
// Add any parameter attributes.
if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
}
}
}
if (Attributes FnAttrs = CallerPAL.getFnAttributes())
attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
attrVec.end());
Instruction *NC;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(),
Caller->getName(), Caller);
cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
} else {
NC = CallInst::Create(Callee, Args.begin(), Args.end(),
Caller->getName(), Caller);
CallInst *CI = cast<CallInst>(Caller);
if (CI->isTailCall())
cast<CallInst>(NC)->setTailCall();
cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
cast<CallInst>(NC)->setAttributes(NewCallerPAL);
}
// Insert a cast of the return type as necessary.
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
if (!NV->getType()->isVoidTy()) {
Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
OldRetTy, false);
NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
// If this is an invoke instruction, we should insert it after the first
// non-phi, instruction in the normal successor block.
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
InsertNewInstBefore(NC, *I);
} else {
// Otherwise, it's a call, just insert cast right after the call instr
InsertNewInstBefore(NC, *Caller);
}
Worklist.AddUsersToWorkList(*Caller);
} else {
NV = UndefValue::get(Caller->getType());
}
}
if (!Caller->use_empty())
Caller->replaceAllUsesWith(NV);
EraseInstFromFunction(*Caller);
return true;
}
// transformCallThroughTrampoline - Turn a call to a function created by the
// init_trampoline intrinsic into a direct call to the underlying function.
//
Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
Value *Callee = CS.getCalledValue();
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const AttrListPtr &Attrs = CS.getAttributes();
// If the call already has the 'nest' attribute somewhere then give up -
// otherwise 'nest' would occur twice after splicing in the chain.
if (Attrs.hasAttrSomewhere(Attribute::Nest))
return 0;
IntrinsicInst *Tramp =
cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
const AttrListPtr &NestAttrs = NestF->getAttributes();
if (!NestAttrs.isEmpty()) {
unsigned NestIdx = 1;
const Type *NestTy = 0;
Attributes NestAttr = Attribute::None;
// Look for a parameter marked with the 'nest' attribute.
for (FunctionType::param_iterator I = NestFTy->param_begin(),
E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
// Record the parameter type and any other attributes.
NestTy = *I;
NestAttr = NestAttrs.getParamAttributes(NestIdx);
break;
}
if (NestTy) {
Instruction *Caller = CS.getInstruction();
std::vector<Value*> NewArgs;
NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
SmallVector<AttributeWithIndex, 8> NewAttrs;
NewAttrs.reserve(Attrs.getNumSlots() + 1);
// Insert the nest argument into the call argument list, which may
// mean appending it. Likewise for attributes.
// Add any result attributes.
if (Attributes Attr = Attrs.getRetAttributes())
NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
{
unsigned Idx = 1;
CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
do {
if (Idx == NestIdx) {
// Add the chain argument and attributes.
Value *NestVal = Tramp->getOperand(3);
if (NestVal->getType() != NestTy)
NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
NewArgs.push_back(NestVal);
NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
}
if (I == E)
break;
// Add the original argument and attributes.
NewArgs.push_back(*I);
if (Attributes Attr = Attrs.getParamAttributes(Idx))
NewAttrs.push_back
(AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
++Idx, ++I;
} while (1);
}
// Add any function attributes.
if (Attributes Attr = Attrs.getFnAttributes())
NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
// The trampoline may have been bitcast to a bogus type (FTy).
// Handle this by synthesizing a new function type, equal to FTy
// with the chain parameter inserted.
std::vector<const Type*> NewTypes;
NewTypes.reserve(FTy->getNumParams()+1);
// Insert the chain's type into the list of parameter types, which may
// mean appending it.
{
unsigned Idx = 1;
FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end();
do {
if (Idx == NestIdx)
// Add the chain's type.
NewTypes.push_back(NestTy);
if (I == E)
break;
// Add the original type.
NewTypes.push_back(*I);
++Idx, ++I;
} while (1);
}
// Replace the trampoline call with a direct call. Let the generic
// code sort out any function type mismatches.
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FTy->isVarArg());
Constant *NewCallee =
NestF->getType() == PointerType::getUnqual(NewFTy) ?
NestF : ConstantExpr::getBitCast(NestF,
PointerType::getUnqual(NewFTy));
const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
NewAttrs.end());
Instruction *NewCaller;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
NewCaller = InvokeInst::Create(NewCallee,
II->getNormalDest(), II->getUnwindDest(),
NewArgs.begin(), NewArgs.end(),
Caller->getName(), Caller);
cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
} else {
NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
Caller->getName(), Caller);
if (cast<CallInst>(Caller)->isTailCall())
cast<CallInst>(NewCaller)->setTailCall();
cast<CallInst>(NewCaller)->
setCallingConv(cast<CallInst>(Caller)->getCallingConv());
cast<CallInst>(NewCaller)->setAttributes(NewPAL);
}
if (!Caller->getType()->isVoidTy())
Caller->replaceAllUsesWith(NewCaller);
Caller->eraseFromParent();
Worklist.Remove(Caller);
return 0;
}
}
// Replace the trampoline call with a direct call. Since there is no 'nest'
// parameter, there is no need to adjust the argument list. Let the generic
// code sort out any function type mismatches.
Constant *NewCallee =
NestF->getType() == PTy ? NestF :
ConstantExpr::getBitCast(NestF, PTy);
CS.setCalledFunction(NewCallee);
return CS.getInstruction();
}