llvm-6502/lib/Transforms/Scalar/LoopStrengthReduce.cpp

698 lines
28 KiB
C++
Raw Normal View History

//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs a strength reduction on array references inside loops that
// have as one or more of their components the loop induction variable. This is
// accomplished by creating a new Value to hold the initial value of the array
// access for the first iteration, and then creating a new GEP instruction in
// the loop to increment the value by the appropriate amount.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <set>
using namespace llvm;
namespace {
Statistic<> NumReduced ("loop-reduce", "Number of GEPs strength reduced");
class GEPCache {
public:
GEPCache() : CachedPHINode(0), Map() {}
GEPCache *get(Value *v) {
std::map<Value *, GEPCache>::iterator I = Map.find(v);
if (I == Map.end())
I = Map.insert(std::pair<Value *, GEPCache>(v, GEPCache())).first;
return &I->second;
}
PHINode *CachedPHINode;
std::map<Value *, GEPCache> Map;
};
/// IVStrideUse - Keep track of one use of a strided induction variable, where
/// the stride is stored externally. The Offset member keeps track of the
/// offset from the IV, User is the actual user of the operand, and 'Operand'
/// is the operand # of the User that is the use.
struct IVStrideUse {
SCEVHandle Offset;
Instruction *User;
Value *OperandValToReplace;
IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
: Offset(Offs), User(U), OperandValToReplace(O) {}
};
/// IVUsersOfOneStride - This structure keeps track of all instructions that
/// have an operand that is based on the trip count multiplied by some stride.
/// The stride for all of these users is common and kept external to this
/// structure.
struct IVUsersOfOneStride {
/// Users - Keep track of all of the users of this stride as well as the
/// initial value and the operand that uses the IV.
std::vector<IVStrideUse> Users;
void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
Users.push_back(IVStrideUse(Offset, User, Operand));
}
};
class LoopStrengthReduce : public FunctionPass {
LoopInfo *LI;
DominatorSet *DS;
ScalarEvolution *SE;
const TargetData *TD;
const Type *UIntPtrTy;
bool Changed;
/// MaxTargetAMSize - This is the maximum power-of-two scale value that the
/// target can handle for free with its addressing modes.
unsigned MaxTargetAMSize;
/// IVUsesByStride - Keep track of all uses of induction variables that we
/// are interested in. The key of the map is the stride of the access.
std::map<Value*, IVUsersOfOneStride> IVUsesByStride;
/// CastedBasePointers - As we need to lower getelementptr instructions, we
/// cast the pointer input to uintptr_t. This keeps track of the casted
/// values for the pointers we have processed so far.
std::map<Value*, Value*> CastedBasePointers;
/// DeadInsts - Keep track of instructions we may have made dead, so that
/// we can remove them after we are done working.
std::set<Instruction*> DeadInsts;
public:
LoopStrengthReduce(unsigned MTAMS = 1)
: MaxTargetAMSize(MTAMS) {
}
virtual bool runOnFunction(Function &) {
LI = &getAnalysis<LoopInfo>();
DS = &getAnalysis<DominatorSet>();
SE = &getAnalysis<ScalarEvolution>();
TD = &getAnalysis<TargetData>();
UIntPtrTy = TD->getIntPtrType();
Changed = false;
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
runOnLoop(*I);
return Changed;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorSet>();
AU.addRequired<TargetData>();
AU.addRequired<ScalarEvolution>();
}
private:
void runOnLoop(Loop *L);
bool AddUsersIfInteresting(Instruction *I, Loop *L);
void AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP, Instruction *I,
Loop *L);
void StrengthReduceStridedIVUsers(Value *Stride, IVUsersOfOneStride &Uses,
Loop *L, bool isOnlyStride);
void strengthReduceGEP(GetElementPtrInst *GEPI, Loop *L,
GEPCache* GEPCache,
Instruction *InsertBefore,
std::set<Instruction*> &DeadInsts);
void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
};
RegisterOpt<LoopStrengthReduce> X("loop-reduce",
"Strength Reduce GEP Uses of Ind. Vars");
}
FunctionPass *llvm::createLoopStrengthReducePass(unsigned MaxTargetAMSize) {
return new LoopStrengthReduce(MaxTargetAMSize);
}
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void LoopStrengthReduce::
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
while (!Insts.empty()) {
Instruction *I = *Insts.begin();
Insts.erase(Insts.begin());
if (isInstructionTriviallyDead(I)) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
Insts.insert(U);
SE->deleteInstructionFromRecords(I);
I->eraseFromParent();
Changed = true;
}
}
}
/// CanReduceSCEV - Return true if we can strength reduce this scalar evolution
/// in the specified loop.
static bool CanReduceSCEV(const SCEVHandle &SH, Loop *L) {
SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SH);
if (!AddRec || AddRec->getLoop() != L) return false;
// FIXME: Generalize to non-affine IV's.
if (!AddRec->isAffine()) return false;
// FIXME: generalize to IV's with more complex strides (must emit stride
// expression outside of loop!)
if (isa<SCEVConstant>(AddRec->getOperand(1)))
return true;
// We handle steps by unsigned values, because we know we won't have to insert
// a cast for them.
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(AddRec->getOperand(1)))
if (SU->getValue()->getType()->isUnsigned())
return true;
// Otherwise, no, we can't handle it yet.
return false;
}
/// GetAdjustedIndex - Adjust the specified GEP sequential type index to match
/// the size of the pointer type, and scale it by the type size.
static SCEVHandle GetAdjustedIndex(const SCEVHandle &Idx, uint64_t TySize,
const Type *UIntPtrTy) {
SCEVHandle Result = Idx;
if (Result->getType()->getUnsignedVersion() != UIntPtrTy) {
if (UIntPtrTy->getPrimitiveSize() < Result->getType()->getPrimitiveSize())
Result = SCEVTruncateExpr::get(Result, UIntPtrTy);
else
Result = SCEVZeroExtendExpr::get(Result, UIntPtrTy);
}
// This index is scaled by the type size being indexed.
if (TySize != 1)
Result = SCEVMulExpr::get(Result,
SCEVConstant::get(ConstantUInt::get(UIntPtrTy,
TySize)));
return Result;
}
/// AnalyzeGetElementPtrUsers - Analyze all of the users of the specified
/// getelementptr instruction, adding them to the IVUsesByStride table. Note
/// that we only want to analyze a getelementptr instruction once, and it can
/// have multiple operands that are uses of the indvar (e.g. A[i][i]). Because
/// of this, we only process a GEP instruction if its first recurrent operand is
/// "op", otherwise we will either have already processed it or we will sometime
/// later.
void LoopStrengthReduce::AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP,
Instruction *Op, Loop *L) {
// Analyze all of the subscripts of this getelementptr instruction, looking
// for uses that are determined by the trip count of L. First, skip all
// operands the are not dependent on the IV.
// Build up the base expression. Insert an LLVM cast of the pointer to
// uintptr_t first.
Value *BasePtr;
if (Constant *CB = dyn_cast<Constant>(GEP->getOperand(0)))
BasePtr = ConstantExpr::getCast(CB, UIntPtrTy);
else {
Value *&BP = CastedBasePointers[GEP->getOperand(0)];
if (BP == 0) {
BasicBlock::iterator InsertPt;
if (isa<Argument>(GEP->getOperand(0))) {
InsertPt = GEP->getParent()->getParent()->begin()->begin();
} else {
InsertPt = cast<Instruction>(GEP->getOperand(0));
if (InvokeInst *II = dyn_cast<InvokeInst>(GEP->getOperand(0)))
InsertPt = II->getNormalDest()->begin();
else
++InsertPt;
}
// Do not insert casts into the middle of PHI node blocks.
while (isa<PHINode>(InsertPt)) ++InsertPt;
BP = new CastInst(GEP->getOperand(0), UIntPtrTy,
GEP->getOperand(0)->getName(), InsertPt);
}
BasePtr = BP;
}
SCEVHandle Base = SCEVUnknown::get(BasePtr);
gep_type_iterator GTI = gep_type_begin(GEP);
unsigned i = 1;
for (; GEP->getOperand(i) != Op; ++i, ++GTI) {
// If this is a use of a recurrence that we can analyze, and it comes before
// Op does in the GEP operand list, we will handle this when we process this
// operand.
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = TD->getStructLayout(STy);
unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
uint64_t Offset = SL->MemberOffsets[Idx];
Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset,
UIntPtrTy));
} else {
SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i));
// If this operand is reducible, and it's not the one we are looking at
// currently, do not process the GEP at this time.
if (CanReduceSCEV(Idx, L))
return;
Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx,
TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy));
}
}
// Get the index, convert it to intptr_t.
SCEVHandle GEPIndexExpr =
GetAdjustedIndex(SE->getSCEV(Op), TD->getTypeSize(GTI.getIndexedType()),
UIntPtrTy);
// Process all remaining subscripts in the GEP instruction.
for (++i, ++GTI; i != GEP->getNumOperands(); ++i, ++GTI)
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = TD->getStructLayout(STy);
unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
uint64_t Offset = SL->MemberOffsets[Idx];
Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset,
UIntPtrTy));
} else {
SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i));
if (CanReduceSCEV(Idx, L)) { // Another IV subscript
GEPIndexExpr = SCEVAddExpr::get(GEPIndexExpr,
GetAdjustedIndex(Idx, TD->getTypeSize(GTI.getIndexedType()),
UIntPtrTy));
assert(CanReduceSCEV(GEPIndexExpr, L) &&
"Cannot reduce the sum of two reducible SCEV's??");
} else {
Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx,
TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy));
}
}
assert(CanReduceSCEV(GEPIndexExpr, L) && "Non reducible idx??");
// FIXME: If the base is not loop invariant, we currently cannot emit this.
if (!Base->isLoopInvariant(L)) {
DEBUG(std::cerr << "IGNORING GEP due to non-invaiant base: "
<< *Base << "\n");
return;
}
Base = SCEVAddExpr::get(Base, cast<SCEVAddRecExpr>(GEPIndexExpr)->getStart());
SCEVHandle Stride = cast<SCEVAddRecExpr>(GEPIndexExpr)->getOperand(1);
DEBUG(std::cerr << "GEP BASE : " << *Base << "\n");
DEBUG(std::cerr << "GEP STRIDE: " << *Stride << "\n");
Value *Step = 0; // Step of ISE.
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride))
/// Always get the step value as an unsigned value.
Step = ConstantExpr::getCast(SC->getValue(),
SC->getValue()->getType()->getUnsignedVersion());
else
Step = cast<SCEVUnknown>(Stride)->getValue();
assert(Step->getType()->isUnsigned() && "Bad step value!");
// Now that we know the base and stride contributed by the GEP instruction,
// process all users.
for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
// Do not infinitely recurse on PHI nodes.
if (isa<PHINode>(User) && User->getParent() == L->getHeader())
continue;
// If this is an instruction defined in a nested loop, or outside this loop,
// don't mess with it.
if (LI->getLoopFor(User->getParent()) != L)
continue;
DEBUG(std::cerr << "FOUND USER: " << *User
<< " OF STRIDE: " << *Step << " BASE = " << *Base << "\n");
// Okay, we found a user that we cannot reduce. Analyze the instruction
// and decide what to do with it.
IVUsesByStride[Step].addUser(Base, User, GEP);
}
}
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L) {
if (I->getType() == Type::VoidTy) return false;
SCEVHandle ISE = SE->getSCEV(I);
if (!CanReduceSCEV(ISE, L)) return false;
SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(ISE);
SCEVHandle Start = AR->getStart();
// Get the step value, canonicalizing to an unsigned integer type so that
// lookups in the map will match.
Value *Step = 0; // Step of ISE.
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getOperand(1)))
/// Always get the step value as an unsigned value.
Step = ConstantExpr::getCast(SC->getValue(),
SC->getValue()->getType()->getUnsignedVersion());
else
Step = cast<SCEVUnknown>(AR->getOperand(1))->getValue();
assert(Step->getType()->isUnsigned() && "Bad step value!");
std::set<GetElementPtrInst*> AnalyzedGEPs;
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){
Instruction *User = cast<Instruction>(*UI);
// Do not infinitely recurse on PHI nodes.
if (isa<PHINode>(User) && User->getParent() == L->getHeader())
continue;
// If this is an instruction defined in a nested loop, or outside this loop,
// don't mess with it.
if (LI->getLoopFor(User->getParent()) != L)
continue;
// Next, see if this user is analyzable itself!
if (!AddUsersIfInteresting(User, L)) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
// If this is a getelementptr instruction, figure out what linear
// expression of induction variable is actually being used.
//
if (AnalyzedGEPs.insert(GEP).second) // Not already analyzed?
AnalyzeGetElementPtrUsers(GEP, I, L);
} else {
DEBUG(std::cerr << "FOUND USER: " << *User
<< " OF SCEV: " << *ISE << "\n");
// Okay, we found a user that we cannot reduce. Analyze the instruction
// and decide what to do with it.
IVUsesByStride[Step].addUser(Start, User, I);
}
}
}
return true;
}
namespace {
/// BasedUser - For a particular base value, keep information about how we've
/// partitioned the expression so far.
struct BasedUser {
/// Inst - The instruction using the induction variable.
Instruction *Inst;
/// OperandValToReplace - The operand value of Inst to replace with the
/// EmittedBase.
Value *OperandValToReplace;
/// Imm - The immediate value that should be added to the base immediately
/// before Inst, because it will be folded into the imm field of the
/// instruction.
SCEVHandle Imm;
/// EmittedBase - The actual value* to use for the base value of this
/// operation. This is null if we should just use zero so far.
Value *EmittedBase;
BasedUser(Instruction *I, Value *Op, const SCEVHandle &IMM)
: Inst(I), OperandValToReplace(Op), Imm(IMM), EmittedBase(0) {}
// No need to compare these.
bool operator<(const BasedUser &BU) const { return 0; }
void dump() const;
};
}
void BasedUser::dump() const {
std::cerr << " Imm=" << *Imm;
if (EmittedBase)
std::cerr << " EB=" << *EmittedBase;
std::cerr << " Inst: " << *Inst;
}
/// isTargetConstant - Return true if the following can be referenced by the
/// immediate field of a target instruction.
static bool isTargetConstant(const SCEVHandle &V) {
// FIXME: Look at the target to decide if &GV is a legal constant immediate.
if (isa<SCEVConstant>(V)) return true;
return false; // ENABLE this for x86
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
if (CE->getOpcode() == Instruction::Cast)
if (isa<GlobalValue>(CE->getOperand(0)))
// FIXME: should check to see that the dest is uintptr_t!
return true;
return false;
}
/// GetImmediateValues - Look at Val, and pull out any additions of constants
/// that can fit into the immediate field of instructions in the target.
static SCEVHandle GetImmediateValues(SCEVHandle Val, bool isAddress) {
if (!isAddress)
return SCEVUnknown::getIntegerSCEV(0, Val->getType());
if (isTargetConstant(Val))
return Val;
SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val);
if (SAE) {
unsigned i = 0;
for (; i != SAE->getNumOperands(); ++i)
if (isTargetConstant(SAE->getOperand(i))) {
SCEVHandle ImmVal = SAE->getOperand(i);
// If there are any other immediates that we can handle here, pull them
// out too.
for (++i; i != SAE->getNumOperands(); ++i)
if (isTargetConstant(SAE->getOperand(i)))
ImmVal = SCEVAddExpr::get(ImmVal, SAE->getOperand(i));
return ImmVal;
}
}
return SCEVUnknown::getIntegerSCEV(0, Val->getType());
}
/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
/// stride of IV. All of the users may have different starting values, and this
/// may not be the only stride (we know it is if isOnlyStride is true).
void LoopStrengthReduce::StrengthReduceStridedIVUsers(Value *Stride,
IVUsersOfOneStride &Uses,
Loop *L,
bool isOnlyStride) {
// Transform our list of users and offsets to a bit more complex table. In
// this new vector, the first entry for each element is the base of the
// strided access, and the second is the BasedUser object for the use. We
// progressively move information from the first to the second entry, until we
// eventually emit the object.
std::vector<std::pair<SCEVHandle, BasedUser> > UsersToProcess;
UsersToProcess.reserve(Uses.Users.size());
SCEVHandle ZeroBase = SCEVUnknown::getIntegerSCEV(0,
Uses.Users[0].Offset->getType());
for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i)
UsersToProcess.push_back(std::make_pair(Uses.Users[i].Offset,
BasedUser(Uses.Users[i].User,
Uses.Users[i].OperandValToReplace,
ZeroBase)));
// First pass, figure out what we can represent in the immediate fields of
// instructions. If we can represent anything there, move it to the imm
// fields of the BasedUsers.
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
bool isAddress = isa<LoadInst>(UsersToProcess[i].second.Inst) ||
isa<StoreInst>(UsersToProcess[i].second.Inst);
UsersToProcess[i].second.Imm = GetImmediateValues(UsersToProcess[i].first,
isAddress);
UsersToProcess[i].first = SCEV::getMinusSCEV(UsersToProcess[i].first,
UsersToProcess[i].second.Imm);
DEBUG(std::cerr << "BASE: " << *UsersToProcess[i].first);
DEBUG(UsersToProcess[i].second.dump());
}
SCEVExpander Rewriter(*SE, *LI);
BasicBlock *Preheader = L->getLoopPreheader();
Instruction *PreInsertPt = Preheader->getTerminator();
Instruction *PhiInsertBefore = L->getHeader()->begin();
assert(isa<PHINode>(PhiInsertBefore) &&
"How could this loop have IV's without any phis?");
PHINode *SomeLoopPHI = cast<PHINode>(PhiInsertBefore);
assert(SomeLoopPHI->getNumIncomingValues() == 2 &&
"This loop isn't canonicalized right");
BasicBlock *LatchBlock =
SomeLoopPHI->getIncomingBlock(SomeLoopPHI->getIncomingBlock(0) == Preheader);
// FIXME: This loop needs increasing levels of intelligence.
// STAGE 0: just emit everything as its own base.
// STAGE 1: factor out common vars from bases, and try and push resulting
// constants into Imm field. <-- We are here
// STAGE 2: factor out large constants to try and make more constants
// acceptable for target loads and stores.
// Sort by the base value, so that all IVs with identical bases are next to
// each other.
std::sort(UsersToProcess.begin(), UsersToProcess.end());
while (!UsersToProcess.empty()) {
SCEVHandle Base = UsersToProcess.front().first;
// Create a new Phi for this base, and stick it in the loop header.
const Type *ReplacedTy = Base->getType();
PHINode *NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
// Emit the initial base value into the loop preheader, and add it to the
// Phi node.
Value *BaseV = Rewriter.expandCodeFor(Base, PreInsertPt, ReplacedTy);
NewPHI->addIncoming(BaseV, Preheader);
// Emit the increment of the base value before the terminator of the loop
// latch block, and add it to the Phi node.
SCEVHandle Inc = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
SCEVUnknown::get(Stride));
Value *IncV = Rewriter.expandCodeFor(Inc, LatchBlock->getTerminator(),
ReplacedTy);
IncV->setName(NewPHI->getName()+".inc");
NewPHI->addIncoming(IncV, LatchBlock);
// Emit the code to add the immediate offset to the Phi value, just before
// the instructions that we identified as using this stride and base.
while (!UsersToProcess.empty() && UsersToProcess.front().first == Base) {
BasedUser &User = UsersToProcess.front().second;
// Clear the SCEVExpander's expression map so that we are guaranteed
// to have the code emitted where we expect it.
Rewriter.clear();
SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
User.Imm);
Value *Replaced = UsersToProcess.front().second.OperandValToReplace;
Value *newVal = Rewriter.expandCodeFor(NewValSCEV, User.Inst,
Replaced->getType());
// Replace the use of the operand Value with the new Phi we just created.
DEBUG(std::cerr << "REPLACING: " << *Replaced << "IN: " <<
*User.Inst << "WITH: "<< *newVal << '\n');
User.Inst->replaceUsesOfWith(Replaced, newVal);
// Mark old value we replaced as possibly dead, so that it is elminated
// if we just replaced the last use of that value.
DeadInsts.insert(cast<Instruction>(Replaced));
UsersToProcess.erase(UsersToProcess.begin());
++NumReduced;
}
// TODO: Next, find out which base index is the most common, pull it out.
}
// IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
// different starting values, into different PHIs.
// BEFORE writing this, it's probably useful to handle GEP's.
// NOTE: pull all constants together, for REG+IMM addressing, include &GV in
// 'IMM' if the target supports it.
}
void LoopStrengthReduce::runOnLoop(Loop *L) {
// First step, transform all loops nesting inside of this loop.
for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
runOnLoop(*I);
// Next, find all uses of induction variables in this loop, and catagorize
// them by stride. Start by finding all of the PHI nodes in the header for
// this loop. If they are induction variables, inspect their uses.
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
AddUsersIfInteresting(I, L);
// If we have nothing to do, return.
//if (IVUsesByStride.empty()) return;
// FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
// doing computation in byte values, promote to 32-bit values if safe.
// FIXME: Attempt to reuse values across multiple IV's. In particular, we
// could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
// codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. Need
// to be careful that IV's are all the same type. Only works for intptr_t
// indvars.
// If we only have one stride, we can more aggressively eliminate some things.
bool HasOneStride = IVUsesByStride.size() == 1;
for (std::map<Value*, IVUsersOfOneStride>::iterator SI
= IVUsesByStride.begin(), E = IVUsesByStride.end(); SI != E; ++SI)
StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
// Clean up after ourselves
if (!DeadInsts.empty()) {
DeleteTriviallyDeadInstructions(DeadInsts);
BasicBlock::iterator I = L->getHeader()->begin();
PHINode *PN;
while ((PN = dyn_cast<PHINode>(I))) {
++I; // Preincrement iterator to avoid invalidating it when deleting PN.
// At this point, we know that we have killed one or more GEP instructions.
// It is worth checking to see if the cann indvar is also dead, so that we
// can remove it as well. The requirements for the cann indvar to be
// considered dead are:
// 1. the cann indvar has one use
// 2. the use is an add instruction
// 3. the add has one use
// 4. the add is used by the cann indvar
// If all four cases above are true, then we can remove both the add and
// the cann indvar.
// FIXME: this needs to eliminate an induction variable even if it's being
// compared against some value to decide loop termination.
if (PN->hasOneUse()) {
BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
if (BO && BO->hasOneUse()) {
if (PN == *(BO->use_begin())) {
DeadInsts.insert(BO);
// Break the cycle, then delete the PHI.
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
SE->deleteInstructionFromRecords(PN);
PN->eraseFromParent();
}
}
}
}
DeleteTriviallyDeadInstructions(DeadInsts);
}
IVUsesByStride.clear();
CastedBasePointers.clear();
return;
}