llvm-6502/lib/Transforms/Scalar/SCCP.cpp

1692 lines
64 KiB
C++
Raw Normal View History

//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
// * Assumes values are constant unless proven otherwise
// * Assumes BasicBlocks are dead unless proven otherwise
// * Proves values to be constant, and replaces them with constants
// * Proves conditional branches to be unconditional
//
// Notice that:
// * This pass has a habit of making definitions be dead. It is a good idea
// to to run a DCE pass sometime after running this pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sccp"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP");
STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
namespace {
/// LatticeVal class - This class represents the different lattice values that
/// an LLVM value may occupy. It is a simple class with value semantics.
///
class VISIBILITY_HIDDEN LatticeVal {
enum {
/// undefined - This LLVM Value has no known value yet.
undefined,
/// constant - This LLVM Value has a specific constant value.
constant,
/// forcedconstant - This LLVM Value was thought to be undef until
/// ResolvedUndefsIn. This is treated just like 'constant', but if merged
/// with another (different) constant, it goes to overdefined, instead of
/// asserting.
forcedconstant,
/// overdefined - This instruction is not known to be constant, and we know
/// it has a value.
overdefined
} LatticeValue; // The current lattice position
Constant *ConstantVal; // If Constant value, the current value
public:
inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
// markOverdefined - Return true if this is a new status to be in...
inline bool markOverdefined() {
if (LatticeValue != overdefined) {
LatticeValue = overdefined;
return true;
}
return false;
}
// markConstant - Return true if this is a new status for us.
inline bool markConstant(Constant *V) {
if (LatticeValue != constant) {
if (LatticeValue == undefined) {
LatticeValue = constant;
assert(V && "Marking constant with NULL");
ConstantVal = V;
} else {
assert(LatticeValue == forcedconstant &&
"Cannot move from overdefined to constant!");
// Stay at forcedconstant if the constant is the same.
if (V == ConstantVal) return false;
// Otherwise, we go to overdefined. Assumptions made based on the
// forced value are possibly wrong. Assuming this is another constant
// could expose a contradiction.
LatticeValue = overdefined;
}
return true;
} else {
assert(ConstantVal == V && "Marking constant with different value");
}
return false;
}
inline void markForcedConstant(Constant *V) {
assert(LatticeValue == undefined && "Can't force a defined value!");
LatticeValue = forcedconstant;
ConstantVal = V;
}
inline bool isUndefined() const { return LatticeValue == undefined; }
inline bool isConstant() const {
return LatticeValue == constant || LatticeValue == forcedconstant;
}
inline bool isOverdefined() const { return LatticeValue == overdefined; }
inline Constant *getConstant() const {
assert(isConstant() && "Cannot get the constant of a non-constant!");
return ConstantVal;
}
};
//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable
std::map<Value*, LatticeVal> ValueState; // The state each value is in.
/// GlobalValue - If we are tracking any values for the contents of a global
/// variable, we keep a mapping from the constant accessor to the element of
/// the global, to the currently known value. If the value becomes
/// overdefined, it's entry is simply removed from this map.
DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
/// TrackedFunctionRetVals - If we are tracking arguments into and the return
/// value out of a function, it will have an entry in this map, indicating
/// what the known return value for the function is.
DenseMap<Function*, LatticeVal> TrackedFunctionRetVals;
// The reason for two worklists is that overdefined is the lowest state
// on the lattice, and moving things to overdefined as fast as possible
// makes SCCP converge much faster.
// By having a separate worklist, we accomplish this because everything
// possibly overdefined will become overdefined at the soonest possible
// point.
std::vector<Value*> OverdefinedInstWorkList;
std::vector<Value*> InstWorkList;
std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list
/// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
/// overdefined, despite the fact that the PHI node is overdefined.
std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
/// KnownFeasibleEdges - Entries in this set are edges which have already had
/// PHI nodes retriggered.
typedef std::pair<BasicBlock*,BasicBlock*> Edge;
std::set<Edge> KnownFeasibleEdges;
public:
/// MarkBlockExecutable - This method can be used by clients to mark all of
/// the blocks that are known to be intrinsically live in the processed unit.
void MarkBlockExecutable(BasicBlock *BB) {
DOUT << "Marking Block Executable: " << BB->getName() << "\n";
BBExecutable.insert(BB); // Basic block is executable!
BBWorkList.push_back(BB); // Add the block to the work list!
}
/// TrackValueOfGlobalVariable - Clients can use this method to
/// inform the SCCPSolver that it should track loads and stores to the
/// specified global variable if it can. This is only legal to call if
/// performing Interprocedural SCCP.
void TrackValueOfGlobalVariable(GlobalVariable *GV) {
const Type *ElTy = GV->getType()->getElementType();
if (ElTy->isFirstClassType()) {
LatticeVal &IV = TrackedGlobals[GV];
if (!isa<UndefValue>(GV->getInitializer()))
IV.markConstant(GV->getInitializer());
}
}
/// AddTrackedFunction - If the SCCP solver is supposed to track calls into
/// and out of the specified function (which cannot have its address taken),
/// this method must be called.
void AddTrackedFunction(Function *F) {
assert(F->hasInternalLinkage() && "Can only track internal functions!");
// Add an entry, F -> undef.
TrackedFunctionRetVals[F];
}
/// Solve - Solve for constants and executable blocks.
///
void Solve();
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption. After we solve dataflow, this
/// method should be use to handle this. If this returns true, the solver
/// should be rerun.
bool ResolvedUndefsIn(Function &F);
/// getExecutableBlocks - Once we have solved for constants, return the set of
/// blocks that is known to be executable.
SmallSet<BasicBlock*, 16> &getExecutableBlocks() {
return BBExecutable;
}
/// getValueMapping - Once we have solved for constants, return the mapping of
/// LLVM values to LatticeVals.
std::map<Value*, LatticeVal> &getValueMapping() {
return ValueState;
}
/// getTrackedFunctionRetVals - Get the inferred return value map.
///
const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() {
return TrackedFunctionRetVals;
}
/// getTrackedGlobals - Get and return the set of inferred initializers for
/// global variables.
const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
return TrackedGlobals;
}
inline void markOverdefined(Value *V) {
markOverdefined(ValueState[V], V);
}
private:
// markConstant - Make a value be marked as "constant". If the value
// is not already a constant, add it to the instruction work list so that
// the users of the instruction are updated later.
//
inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
if (IV.markConstant(C)) {
DOUT << "markConstant: " << *C << ": " << *V;
InstWorkList.push_back(V);
}
}
inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
IV.markForcedConstant(C);
DOUT << "markForcedConstant: " << *C << ": " << *V;
InstWorkList.push_back(V);
}
inline void markConstant(Value *V, Constant *C) {
markConstant(ValueState[V], V, C);
}
// markOverdefined - Make a value be marked as "overdefined". If the
// value is not already overdefined, add it to the overdefined instruction
// work list so that the users of the instruction are updated later.
inline void markOverdefined(LatticeVal &IV, Value *V) {
if (IV.markOverdefined()) {
DEBUG(DOUT << "markOverdefined: ";
if (Function *F = dyn_cast<Function>(V))
DOUT << "Function '" << F->getName() << "'\n";
else
DOUT << *V);
// Only instructions go on the work list
OverdefinedInstWorkList.push_back(V);
}
}
inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
if (IV.isOverdefined() || MergeWithV.isUndefined())
return; // Noop.
if (MergeWithV.isOverdefined())
markOverdefined(IV, V);
else if (IV.isUndefined())
markConstant(IV, V, MergeWithV.getConstant());
else if (IV.getConstant() != MergeWithV.getConstant())
markOverdefined(IV, V);
}
inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
return mergeInValue(ValueState[V], V, MergeWithV);
}
// getValueState - Return the LatticeVal object that corresponds to the value.
// This function is necessary because not all values should start out in the
// underdefined state... Argument's should be overdefined, and
// constants should be marked as constants. If a value is not known to be an
// Instruction object, then use this accessor to get its value from the map.
//
inline LatticeVal &getValueState(Value *V) {
std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
if (I != ValueState.end()) return I->second; // Common case, in the map
if (Constant *C = dyn_cast<Constant>(V)) {
if (isa<UndefValue>(V)) {
// Nothing to do, remain undefined.
} else {
LatticeVal &LV = ValueState[C];
LV.markConstant(C); // Constants are constant
return LV;
}
}
// All others are underdefined by default...
return ValueState[V];
}
// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
// work list if it is not already executable...
//
void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
return; // This edge is already known to be executable!
if (BBExecutable.count(Dest)) {
DOUT << "Marking Edge Executable: " << Source->getName()
<< " -> " << Dest->getName() << "\n";
// The destination is already executable, but we just made an edge
// feasible that wasn't before. Revisit the PHI nodes in the block
// because they have potentially new operands.
for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
visitPHINode(*cast<PHINode>(I));
} else {
MarkBlockExecutable(Dest);
}
}
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
//
void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible...
//
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
// OperandChangedState - This method is invoked on all of the users of an
// instruction that was just changed state somehow.... Based on this
// information, we need to update the specified user of this instruction.
//
void OperandChangedState(User *U) {
// Only instructions use other variable values!
Instruction &I = cast<Instruction>(*U);
if (BBExecutable.count(I.getParent())) // Inst is executable?
visit(I);
}
private:
friend class InstVisitor<SCCPSolver>;
// visit implementations - Something changed in this instruction... Either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate.
//
void visitPHINode(PHINode &I);
// Terminators
void visitReturnInst(ReturnInst &I);
void visitTerminatorInst(TerminatorInst &TI);
void visitCastInst(CastInst &I);
void visitSelectInst(SelectInst &I);
void visitBinaryOperator(Instruction &I);
void visitCmpInst(CmpInst &I);
void visitExtractElementInst(ExtractElementInst &I);
void visitInsertElementInst(InsertElementInst &I);
void visitShuffleVectorInst(ShuffleVectorInst &I);
// Instructions that cannot be folded away...
void visitStoreInst (Instruction &I);
void visitLoadInst (LoadInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
void visitInvokeInst (InvokeInst &II) {
visitCallSite(CallSite::get(&II));
visitTerminatorInst(II);
}
void visitCallSite (CallSite CS);
void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
void visitVANextInst (Instruction &I) { markOverdefined(&I); }
void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
void visitFreeInst (Instruction &I) { /*returns void*/ }
void visitInstruction(Instruction &I) {
// If a new instruction is added to LLVM that we don't handle...
cerr << "SCCP: Don't know how to handle: " << I;
markOverdefined(&I); // Just in case
}
};
} // end anonymous namespace
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
//
void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
SmallVector<bool, 16> &Succs) {
Succs.resize(TI.getNumSuccessors());
if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
if (BI->isUnconditional()) {
Succs[0] = true;
} else {
LatticeVal &BCValue = getValueState(BI->getCondition());
if (BCValue.isOverdefined() ||
(BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
// Overdefined condition variables, and branches on unfoldable constant
// conditions, mean the branch could go either way.
Succs[0] = Succs[1] = true;
} else if (BCValue.isConstant()) {
// Constant condition variables mean the branch can only go a single way
Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
}
}
} else if (isa<InvokeInst>(&TI)) {
// Invoke instructions successors are always executable.
Succs[0] = Succs[1] = true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
LatticeVal &SCValue = getValueState(SI->getCondition());
if (SCValue.isOverdefined() || // Overdefined condition?
(SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
// All destinations are executable!
Succs.assign(TI.getNumSuccessors(), true);
} else if (SCValue.isConstant()) {
Constant *CPV = SCValue.getConstant();
// Make sure to skip the "default value" which isn't a value
for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
Succs[i] = true;
return;
}
}
// Constant value not equal to any of the branches... must execute
// default branch then...
Succs[0] = true;
}
} else {
assert(0 && "SCCP: Don't know how to handle this terminator!");
}
}
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible...
//
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
assert(BBExecutable.count(To) && "Dest should always be alive!");
// Make sure the source basic block is executable!!
if (!BBExecutable.count(From)) return false;
// Check to make sure this edge itself is actually feasible now...
TerminatorInst *TI = From->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isUnconditional())
return true;
else {
LatticeVal &BCValue = getValueState(BI->getCondition());
if (BCValue.isOverdefined()) {
// Overdefined condition variables mean the branch could go either way.
return true;
} else if (BCValue.isConstant()) {
// Not branching on an evaluatable constant?
if (!isa<ConstantInt>(BCValue.getConstant())) return true;
// Constant condition variables mean the branch can only go a single way
return BI->getSuccessor(BCValue.getConstant() ==
ConstantInt::getFalse()) == To;
}
return false;
}
} else if (isa<InvokeInst>(TI)) {
// Invoke instructions successors are always executable.
return true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
LatticeVal &SCValue = getValueState(SI->getCondition());
if (SCValue.isOverdefined()) { // Overdefined condition?
// All destinations are executable!
return true;
} else if (SCValue.isConstant()) {
Constant *CPV = SCValue.getConstant();
if (!isa<ConstantInt>(CPV))
return true; // not a foldable constant?
// Make sure to skip the "default value" which isn't a value
for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
return SI->getSuccessor(i) == To;
// Constant value not equal to any of the branches... must execute
// default branch then...
return SI->getDefaultDest() == To;
}
return false;
} else {
cerr << "Unknown terminator instruction: " << *TI;
abort();
}
}
// visit Implementations - Something changed in this instruction... Either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate. This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
// from different branches, or if the PHI node merges in an overdefined
// value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
// PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
// destination executable
// 7. If a conditional branch has a value that is overdefined, make all
// successors executable.
//
void SCCPSolver::visitPHINode(PHINode &PN) {
LatticeVal &PNIV = getValueState(&PN);
if (PNIV.isOverdefined()) {
// There may be instructions using this PHI node that are not overdefined
// themselves. If so, make sure that they know that the PHI node operand
// changed.
std::multimap<PHINode*, Instruction*>::iterator I, E;
tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
if (I != E) {
SmallVector<Instruction*, 16> Users;
for (; I != E; ++I) Users.push_back(I->second);
while (!Users.empty()) {
visit(Users.back());
Users.pop_back();
}
}
return; // Quick exit
}
// Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
// and slow us down a lot. Just mark them overdefined.
if (PN.getNumIncomingValues() > 64) {
markOverdefined(PNIV, &PN);
return;
}
// Look at all of the executable operands of the PHI node. If any of them
// are overdefined, the PHI becomes overdefined as well. If they are all
// constant, and they agree with each other, the PHI becomes the identical
// constant. If they are constant and don't agree, the PHI is overdefined.
// If there are no executable operands, the PHI remains undefined.
//
Constant *OperandVal = 0;
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
LatticeVal &IV = getValueState(PN.getIncomingValue(i));
if (IV.isUndefined()) continue; // Doesn't influence PHI node.
if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
if (IV.isOverdefined()) { // PHI node becomes overdefined!
markOverdefined(PNIV, &PN);
return;
}
if (OperandVal == 0) { // Grab the first value...
OperandVal = IV.getConstant();
} else { // Another value is being merged in!
// There is already a reachable operand. If we conflict with it,
// then the PHI node becomes overdefined. If we agree with it, we
// can continue on.
// Check to see if there are two different constants merging...
if (IV.getConstant() != OperandVal) {
// Yes there is. This means the PHI node is not constant.
// You must be overdefined poor PHI.
//
markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined
return; // I'm done analyzing you
}
}
}
}
// If we exited the loop, this means that the PHI node only has constant
// arguments that agree with each other(and OperandVal is the constant) or
// OperandVal is null because there are no defined incoming arguments. If
// this is the case, the PHI remains undefined.
//
if (OperandVal)
markConstant(PNIV, &PN, OperandVal); // Acquire operand value
}
void SCCPSolver::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) return; // Ret void
// If we are tracking the return value of this function, merge it in.
Function *F = I.getParent()->getParent();
if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
DenseMap<Function*, LatticeVal>::iterator TFRVI =
TrackedFunctionRetVals.find(F);
if (TFRVI != TrackedFunctionRetVals.end() &&
!TFRVI->second.isOverdefined()) {
LatticeVal &IV = getValueState(I.getOperand(0));
mergeInValue(TFRVI->second, F, IV);
}
}
}
void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
SmallVector<bool, 16> SuccFeasible;
getFeasibleSuccessors(TI, SuccFeasible);
BasicBlock *BB = TI.getParent();
// Mark all feasible successors executable...
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
if (SuccFeasible[i])
markEdgeExecutable(BB, TI.getSuccessor(i));
}
void SCCPSolver::visitCastInst(CastInst &I) {
Value *V = I.getOperand(0);
LatticeVal &VState = getValueState(V);
if (VState.isOverdefined()) // Inherit overdefinedness of operand
markOverdefined(&I);
else if (VState.isConstant()) // Propagate constant value
markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
VState.getConstant(), I.getType()));
}
void SCCPSolver::visitSelectInst(SelectInst &I) {
LatticeVal &CondValue = getValueState(I.getCondition());
if (CondValue.isUndefined())
return;
if (CondValue.isConstant()) {
if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
: I.getFalseValue()));
return;
}
}
// Otherwise, the condition is overdefined or a constant we can't evaluate.
// See if we can produce something better than overdefined based on the T/F
// value.
LatticeVal &TVal = getValueState(I.getTrueValue());
LatticeVal &FVal = getValueState(I.getFalseValue());
// select ?, C, C -> C.
if (TVal.isConstant() && FVal.isConstant() &&
TVal.getConstant() == FVal.getConstant()) {
markConstant(&I, FVal.getConstant());
return;
}
if (TVal.isUndefined()) { // select ?, undef, X -> X.
mergeInValue(&I, FVal);
} else if (FVal.isUndefined()) { // select ?, X, undef -> X.
mergeInValue(&I, TVal);
} else {
markOverdefined(&I);
}
}
// Handle BinaryOperators and Shift Instructions...
void SCCPSolver::visitBinaryOperator(Instruction &I) {
LatticeVal &IV = ValueState[&I];
if (IV.isOverdefined()) return;
LatticeVal &V1State = getValueState(I.getOperand(0));
LatticeVal &V2State = getValueState(I.getOperand(1));
if (V1State.isOverdefined() || V2State.isOverdefined()) {
// If this is an AND or OR with 0 or -1, it doesn't matter that the other
// operand is overdefined.
if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
LatticeVal *NonOverdefVal = 0;
if (!V1State.isOverdefined()) {
NonOverdefVal = &V1State;
} else if (!V2State.isOverdefined()) {
NonOverdefVal = &V2State;
}
if (NonOverdefVal) {
if (NonOverdefVal->isUndefined()) {
// Could annihilate value.
if (I.getOpcode() == Instruction::And)
markConstant(IV, &I, Constant::getNullValue(I.getType()));
else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
else
markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
return;
} else {
if (I.getOpcode() == Instruction::And) {
if (NonOverdefVal->getConstant()->isNullValue()) {
markConstant(IV, &I, NonOverdefVal->getConstant());
return; // X and 0 = 0
}
} else {
if (ConstantInt *CI =
dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
if (CI->isAllOnesValue()) {
markConstant(IV, &I, NonOverdefVal->getConstant());
return; // X or -1 = -1
}
}
}
}
}
// If both operands are PHI nodes, it is possible that this instruction has
// a constant value, despite the fact that the PHI node doesn't. Check for
// this condition now.
if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
if (PN1->getParent() == PN2->getParent()) {
// Since the two PHI nodes are in the same basic block, they must have
// entries for the same predecessors. Walk the predecessor list, and
// if all of the incoming values are constants, and the result of
// evaluating this expression with all incoming value pairs is the
// same, then this expression is a constant even though the PHI node
// is not a constant!
LatticeVal Result;
for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
BasicBlock *InBlock = PN1->getIncomingBlock(i);
LatticeVal &In2 =
getValueState(PN2->getIncomingValueForBlock(InBlock));
if (In1.isOverdefined() || In2.isOverdefined()) {
Result.markOverdefined();
break; // Cannot fold this operation over the PHI nodes!
} else if (In1.isConstant() && In2.isConstant()) {
Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
In2.getConstant());
if (Result.isUndefined())
Result.markConstant(V);
else if (Result.isConstant() && Result.getConstant() != V) {
Result.markOverdefined();
break;
}
}
}
// If we found a constant value here, then we know the instruction is
// constant despite the fact that the PHI nodes are overdefined.
if (Result.isConstant()) {
markConstant(IV, &I, Result.getConstant());
// Remember that this instruction is virtually using the PHI node
// operands.
UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
return;
} else if (Result.isUndefined()) {
return;
}
// Okay, this really is overdefined now. Since we might have
// speculatively thought that this was not overdefined before, and
// added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
// make sure to clean out any entries that we put there, for
// efficiency.
std::multimap<PHINode*, Instruction*>::iterator It, E;
tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
while (It != E) {
if (It->second == &I) {
UsersOfOverdefinedPHIs.erase(It++);
} else
++It;
}
tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
while (It != E) {
if (It->second == &I) {
UsersOfOverdefinedPHIs.erase(It++);
} else
++It;
}
}
markOverdefined(IV, &I);
} else if (V1State.isConstant() && V2State.isConstant()) {
markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
V2State.getConstant()));
}
}
// Handle ICmpInst instruction...
void SCCPSolver::visitCmpInst(CmpInst &I) {
LatticeVal &IV = ValueState[&I];
if (IV.isOverdefined()) return;
LatticeVal &V1State = getValueState(I.getOperand(0));
LatticeVal &V2State = getValueState(I.getOperand(1));
if (V1State.isOverdefined() || V2State.isOverdefined()) {
// If both operands are PHI nodes, it is possible that this instruction has
// a constant value, despite the fact that the PHI node doesn't. Check for
// this condition now.
if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
if (PN1->getParent() == PN2->getParent()) {
// Since the two PHI nodes are in the same basic block, they must have
// entries for the same predecessors. Walk the predecessor list, and
// if all of the incoming values are constants, and the result of
// evaluating this expression with all incoming value pairs is the
// same, then this expression is a constant even though the PHI node
// is not a constant!
LatticeVal Result;
for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
BasicBlock *InBlock = PN1->getIncomingBlock(i);
LatticeVal &In2 =
getValueState(PN2->getIncomingValueForBlock(InBlock));
if (In1.isOverdefined() || In2.isOverdefined()) {
Result.markOverdefined();
break; // Cannot fold this operation over the PHI nodes!
} else if (In1.isConstant() && In2.isConstant()) {
Constant *V = ConstantExpr::getCompare(I.getPredicate(),
In1.getConstant(),
In2.getConstant());
if (Result.isUndefined())
Result.markConstant(V);
else if (Result.isConstant() && Result.getConstant() != V) {
Result.markOverdefined();
break;
}
}
}
// If we found a constant value here, then we know the instruction is
// constant despite the fact that the PHI nodes are overdefined.
if (Result.isConstant()) {
markConstant(IV, &I, Result.getConstant());
// Remember that this instruction is virtually using the PHI node
// operands.
UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
return;
} else if (Result.isUndefined()) {
return;
}
// Okay, this really is overdefined now. Since we might have
// speculatively thought that this was not overdefined before, and
// added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
// make sure to clean out any entries that we put there, for
// efficiency.
std::multimap<PHINode*, Instruction*>::iterator It, E;
tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
while (It != E) {
if (It->second == &I) {
UsersOfOverdefinedPHIs.erase(It++);
} else
++It;
}
tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
while (It != E) {
if (It->second == &I) {
UsersOfOverdefinedPHIs.erase(It++);
} else
++It;
}
}
markOverdefined(IV, &I);
} else if (V1State.isConstant() && V2State.isConstant()) {
markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
V1State.getConstant(),
V2State.getConstant()));
}
}
void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
// FIXME : SCCP does not handle vectors properly.
markOverdefined(&I);
return;
#if 0
LatticeVal &ValState = getValueState(I.getOperand(0));
LatticeVal &IdxState = getValueState(I.getOperand(1));
if (ValState.isOverdefined() || IdxState.isOverdefined())
markOverdefined(&I);
else if(ValState.isConstant() && IdxState.isConstant())
markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
IdxState.getConstant()));
#endif
}
void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
// FIXME : SCCP does not handle vectors properly.
markOverdefined(&I);
return;
#if 0
LatticeVal &ValState = getValueState(I.getOperand(0));
LatticeVal &EltState = getValueState(I.getOperand(1));
LatticeVal &IdxState = getValueState(I.getOperand(2));
if (ValState.isOverdefined() || EltState.isOverdefined() ||
IdxState.isOverdefined())
markOverdefined(&I);
else if(ValState.isConstant() && EltState.isConstant() &&
IdxState.isConstant())
markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
EltState.getConstant(),
IdxState.getConstant()));
else if (ValState.isUndefined() && EltState.isConstant() &&
IdxState.isConstant())
markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
EltState.getConstant(),
IdxState.getConstant()));
#endif
}
void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
// FIXME : SCCP does not handle vectors properly.
markOverdefined(&I);
return;
#if 0
LatticeVal &V1State = getValueState(I.getOperand(0));
LatticeVal &V2State = getValueState(I.getOperand(1));
LatticeVal &MaskState = getValueState(I.getOperand(2));
if (MaskState.isUndefined() ||
(V1State.isUndefined() && V2State.isUndefined()))
return; // Undefined output if mask or both inputs undefined.
if (V1State.isOverdefined() || V2State.isOverdefined() ||
MaskState.isOverdefined()) {
markOverdefined(&I);
} else {
// A mix of constant/undef inputs.
Constant *V1 = V1State.isConstant() ?
V1State.getConstant() : UndefValue::get(I.getType());
Constant *V2 = V2State.isConstant() ?
V2State.getConstant() : UndefValue::get(I.getType());
Constant *Mask = MaskState.isConstant() ?
MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
}
#endif
}
// Handle getelementptr instructions... if all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
//
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
LatticeVal &IV = ValueState[&I];
if (IV.isOverdefined()) return;
SmallVector<Constant*, 8> Operands;
Operands.reserve(I.getNumOperands());
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
LatticeVal &State = getValueState(I.getOperand(i));
if (State.isUndefined())
return; // Operands are not resolved yet...
else if (State.isOverdefined()) {
markOverdefined(IV, &I);
return;
}
assert(State.isConstant() && "Unknown state!");
Operands.push_back(State.getConstant());
}
Constant *Ptr = Operands[0];
Operands.erase(Operands.begin()); // Erase the pointer from idx list...
markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
Operands.size()));
}
void SCCPSolver::visitStoreInst(Instruction &SI) {
if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
return;
GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
// Get the value we are storing into the global.
LatticeVal &PtrVal = getValueState(SI.getOperand(0));
mergeInValue(I->second, GV, PtrVal);
if (I->second.isOverdefined())
TrackedGlobals.erase(I); // No need to keep tracking this!
}
// Handle load instructions. If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCPSolver::visitLoadInst(LoadInst &I) {
LatticeVal &IV = ValueState[&I];
if (IV.isOverdefined()) return;
LatticeVal &PtrVal = getValueState(I.getOperand(0));
if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
if (PtrVal.isConstant() && !I.isVolatile()) {
Value *Ptr = PtrVal.getConstant();
if (isa<ConstantPointerNull>(Ptr)) {
// load null -> null
markConstant(IV, &I, Constant::getNullValue(I.getType()));
return;
}
// Transform load (constant global) into the value loaded.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
if (GV->isConstant()) {
if (!GV->isDeclaration()) {
markConstant(IV, &I, GV->getInitializer());
return;
}
} else if (!TrackedGlobals.empty()) {
// If we are tracking this global, merge in the known value for it.
DenseMap<GlobalVariable*, LatticeVal>::iterator It =
TrackedGlobals.find(GV);
if (It != TrackedGlobals.end()) {
mergeInValue(IV, &I, It->second);
return;
}
}
}
// Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
if (CE->getOpcode() == Instruction::GetElementPtr)
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && !GV->isDeclaration())
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
markConstant(IV, &I, V);
return;
}
}
// Otherwise we cannot say for certain what value this load will produce.
// Bail out.
markOverdefined(IV, &I);
}
void SCCPSolver::visitCallSite(CallSite CS) {
Function *F = CS.getCalledFunction();
// If we are tracking this function, we must make sure to bind arguments as
// appropriate.
DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
if (F && F->hasInternalLinkage())
TFRVI = TrackedFunctionRetVals.find(F);
if (TFRVI != TrackedFunctionRetVals.end()) {
// If this is the first call to the function hit, mark its entry block
// executable.
if (!BBExecutable.count(F->begin()))
MarkBlockExecutable(F->begin());
CallSite::arg_iterator CAI = CS.arg_begin();
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI, ++CAI) {
LatticeVal &IV = ValueState[AI];
if (!IV.isOverdefined())
mergeInValue(IV, AI, getValueState(*CAI));
}
}
Instruction *I = CS.getInstruction();
if (I->getType() == Type::VoidTy) return;
LatticeVal &IV = ValueState[I];
if (IV.isOverdefined()) return;
// Propagate the return value of the function to the value of the instruction.
if (TFRVI != TrackedFunctionRetVals.end()) {
mergeInValue(IV, I, TFRVI->second);
return;
}
if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) {
markOverdefined(IV, I);
return;
}
SmallVector<Constant*, 8> Operands;
Operands.reserve(I->getNumOperands()-1);
for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
AI != E; ++AI) {
LatticeVal &State = getValueState(*AI);
if (State.isUndefined())
return; // Operands are not resolved yet...
else if (State.isOverdefined()) {
markOverdefined(IV, I);
return;
}
assert(State.isConstant() && "Unknown state!");
Operands.push_back(State.getConstant());
}
if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size()))
markConstant(IV, I, C);
else
markOverdefined(IV, I);
}
void SCCPSolver::Solve() {
// Process the work lists until they are empty!
while (!BBWorkList.empty() || !InstWorkList.empty() ||
!OverdefinedInstWorkList.empty()) {
// Process the instruction work list...
while (!OverdefinedInstWorkList.empty()) {
Value *I = OverdefinedInstWorkList.back();
OverdefinedInstWorkList.pop_back();
DOUT << "\nPopped off OI-WL: " << *I;
// "I" got into the work list because it either made the transition from
// bottom to constant
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined
// Update all of the users of this instruction's value...
//
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI)
OperandChangedState(*UI);
}
// Process the instruction work list...
while (!InstWorkList.empty()) {
Value *I = InstWorkList.back();
InstWorkList.pop_back();
DOUT << "\nPopped off I-WL: " << *I;
// "I" got into the work list because it either made the transition from
// bottom to constant
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined.
// Update all of the users of this instruction's value...
//
if (!getValueState(I).isOverdefined())
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI)
OperandChangedState(*UI);
}
// Process the basic block work list...
while (!BBWorkList.empty()) {
BasicBlock *BB = BBWorkList.back();
BBWorkList.pop_back();
DOUT << "\nPopped off BBWL: " << *BB;
// Notify all instructions in this basic block that they are newly
// executable.
visit(BB);
}
}
}
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption. After we solve dataflow, this
/// method should be use to handle this. If this returns true, the solver
/// should be rerun.
///
/// This method handles this by finding an unresolved branch and marking it one
/// of the edges from the block as being feasible, even though the condition
/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
/// CFG and only slightly pessimizes the analysis results (by marking one,
/// potentially infeasible, edge feasible). This cannot usefully modify the
/// constraints on the condition of the branch, as that would impact other users
/// of the value.
///
/// This scan also checks for values that use undefs, whose results are actually
/// defined. For example, 'zext i8 undef to i32' should produce all zeros
/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
/// even if X isn't defined.
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (!BBExecutable.count(BB))
continue;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
// Look for instructions which produce undef values.
if (I->getType() == Type::VoidTy) continue;
LatticeVal &LV = getValueState(I);
if (!LV.isUndefined()) continue;
// Get the lattice values of the first two operands for use below.
LatticeVal &Op0LV = getValueState(I->getOperand(0));
LatticeVal Op1LV;
if (I->getNumOperands() == 2) {
// If this is a two-operand instruction, and if both operands are
// undefs, the result stays undef.
Op1LV = getValueState(I->getOperand(1));
if (Op0LV.isUndefined() && Op1LV.isUndefined())
continue;
}
// If this is an instructions whose result is defined even if the input is
// not fully defined, propagate the information.
const Type *ITy = I->getType();
switch (I->getOpcode()) {
default: break; // Leave the instruction as an undef.
case Instruction::ZExt:
// After a zero extend, we know the top part is zero. SExt doesn't have
// to be handled here, because we don't know whether the top part is 1's
// or 0's.
assert(Op0LV.isUndefined());
markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::Mul:
case Instruction::And:
// undef * X -> 0. X could be zero.
// undef & X -> 0. X could be zero.
markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::Or:
// undef | X -> -1. X could be -1.
if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
else
markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
return true;
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
// X / undef -> undef. No change.
// X % undef -> undef. No change.
if (Op1LV.isUndefined()) break;
// undef / X -> 0. X could be maxint.
// undef % X -> 0. X could be 1.
markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::AShr:
// undef >>s X -> undef. No change.
if (Op0LV.isUndefined()) break;
// X >>s undef -> X. X could be 0, X could have the high-bit known set.
if (Op0LV.isConstant())
markForcedConstant(LV, I, Op0LV.getConstant());
else
markOverdefined(LV, I);
return true;
case Instruction::LShr:
case Instruction::Shl:
// undef >> X -> undef. No change.
// undef << X -> undef. No change.
if (Op0LV.isUndefined()) break;
// X >> undef -> 0. X could be 0.
// X << undef -> 0. X could be 0.
markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::Select:
// undef ? X : Y -> X or Y. There could be commonality between X/Y.
if (Op0LV.isUndefined()) {
if (!Op1LV.isConstant()) // Pick the constant one if there is any.
Op1LV = getValueState(I->getOperand(2));
} else if (Op1LV.isUndefined()) {
// c ? undef : undef -> undef. No change.
Op1LV = getValueState(I->getOperand(2));
if (Op1LV.isUndefined())
break;
// Otherwise, c ? undef : x -> x.
} else {
// Leave Op1LV as Operand(1)'s LatticeValue.
}
if (Op1LV.isConstant())
markForcedConstant(LV, I, Op1LV.getConstant());
else
markOverdefined(LV, I);
return true;
}
}
TerminatorInst *TI = BB->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (!BI->isConditional()) continue;
if (!getValueState(BI->getCondition()).isUndefined())
continue;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
if (!getValueState(SI->getCondition()).isUndefined())
continue;
} else {
continue;
}
// If the edge to the first successor isn't thought to be feasible yet, mark
// it so now.
if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0))))
continue;
// Otherwise, it isn't already thought to be feasible. Mark it as such now
// and return. This will make other blocks reachable, which will allow new
// values to be discovered and existing ones to be moved in the lattice.
markEdgeExecutable(BB, TI->getSuccessor(0));
return true;
}
return false;
}
namespace {
//===--------------------------------------------------------------------===//
//
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
/// Sparse Conditional Constant Propagator.
///
struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
SCCP() : FunctionPass((intptr_t)&ID) {}
// runOnFunction - Run the Sparse Conditional Constant Propagation
// algorithm, and return true if the function was modified.
//
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
};
char SCCP::ID = 0;
RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
} // end anonymous namespace
// createSCCPPass - This is the public interface to this file...
FunctionPass *llvm::createSCCPPass() {
return new SCCP();
}
// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
//
bool SCCP::runOnFunction(Function &F) {
DOUT << "SCCP on function '" << F.getName() << "'\n";
SCCPSolver Solver;
// Mark the first block of the function as being executable.
Solver.MarkBlockExecutable(F.begin());
// Mark all arguments to the function as being overdefined.
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
Solver.markOverdefined(AI);
// Solve for constants.
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
Solver.Solve();
DOUT << "RESOLVING UNDEFs\n";
ResolvedUndefs = Solver.ResolvedUndefsIn(F);
}
bool MadeChanges = false;
// If we decided that there are basic blocks that are dead in this function,
// delete their contents now. Note that we cannot actually delete the blocks,
// as we cannot modify the CFG of the function.
//
SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
SmallVector<Instruction*, 32> Insts;
std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (!ExecutableBBs.count(BB)) {
DOUT << " BasicBlock Dead:" << *BB;
++NumDeadBlocks;
// Delete the instructions backwards, as it has a reduced likelihood of
// having to update as many def-use and use-def chains.
for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
I != E; ++I)
Insts.push_back(I);
while (!Insts.empty()) {
Instruction *I = Insts.back();
Insts.pop_back();
if (!I->use_empty())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
BB->getInstList().erase(I);
MadeChanges = true;
++NumInstRemoved;
}
} else {
// Iterate over all of the instructions in a function, replacing them with
// constants if we have found them to be of constant values.
//
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
Instruction *Inst = BI++;
if (Inst->getType() != Type::VoidTy) {
LatticeVal &IV = Values[Inst];
if ((IV.isConstant() || IV.isUndefined()) &&
!isa<TerminatorInst>(Inst)) {
Constant *Const = IV.isConstant()
? IV.getConstant() : UndefValue::get(Inst->getType());
DOUT << " Constant: " << *Const << " = " << *Inst;
// Replaces all of the uses of a variable with uses of the constant.
Inst->replaceAllUsesWith(Const);
// Delete the instruction.
BB->getInstList().erase(Inst);
// Hey, we just changed something!
MadeChanges = true;
++NumInstRemoved;
}
}
}
}
return MadeChanges;
}
namespace {
//===--------------------------------------------------------------------===//
//
/// IPSCCP Class - This class implements interprocedural Sparse Conditional
/// Constant Propagation.
///
struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
static char ID;
IPSCCP() : ModulePass((intptr_t)&ID) {}
bool runOnModule(Module &M);
};
char IPSCCP::ID = 0;
RegisterPass<IPSCCP>
Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
} // end anonymous namespace
// createIPSCCPPass - This is the public interface to this file...
ModulePass *llvm::createIPSCCPPass() {
return new IPSCCP();
}
static bool AddressIsTaken(GlobalValue *GV) {
// Delete any dead constantexpr klingons.
GV->removeDeadConstantUsers();
for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
UI != E; ++UI)
if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == GV || SI->isVolatile())
return true; // Storing addr of GV.
} else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
// Make sure we are calling the function, not passing the address.
CallSite CS = CallSite::get(cast<Instruction>(*UI));
for (CallSite::arg_iterator AI = CS.arg_begin(),
E = CS.arg_end(); AI != E; ++AI)
if (*AI == GV)
return true;
} else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
if (LI->isVolatile())
return true;
} else {
return true;
}
return false;
}
bool IPSCCP::runOnModule(Module &M) {
SCCPSolver Solver;
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
//
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
if (!F->isDeclaration())
Solver.MarkBlockExecutable(F->begin());
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI)
Solver.markOverdefined(AI);
} else {
Solver.AddTrackedFunction(F);
}
// Loop over global variables. We inform the solver about any internal global
// variables that do not have their 'addresses taken'. If they don't have
// their addresses taken, we can propagate constants through them.
for (Module::global_iterator G = M.global_begin(), E = M.global_end();
G != E; ++G)
if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
Solver.TrackValueOfGlobalVariable(G);
// Solve for constants.
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
Solver.Solve();
DOUT << "RESOLVING UNDEFS\n";
ResolvedUndefs = false;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
}
bool MadeChanges = false;
// Iterate over all of the instructions in the module, replacing them with
// constants if we have found them to be of constant values.
//
SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
SmallVector<Instruction*, 32> Insts;
SmallVector<BasicBlock*, 32> BlocksToErase;
std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI)
if (!AI->use_empty()) {
LatticeVal &IV = Values[AI];
if (IV.isConstant() || IV.isUndefined()) {
Constant *CST = IV.isConstant() ?
IV.getConstant() : UndefValue::get(AI->getType());
DOUT << "*** Arg " << *AI << " = " << *CST <<"\n";
// Replaces all of the uses of a variable with uses of the
// constant.
AI->replaceAllUsesWith(CST);
++IPNumArgsElimed;
}
}
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
if (!ExecutableBBs.count(BB)) {
DOUT << " BasicBlock Dead:" << *BB;
++IPNumDeadBlocks;
// Delete the instructions backwards, as it has a reduced likelihood of
// having to update as many def-use and use-def chains.
TerminatorInst *TI = BB->getTerminator();
for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
Insts.push_back(I);
while (!Insts.empty()) {
Instruction *I = Insts.back();
Insts.pop_back();
if (!I->use_empty())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
BB->getInstList().erase(I);
MadeChanges = true;
++IPNumInstRemoved;
}
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = TI->getSuccessor(i);
if (!Succ->empty() && isa<PHINode>(Succ->begin()))
TI->getSuccessor(i)->removePredecessor(BB);
}
if (!TI->use_empty())
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
BB->getInstList().erase(TI);
if (&*BB != &F->front())
BlocksToErase.push_back(BB);
else
new UnreachableInst(BB);
} else {
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
Instruction *Inst = BI++;
if (Inst->getType() != Type::VoidTy) {
LatticeVal &IV = Values[Inst];
if (IV.isConstant() || IV.isUndefined() &&
!isa<TerminatorInst>(Inst)) {
Constant *Const = IV.isConstant()
? IV.getConstant() : UndefValue::get(Inst->getType());
DOUT << " Constant: " << *Const << " = " << *Inst;
// Replaces all of the uses of a variable with uses of the
// constant.
Inst->replaceAllUsesWith(Const);
// Delete the instruction.
if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
BB->getInstList().erase(Inst);
// Hey, we just changed something!
MadeChanges = true;
++IPNumInstRemoved;
}
}
}
}
// Now that all instructions in the function are constant folded, erase dead
// blocks, because we can now use ConstantFoldTerminator to get rid of
// in-edges.
for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
// If there are any PHI nodes in this successor, drop entries for BB now.
BasicBlock *DeadBB = BlocksToErase[i];
while (!DeadBB->use_empty()) {
Instruction *I = cast<Instruction>(DeadBB->use_back());
bool Folded = ConstantFoldTerminator(I->getParent());
if (!Folded) {
// The constant folder may not have been able to fold the terminator
// if this is a branch or switch on undef. Fold it manually as a
// branch to the first successor.
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
"Branch should be foldable!");
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
} else {
assert(0 && "Didn't fold away reference to block!");
}
// Make this an uncond branch to the first successor.
TerminatorInst *TI = I->getParent()->getTerminator();
new BranchInst(TI->getSuccessor(0), TI);
// Remove entries in successor phi nodes to remove edges.
for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
TI->getSuccessor(i)->removePredecessor(TI->getParent());
// Remove the old terminator.
TI->eraseFromParent();
}
}
// Finally, delete the basic block.
F->getBasicBlockList().erase(DeadBB);
}
BlocksToErase.clear();
}
// If we inferred constant or undef return values for a function, we replaced
// all call uses with the inferred value. This means we don't need to bother
// actually returning anything from the function. Replace all return
// instructions with return undef.
const DenseMap<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
E = RV.end(); I != E; ++I)
if (!I->second.isOverdefined() &&
I->first->getReturnType() != Type::VoidTy) {
Function *F = I->first;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
if (!isa<UndefValue>(RI->getOperand(0)))
RI->setOperand(0, UndefValue::get(F->getReturnType()));
}
// If we infered constant or undef values for globals variables, we can delete
// the global and any stores that remain to it.
const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
E = TG.end(); I != E; ++I) {
GlobalVariable *GV = I->first;
assert(!I->second.isOverdefined() &&
"Overdefined values should have been taken out of the map!");
DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n";
while (!GV->use_empty()) {
StoreInst *SI = cast<StoreInst>(GV->use_back());
SI->eraseFromParent();
}
M.getGlobalList().erase(GV);
++IPNumGlobalConst;
}
return MadeChanges;
}