llvm-6502/lib/Transforms/Utils/LowerSwitch.cpp

325 lines
11 KiB
C++
Raw Normal View History

//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LowerSwitch transformation rewrites switch instructions with a sequence
// of branches, which allows targets to get away with not implementing the
// switch instruction until it is convenient.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
using namespace llvm;
namespace {
/// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
/// instructions. Note that this cannot be a BasicBlock pass because it
/// modifies the CFG!
class VISIBILITY_HIDDEN LowerSwitch : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
LowerSwitch() : FunctionPass((intptr_t) &ID) {}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
// This is a cluster of orthogonal Transforms
AU.addPreserved<UnifyFunctionExitNodes>();
AU.addPreservedID(PromoteMemoryToRegisterID);
AU.addPreservedID(LowerInvokePassID);
AU.addPreservedID(LowerAllocationsID);
}
struct CaseRange {
Constant* Low;
Constant* High;
BasicBlock* BB;
CaseRange() : Low(0), High(0), BB(0) { }
CaseRange(Constant* low, Constant* high, BasicBlock* bb) :
Low(low), High(high), BB(bb) { }
};
typedef std::vector<CaseRange> CaseVector;
typedef std::vector<CaseRange>::iterator CaseItr;
private:
void processSwitchInst(SwitchInst *SI);
BasicBlock* switchConvert(CaseItr Begin, CaseItr End, Value* Val,
BasicBlock* OrigBlock, BasicBlock* Default);
BasicBlock* newLeafBlock(CaseRange& Leaf, Value* Val,
BasicBlock* OrigBlock, BasicBlock* Default);
unsigned Clusterify(CaseVector& Cases, SwitchInst *SI);
};
/// The comparison function for sorting the switch case values in the vector.
/// WARNING: Case ranges should be disjoint!
struct CaseCmp {
bool operator () (const LowerSwitch::CaseRange& C1,
const LowerSwitch::CaseRange& C2) {
const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
return CI1->getValue().slt(CI2->getValue());
}
};
char LowerSwitch::ID = 0;
RegisterPass<LowerSwitch>
X("lowerswitch", "Lower SwitchInst's to branches");
}
// Publically exposed interface to pass...
const PassInfo *llvm::LowerSwitchID = X.getPassInfo();
// createLowerSwitchPass - Interface to this file...
FunctionPass *llvm::createLowerSwitchPass() {
return new LowerSwitch();
}
bool LowerSwitch::runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
Changed = true;
processSwitchInst(SI);
}
}
return Changed;
}
// operator<< - Used for debugging purposes.
//
static std::ostream& operator<<(std::ostream &O,
const LowerSwitch::CaseVector &C) {
O << "[";
for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
E = C.end(); B != E; ) {
O << *B->Low << " -" << *B->High;
if (++B != E) O << ", ";
}
return O << "]";
}
static OStream& operator<<(OStream &O, const LowerSwitch::CaseVector &C) {
if (O.stream()) *O.stream() << C;
return O;
}
// switchConvert - Convert the switch statement into a binary lookup of
// the case values. The function recursively builds this tree.
//
BasicBlock* LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
Value* Val, BasicBlock* OrigBlock,
BasicBlock* Default)
{
unsigned Size = End - Begin;
if (Size == 1)
return newLeafBlock(*Begin, Val, OrigBlock, Default);
unsigned Mid = Size / 2;
std::vector<CaseRange> LHS(Begin, Begin + Mid);
DOUT << "LHS: " << LHS << "\n";
std::vector<CaseRange> RHS(Begin + Mid, End);
DOUT << "RHS: " << RHS << "\n";
CaseRange& Pivot = *(Begin + Mid);
DEBUG( DOUT << "Pivot ==> "
<< cast<ConstantInt>(Pivot.Low)->getValue().toStringSigned(10)
<< " -"
<< cast<ConstantInt>(Pivot.High)->getValue().toStringSigned(10)
<< "\n");
BasicBlock* LBranch = switchConvert(LHS.begin(), LHS.end(), Val,
OrigBlock, Default);
BasicBlock* RBranch = switchConvert(RHS.begin(), RHS.end(), Val,
OrigBlock, Default);
// Create a new node that checks if the value is < pivot. Go to the
// left branch if it is and right branch if not.
Function* F = OrigBlock->getParent();
BasicBlock* NewNode = new BasicBlock("NodeBlock");
Function::iterator FI = OrigBlock;
F->getBasicBlockList().insert(++FI, NewNode);
ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot");
NewNode->getInstList().push_back(Comp);
new BranchInst(LBranch, RBranch, Comp, NewNode);
return NewNode;
}
// newLeafBlock - Create a new leaf block for the binary lookup tree. It
// checks if the switch's value == the case's value. If not, then it
// jumps to the default branch. At this point in the tree, the value
// can't be another valid case value, so the jump to the "default" branch
// is warranted.
//
BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
BasicBlock* OrigBlock,
BasicBlock* Default)
{
Function* F = OrigBlock->getParent();
BasicBlock* NewLeaf = new BasicBlock("LeafBlock");
Function::iterator FI = OrigBlock;
F->getBasicBlockList().insert(++FI, NewLeaf);
// Emit comparison
ICmpInst* Comp = NULL;
if (Leaf.Low == Leaf.High) {
// Make the seteq instruction...
Comp = new ICmpInst(ICmpInst::ICMP_EQ, Val, Leaf.Low,
"SwitchLeaf", NewLeaf);
} else {
// Make range comparison
if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
// Val >= Min && Val <= Hi --> Val <= Hi
Comp = new ICmpInst(ICmpInst::ICMP_SLE, Val, Leaf.High,
"SwitchLeaf", NewLeaf);
} else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
// Val >= 0 && Val <= Hi --> Val <=u Hi
Comp = new ICmpInst(ICmpInst::ICMP_ULE, Val, Leaf.High,
"SwitchLeaf", NewLeaf);
} else {
// Emit V-Lo <=u Hi-Lo
Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
Instruction* Add = BinaryOperator::createAdd(Val, NegLo,
Val->getName()+".off",
NewLeaf);
Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
Comp = new ICmpInst(ICmpInst::ICMP_ULE, Add, UpperBound,
"SwitchLeaf", NewLeaf);
}
}
// Make the conditional branch...
BasicBlock* Succ = Leaf.BB;
new BranchInst(Succ, Default, Comp, NewLeaf);
// If there were any PHI nodes in this successor, rewrite one entry
// from OrigBlock to come from NewLeaf.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode* PN = cast<PHINode>(I);
// Remove all but one incoming entries from the cluster
uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
cast<ConstantInt>(Leaf.Low)->getSExtValue();
for (uint64_t j = 0; j < Range; ++j) {
PN->removeIncomingValue(OrigBlock);
}
int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
assert(BlockIdx != -1 && "Switch didn't go to this successor??");
PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
}
return NewLeaf;
}
// Clusterify - Transform simple list of Cases into list of CaseRange's
unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
unsigned numCmps = 0;
// Start with "simple" cases
for (unsigned i = 1; i < SI->getNumSuccessors(); ++i)
Cases.push_back(CaseRange(SI->getSuccessorValue(i),
SI->getSuccessorValue(i),
SI->getSuccessor(i)));
std::sort(Cases.begin(), Cases.end(), CaseCmp());
// Merge case into clusters
if (Cases.size()>=2)
for (CaseItr I=Cases.begin(), J=next(Cases.begin()); J!=Cases.end(); ) {
int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
BasicBlock* nextBB = J->BB;
BasicBlock* currentBB = I->BB;
// If the two neighboring cases go to the same destination, merge them
// into a single case.
if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
I->High = J->High;
J = Cases.erase(J);
} else {
I = J++;
}
}
for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
if (I->Low != I->High)
// A range counts double, since it requires two compares.
++numCmps;
}
return numCmps;
}
// processSwitchInst - Replace the specified switch instruction with a sequence
// of chained if-then insts in a balanced binary search.
//
void LowerSwitch::processSwitchInst(SwitchInst *SI) {
BasicBlock *CurBlock = SI->getParent();
BasicBlock *OrigBlock = CurBlock;
Function *F = CurBlock->getParent();
Value *Val = SI->getOperand(0); // The value we are switching on...
BasicBlock* Default = SI->getDefaultDest();
// If there is only the default destination, don't bother with the code below.
if (SI->getNumOperands() == 2) {
new BranchInst(SI->getDefaultDest(), CurBlock);
CurBlock->getInstList().erase(SI);
return;
}
// Create a new, empty default block so that the new hierarchy of
// if-then statements go to this and the PHI nodes are happy.
BasicBlock* NewDefault = new BasicBlock("NewDefault");
F->getBasicBlockList().insert(Default, NewDefault);
new BranchInst(Default, NewDefault);
// If there is an entry in any PHI nodes for the default edge, make sure
// to update them as well.
for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
assert(BlockIdx != -1 && "Switch didn't go to this successor??");
PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
}
// Prepare cases vector.
CaseVector Cases;
unsigned numCmps = Clusterify(Cases, SI);
DOUT << "Clusterify finished. Total clusters: " << Cases.size()
<< ". Total compares: " << numCmps << "\n";
DOUT << "Cases: " << Cases << "\n";
BasicBlock* SwitchBlock = switchConvert(Cases.begin(), Cases.end(), Val,
OrigBlock, NewDefault);
// Branch to our shiny new if-then stuff...
new BranchInst(SwitchBlock, OrigBlock);
// We are now done with the switch instruction, delete it.
CurBlock->getInstList().erase(SI);
}