mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
368 lines
16 KiB
ReStructuredText
368 lines
16 KiB
ReStructuredText
|
.. _exception_handling:
|
||
|
|
||
|
==========================
|
||
|
Exception Handling in LLVM
|
||
|
==========================
|
||
|
|
||
|
.. contents::
|
||
|
:local:
|
||
|
|
||
|
Introduction
|
||
|
============
|
||
|
|
||
|
This document is the central repository for all information pertaining to
|
||
|
exception handling in LLVM. It describes the format that LLVM exception
|
||
|
handling information takes, which is useful for those interested in creating
|
||
|
front-ends or dealing directly with the information. Further, this document
|
||
|
provides specific examples of what exception handling information is used for in
|
||
|
C and C++.
|
||
|
|
||
|
Itanium ABI Zero-cost Exception Handling
|
||
|
----------------------------------------
|
||
|
|
||
|
Exception handling for most programming languages is designed to recover from
|
||
|
conditions that rarely occur during general use of an application. To that end,
|
||
|
exception handling should not interfere with the main flow of an application's
|
||
|
algorithm by performing checkpointing tasks, such as saving the current pc or
|
||
|
register state.
|
||
|
|
||
|
The Itanium ABI Exception Handling Specification defines a methodology for
|
||
|
providing outlying data in the form of exception tables without inlining
|
||
|
speculative exception handling code in the flow of an application's main
|
||
|
algorithm. Thus, the specification is said to add "zero-cost" to the normal
|
||
|
execution of an application.
|
||
|
|
||
|
A more complete description of the Itanium ABI exception handling runtime
|
||
|
support of can be found at `Itanium C++ ABI: Exception Handling
|
||
|
<http://www.codesourcery.com/cxx-abi/abi-eh.html>`_. A description of the
|
||
|
exception frame format can be found at `Exception Frames
|
||
|
<http://refspecs.freestandards.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html>`_,
|
||
|
with details of the DWARF 4 specification at `DWARF 4 Standard
|
||
|
<http://dwarfstd.org/Dwarf4Std.php>`_. A description for the C++ exception
|
||
|
table formats can be found at `Exception Handling Tables
|
||
|
<http://www.codesourcery.com/cxx-abi/exceptions.pdf>`_.
|
||
|
|
||
|
Setjmp/Longjmp Exception Handling
|
||
|
---------------------------------
|
||
|
|
||
|
Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics
|
||
|
`llvm.eh.sjlj.setjmp`_ and `llvm.eh.sjlj.longjmp`_ to handle control flow for
|
||
|
exception handling.
|
||
|
|
||
|
For each function which does exception processing --- be it ``try``/``catch``
|
||
|
blocks or cleanups --- that function registers itself on a global frame
|
||
|
list. When exceptions are unwinding, the runtime uses this list to identify
|
||
|
which functions need processing.
|
||
|
|
||
|
Landing pad selection is encoded in the call site entry of the function
|
||
|
context. The runtime returns to the function via `llvm.eh.sjlj.longjmp`_, where
|
||
|
a switch table transfers control to the appropriate landing pad based on the
|
||
|
index stored in the function context.
|
||
|
|
||
|
In contrast to DWARF exception handling, which encodes exception regions and
|
||
|
frame information in out-of-line tables, SJLJ exception handling builds and
|
||
|
removes the unwind frame context at runtime. This results in faster exception
|
||
|
handling at the expense of slower execution when no exceptions are thrown. As
|
||
|
exceptions are, by their nature, intended for uncommon code paths, DWARF
|
||
|
exception handling is generally preferred to SJLJ.
|
||
|
|
||
|
Overview
|
||
|
--------
|
||
|
|
||
|
When an exception is thrown in LLVM code, the runtime does its best to find a
|
||
|
handler suited to processing the circumstance.
|
||
|
|
||
|
The runtime first attempts to find an *exception frame* corresponding to the
|
||
|
function where the exception was thrown. If the programming language supports
|
||
|
exception handling (e.g. C++), the exception frame contains a reference to an
|
||
|
exception table describing how to process the exception. If the language does
|
||
|
not support exception handling (e.g. C), or if the exception needs to be
|
||
|
forwarded to a prior activation, the exception frame contains information about
|
||
|
how to unwind the current activation and restore the state of the prior
|
||
|
activation. This process is repeated until the exception is handled. If the
|
||
|
exception is not handled and no activations remain, then the application is
|
||
|
terminated with an appropriate error message.
|
||
|
|
||
|
Because different programming languages have different behaviors when handling
|
||
|
exceptions, the exception handling ABI provides a mechanism for
|
||
|
supplying *personalities*. An exception handling personality is defined by
|
||
|
way of a *personality function* (e.g. ``__gxx_personality_v0`` in C++),
|
||
|
which receives the context of the exception, an *exception structure*
|
||
|
containing the exception object type and value, and a reference to the exception
|
||
|
table for the current function. The personality function for the current
|
||
|
compile unit is specified in a *common exception frame*.
|
||
|
|
||
|
The organization of an exception table is language dependent. For C++, an
|
||
|
exception table is organized as a series of code ranges defining what to do if
|
||
|
an exception occurs in that range. Typically, the information associated with a
|
||
|
range defines which types of exception objects (using C++ *type info*) that are
|
||
|
handled in that range, and an associated action that should take place. Actions
|
||
|
typically pass control to a *landing pad*.
|
||
|
|
||
|
A landing pad corresponds roughly to the code found in the ``catch`` portion of
|
||
|
a ``try``/``catch`` sequence. When execution resumes at a landing pad, it
|
||
|
receives an *exception structure* and a *selector value* corresponding to the
|
||
|
*type* of exception thrown. The selector is then used to determine which *catch*
|
||
|
should actually process the exception.
|
||
|
|
||
|
LLVM Code Generation
|
||
|
====================
|
||
|
|
||
|
From a C++ developer's perspective, exceptions are defined in terms of the
|
||
|
``throw`` and ``try``/``catch`` statements. In this section we will describe the
|
||
|
implementation of LLVM exception handling in terms of C++ examples.
|
||
|
|
||
|
Throw
|
||
|
-----
|
||
|
|
||
|
Languages that support exception handling typically provide a ``throw``
|
||
|
operation to initiate the exception process. Internally, a ``throw`` operation
|
||
|
breaks down into two steps.
|
||
|
|
||
|
#. A request is made to allocate exception space for an exception structure.
|
||
|
This structure needs to survive beyond the current activation. This structure
|
||
|
will contain the type and value of the object being thrown.
|
||
|
|
||
|
#. A call is made to the runtime to raise the exception, passing the exception
|
||
|
structure as an argument.
|
||
|
|
||
|
In C++, the allocation of the exception structure is done by the
|
||
|
``__cxa_allocate_exception`` runtime function. The exception raising is handled
|
||
|
by ``__cxa_throw``. The type of the exception is represented using a C++ RTTI
|
||
|
structure.
|
||
|
|
||
|
Try/Catch
|
||
|
---------
|
||
|
|
||
|
A call within the scope of a *try* statement can potentially raise an
|
||
|
exception. In those circumstances, the LLVM C++ front-end replaces the call with
|
||
|
an ``invoke`` instruction. Unlike a call, the ``invoke`` has two potential
|
||
|
continuation points:
|
||
|
|
||
|
#. where to continue when the call succeeds as per normal, and
|
||
|
|
||
|
#. where to continue if the call raises an exception, either by a throw or the
|
||
|
unwinding of a throw
|
||
|
|
||
|
The term used to define a the place where an ``invoke`` continues after an
|
||
|
exception is called a *landing pad*. LLVM landing pads are conceptually
|
||
|
alternative function entry points where an exception structure reference and a
|
||
|
type info index are passed in as arguments. The landing pad saves the exception
|
||
|
structure reference and then proceeds to select the catch block that corresponds
|
||
|
to the type info of the exception object.
|
||
|
|
||
|
The LLVM `landingpad instruction <LangRef.html#i_landingpad>`_ is used to convey
|
||
|
information about the landing pad to the back end. For C++, the ``landingpad``
|
||
|
instruction returns a pointer and integer pair corresponding to the pointer to
|
||
|
the *exception structure* and the *selector value* respectively.
|
||
|
|
||
|
The ``landingpad`` instruction takes a reference to the personality function to
|
||
|
be used for this ``try``/``catch`` sequence. The remainder of the instruction is
|
||
|
a list of *cleanup*, *catch*, and *filter* clauses. The exception is tested
|
||
|
against the clauses sequentially from first to last. The selector value is a
|
||
|
positive number if the exception matched a type info, a negative number if it
|
||
|
matched a filter, and zero if it matched a cleanup. If nothing is matched, the
|
||
|
behavior of the program is `undefined`_. If a type info matched, then the
|
||
|
selector value is the index of the type info in the exception table, which can
|
||
|
be obtained using the `llvm.eh.typeid.for`_ intrinsic.
|
||
|
|
||
|
Once the landing pad has the type info selector, the code branches to the code
|
||
|
for the first catch. The catch then checks the value of the type info selector
|
||
|
against the index of type info for that catch. Since the type info index is not
|
||
|
known until all the type infos have been gathered in the backend, the catch code
|
||
|
must call the `llvm.eh.typeid.for`_ intrinsic to determine the index for a given
|
||
|
type info. If the catch fails to match the selector then control is passed on to
|
||
|
the next catch.
|
||
|
|
||
|
Finally, the entry and exit of catch code is bracketed with calls to
|
||
|
``__cxa_begin_catch`` and ``__cxa_end_catch``.
|
||
|
|
||
|
* ``__cxa_begin_catch`` takes an exception structure reference as an argument
|
||
|
and returns the value of the exception object.
|
||
|
|
||
|
* ``__cxa_end_catch`` takes no arguments. This function:
|
||
|
|
||
|
#. Locates the most recently caught exception and decrements its handler
|
||
|
count,
|
||
|
|
||
|
#. Removes the exception from the *caught* stack if the handler count goes to
|
||
|
zero, and
|
||
|
|
||
|
#. Destroys the exception if the handler count goes to zero and the exception
|
||
|
was not re-thrown by throw.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
a rethrow from within the catch may replace this call with a
|
||
|
``__cxa_rethrow``.
|
||
|
|
||
|
Cleanups
|
||
|
--------
|
||
|
|
||
|
A cleanup is extra code which needs to be run as part of unwinding a scope. C++
|
||
|
destructors are a typical example, but other languages and language extensions
|
||
|
provide a variety of different kinds of cleanups. In general, a landing pad may
|
||
|
need to run arbitrary amounts of cleanup code before actually entering a catch
|
||
|
block. To indicate the presence of cleanups, a `landingpad
|
||
|
instruction <LangRef.html#i_landingpad>`_ should have a *cleanup*
|
||
|
clause. Otherwise, the unwinder will not stop at the landing pad if there are no
|
||
|
catches or filters that require it to.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
Do not allow a new exception to propagate out of the execution of a
|
||
|
cleanup. This can corrupt the internal state of the unwinder. Different
|
||
|
languages describe different high-level semantics for these situations: for
|
||
|
example, C++ requires that the process be terminated, whereas Ada cancels both
|
||
|
exceptions and throws a third.
|
||
|
|
||
|
When all cleanups are finished, if the exception is not handled by the current
|
||
|
function, resume unwinding by calling the `resume
|
||
|
instruction <LangRef.html#i_resume>`_, passing in the result of the
|
||
|
``landingpad`` instruction for the original landing pad.
|
||
|
|
||
|
Throw Filters
|
||
|
-------------
|
||
|
|
||
|
C++ allows the specification of which exception types may be thrown from a
|
||
|
function. To represent this, a top level landing pad may exist to filter out
|
||
|
invalid types. To express this in LLVM code the `landingpad
|
||
|
instruction <LangRef.html#i_landingpad>`_ will have a filter clause. The clause
|
||
|
consists of an array of type infos. ``landingpad`` will return a negative value
|
||
|
if the exception does not match any of the type infos. If no match is found then
|
||
|
a call to ``__cxa_call_unexpected`` should be made, otherwise
|
||
|
``_Unwind_Resume``. Each of these functions requires a reference to the
|
||
|
exception structure. Note that the most general form of a ``landingpad``
|
||
|
instruction can have any number of catch, cleanup, and filter clauses (though
|
||
|
having more than one cleanup is pointless). The LLVM C++ front-end can generate
|
||
|
such ``landingpad`` instructions due to inlining creating nested exception
|
||
|
handling scopes.
|
||
|
|
||
|
.. _undefined:
|
||
|
|
||
|
Restrictions
|
||
|
------------
|
||
|
|
||
|
The unwinder delegates the decision of whether to stop in a call frame to that
|
||
|
call frame's language-specific personality function. Not all unwinders guarantee
|
||
|
that they will stop to perform cleanups. For example, the GNU C++ unwinder
|
||
|
doesn't do so unless the exception is actually caught somewhere further up the
|
||
|
stack.
|
||
|
|
||
|
In order for inlining to behave correctly, landing pads must be prepared to
|
||
|
handle selector results that they did not originally advertise. Suppose that a
|
||
|
function catches exceptions of type ``A``, and it's inlined into a function that
|
||
|
catches exceptions of type ``B``. The inliner will update the ``landingpad``
|
||
|
instruction for the inlined landing pad to include the fact that ``B`` is also
|
||
|
caught. If that landing pad assumes that it will only be entered to catch an
|
||
|
``A``, it's in for a rude awakening. Consequently, landing pads must test for
|
||
|
the selector results they understand and then resume exception propagation with
|
||
|
the `resume instruction <LangRef.html#i_resume>`_ if none of the conditions
|
||
|
match.
|
||
|
|
||
|
Exception Handling Intrinsics
|
||
|
=============================
|
||
|
|
||
|
In addition to the ``landingpad`` and ``resume`` instructions, LLVM uses several
|
||
|
intrinsic functions (name prefixed with ``llvm.eh``) to provide exception
|
||
|
handling information at various points in generated code.
|
||
|
|
||
|
.. _llvm.eh.typeid.for:
|
||
|
|
||
|
llvm.eh.typeid.for
|
||
|
------------------
|
||
|
|
||
|
.. code-block:: llvm
|
||
|
|
||
|
i32 @llvm.eh.typeid.for(i8* %type_info)
|
||
|
|
||
|
|
||
|
This intrinsic returns the type info index in the exception table of the current
|
||
|
function. This value can be used to compare against the result of
|
||
|
``landingpad`` instruction. The single argument is a reference to a type info.
|
||
|
|
||
|
.. _llvm.eh.sjlj.setjmp:
|
||
|
|
||
|
llvm.eh.sjlj.setjmp
|
||
|
-------------------
|
||
|
|
||
|
.. code-block:: llvm
|
||
|
|
||
|
i32 @llvm.eh.sjlj.setjmp(i8* %setjmp_buf)
|
||
|
|
||
|
For SJLJ based exception handling, this intrinsic forces register saving for the
|
||
|
current function and stores the address of the following instruction for use as
|
||
|
a destination address by `llvm.eh.sjlj.longjmp`_. The buffer format and the
|
||
|
overall functioning of this intrinsic is compatible with the GCC
|
||
|
``__builtin_setjmp`` implementation allowing code built with the clang and GCC
|
||
|
to interoperate.
|
||
|
|
||
|
The single parameter is a pointer to a five word buffer in which the calling
|
||
|
context is saved. The front end places the frame pointer in the first word, and
|
||
|
the target implementation of this intrinsic should place the destination address
|
||
|
for a `llvm.eh.sjlj.longjmp`_ in the second word. The following three words are
|
||
|
available for use in a target-specific manner.
|
||
|
|
||
|
.. _llvm.eh.sjlj.longjmp:
|
||
|
|
||
|
llvm.eh.sjlj.longjmp
|
||
|
--------------------
|
||
|
|
||
|
.. code-block:: llvm
|
||
|
|
||
|
void @llvm.eh.sjlj.longjmp(i8* %setjmp_buf)
|
||
|
|
||
|
For SJLJ based exception handling, the ``llvm.eh.sjlj.longjmp`` intrinsic is
|
||
|
used to implement ``__builtin_longjmp()``. The single parameter is a pointer to
|
||
|
a buffer populated by `llvm.eh.sjlj.setjmp`_. The frame pointer and stack
|
||
|
pointer are restored from the buffer, then control is transferred to the
|
||
|
destination address.
|
||
|
|
||
|
llvm.eh.sjlj.lsda
|
||
|
-----------------
|
||
|
|
||
|
.. code-block:: llvm
|
||
|
|
||
|
i8* @llvm.eh.sjlj.lsda()
|
||
|
|
||
|
For SJLJ based exception handling, the ``llvm.eh.sjlj.lsda`` intrinsic returns
|
||
|
the address of the Language Specific Data Area (LSDA) for the current
|
||
|
function. The SJLJ front-end code stores this address in the exception handling
|
||
|
function context for use by the runtime.
|
||
|
|
||
|
llvm.eh.sjlj.callsite
|
||
|
---------------------
|
||
|
|
||
|
.. code-block:: llvm
|
||
|
|
||
|
void @llvm.eh.sjlj.callsite(i32 %call_site_num)
|
||
|
|
||
|
For SJLJ based exception handling, the ``llvm.eh.sjlj.callsite`` intrinsic
|
||
|
identifies the callsite value associated with the following ``invoke``
|
||
|
instruction. This is used to ensure that landing pad entries in the LSDA are
|
||
|
generated in matching order.
|
||
|
|
||
|
Asm Table Formats
|
||
|
=================
|
||
|
|
||
|
There are two tables that are used by the exception handling runtime to
|
||
|
determine which actions should be taken when an exception is thrown.
|
||
|
|
||
|
Exception Handling Frame
|
||
|
------------------------
|
||
|
|
||
|
An exception handling frame ``eh_frame`` is very similar to the unwind frame
|
||
|
used by DWARF debug info. The frame contains all the information necessary to
|
||
|
tear down the current frame and restore the state of the prior frame. There is
|
||
|
an exception handling frame for each function in a compile unit, plus a common
|
||
|
exception handling frame that defines information common to all functions in the
|
||
|
unit.
|
||
|
|
||
|
Exception Tables
|
||
|
----------------
|
||
|
|
||
|
An exception table contains information about what actions to take when an
|
||
|
exception is thrown in a particular part of a function's code. There is one
|
||
|
exception table per function, except leaf functions and functions that have
|
||
|
calls only to non-throwing functions. They do not need an exception table.
|