llvm-6502/lib/Target/Mips/Mips16ISelLowering.cpp

803 lines
29 KiB
C++
Raw Normal View History

//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsTargetLowering specialized for mips16.
//
//===----------------------------------------------------------------------===//
#include "Mips16ISelLowering.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "Mips16HardFloatInfo.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <string>
using namespace llvm;
#define DEBUG_TYPE "mips-lower"
static cl::opt<bool> DontExpandCondPseudos16(
"mips16-dont-expand-cond-pseudo",
cl::init(false),
cl::desc("Don't expand conditional move related "
"pseudos for Mips 16"),
cl::Hidden);
namespace {
struct Mips16Libcall {
RTLIB::Libcall Libcall;
const char *Name;
bool operator<(const Mips16Libcall &RHS) const {
return std::strcmp(Name, RHS.Name) < 0;
}
};
struct Mips16IntrinsicHelperType{
const char* Name;
const char* Helper;
bool operator<(const Mips16IntrinsicHelperType &RHS) const {
return std::strcmp(Name, RHS.Name) < 0;
}
bool operator==(const Mips16IntrinsicHelperType &RHS) const {
return std::strcmp(Name, RHS.Name) == 0;
}
};
}
// Libcalls for which no helper is generated. Sorted by name for binary search.
static const Mips16Libcall HardFloatLibCalls[] = {
{ RTLIB::ADD_F64, "__mips16_adddf3" },
{ RTLIB::ADD_F32, "__mips16_addsf3" },
{ RTLIB::DIV_F64, "__mips16_divdf3" },
{ RTLIB::DIV_F32, "__mips16_divsf3" },
{ RTLIB::OEQ_F64, "__mips16_eqdf2" },
{ RTLIB::OEQ_F32, "__mips16_eqsf2" },
{ RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
{ RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
{ RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
{ RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
{ RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
{ RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
{ RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
{ RTLIB::OGE_F64, "__mips16_gedf2" },
{ RTLIB::OGE_F32, "__mips16_gesf2" },
{ RTLIB::OGT_F64, "__mips16_gtdf2" },
{ RTLIB::OGT_F32, "__mips16_gtsf2" },
{ RTLIB::OLE_F64, "__mips16_ledf2" },
{ RTLIB::OLE_F32, "__mips16_lesf2" },
{ RTLIB::OLT_F64, "__mips16_ltdf2" },
{ RTLIB::OLT_F32, "__mips16_ltsf2" },
{ RTLIB::MUL_F64, "__mips16_muldf3" },
{ RTLIB::MUL_F32, "__mips16_mulsf3" },
{ RTLIB::UNE_F64, "__mips16_nedf2" },
{ RTLIB::UNE_F32, "__mips16_nesf2" },
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
{ RTLIB::SUB_F64, "__mips16_subdf3" },
{ RTLIB::SUB_F32, "__mips16_subsf3" },
{ RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
{ RTLIB::UO_F64, "__mips16_unorddf2" },
{ RTLIB::UO_F32, "__mips16_unordsf2" }
};
static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
{"__fixunsdfsi", "__mips16_call_stub_2" },
{"ceil", "__mips16_call_stub_df_2"},
{"ceilf", "__mips16_call_stub_sf_1"},
{"copysign", "__mips16_call_stub_df_10"},
{"copysignf", "__mips16_call_stub_sf_5"},
{"cos", "__mips16_call_stub_df_2"},
{"cosf", "__mips16_call_stub_sf_1"},
{"exp2", "__mips16_call_stub_df_2"},
{"exp2f", "__mips16_call_stub_sf_1"},
{"floor", "__mips16_call_stub_df_2"},
{"floorf", "__mips16_call_stub_sf_1"},
{"log2", "__mips16_call_stub_df_2"},
{"log2f", "__mips16_call_stub_sf_1"},
{"nearbyint", "__mips16_call_stub_df_2"},
{"nearbyintf", "__mips16_call_stub_sf_1"},
{"rint", "__mips16_call_stub_df_2"},
{"rintf", "__mips16_call_stub_sf_1"},
{"sin", "__mips16_call_stub_df_2"},
{"sinf", "__mips16_call_stub_sf_1"},
{"sqrt", "__mips16_call_stub_df_2"},
{"sqrtf", "__mips16_call_stub_sf_1"},
{"trunc", "__mips16_call_stub_df_2"},
{"truncf", "__mips16_call_stub_sf_1"},
};
Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI)
: MipsTargetLowering(TM, STI) {
// Set up the register classes
addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
if (!TM.Options.UseSoftFloat)
setMips16HardFloatLibCalls();
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
setOperationAction(ISD::ROTR, MVT::i32, Expand);
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
computeRegisterProperties();
}
const MipsTargetLowering *
llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI) {
return new Mips16TargetLowering(TM, STI);
}
bool
Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
bool *Fast) const {
return false;
}
MachineBasicBlock *
Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default:
return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case Mips::SelBeqZ:
return emitSel16(Mips::BeqzRxImm16, MI, BB);
case Mips::SelBneZ:
return emitSel16(Mips::BnezRxImm16, MI, BB);
case Mips::SelTBteqZCmpi:
return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
case Mips::SelTBteqZSlti:
return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
case Mips::SelTBteqZSltiu:
return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SelTBtneZCmpi:
return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
case Mips::SelTBtneZSlti:
return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
case Mips::SelTBtneZSltiu:
return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SelTBteqZCmp:
return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
case Mips::SelTBteqZSlt:
return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
case Mips::SelTBteqZSltu:
return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
case Mips::SelTBtneZCmp:
return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
case Mips::SelTBtneZSlt:
return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
case Mips::SelTBtneZSltu:
return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
case Mips::BteqzT8CmpX16:
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
case Mips::BteqzT8SltX16:
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
case Mips::BteqzT8SltuX16:
// TBD: figure out a way to get this or remove the instruction
// altogether.
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
case Mips::BtnezT8CmpX16:
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
case Mips::BtnezT8SltX16:
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
case Mips::BtnezT8SltuX16:
// TBD: figure out a way to get this or remove the instruction
// altogether.
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
break;
case Mips::SltCCRxRy16:
return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
break;
case Mips::SltiCCRxImmX16:
return emitFEXT_CCRXI16_ins
(Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
case Mips::SltiuCCRxImmX16:
return emitFEXT_CCRXI16_ins
(Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SltuCCRxRy16:
return emitFEXT_CCRX16_ins
(Mips::SltuRxRy16, MI, BB);
}
}
bool Mips16TargetLowering::isEligibleForTailCallOptimization(
const CCState &CCInfo, unsigned NextStackOffset,
const MipsFunctionInfo &FI) const {
// No tail call optimization for mips16.
return false;
}
void Mips16TargetLowering::setMips16HardFloatLibCalls() {
for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
"Array not sorted!");
if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
}
setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
}
//
// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
// cleaner way to do all of this but it will have to wait until the traditional
// gcc mechanism is completed.
//
// For Pic, in order for Mips16 code to call Mips32 code which according the abi
// have either arguments or returned values placed in floating point registers,
// we use a set of helper functions. (This includes functions which return type
// complex which on Mips are returned in a pair of floating point registers).
//
// This is an encoding that we inherited from gcc.
// In Mips traditional O32, N32 ABI, floating point numbers are passed in
// floating point argument registers 1,2 only when the first and optionally
// the second arguments are float (sf) or double (df).
// For Mips16 we are only concerned with the situations where floating point
// arguments are being passed in floating point registers by the ABI, because
// Mips16 mode code cannot execute floating point instructions to load those
// values and hence helper functions are needed.
// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
// the helper function suffixs for these are:
// 0, 1, 5, 9, 2, 6, 10
// this suffix can then be calculated as follows:
// for a given argument Arg:
// Arg1x, Arg2x = 1 : Arg is sf
// 2 : Arg is df
// 0: Arg is neither sf or df
// So this stub is the string for number Arg1x + Arg2x*4.
// However not all numbers between 0 and 10 are possible, we check anyway and
// assert if the impossible exists.
//
unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
(ArgListTy &Args) const {
unsigned int resultNum = 0;
if (Args.size() >= 1) {
Type *t = Args[0].Ty;
if (t->isFloatTy()) {
resultNum = 1;
}
else if (t->isDoubleTy()) {
resultNum = 2;
}
}
if (resultNum) {
if (Args.size() >=2) {
Type *t = Args[1].Ty;
if (t->isFloatTy()) {
resultNum += 4;
}
else if (t->isDoubleTy()) {
resultNum += 8;
}
}
}
return resultNum;
}
//
// Prefixes are attached to stub numbers depending on the return type.
// return type: float sf_
// double df_
// single complex sc_
// double complext dc_
// others NO PREFIX
//
//
// The full name of a helper function is__mips16_call_stub +
// return type dependent prefix + stub number
//
// FIXME: This is something that probably should be in a different source file
// and perhaps done differently but my main purpose is to not waste runtime
// on something that we can enumerate in the source. Another possibility is
// to have a python script to generate these mapping tables. This will do
// for now. There are a whole series of helper function mapping arrays, one
// for each return type class as outlined above. There there are 11 possible
// entries. Ones with 0 are ones which should never be selected.
//
// All the arrays are similar except for ones which return neither
// sf, df, sc, dc, in which we only care about ones which have sf or df as a
// first parameter.
//
#define P_ "__mips16_call_stub_"
#define MAX_STUB_NUMBER 10
#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
#define T P "0" , T1
#define P P_
static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
{nullptr, T1 };
#undef P
#define P P_ "sf_"
static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "df_"
static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "sc_"
static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "dc_"
static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#undef P_
const char* Mips16TargetLowering::
getMips16HelperFunction
(Type* RetTy, ArgListTy &Args, bool &needHelper) const {
const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
#ifndef NDEBUG
const unsigned int maxStubNum = 10;
assert(stubNum <= maxStubNum);
const bool validStubNum[maxStubNum+1] =
{true, true, true, false, false, true, true, false, false, true, true};
assert(validStubNum[stubNum]);
#endif
const char *result;
if (RetTy->isFloatTy()) {
result = sfMips16Helper[stubNum];
}
else if (RetTy ->isDoubleTy()) {
result = dfMips16Helper[stubNum];
}
else if (RetTy->isStructTy()) {
// check if it's complex
if (RetTy->getNumContainedTypes() == 2) {
if ((RetTy->getContainedType(0)->isFloatTy()) &&
(RetTy->getContainedType(1)->isFloatTy())) {
result = scMips16Helper[stubNum];
}
else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
(RetTy->getContainedType(1)->isDoubleTy())) {
result = dcMips16Helper[stubNum];
}
else {
llvm_unreachable("Uncovered condition");
}
}
else {
llvm_unreachable("Uncovered condition");
}
}
else {
if (stubNum == 0) {
needHelper = false;
return "";
}
result = vMips16Helper[stubNum];
}
needHelper = true;
return result;
}
void Mips16TargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
SDValue Chain) const {
SelectionDAG &DAG = CLI.DAG;
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
const char* Mips16HelperFunction = nullptr;
bool NeedMips16Helper = false;
if (Subtarget.inMips16HardFloat()) {
//
// currently we don't have symbols tagged with the mips16 or mips32
// qualifier so we will assume that we don't know what kind it is.
// and generate the helper
//
bool LookupHelper = true;
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
if (std::binary_search(std::begin(HardFloatLibCalls),
std::end(HardFloatLibCalls), Find))
LookupHelper = false;
else {
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
const char *Symbol = S->getSymbol();
Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
const Mips16HardFloatInfo::FuncSignature *Signature =
Mips16HardFloatInfo::findFuncSignature(Symbol);
if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
FuncInfo->StubsNeeded.end()))) {
FuncInfo->StubsNeeded[Symbol] = Signature;
//
// S2 is normally saved if the stub is for a function which
// returns a float or double value and is not otherwise. This is
// because more work is required after the function the stub
// is calling completes, and so the stub cannot directly return
// and the stub has no stack space to store the return address so
// S2 is used for that purpose.
// In order to take advantage of not saving S2, we need to also
// optimize the call in the stub and this requires some further
// functionality in MipsAsmPrinter which we don't have yet.
// So for now we always save S2. The optimization will be done
// in a follow-on patch.
//
if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
FuncInfo->setSaveS2();
}
// one more look at list of intrinsics
const Mips16IntrinsicHelperType *Helper =
std::lower_bound(std::begin(Mips16IntrinsicHelper),
std::end(Mips16IntrinsicHelper), IntrinsicFind);
if (Helper != std::end(Mips16IntrinsicHelper) &&
*Helper == IntrinsicFind) {
Mips16HelperFunction = Helper->Helper;
NeedMips16Helper = true;
LookupHelper = false;
}
}
} else if (GlobalAddressSDNode *G =
dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
G->getGlobal()->getName().data() };
if (std::binary_search(std::begin(HardFloatLibCalls),
std::end(HardFloatLibCalls), Find))
LookupHelper = false;
}
if (LookupHelper)
Mips16HelperFunction =
getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
}
SDValue JumpTarget = Callee;
// T9 should contain the address of the callee function if
// -relocation-model=pic or it is an indirect call.
if (IsPICCall || !GlobalOrExternal) {
unsigned V0Reg = Mips::V0;
if (NeedMips16Helper) {
RegsToPass.push_front(std::make_pair(V0Reg, Callee));
JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
MipsII::MO_GOT, Chain,
FuncInfo->callPtrInfo(S->getSymbol()));
} else
RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
}
Ops.push_back(JumpTarget);
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
InternalLinkage, IsCallReloc, CLI, Callee,
Chain);
}
MachineBasicBlock *Mips16TargetLowering::
emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
.addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitSelT16
(unsigned Opc1, unsigned Opc2,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
.addReg(MI->getOperand(4).getReg());
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitSeliT16
(unsigned Opc1, unsigned Opc2,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
.addImm(MI->getOperand(4).getImm());
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock
*Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
MachineInstr *MI,
MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
unsigned regY = MI->getOperand(1).getReg();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
.addReg(regY);
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
int64_t imm = MI->getOperand(1).getImm();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
unsigned CmpOpc;
if (isUInt<8>(imm))
CmpOpc = CmpiOpc;
else if ((!ImmSigned && isUInt<16>(imm)) ||
(ImmSigned && isInt<16>(imm)))
CmpOpc = CmpiXOpc;
else
llvm_unreachable("immediate field not usable");
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
.addImm(imm);
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static unsigned Mips16WhichOp8uOr16simm
(unsigned shortOp, unsigned longOp, int64_t Imm) {
if (isUInt<8>(Imm))
return shortOp;
else if (isInt<16>(Imm))
return longOp;
else
llvm_unreachable("immediate field not usable");
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
unsigned SltOpc,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
unsigned regY = MI->getOperand(2).getReg();
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addReg(
regY);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
unsigned SltiOpc, unsigned SltiXOpc,
MachineInstr *MI, MachineBasicBlock *BB )const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
int64_t Imm = MI->getOperand(2).getImm();
unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(SltOpc)).addReg(regX).addImm(Imm);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}