llvm-6502/unittests/Support/Path.cpp

668 lines
22 KiB
C++
Raw Normal View History

//===- llvm/unittest/Support/Path.cpp - Path tests ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Path.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
#ifdef LLVM_ON_WIN32
#include <winerror.h>
#endif
using namespace llvm;
using namespace llvm::sys;
#define ASSERT_NO_ERROR(x) \
if (std::error_code ASSERT_NO_ERROR_ec = x) { \
SmallString<128> MessageStorage; \
raw_svector_ostream Message(MessageStorage); \
Message << #x ": did not return errc::success.\n" \
<< "error number: " << ASSERT_NO_ERROR_ec.value() << "\n" \
<< "error message: " << ASSERT_NO_ERROR_ec.message() << "\n"; \
GTEST_FATAL_FAILURE_(MessageStorage.c_str()); \
} else { \
}
namespace {
TEST(is_separator, Works) {
EXPECT_TRUE(path::is_separator('/'));
EXPECT_FALSE(path::is_separator('\0'));
EXPECT_FALSE(path::is_separator('-'));
EXPECT_FALSE(path::is_separator(' '));
#ifdef LLVM_ON_WIN32
EXPECT_TRUE(path::is_separator('\\'));
#else
EXPECT_FALSE(path::is_separator('\\'));
#endif
}
TEST(Support, Path) {
SmallVector<StringRef, 40> paths;
paths.push_back("");
paths.push_back(".");
paths.push_back("..");
paths.push_back("foo");
paths.push_back("/");
paths.push_back("/foo");
paths.push_back("foo/");
paths.push_back("/foo/");
paths.push_back("foo/bar");
paths.push_back("/foo/bar");
paths.push_back("//net");
paths.push_back("//net/foo");
paths.push_back("///foo///");
paths.push_back("///foo///bar");
paths.push_back("/.");
paths.push_back("./");
paths.push_back("/..");
paths.push_back("../");
paths.push_back("foo/.");
paths.push_back("foo/..");
paths.push_back("foo/./");
paths.push_back("foo/./bar");
paths.push_back("foo/..");
paths.push_back("foo/../");
paths.push_back("foo/../bar");
paths.push_back("c:");
paths.push_back("c:/");
paths.push_back("c:foo");
paths.push_back("c:/foo");
paths.push_back("c:foo/");
paths.push_back("c:/foo/");
paths.push_back("c:/foo/bar");
paths.push_back("prn:");
paths.push_back("c:\\");
paths.push_back("c:foo");
paths.push_back("c:\\foo");
paths.push_back("c:foo\\");
paths.push_back("c:\\foo\\");
paths.push_back("c:\\foo/");
paths.push_back("c:/foo\\bar");
SmallVector<StringRef, 5> ComponentStack;
for (SmallVector<StringRef, 40>::const_iterator i = paths.begin(),
e = paths.end();
i != e;
++i) {
for (sys::path::const_iterator ci = sys::path::begin(*i),
ce = sys::path::end(*i);
ci != ce;
++ci) {
ASSERT_FALSE(ci->empty());
ComponentStack.push_back(*ci);
}
for (sys::path::reverse_iterator ci = sys::path::rbegin(*i),
ce = sys::path::rend(*i);
ci != ce;
++ci) {
ASSERT_TRUE(*ci == ComponentStack.back());
ComponentStack.pop_back();
}
ASSERT_TRUE(ComponentStack.empty());
path::has_root_path(*i);
path::root_path(*i);
path::has_root_name(*i);
path::root_name(*i);
path::has_root_directory(*i);
path::root_directory(*i);
path::has_parent_path(*i);
path::parent_path(*i);
path::has_filename(*i);
path::filename(*i);
path::has_stem(*i);
path::stem(*i);
path::has_extension(*i);
path::extension(*i);
path::is_absolute(*i);
path::is_relative(*i);
SmallString<128> temp_store;
temp_store = *i;
ASSERT_NO_ERROR(fs::make_absolute(temp_store));
temp_store = *i;
path::remove_filename(temp_store);
temp_store = *i;
path::replace_extension(temp_store, "ext");
StringRef filename(temp_store.begin(), temp_store.size()), stem, ext;
stem = path::stem(filename);
ext = path::extension(filename);
EXPECT_EQ(*sys::path::rbegin(filename), (stem + ext).str());
path::native(*i, temp_store);
}
}
TEST(Support, RelativePathIterator) {
SmallString<64> Path(StringRef("c/d/e/foo.txt"));
typedef SmallVector<StringRef, 4> PathComponents;
PathComponents ExpectedPathComponents;
PathComponents ActualPathComponents;
StringRef(Path).split(ExpectedPathComponents, "/");
for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E;
++I) {
ActualPathComponents.push_back(*I);
}
ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size());
for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) {
EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str());
}
}
TEST(Support, AbsolutePathIterator) {
SmallString<64> Path(StringRef("/c/d/e/foo.txt"));
typedef SmallVector<StringRef, 4> PathComponents;
PathComponents ExpectedPathComponents;
PathComponents ActualPathComponents;
StringRef(Path).split(ExpectedPathComponents, "/");
// The root path will also be a component when iterating
ExpectedPathComponents[0] = "/";
for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E;
++I) {
ActualPathComponents.push_back(*I);
}
ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size());
for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) {
EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str());
}
}
#ifdef LLVM_ON_WIN32
TEST(Support, AbsolutePathIteratorWin32) {
SmallString<64> Path(StringRef("c:\\c\\e\\foo.txt"));
typedef SmallVector<StringRef, 4> PathComponents;
PathComponents ExpectedPathComponents;
PathComponents ActualPathComponents;
StringRef(Path).split(ExpectedPathComponents, "\\");
// The root path (which comes after the drive name) will also be a component
// when iterating.
ExpectedPathComponents.insert(ExpectedPathComponents.begin()+1, "\\");
for (path::const_iterator I = path::begin(Path), E = path::end(Path); I != E;
++I) {
ActualPathComponents.push_back(*I);
}
ASSERT_EQ(ExpectedPathComponents.size(), ActualPathComponents.size());
for (size_t i = 0; i <ExpectedPathComponents.size(); ++i) {
EXPECT_EQ(ExpectedPathComponents[i].str(), ActualPathComponents[i].str());
}
}
#endif // LLVM_ON_WIN32
TEST(Support, AbsolutePathIteratorEnd) {
// Trailing slashes are converted to '.' unless they are part of the root path.
SmallVector<StringRef, 4> Paths;
Paths.push_back("/foo/");
Paths.push_back("/foo//");
Paths.push_back("//net//");
#ifdef LLVM_ON_WIN32
Paths.push_back("c:\\\\");
#endif
for (StringRef Path : Paths) {
StringRef LastComponent = *path::rbegin(Path);
EXPECT_EQ(".", LastComponent);
}
SmallVector<StringRef, 3> RootPaths;
RootPaths.push_back("/");
RootPaths.push_back("//net/");
#ifdef LLVM_ON_WIN32
RootPaths.push_back("c:\\");
#endif
for (StringRef Path : RootPaths) {
StringRef LastComponent = *path::rbegin(Path);
EXPECT_EQ(1u, LastComponent.size());
EXPECT_TRUE(path::is_separator(LastComponent[0]));
}
}
TEST(Support, HomeDirectory) {
#ifdef LLVM_ON_UNIX
// This test only makes sense on Unix if $HOME is set.
if (::getenv("HOME")) {
#endif
SmallString<128> HomeDir;
EXPECT_TRUE(path::home_directory(HomeDir));
EXPECT_FALSE(HomeDir.empty());
#ifdef LLVM_ON_UNIX
}
#endif
}
class FileSystemTest : public testing::Test {
protected:
/// Unique temporary directory in which all created filesystem entities must
/// be placed. It is recursively removed at the end of each test.
SmallString<128> TestDirectory;
virtual void SetUp() {
ASSERT_NO_ERROR(
fs::createUniqueDirectory("file-system-test", TestDirectory));
// We don't care about this specific file.
errs() << "Test Directory: " << TestDirectory << '\n';
errs().flush();
}
virtual void TearDown() {
ASSERT_NO_ERROR(fs::remove(TestDirectory.str()));
}
};
TEST_F(FileSystemTest, Unique) {
// Create a temp file.
int FileDescriptor;
SmallString<64> TempPath;
ASSERT_NO_ERROR(
fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath));
// The same file should return an identical unique id.
fs::UniqueID F1, F2;
ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath), F1));
ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath), F2));
ASSERT_EQ(F1, F2);
// Different files should return different unique ids.
int FileDescriptor2;
SmallString<64> TempPath2;
ASSERT_NO_ERROR(
fs::createTemporaryFile("prefix", "temp", FileDescriptor2, TempPath2));
fs::UniqueID D;
ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath2), D));
ASSERT_NE(D, F1);
::close(FileDescriptor2);
ASSERT_NO_ERROR(fs::remove(Twine(TempPath2)));
// Two paths representing the same file on disk should still provide the
// same unique id. We can test this by making a hard link.
ASSERT_NO_ERROR(fs::create_link(Twine(TempPath), Twine(TempPath2)));
fs::UniqueID D2;
ASSERT_NO_ERROR(fs::getUniqueID(Twine(TempPath2), D2));
ASSERT_EQ(D2, F1);
::close(FileDescriptor);
SmallString<128> Dir1;
ASSERT_NO_ERROR(
fs::createUniqueDirectory("dir1", Dir1));
ASSERT_NO_ERROR(fs::getUniqueID(Dir1.c_str(), F1));
ASSERT_NO_ERROR(fs::getUniqueID(Dir1.c_str(), F2));
ASSERT_EQ(F1, F2);
SmallString<128> Dir2;
ASSERT_NO_ERROR(
fs::createUniqueDirectory("dir2", Dir2));
ASSERT_NO_ERROR(fs::getUniqueID(Dir2.c_str(), F2));
ASSERT_NE(F1, F2);
}
TEST_F(FileSystemTest, TempFiles) {
// Create a temp file.
int FileDescriptor;
SmallString<64> TempPath;
ASSERT_NO_ERROR(
fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath));
// Make sure it exists.
ASSERT_TRUE(sys::fs::exists(Twine(TempPath)));
// Create another temp tile.
int FD2;
SmallString<64> TempPath2;
ASSERT_NO_ERROR(fs::createTemporaryFile("prefix", "temp", FD2, TempPath2));
ASSERT_TRUE(TempPath2.endswith(".temp"));
ASSERT_NE(TempPath.str(), TempPath2.str());
fs::file_status A, B;
ASSERT_NO_ERROR(fs::status(Twine(TempPath), A));
ASSERT_NO_ERROR(fs::status(Twine(TempPath2), B));
EXPECT_FALSE(fs::equivalent(A, B));
::close(FD2);
// Remove Temp2.
ASSERT_NO_ERROR(fs::remove(Twine(TempPath2)));
ASSERT_NO_ERROR(fs::remove(Twine(TempPath2)));
ASSERT_EQ(fs::remove(Twine(TempPath2), false),
errc::no_such_file_or_directory);
std::error_code EC = fs::status(TempPath2.c_str(), B);
EXPECT_EQ(EC, errc::no_such_file_or_directory);
EXPECT_EQ(B.type(), fs::file_type::file_not_found);
// Make sure Temp2 doesn't exist.
ASSERT_EQ(fs::access(Twine(TempPath2), sys::fs::AccessMode::Exist),
errc::no_such_file_or_directory);
SmallString<64> TempPath3;
ASSERT_NO_ERROR(fs::createTemporaryFile("prefix", "", TempPath3));
ASSERT_FALSE(TempPath3.endswith("."));
// Create a hard link to Temp1.
ASSERT_NO_ERROR(fs::create_link(Twine(TempPath), Twine(TempPath2)));
bool equal;
ASSERT_NO_ERROR(fs::equivalent(Twine(TempPath), Twine(TempPath2), equal));
EXPECT_TRUE(equal);
ASSERT_NO_ERROR(fs::status(Twine(TempPath), A));
ASSERT_NO_ERROR(fs::status(Twine(TempPath2), B));
EXPECT_TRUE(fs::equivalent(A, B));
// Remove Temp1.
::close(FileDescriptor);
ASSERT_NO_ERROR(fs::remove(Twine(TempPath)));
// Remove the hard link.
ASSERT_NO_ERROR(fs::remove(Twine(TempPath2)));
// Make sure Temp1 doesn't exist.
ASSERT_EQ(fs::access(Twine(TempPath), sys::fs::AccessMode::Exist),
errc::no_such_file_or_directory);
#ifdef LLVM_ON_WIN32
// Path name > 260 chars should get an error.
const char *Path270 =
"abcdefghijklmnopqrstuvwxyz9abcdefghijklmnopqrstuvwxyz8"
"abcdefghijklmnopqrstuvwxyz7abcdefghijklmnopqrstuvwxyz6"
"abcdefghijklmnopqrstuvwxyz5abcdefghijklmnopqrstuvwxyz4"
"abcdefghijklmnopqrstuvwxyz3abcdefghijklmnopqrstuvwxyz2"
"abcdefghijklmnopqrstuvwxyz1abcdefghijklmnopqrstuvwxyz0";
EXPECT_EQ(fs::createUniqueFile(Twine(Path270), FileDescriptor, TempPath),
errc::no_such_file_or_directory);
#endif
}
TEST_F(FileSystemTest, CreateDir) {
ASSERT_NO_ERROR(fs::create_directory(Twine(TestDirectory) + "foo"));
ASSERT_NO_ERROR(fs::create_directory(Twine(TestDirectory) + "foo"));
ASSERT_EQ(fs::create_directory(Twine(TestDirectory) + "foo", false),
errc::file_exists);
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "foo"));
}
TEST_F(FileSystemTest, DirectoryIteration) {
std::error_code ec;
for (fs::directory_iterator i(".", ec), e; i != e; i.increment(ec))
ASSERT_NO_ERROR(ec);
// Create a known hierarchy to recurse over.
ASSERT_NO_ERROR(
fs::create_directories(Twine(TestDirectory) + "/recursive/a0/aa1"));
ASSERT_NO_ERROR(
fs::create_directories(Twine(TestDirectory) + "/recursive/a0/ab1"));
ASSERT_NO_ERROR(fs::create_directories(Twine(TestDirectory) +
"/recursive/dontlookhere/da1"));
ASSERT_NO_ERROR(
fs::create_directories(Twine(TestDirectory) + "/recursive/z0/za1"));
ASSERT_NO_ERROR(
fs::create_directories(Twine(TestDirectory) + "/recursive/pop/p1"));
typedef std::vector<std::string> v_t;
v_t visited;
for (fs::recursive_directory_iterator i(Twine(TestDirectory)
+ "/recursive", ec), e; i != e; i.increment(ec)){
ASSERT_NO_ERROR(ec);
if (path::filename(i->path()) == "p1") {
i.pop();
// FIXME: recursive_directory_iterator should be more robust.
if (i == e) break;
}
if (path::filename(i->path()) == "dontlookhere")
i.no_push();
visited.push_back(path::filename(i->path()));
}
v_t::const_iterator a0 = std::find(visited.begin(), visited.end(), "a0");
v_t::const_iterator aa1 = std::find(visited.begin(), visited.end(), "aa1");
v_t::const_iterator ab1 = std::find(visited.begin(), visited.end(), "ab1");
v_t::const_iterator dontlookhere = std::find(visited.begin(), visited.end(),
"dontlookhere");
v_t::const_iterator da1 = std::find(visited.begin(), visited.end(), "da1");
v_t::const_iterator z0 = std::find(visited.begin(), visited.end(), "z0");
v_t::const_iterator za1 = std::find(visited.begin(), visited.end(), "za1");
v_t::const_iterator pop = std::find(visited.begin(), visited.end(), "pop");
v_t::const_iterator p1 = std::find(visited.begin(), visited.end(), "p1");
// Make sure that each path was visited correctly.
ASSERT_NE(a0, visited.end());
ASSERT_NE(aa1, visited.end());
ASSERT_NE(ab1, visited.end());
ASSERT_NE(dontlookhere, visited.end());
ASSERT_EQ(da1, visited.end()); // Not visited.
ASSERT_NE(z0, visited.end());
ASSERT_NE(za1, visited.end());
ASSERT_NE(pop, visited.end());
ASSERT_EQ(p1, visited.end()); // Not visited.
// Make sure that parents were visited before children. No other ordering
// guarantees can be made across siblings.
ASSERT_LT(a0, aa1);
ASSERT_LT(a0, ab1);
ASSERT_LT(z0, za1);
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/a0/aa1"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/a0/ab1"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/a0"));
ASSERT_NO_ERROR(
fs::remove(Twine(TestDirectory) + "/recursive/dontlookhere/da1"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/dontlookhere"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/pop/p1"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/pop"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/z0/za1"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive/z0"));
ASSERT_NO_ERROR(fs::remove(Twine(TestDirectory) + "/recursive"));
}
const char archive[] = "!<arch>\x0A";
const char bitcode[] = "\xde\xc0\x17\x0b";
const char coff_object[] = "\x00\x00......";
const char coff_bigobj[] = "\x00\x00\xff\xff\x00\x02......"
"\xc7\xa1\xba\xd1\xee\xba\xa9\x4b\xaf\x20\xfa\xf6\x6a\xa4\xdc\xb8";
const char coff_import_library[] = "\x00\x00\xff\xff....";
const char elf_relocatable[] = { 0x7f, 'E', 'L', 'F', 1, 2, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1 };
const char macho_universal_binary[] = "\xca\xfe\xba\xbe...\0x00";
const char macho_object[] = "\xfe\xed\xfa\xce..........\x00\x01";
const char macho_executable[] = "\xfe\xed\xfa\xce..........\x00\x02";
const char macho_fixed_virtual_memory_shared_lib[] =
"\xfe\xed\xfa\xce..........\x00\x03";
const char macho_core[] = "\xfe\xed\xfa\xce..........\x00\x04";
const char macho_preload_executable[] = "\xfe\xed\xfa\xce..........\x00\x05";
const char macho_dynamically_linked_shared_lib[] =
"\xfe\xed\xfa\xce..........\x00\x06";
const char macho_dynamic_linker[] = "\xfe\xed\xfa\xce..........\x00\x07";
const char macho_bundle[] = "\xfe\xed\xfa\xce..........\x00\x08";
const char macho_dsym_companion[] = "\xfe\xed\xfa\xce..........\x00\x0a";
const char windows_resource[] = "\x00\x00\x00\x00\x020\x00\x00\x00\xff";
const char macho_dynamically_linked_shared_lib_stub[] =
"\xfe\xed\xfa\xce..........\x00\x09";
TEST_F(FileSystemTest, Magic) {
struct type {
const char *filename;
const char *magic_str;
size_t magic_str_len;
fs::file_magic magic;
} types[] = {
#define DEFINE(magic) \
{ #magic, magic, sizeof(magic), fs::file_magic::magic }
DEFINE(archive),
DEFINE(bitcode),
DEFINE(coff_object),
{ "coff_bigobj", coff_bigobj, sizeof(coff_bigobj), fs::file_magic::coff_object },
DEFINE(coff_import_library),
DEFINE(elf_relocatable),
DEFINE(macho_universal_binary),
DEFINE(macho_object),
DEFINE(macho_executable),
DEFINE(macho_fixed_virtual_memory_shared_lib),
DEFINE(macho_core),
DEFINE(macho_preload_executable),
DEFINE(macho_dynamically_linked_shared_lib),
DEFINE(macho_dynamic_linker),
DEFINE(macho_bundle),
DEFINE(macho_dynamically_linked_shared_lib_stub),
DEFINE(macho_dsym_companion),
DEFINE(windows_resource)
#undef DEFINE
};
// Create some files filled with magic.
for (type *i = types, *e = types + (sizeof(types) / sizeof(type)); i != e;
++i) {
SmallString<128> file_pathname(TestDirectory);
path::append(file_pathname, i->filename);
std::error_code EC;
raw_fd_ostream file(file_pathname, EC, sys::fs::F_None);
ASSERT_FALSE(file.has_error());
StringRef magic(i->magic_str, i->magic_str_len);
file << magic;
file.close();
EXPECT_EQ(i->magic, fs::identify_magic(magic));
ASSERT_NO_ERROR(fs::remove(Twine(file_pathname)));
}
}
#ifdef LLVM_ON_WIN32
TEST_F(FileSystemTest, CarriageReturn) {
SmallString<128> FilePathname(TestDirectory);
std::error_code EC;
path::append(FilePathname, "test");
{
raw_fd_ostream File(FilePathname, EC, sys::fs::F_Text);
ASSERT_NO_ERROR(EC);
File << '\n';
}
{
auto Buf = MemoryBuffer::getFile(FilePathname.str());
EXPECT_TRUE((bool)Buf);
EXPECT_EQ(Buf.get()->getBuffer(), "\r\n");
}
{
raw_fd_ostream File(FilePathname, EC, sys::fs::F_None);
ASSERT_NO_ERROR(EC);
File << '\n';
}
{
auto Buf = MemoryBuffer::getFile(FilePathname.str());
EXPECT_TRUE((bool)Buf);
EXPECT_EQ(Buf.get()->getBuffer(), "\n");
}
ASSERT_NO_ERROR(fs::remove(Twine(FilePathname)));
}
#endif
TEST_F(FileSystemTest, FileMapping) {
// Create a temp file.
int FileDescriptor;
SmallString<64> TempPath;
ASSERT_NO_ERROR(
fs::createTemporaryFile("prefix", "temp", FileDescriptor, TempPath));
// Map in temp file and add some content
std::error_code EC;
StringRef Val("hello there");
{
fs::mapped_file_region mfr(FileDescriptor,
true,
fs::mapped_file_region::readwrite,
4096,
0,
EC);
ASSERT_NO_ERROR(EC);
std::copy(Val.begin(), Val.end(), mfr.data());
// Explicitly add a 0.
mfr.data()[Val.size()] = 0;
// Unmap temp file
}
// Map it back in read-only
fs::mapped_file_region mfr(Twine(TempPath),
fs::mapped_file_region::readonly,
0,
0,
EC);
ASSERT_NO_ERROR(EC);
// Verify content
EXPECT_EQ(StringRef(mfr.const_data()), Val);
// Unmap temp file
fs::mapped_file_region m(Twine(TempPath),
fs::mapped_file_region::readonly,
0,
0,
EC);
ASSERT_NO_ERROR(EC);
const char *Data = m.const_data();
fs::mapped_file_region mfrrv(std::move(m));
EXPECT_EQ(mfrrv.const_data(), Data);
}
TEST(Support, NormalizePath) {
#if defined(LLVM_ON_WIN32)
#define EXPECT_PATH_IS(path__, windows__, not_windows__) \
EXPECT_EQ(path__, windows__);
#else
#define EXPECT_PATH_IS(path__, windows__, not_windows__) \
EXPECT_EQ(path__, not_windows__);
#endif
SmallString<64> Path1("a");
SmallString<64> Path2("a/b");
SmallString<64> Path3("a\\b");
SmallString<64> Path4("a\\\\b");
SmallString<64> Path5("\\a");
SmallString<64> Path6("a\\");
path::native(Path1);
EXPECT_PATH_IS(Path1, "a", "a");
path::native(Path2);
EXPECT_PATH_IS(Path2, "a\\b", "a/b");
path::native(Path3);
EXPECT_PATH_IS(Path3, "a\\b", "a/b");
path::native(Path4);
EXPECT_PATH_IS(Path4, "a\\\\b", "a\\\\b");
path::native(Path5);
EXPECT_PATH_IS(Path5, "\\a", "/a");
path::native(Path6);
EXPECT_PATH_IS(Path6, "a\\", "a/");
#undef EXPECT_PATH_IS
}
} // anonymous namespace