llvm-6502/lib/Target/ARM/Disassembler/ARMDisassembler.cpp

579 lines
18 KiB
C++
Raw Normal View History

//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the ARM Disassembler.
// It contains code to implement the public interfaces of ARMDisassembler and
// ThumbDisassembler, both of which are instances of MCDisassembler.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm-disassembler"
#include "ARMDisassembler.h"
#include "ARMDisassemblerCore.h"
#include "llvm/MC/EDInstInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
/// ARMGenDecoderTables.inc - ARMDecoderTables.inc is tblgen'ed from
/// ARMDecoderEmitter.cpp TableGen backend. It contains:
///
/// o Mappings from opcode to ARM/Thumb instruction format
///
/// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function
/// for an ARM instruction.
///
/// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding
/// function for a Thumb instruction.
///
#include "../ARMGenDecoderTables.inc"
#include "../ARMGenEDInfo.inc"
using namespace llvm;
/// showBitVector - Use the raw_ostream to log a diagnostic message describing
/// the inidividual bits of the instruction.
///
static inline void showBitVector(raw_ostream &os, const uint32_t &insn) {
// Split the bit position markers into more than one lines to fit 80 columns.
os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11"
<< " 10 9 8 7 6 5 4 3 2 1 0 \n";
os << "---------------------------------------------------------------"
<< "----------------------------------\n";
os << '|';
for (unsigned i = 32; i != 0; --i) {
if (insn >> (i - 1) & 0x01)
os << " 1";
else
os << " 0";
os << (i%4 == 1 ? '|' : ':');
}
os << '\n';
// Split the bit position markers into more than one lines to fit 80 columns.
os << "---------------------------------------------------------------"
<< "----------------------------------\n";
os << '\n';
}
/// decodeARMInstruction is a decorator function which tries special cases of
/// instruction matching before calling the auto-generated decoder function.
static unsigned decodeARMInstruction(uint32_t &insn) {
if (slice(insn, 31, 28) == 15)
goto AutoGenedDecoder;
// Special case processing, if any, goes here....
// LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB.
// The insufficient encoding information of the combined instruction confuses
// the decoder wrt BFC/BFI. Therefore, we try to recover here.
// For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111.
// For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111.
if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) {
if (slice(insn, 3, 0) == 15)
return ARM::BFC;
else
return ARM::BFI;
}
// Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8.
// As a result, the decoder fails to decode UMULL properly.
if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) {
return ARM::UMULL;
}
// Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195.
// As a result, the decoder fails to decode SBFX properly.
if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5)
return ARM::SBFX;
// And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198.
// As a result, the decoder fails to decode UBFX properly.
if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5)
return ARM::UBFX;
// Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2.
// As a result, the decoder fails to deocode SSAT properly.
if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1)
return slice(insn, 6, 6) == 0 ? ARM::SSATlsl : ARM::SSATasr;
// Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147.
// As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT.
if (slice(insn, 27, 24) == 0) {
switch (slice(insn, 21, 20)) {
case 2:
switch (slice(insn, 7, 4)) {
case 11:
return ARM::STRHT;
default:
break; // fallthrough
}
break;
case 3:
switch (slice(insn, 7, 4)) {
case 11:
return ARM::LDRHT;
case 13:
return ARM::LDRSBT;
case 15:
return ARM::LDRSHT;
default:
break; // fallthrough
}
break;
default:
break; // fallthrough
}
}
// Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153.
// As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST
// properly.
if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) {
unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
switch (slice(insn, 7, 4)) {
case 11:
switch (PW) {
case 2: // Offset
return ARM::STRH;
case 3: // Pre-indexed
return ARM::STRH_PRE;
case 0: // Post-indexed
return ARM::STRH_POST;
default:
break; // fallthrough
}
break;
case 13:
switch (PW) {
case 2: // Offset
return ARM::LDRD;
case 3: // Pre-indexed
return ARM::LDRD_PRE;
case 0: // Post-indexed
return ARM::LDRD_POST;
default:
break; // fallthrough
}
break;
case 15:
switch (PW) {
case 2: // Offset
return ARM::STRD;
case 3: // Pre-indexed
return ARM::STRD_PRE;
case 0: // Post-indexed
return ARM::STRD_POST;
default:
break; // fallthrough
}
break;
default:
break; // fallthrough
}
}
// Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153.
// As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST
// properly.
if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) {
unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
switch (slice(insn, 7, 4)) {
case 11:
switch (PW) {
case 2: // Offset
return ARM::LDRH;
case 3: // Pre-indexed
return ARM::LDRH_PRE;
case 0: // Post-indexed
return ARM::LDRH_POST;
default:
break; // fallthrough
}
break;
case 13:
switch (PW) {
case 2: // Offset
return ARM::LDRSB;
case 3: // Pre-indexed
return ARM::LDRSB_PRE;
case 0: // Post-indexed
return ARM::LDRSB_POST;
default:
break; // fallthrough
}
break;
case 15:
switch (PW) {
case 2: // Offset
return ARM::LDRSH;
case 3: // Pre-indexed
return ARM::LDRSH_PRE;
case 0: // Post-indexed
return ARM::LDRSH_POST;
default:
break; // fallthrough
}
break;
default:
break; // fallthrough
}
}
AutoGenedDecoder:
// Calling the auto-generated decoder function.
return decodeInstruction(insn);
}
// Helper function for special case handling of LDR (literal) and friends.
// See, for example, A6.3.7 Load word: Table A6-18 Load word.
// See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
// before returning it.
static unsigned T2Morph2LoadLiteral(unsigned Opcode) {
switch (Opcode) {
default:
return Opcode; // Return unmorphed opcode.
case ARM::t2LDRDi8:
return ARM::t2LDRDpci;
case ARM::t2LDR_POST: case ARM::t2LDR_PRE:
case ARM::t2LDRi12: case ARM::t2LDRi8:
case ARM::t2LDRs: case ARM::t2LDRT:
return ARM::t2LDRpci;
case ARM::t2LDRB_POST: case ARM::t2LDRB_PRE:
case ARM::t2LDRBi12: case ARM::t2LDRBi8:
case ARM::t2LDRBs: case ARM::t2LDRBT:
return ARM::t2LDRBpci;
case ARM::t2LDRH_POST: case ARM::t2LDRH_PRE:
case ARM::t2LDRHi12: case ARM::t2LDRHi8:
case ARM::t2LDRHs: case ARM::t2LDRHT:
return ARM::t2LDRHpci;
case ARM::t2LDRSB_POST: case ARM::t2LDRSB_PRE:
case ARM::t2LDRSBi12: case ARM::t2LDRSBi8:
case ARM::t2LDRSBs: case ARM::t2LDRSBT:
return ARM::t2LDRSBpci;
case ARM::t2LDRSH_POST: case ARM::t2LDRSH_PRE:
case ARM::t2LDRSHi12: case ARM::t2LDRSHi8:
case ARM::t2LDRSHs: case ARM::t2LDRSHT:
return ARM::t2LDRSHpci;
}
}
/// decodeThumbSideEffect is a decorator function which can potentially twiddle
/// the instruction or morph the returned opcode under Thumb2.
///
/// First it checks whether the insn is a NEON or VFP instr; if true, bit
/// twiddling could be performed on insn to turn it into an ARM NEON/VFP
/// equivalent instruction and decodeInstruction is called with the transformed
/// insn.
///
/// Next, there is special handling for Load byte/halfword/word instruction by
/// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded
/// Thumb2 instruction. See comments below for further details.
///
/// Finally, one last check is made to see whether the insn is a NEON/VFP and
/// decodeInstruction(insn) is invoked on the original insn.
///
/// Otherwise, decodeThumbInstruction is called with the original insn.
static unsigned decodeThumbSideEffect(bool IsThumb2, uint32_t &insn) {
if (IsThumb2) {
uint16_t op1 = slice(insn, 28, 27);
uint16_t op2 = slice(insn, 26, 20);
// A6.3 32-bit Thumb instruction encoding
// Table A6-9 32-bit Thumb instruction encoding
// The coprocessor instructions of interest are transformed to their ARM
// equivalents.
// --------- Transform Begin Marker ---------
if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) {
// A7.4 Advanced SIMD data-processing instructions
// U bit of Thumb corresponds to Inst{24} of ARM.
uint16_t U = slice(op1, 1, 1);
// Inst{28-24} of ARM = {1,0,0,1,U};
uint16_t bits28_24 = 9 << 1 | U;
DEBUG(showBitVector(errs(), insn));
setSlice(insn, 28, 24, bits28_24);
return decodeInstruction(insn);
}
if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) {
// A7.7 Advanced SIMD element or structure load/store instructions
// Inst{27-24} of Thumb = 0b1001
// Inst{27-24} of ARM = 0b0100
DEBUG(showBitVector(errs(), insn));
setSlice(insn, 27, 24, 4);
return decodeInstruction(insn);
}
// --------- Transform End Marker ---------
// See, for example, A6.3.7 Load word: Table A6-18 Load word.
// See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
// before returning it to our caller.
if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1
&& slice(insn, 19, 16) == 15)
return T2Morph2LoadLiteral(decodeThumbInstruction(insn));
// One last check for NEON/VFP instructions.
if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1)
return decodeInstruction(insn);
// Fall through.
}
return decodeThumbInstruction(insn);
}
static inline bool Thumb2PreloadOpcodeNoPCI(unsigned Opcode) {
switch (Opcode) {
default:
return false;
case ARM::t2PLDi12: case ARM::t2PLDi8:
case ARM::t2PLDr: case ARM::t2PLDs:
case ARM::t2PLDWi12: case ARM::t2PLDWi8:
case ARM::t2PLDWr: case ARM::t2PLDWs:
case ARM::t2PLIi12: case ARM::t2PLIi8:
case ARM::t2PLIr: case ARM::t2PLIs:
return true;
}
}
static inline unsigned T2Morph2Preload2PCI(unsigned Opcode) {
switch (Opcode) {
default:
return 0;
case ARM::t2PLDi12: case ARM::t2PLDi8:
case ARM::t2PLDr: case ARM::t2PLDs:
return ARM::t2PLDpci;
case ARM::t2PLDWi12: case ARM::t2PLDWi8:
case ARM::t2PLDWr: case ARM::t2PLDWs:
return ARM::t2PLDWpci;
case ARM::t2PLIi12: case ARM::t2PLIi8:
case ARM::t2PLIr: case ARM::t2PLIs:
return ARM::t2PLIpci;
}
}
//
// Public interface for the disassembler
//
bool ARMDisassembler::getInstruction(MCInst &MI,
uint64_t &Size,
const MemoryObject &Region,
uint64_t Address,
raw_ostream &os) const {
// The machine instruction.
uint32_t insn;
uint8_t bytes[4];
// We want to read exactly 4 bytes of data.
if (Region.readBytes(Address, 4, (uint8_t*)bytes, NULL) == -1)
return false;
// Encoded as a small-endian 32-bit word in the stream.
insn = (bytes[3] << 24) |
(bytes[2] << 16) |
(bytes[1] << 8) |
(bytes[0] << 0);
unsigned Opcode = decodeARMInstruction(insn);
ARMFormat Format = ARMFormats[Opcode];
Size = 4;
DEBUG({
errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
<< " Format=" << stringForARMFormat(Format) << '(' << (int)Format
<< ")\n";
showBitVector(errs(), insn);
});
ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format);
if (!Builder)
return false;
if (!Builder->Build(MI, insn))
return false;
delete Builder;
return true;
}
bool ThumbDisassembler::getInstruction(MCInst &MI,
uint64_t &Size,
const MemoryObject &Region,
uint64_t Address,
raw_ostream &os) const {
// The Thumb instruction stream is a sequence of halhwords.
// This represents the first halfword as well as the machine instruction
// passed to decodeThumbInstruction(). For 16-bit Thumb instruction, the top
// halfword of insn is 0x00 0x00; otherwise, the first halfword is moved to
// the top half followed by the second halfword.
uint32_t insn = 0;
// Possible second halfword.
uint16_t insn1 = 0;
// A6.1 Thumb instruction set encoding
//
// If bits [15:11] of the halfword being decoded take any of the following
// values, the halfword is the first halfword of a 32-bit instruction:
// o 0b11101
// o 0b11110
// o 0b11111.
//
// Otherwise, the halfword is a 16-bit instruction.
// Read 2 bytes of data first.
uint8_t bytes[2];
if (Region.readBytes(Address, 2, (uint8_t*)bytes, NULL) == -1)
return false;
// Encoded as a small-endian 16-bit halfword in the stream.
insn = (bytes[1] << 8) | bytes[0];
unsigned bits15_11 = slice(insn, 15, 11);
bool IsThumb2 = false;
// 32-bit instructions if the bits [15:11] of the halfword matches
// { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }.
if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) {
IsThumb2 = true;
if (Region.readBytes(Address + 2, 2, (uint8_t*)bytes, NULL) == -1)
return false;
// Encoded as a small-endian 16-bit halfword in the stream.
insn1 = (bytes[1] << 8) | bytes[0];
insn = (insn << 16 | insn1);
}
// The insn could potentially be bit-twiddled in order to be decoded as an ARM
// NEON/VFP opcode. In such case, the modified insn is later disassembled as
// an ARM NEON/VFP instruction.
//
// This is a short term solution for lack of encoding bits specified for the
// Thumb2 NEON/VFP instructions. The long term solution could be adding some
// infrastructure to have each instruction support more than one encodings.
// Which encoding is used would be based on which subtarget the compiler/
// disassembler is working with at the time. This would allow the sharing of
// the NEON patterns between ARM and Thumb2, as well as potential greater
// sharing between the regular ARM instructions and the 32-bit wide Thumb2
// instructions as well.
unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn);
// A8.6.117/119/120/121.
// PLD/PLDW/PLI instructions with Rn==15 is transformed to the pci variant.
if (Thumb2PreloadOpcodeNoPCI(Opcode) && slice(insn, 19, 16) == 15)
Opcode = T2Morph2Preload2PCI(Opcode);
ARMFormat Format = ARMFormats[Opcode];
Size = IsThumb2 ? 4 : 2;
DEBUG({
errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
<< " Format=" << stringForARMFormat(Format) << '(' << (int)Format
<< ")\n";
showBitVector(errs(), insn);
});
ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format);
if (!Builder)
return false;
Builder->SetSession(const_cast<Session *>(&SO));
if (!Builder->Build(MI, insn))
return false;
delete Builder;
return true;
}
// A8.6.50
// Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition.
static unsigned short CountITSize(unsigned ITMask) {
// First count the trailing zeros of the IT mask.
unsigned TZ = CountTrailingZeros_32(ITMask);
if (TZ > 3) {
DEBUG(errs() << "Encoding error: IT Mask '0000'");
return 0;
}
return (4 - TZ);
}
/// Init ITState. Note that at least one bit is always 1 in mask.
bool Session::InitIT(unsigned short bits7_0) {
ITCounter = CountITSize(slice(bits7_0, 3, 0));
if (ITCounter == 0)
return false;
// A8.6.50 IT
unsigned short FirstCond = slice(bits7_0, 7, 4);
if (FirstCond == 0xF) {
DEBUG(errs() << "Encoding error: IT FirstCond '1111'");
return false;
}
if (FirstCond == 0xE && ITCounter != 1) {
DEBUG(errs() << "Encoding error: IT FirstCond '1110' && Mask != '1000'");
return false;
}
ITState = bits7_0;
return true;
}
/// Update ITState if necessary.
void Session::UpdateIT() {
assert(ITCounter);
--ITCounter;
if (ITCounter == 0)
ITState = 0;
else {
unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1;
setSlice(ITState, 4, 0, NewITState4_0);
}
}
static MCDisassembler *createARMDisassembler(const Target &T) {
return new ARMDisassembler;
}
static MCDisassembler *createThumbDisassembler(const Target &T) {
return new ThumbDisassembler;
}
extern "C" void LLVMInitializeARMDisassembler() {
// Register the disassembler.
TargetRegistry::RegisterMCDisassembler(TheARMTarget,
createARMDisassembler);
TargetRegistry::RegisterMCDisassembler(TheThumbTarget,
createThumbDisassembler);
}
EDInstInfo *ARMDisassembler::getEDInfo() const {
return instInfoARM;
}
EDInstInfo *ThumbDisassembler::getEDInfo() const {
return instInfoARM;
}