llvm-6502/lib/Transforms/Scalar/TailRecursionElimination.cpp

97 lines
4.3 KiB
C++
Raw Normal View History

//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
//
// This file implements tail recursion elimination.
//
// Caveats: The algorithm implemented is trivially simple. There are several
// improvements that could be made:
//
// 1. If the function has any alloca instructions, these instructions will not
// remain in the entry block of the function. Doing this requires analysis
// to prove that the alloca is not reachable by the recursively invoked
// function call.
// 2. Tail recursion is only performed if the call immediately preceeds the
// return instruction. Would it be useful to generalize this somehow?
// 3. TRE is only performed if the function returns void or if the return
// returns the result returned by the call. It is possible, but unlikely,
// that the return returns something else (like constant 0), and can still
// be TRE'd. It can be TRE'd if ALL OTHER return instructions in the
// function return the exact same value.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "Support/Statistic.h"
namespace {
Statistic<> NumEliminated("tailcallelim", "Number of tail calls removed");
struct TailCallElim : public FunctionPass {
virtual bool runOnFunction(Function &F);
};
RegisterOpt<TailCallElim> X("tailcallelim", "Tail Call Elimination");
}
bool TailCallElim::runOnFunction(Function &F) {
// If this function is a varargs function, we won't be able to PHI the args
// right, so don't even try to convert it...
if (F.getFunctionType()->isVarArg()) return false;
BasicBlock *OldEntry = 0;
std::vector<PHINode*> ArgumentPHIs;
bool MadeChange = false;
// Loop over the function, looking for any returning blocks...
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
if (Ret != BB->begin())
if (CallInst *CI = dyn_cast<CallInst>(Ret->getPrev()))
// Make sure the tail call is to the current function, and that the
// return either returns void or returns the value computed by the
// call.
if (CI->getCalledFunction() == &F &&
(Ret->getNumOperands() == 0 || Ret->getReturnValue() == CI)) {
// Ohh, it looks like we found a tail call, is this the first?
if (!OldEntry) {
// Ok, so this is the first tail call we have found in this
// function. Insert a new entry block into the function, allowing
// us to branch back to the old entry block.
OldEntry = &F.getEntryNode();
BasicBlock *NewEntry = new BasicBlock("tailrecurse", OldEntry);
NewEntry->getInstList().push_back(new BranchInst(OldEntry));
// Now that we have created a new block, which jumps to the entry
// block, insert a PHI node for each argument of the function.
// For now, we initialize each PHI to only have the real arguments
// which are passed in.
Instruction *InsertPos = OldEntry->begin();
for (Function::aiterator I = F.abegin(), E = F.aend(); I!=E; ++I){
PHINode *PN = new PHINode(I->getType(), I->getName()+".tr",
InsertPos);
PN->addIncoming(I, NewEntry);
ArgumentPHIs.push_back(PN);
}
}
// Ok, now that we know we have a pseudo-entry block WITH all of the
// required PHI nodes, add entries into the PHI node for the actual
// parameters passed into the tail-recursive call.
for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
// Now that all of the PHI nodes are in place, remove the call and
// ret instructions, replacing them with an unconditional branch.
new BranchInst(OldEntry, CI);
BB->getInstList().pop_back(); // Remove return.
BB->getInstList().pop_back(); // Remove call.
MadeChange = true;
NumEliminated++;
}
return MadeChange;
}