llvm-6502/lib/Target/Mips/Mips16ISelLowering.cpp

688 lines
25 KiB
C++
Raw Normal View History

//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsTargetLowering specialized for mips16.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-lower"
#include "Mips16ISelLowering.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <set>
using namespace llvm;
static cl::opt<bool> DontExpandCondPseudos16(
"mips16-dont-expand-cond-pseudo",
cl::init(false),
cl::desc("Dont expand conditional move related "
"pseudos for Mips 16"),
cl::Hidden);
namespace {
std::set<const char*, MipsTargetLowering::LTStr> NoHelperNeeded;
}
Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM)
: MipsTargetLowering(TM) {
//
// set up as if mips32 and then revert so we can test the mechanism
// for switching
addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
computeRegisterProperties();
clearRegisterClasses();
// Set up the register classes
addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
if (Subtarget->inMips16HardFloat())
setMips16HardFloatLibCalls();
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
computeRegisterProperties();
}
const MipsTargetLowering *
llvm::createMips16TargetLowering(MipsTargetMachine &TM) {
return new Mips16TargetLowering(TM);
}
bool
Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
return false;
}
MachineBasicBlock *
Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default:
return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case Mips::SelBeqZ:
return emitSel16(Mips::BeqzRxImm16, MI, BB);
case Mips::SelBneZ:
return emitSel16(Mips::BnezRxImm16, MI, BB);
case Mips::SelTBteqZCmpi:
return emitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
case Mips::SelTBteqZSlti:
return emitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
case Mips::SelTBteqZSltiu:
return emitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SelTBtneZCmpi:
return emitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
case Mips::SelTBtneZSlti:
return emitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
case Mips::SelTBtneZSltiu:
return emitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SelTBteqZCmp:
return emitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
case Mips::SelTBteqZSlt:
return emitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
case Mips::SelTBteqZSltu:
return emitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
case Mips::SelTBtneZCmp:
return emitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
case Mips::SelTBtneZSlt:
return emitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
case Mips::SelTBtneZSltu:
return emitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
case Mips::BteqzT8CmpX16:
return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
case Mips::BteqzT8SltX16:
return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
case Mips::BteqzT8SltuX16:
// TBD: figure out a way to get this or remove the instruction
// altogether.
return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
case Mips::BtnezT8CmpX16:
return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
case Mips::BtnezT8SltX16:
return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
case Mips::BtnezT8SltuX16:
// TBD: figure out a way to get this or remove the instruction
// altogether.
return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, MI, BB);
case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, MI, BB);
case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
break;
case Mips::SltCCRxRy16:
return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
break;
case Mips::SltiCCRxImmX16:
return emitFEXT_CCRXI16_ins
(Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
case Mips::SltiuCCRxImmX16:
return emitFEXT_CCRXI16_ins
(Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SltuCCRxRy16:
return emitFEXT_CCRX16_ins
(Mips::SltuRxRy16, MI, BB);
}
}
bool Mips16TargetLowering::
isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
unsigned NextStackOffset,
const MipsFunctionInfo& FI) const {
// No tail call optimization for mips16.
return false;
}
void Mips16TargetLowering::setMips16LibcallName
(RTLIB::Libcall L, const char *Name) {
setLibcallName(L, Name);
NoHelperNeeded.insert(Name);
}
void Mips16TargetLowering::setMips16HardFloatLibCalls() {
setMips16LibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
setMips16LibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
setMips16LibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
setMips16LibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
setMips16LibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
setMips16LibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
setMips16LibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
setMips16LibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
setMips16LibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
setMips16LibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
setMips16LibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
setMips16LibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
setMips16LibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
setMips16LibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
setMips16LibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
setMips16LibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
setMips16LibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
setMips16LibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
setMips16LibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
setMips16LibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
setMips16LibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
setMips16LibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
setMips16LibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
setMips16LibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
setMips16LibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
setMips16LibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
setMips16LibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
setMips16LibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
setMips16LibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
setMips16LibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
setMips16LibcallName(RTLIB::O_F32, "__mips16_unordsf2");
setMips16LibcallName(RTLIB::O_F64, "__mips16_unorddf2");
}
//
// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
// cleaner way to do all of this but it will have to wait until the traditional
// gcc mechanism is completed.
//
// For Pic, in order for Mips16 code to call Mips32 code which according the abi
// have either arguments or returned values placed in floating point registers,
// we use a set of helper functions. (This includes functions which return type
// complex which on Mips are returned in a pair of floating point registers).
//
// This is an encoding that we inherited from gcc.
// In Mips traditional O32, N32 ABI, floating point numbers are passed in
// floating point argument registers 1,2 only when the first and optionally
// the second arguments are float (sf) or double (df).
// For Mips16 we are only concerned with the situations where floating point
// arguments are being passed in floating point registers by the ABI, because
// Mips16 mode code cannot execute floating point instructions to load those
// values and hence helper functions are needed.
// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
// the helper function suffixs for these are:
// 0, 1, 5, 9, 2, 6, 10
// this suffix can then be calculated as follows:
// for a given argument Arg:
// Arg1x, Arg2x = 1 : Arg is sf
// 2 : Arg is df
// 0: Arg is neither sf or df
// So this stub is the string for number Arg1x + Arg2x*4.
// However not all numbers between 0 and 10 are possible, we check anyway and
// assert if the impossible exists.
//
unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
(ArgListTy &Args) const {
unsigned int resultNum = 0;
if (Args.size() >= 1) {
Type *t = Args[0].Ty;
if (t->isFloatTy()) {
resultNum = 1;
}
else if (t->isDoubleTy()) {
resultNum = 2;
}
}
if (resultNum) {
if (Args.size() >=2) {
Type *t = Args[1].Ty;
if (t->isFloatTy()) {
resultNum += 4;
}
else if (t->isDoubleTy()) {
resultNum += 8;
}
}
}
return resultNum;
}
//
// prefixs are attached to stub numbers depending on the return type .
// return type: float sf_
// double df_
// single complex sc_
// double complext dc_
// others NO PREFIX
//
//
// The full name of a helper function is__mips16_call_stub +
// return type dependent prefix + stub number
//
//
// This is something that probably should be in a different source file and
// perhaps done differently but my main purpose is to not waste runtime
// on something that we can enumerate in the source. Another possibility is
// to have a python script to generate these mapping tables. This will do
// for now. There are a whole series of helper function mapping arrays, one
// for each return type class as outlined above. There there are 11 possible
// entries. Ones with 0 are ones which should never be selected
//
// All the arrays are similar except for ones which return neither
// sf, df, sc, dc, in which only care about ones which have sf or df as a
// first parameter.
//
#define P_ "__mips16_call_stub_"
#define MAX_STUB_NUMBER 10
#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
#define T P "0" , T1
#define P P_
static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
{0, T1 };
#undef P
#define P P_ "sf_"
static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "df_"
static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "sc_"
static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "dc_"
static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#undef P_
const char* Mips16TargetLowering::
getMips16HelperFunction
(Type* RetTy, ArgListTy &Args, bool &needHelper) const {
const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
#ifndef NDEBUG
const unsigned int maxStubNum = 10;
assert(stubNum <= maxStubNum);
const bool validStubNum[maxStubNum+1] =
{true, true, true, false, false, true, true, false, false, true, true};
assert(validStubNum[stubNum]);
#endif
const char *result;
if (RetTy->isFloatTy()) {
result = sfMips16Helper[stubNum];
}
else if (RetTy ->isDoubleTy()) {
result = dfMips16Helper[stubNum];
}
else if (RetTy->isStructTy()) {
// check if it's complex
if (RetTy->getNumContainedTypes() == 2) {
if ((RetTy->getContainedType(0)->isFloatTy()) &&
(RetTy->getContainedType(1)->isFloatTy())) {
result = scMips16Helper[stubNum];
}
else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
(RetTy->getContainedType(1)->isDoubleTy())) {
result = dcMips16Helper[stubNum];
}
else {
llvm_unreachable("Uncovered condition");
}
}
else {
llvm_unreachable("Uncovered condition");
}
}
else {
if (stubNum == 0) {
needHelper = false;
return "";
}
result = vMips16Helper[stubNum];
}
needHelper = true;
return result;
}
void Mips16TargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
SelectionDAG &DAG = CLI.DAG;
const char* Mips16HelperFunction = 0;
bool NeedMips16Helper = false;
if (getTargetMachine().Options.UseSoftFloat &&
Subtarget->inMips16HardFloat()) {
//
// currently we don't have symbols tagged with the mips16 or mips32
// qualifier so we will assume that we don't know what kind it is.
// and generate the helper
//
bool LookupHelper = true;
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
if (NoHelperNeeded.find(S->getSymbol()) != NoHelperNeeded.end()) {
LookupHelper = false;
}
}
if (LookupHelper) Mips16HelperFunction =
getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper);
}
SDValue JumpTarget = Callee;
// T9 should contain the address of the callee function if
// -reloction-model=pic or it is an indirect call.
if (IsPICCall || !GlobalOrExternal) {
unsigned V0Reg = Mips::V0;
if (NeedMips16Helper) {
RegsToPass.push_front(std::make_pair(V0Reg, Callee));
JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
} else
RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
}
Ops.push_back(JumpTarget);
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
InternalLinkage, CLI, Callee, Chain);
}
MachineBasicBlock *Mips16TargetLowering::
emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
.addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitSelT16
(unsigned Opc1, unsigned Opc2,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
.addReg(MI->getOperand(4).getReg());
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitSeliT16
(unsigned Opc1, unsigned Opc2,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
.addImm(MI->getOperand(4).getImm());
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock
*Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
MachineInstr *MI,
MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
unsigned regY = MI->getOperand(1).getReg();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
.addReg(regY);
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
int64_t imm = MI->getOperand(1).getImm();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
unsigned CmpOpc;
if (isUInt<8>(imm))
CmpOpc = CmpiOpc;
else if (isUInt<16>(imm))
CmpOpc = CmpiXOpc;
else
llvm_unreachable("immediate field not usable");
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
.addImm(imm);
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static unsigned Mips16WhichOp8uOr16simm
(unsigned shortOp, unsigned longOp, int64_t Imm) {
if (isUInt<8>(Imm))
return shortOp;
else if (isInt<16>(Imm))
return longOp;
else
llvm_unreachable("immediate field not usable");
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
unsigned SltOpc,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
unsigned regY = MI->getOperand(2).getReg();
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(SltOpc)).addReg(regX).addReg(regY);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
unsigned SltiOpc, unsigned SltiXOpc,
MachineInstr *MI, MachineBasicBlock *BB )const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
int64_t Imm = MI->getOperand(2).getImm();
unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(SltOpc)).addReg(regX).addImm(Imm);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}