llvm-6502/lib/Transforms/IPO/SimplifyLibCalls.cpp

403 lines
15 KiB
C++
Raw Normal View History

//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a variety of small optimizations for calls to specific
// well-known (e.g. runtime library) function calls. For example, a call to the
// function "exit(3)" that occurs within the main() function can be transformed
// into a simple "return 3" instruction. Any optimization that takes this form
// (replace call to library function with simpler code that provides same
// result) belongs in this file.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/hash_map"
#include <iostream>
using namespace llvm;
namespace {
Statistic<> SimplifiedLibCalls("simplified-lib-calls",
"Number of well-known library calls simplified");
/// This class is the base class for a set of small but important
/// optimizations of calls to well-known functions, such as those in the c
/// library. This class provides the basic infrastructure for handling
/// runOnModule. Subclasses register themselves and provide two methods:
/// RecognizeCall and OptimizeCall. Whenever this class finds a function call,
/// it asks the subclasses to recognize the call. If it is recognized, then
/// the OptimizeCall method is called on that subclass instance. In this way
/// the subclasses implement the calling conditions on which they trigger and
/// the action to perform, making it easy to add new optimizations of this
/// form.
/// @brief A ModulePass for optimizing well-known function calls
struct SimplifyLibCalls : public ModulePass {
/// For this pass, process all of the function calls in the module, calling
/// RecognizeCall and OptimizeCall as appropriate.
virtual bool runOnModule(Module &M);
};
RegisterOpt<SimplifyLibCalls>
X("simplify-libcalls","Simplify well-known library calls");
struct CallOptimizer
{
/// @brief Constructor that registers the optimization
CallOptimizer(const char * fname );
virtual ~CallOptimizer();
/// The implementation of this function in subclasses should determine if
/// \p F is suitable for the optimization. This method is called by
/// runOnModule to short circuit visiting all the call sites of such a
/// function if that function is not suitable in the first place.
/// If the called function is suitabe, this method should return true;
/// false, otherwise. This function should also perform any lazy
/// initialization that the CallOptimizer needs to do, if its to return
/// true. This avoids doing initialization until the optimizer is actually
/// going to be called upon to do some optimization.
virtual bool ValidateCalledFunction(
const Function* F ///< The function that is the target of call sites
) const = 0;
/// The implementations of this function in subclasses is the heart of the
/// SimplifyLibCalls algorithm. Sublcasses of this class implement
/// OptimizeCall to determine if (a) the conditions are right for optimizing
/// the call and (b) to perform the optimization. If an action is taken
/// against ci, the subclass is responsible for returning true and ensuring
/// that ci is erased from its parent.
/// @param ci the call instruction under consideration
/// @param f the function that ci calls.
/// @brief Optimize a call, if possible.
virtual bool OptimizeCall(
CallInst* ci ///< The call instruction that should be optimized.
) const = 0;
const char * getFunctionName() const { return func_name; }
private:
const char* func_name;
};
/// @brief The list of optimizations deriving from CallOptimizer
hash_map<std::string,CallOptimizer*> optlist;
CallOptimizer::CallOptimizer(const char* fname)
: func_name(fname)
{
// Register this call optimizer
optlist[func_name] = this;
}
/// Make sure we get our virtual table in this file.
CallOptimizer::~CallOptimizer()
{
optlist.clear();
}
}
ModulePass *llvm::createSimplifyLibCallsPass()
{
return new SimplifyLibCalls();
}
bool SimplifyLibCalls::runOnModule(Module &M)
{
bool result = false;
// The call optimizations can be recursive. That is, the optimization might
// generate a call to another function which can also be optimized. This way
// we make the CallOptimizer instances very specific to the case they handle.
// It also means we need to keep running over the function calls in the module
// until we don't get any more optimizations possible.
bool found_optimization = false;
do
{
found_optimization = false;
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
{
// All the "well-known" functions are external and have external linkage
// because they live in a runtime library somewhere and were (probably)
// not compiled by LLVM. So, we only act on external functions that have
// external linkage and non-empty uses.
if (FI->isExternal() && FI->hasExternalLinkage() && !FI->use_empty())
{
// Get the optimization class that pertains to this function
if (CallOptimizer* CO = optlist[FI->getName().c_str()] )
{
// Make sure the called function is suitable for the optimization
if (CO->ValidateCalledFunction(FI))
{
// Loop over each of the uses of the function
for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
UI != UE ; )
{
// If the use of the function is a call instruction
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
{
// Do the optimization on the CallOptimizer.
if (CO->OptimizeCall(CI))
{
++SimplifiedLibCalls;
found_optimization = result = true;
}
}
}
}
}
}
}
} while (found_optimization);
return result;
}
namespace {
/// This CallOptimizer will find instances of a call to "exit" that occurs
/// within the "main" function and change it to a simple "ret" instruction with
/// the same value as passed to the exit function. It assumes that the
/// instructions after the call to exit(3) can be deleted since they are
/// unreachable anyway.
/// @brief Replace calls to exit in main with a simple return
struct ExitInMainOptimization : public CallOptimizer
{
ExitInMainOptimization() : CallOptimizer("exit") {}
virtual ~ExitInMainOptimization() {}
// Make sure the called function looks like exit (int argument, int return
// type, external linkage, not varargs).
virtual bool ValidateCalledFunction(const Function* f) const
{
if (f->getReturnType()->getTypeID() == Type::VoidTyID && !f->isVarArg())
if (f->arg_size() == 1)
if (f->arg_begin()->getType()->isInteger())
return true;
return false;
}
virtual bool OptimizeCall(CallInst* ci) const
{
// To be careful, we check that the call to exit is coming from "main", that
// main has external linkage, and the return type of main and the argument
// to exit have the same type.
Function *from = ci->getParent()->getParent();
if (from->hasExternalLinkage())
if (from->getReturnType() == ci->getOperand(1)->getType())
if (from->getName() == "main")
{
// Okay, time to actually do the optimization. First, get the basic
// block of the call instruction
BasicBlock* bb = ci->getParent();
// Create a return instruction that we'll replace the call with.
// Note that the argument of the return is the argument of the call
// instruction.
ReturnInst* ri = new ReturnInst(ci->getOperand(1), ci);
// Split the block at the call instruction which places it in a new
// basic block.
bb->splitBasicBlock(BasicBlock::iterator(ci));
// The block split caused a branch instruction to be inserted into
// the end of the original block, right after the return instruction
// that we put there. That's not a valid block, so delete the branch
// instruction.
bb->back().eraseFromParent();
// Now we can finally get rid of the call instruction which now lives
// in the new basic block.
ci->eraseFromParent();
// Optimization succeeded, return true.
return true;
}
// We didn't pass the criteria for this optimization so return false
return false;
}
} ExitInMainOptimizer;
/// This CallOptimizer will simplify a call to the strcat library function. The
/// simplification is possible only if the string being concatenated is a
/// constant array or a constant expression that results in a constant array. In
/// this case, if the array is small, we can generate a series of inline store
/// instructions to effect the concatenation without calling strcat.
/// @brief Simplify the strcat library function.
struct StrCatOptimization : public CallOptimizer
{
StrCatOptimization() : CallOptimizer("strcat") {}
virtual ~StrCatOptimization() {}
/// @brief Make sure that the "strcat" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f) const
{
if (f->getReturnType() == PointerType::get(Type::SByteTy))
if (f->arg_size() == 2)
{
Function::const_arg_iterator AI = f->arg_begin();
if (AI++->getType() == PointerType::get(Type::SByteTy))
if (AI->getType() == PointerType::get(Type::SByteTy))
return true;
}
return false;
}
/// Perform the optimization if the length of the string concatenated
/// is reasonably short and it is a constant array.
virtual bool OptimizeCall(CallInst* ci) const
{
// If the thing being appended is not a GEP instruction
GetElementPtrInst* GEP = dyn_cast<GetElementPtrInst>(ci->getOperand(2));
if (!GEP)
return false;
// Double check that we're dealing with a pointer to sbyte here
if (GEP->getType() != PointerType::get(Type::SByteTy))
return false;
// We can only optimize if the appended string is a constant
Constant* C = dyn_cast<Constant>(GEP->getPointerOperand());
if (!C)
return false;
// Check the various kinds of constants that are applicable
GlobalVariable* GV = dyn_cast<GlobalVariable>(C);
if (!GV)
return false;
// Only GVars that have initializers will do
if (GV->hasInitializer())
{
Constant* INTLZR = GV->getInitializer();
// And only if that initializer is ConstantArray
if (ConstantArray* A = dyn_cast<ConstantArray>(INTLZR))
{
assert(A->isString() && "This ought to be a string");
// Get the value of the string and determine its length. If the length
// is zero, we can just substitute the destination pointer for the
// call.
std::string str = A->getAsString().c_str();
if (str.length() == 0)
{
ci->replaceAllUsesWith(ci->getOperand(1));
ci->eraseFromParent();
return true;
}
// Otherwise, lets just turn this into a memcpy call which will be
// optimized out on the next pass.
else
{
// Extract some information
Module* M = ci->getParent()->getParent()->getParent();
// We need to find the end of the string of the first operand to the
// strcat call instruction. That's where the memory is to be moved
// to. So, generate code that does that
std::vector<const Type*> args;
args.push_back(PointerType::get(Type::SByteTy));
FunctionType* strlen_type =
FunctionType::get(Type::IntTy, args, false);
Function* strlen = M->getOrInsertFunction("strlen",strlen_type);
CallInst* strlen_inst =
new CallInst(strlen,ci->getOperand(1),"",ci);
// Now that we have the string length, we must add it to the pointer
// to get the memcpy destination.
std::vector<Value*> idx;
idx.push_back(strlen_inst);
GetElementPtrInst* gep =
new GetElementPtrInst(ci->getOperand(1),idx,"",ci);
// Generate the memcpy call
args.clear();
args.push_back(PointerType::get(Type::SByteTy));
args.push_back(PointerType::get(Type::SByteTy));
args.push_back(Type::IntTy);
FunctionType* memcpy_type = FunctionType::get(
PointerType::get(Type::SByteTy), args, false);
Function* memcpy = M->getOrInsertFunction("memcpy",memcpy_type);
std::vector<Value*> vals;
vals.push_back(gep);
vals.push_back(ci->getOperand(2));
vals.push_back(ConstantSInt::get(Type::IntTy,str.length()+1));
CallInst* memcpy_inst = new CallInst(memcpy, vals, "", ci);
// Finally, cast the result of the memcpy to the correct type which is
// the result of the strcat.
CastInst* cast_inst =
new CastInst(memcpy_inst, PointerType::get(Type::SByteTy),
ci->getName(),ci);
// And perform the stubstitution for the strcat call.
ci->replaceAllUsesWith(cast_inst);
ci->eraseFromParent();
return true;
}
}
else if (ConstantAggregateZero* CAZ =
dyn_cast<ConstantAggregateZero>(INTLZR))
{
// We know this is the zero length string case so we can just avoid
// the strcat altogether.
ci->replaceAllUsesWith(ci->getOperand(1));
ci->eraseFromParent();
return true;
}
else if (ConstantExpr* E = dyn_cast<ConstantExpr>(INTLZR))
{
return false;
}
}
// We didn't pass the criteria for this optimization so return false.
return false;
}
} StrCatOptimizer;
/// This CallOptimizer will simplify a call to the memcpy library function by
/// expanding it out to a small set of stores if the copy source is a constant
/// array.
/// @brief Simplify the memcpy library function.
struct MemCpyOptimization : public CallOptimizer
{
MemCpyOptimization() : CallOptimizer("memcpy") {}
virtual ~MemCpyOptimization() {}
/// @brief Make sure that the "memcpy" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f) const
{
if (f->getReturnType() == PointerType::get(Type::SByteTy))
if (f->arg_size() == 2)
{
Function::const_arg_iterator AI = f->arg_begin();
if (AI++->getType() == PointerType::get(Type::SByteTy))
if (AI->getType() == PointerType::get(Type::SByteTy))
return true;
}
return false;
}
/// Perform the optimization if the length of the string concatenated
/// is reasonably short and it is a constant array.
virtual bool OptimizeCall(CallInst* ci) const
{
// We didn't pass the criteria for this optimization so return false.
return false;
}
} MemCpyOptimizer;
}