llvm-6502/lib/Transforms/Utils/SimplifyLibCalls.cpp

945 lines
32 KiB
C++
Raw Normal View History

//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a utility pass used for testing the InstructionSimplify analysis.
// The analysis is applied to every instruction, and if it simplifies then the
// instruction is replaced by the simplification. If you are looking for a pass
// that performs serious instruction folding, use the instcombine pass instead.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/DataLayout.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/LLVMContext.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class LibCallOptimization {
protected:
Function *Caller;
const DataLayout *TD;
const TargetLibraryInfo *TLI;
LLVMContext* Context;
public:
LibCallOptimization() { }
virtual ~LibCallOptimization() {}
/// callOptimizer - This pure virtual method is implemented by base classes to
/// do various optimizations. If this returns null then no transformation was
/// performed. If it returns CI, then it transformed the call and CI is to be
/// deleted. If it returns something else, replace CI with the new value and
/// delete CI.
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
Value *optimizeCall(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI, IRBuilder<> &B) {
Caller = CI->getParent()->getParent();
this->TD = TD;
this->TLI = TLI;
if (CI->getCalledFunction())
Context = &CI->getCalledFunction()->getContext();
// We never change the calling convention.
if (CI->getCallingConv() != llvm::CallingConv::C)
return NULL;
return callOptimizer(CI->getCalledFunction(), CI, B);
}
};
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero.
static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
// Unknown instruction.
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//
struct FortifiedLibCallOptimization : public LibCallOptimization {
protected:
virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
bool isString) const = 0;
};
struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
CallInst *CI;
bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
return true;
if (ConstantInt *SizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
if (SizeCI->isAllOnesValue())
return true;
if (isString) {
uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
// If the length is 0 we don't know how long it is and so we can't
// remove the check.
if (Len == 0) return false;
return SizeCI->getZExtValue() >= Len;
}
if (ConstantInt *Arg = dyn_cast<ConstantInt>(
CI->getArgOperand(SizeArgOp)))
return SizeCI->getZExtValue() >= Arg->getZExtValue();
}
return false;
}
};
struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
false);
B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 3 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
FT->getParamType(2) != TD->getIntPtrType(Context))
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // __strcpy_chk(x,x) -> x
return Src;
// If a) we don't have any length information, or b) we know this will
// fit then just lower to a plain strcpy. Otherwise we'll keep our
// strcpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
if (isFoldable(2, 1, true)) {
Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
return Ret;
} else {
// Maybe we can stil fold __strcpy_chk to __memcpy_chk.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// This optimization require DataLayout.
if (!TD) return 0;
Value *Ret =
EmitMemCpyChk(Dst, Src,
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
ConstantInt::get(TD->getIntPtrType(Context), Len),
CI->getArgOperand(2), B, TD, TLI);
return Ret;
}
return 0;
}
};
struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 3 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)))
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
Value *StrLen = EmitStrLen(Src, B, TD, TLI);
return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
}
// If a) we don't have any length information, or b) we know this will
// fit then just lower to a plain stpcpy. Otherwise we'll keep our
// stpcpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
if (isFoldable(2, 1, true)) {
Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
return Ret;
} else {
// Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// This optimization require DataLayout.
if (!TD) return 0;
Type *PT = FT->getParamType(0);
Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
Value *DstEnd = B.CreateGEP(Dst,
ConstantInt::get(TD->getIntPtrType(PT),
Len - 1));
if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI))
return 0;
return DstEnd;
}
return 0;
}
};
struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
!FT->getParamType(2)->isIntegerTy() ||
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TD, TLI,
Name.substr(2, 7));
return Ret;
}
return 0;
}
};
//===----------------------------------------------------------------------===//
// String and Memory Library Call Optimizations
//===----------------------------------------------------------------------===//
struct StrCatOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcat" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
--Len; // Unbias length.
// Handle the simple, do-nothing case: strcat(x, "") -> x
if (Len == 0)
return Dst;
// These optimizations require DataLayout.
if (!TD) return 0;
return emitStrLenMemCpy(Src, Dst, Len, B);
}
Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
IRBuilder<> &B) {
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
if (!DstLen)
return 0;
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(CpyDst, Src,
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
return Dst;
}
};
struct StrNCatOpt : public StrCatOpt {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncat" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
uint64_t Len;
// We don't do anything if length is not constant
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Len = LengthArg->getZExtValue();
else
return 0;
// See if we can get the length of the input string.
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen == 0) return 0;
--SrcLen; // Unbias length.
// Handle the simple, do-nothing cases:
// strncat(x, "", c) -> x
// strncat(x, c, 0) -> x
if (SrcLen == 0 || Len == 0) return Dst;
// These optimizations require DataLayout.
if (!TD) return 0;
// We don't optimize this case
if (Len < SrcLen) return 0;
// strncat(x, s, c) -> strcat(x, s)
// s is constant so the strcat can be optimized further
return emitStrLenMemCpy(Src, Dst, SrcLen, B);
}
};
struct StrChrOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strchr" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
// If the second operand is non-constant, see if we can compute the length
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (CharC == 0) {
// These optimizations require DataLayout.
if (!TD) return 0;
uint64_t Len = GetStringLength(SrcStr);
if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
return 0;
return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
ConstantInt::get(TD->getIntPtrType(*Context), Len),
B, TD, TLI);
}
// Otherwise, the character is a constant, see if the first argument is
// a string literal. If so, we can constant fold.
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str))
return 0;
// Compute the offset, make sure to handle the case when we're searching for
// zero (a weird way to spell strlen).
size_t I = CharC->getSExtValue() == 0 ?
Str.size() : Str.find(CharC->getSExtValue());
if (I == StringRef::npos) // Didn't find the char. strchr returns null.
return Constant::getNullValue(CI->getType());
// strchr(s+n,c) -> gep(s+n+i,c)
return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
}
};
struct StrRChrOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strrchr" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
// Cannot fold anything if we're not looking for a constant.
if (!CharC)
return 0;
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
// strrchr(s, 0) -> strchr(s, 0)
if (TD && CharC->isZero())
return EmitStrChr(SrcStr, '\0', B, TD, TLI);
return 0;
}
// Compute the offset.
size_t I = CharC->getSExtValue() == 0 ?
Str.size() : Str.rfind(CharC->getSExtValue());
if (I == StringRef::npos) // Didn't find the char. Return null.
return Constant::getNullValue(CI->getType());
// strrchr(s+n,c) -> gep(s+n+i,c)
return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
}
};
struct StrCmpOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcmp" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strcmp(x,x) -> 0
return ConstantInt::get(CI->getType(), 0);
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
// strcmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
return ConstantInt::get(CI->getType(), Str1.compare(Str2));
if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
CI->getType()));
if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
// strcmp(P, "x") -> memcmp(P, "x", 2)
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 && Len2) {
// These optimizations require DataLayout.
if (!TD) return 0;
return EmitMemCmp(Str1P, Str2P,
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
ConstantInt::get(TD->getIntPtrType(*Context),
std::min(Len1, Len2)), B, TD, TLI);
}
return 0;
}
};
struct StrNCmpOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncmp" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strncmp(x,x,n) -> 0
return ConstantInt::get(CI->getType(), 0);
// Get the length argument if it is constant.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Length = LengthArg->getZExtValue();
else
return 0;
if (Length == 0) // strncmp(x,y,0) -> 0
return ConstantInt::get(CI->getType(), 0);
if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
// strncmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2) {
StringRef SubStr1 = Str1.substr(0, Length);
StringRef SubStr2 = Str2.substr(0, Length);
return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
}
if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
CI->getType()));
if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
return 0;
}
};
struct StrCpyOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcpy" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
// These optimizations require DataLayout.
if (!TD) return 0;
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src,
Revert the series of commits starting with r166578 which introduced the getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 08:07:29 +00:00
ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
return Dst;
}
};
struct StpCpyOpt: public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "stpcpy" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
// These optimizations require DataLayout.
if (!TD) return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
Value *StrLen = EmitStrLen(Src, B, TD, TLI);
return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
}
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
Type *PT = FT->getParamType(0);
Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
Value *DstEnd = B.CreateGEP(Dst,
ConstantInt::get(TD->getIntPtrType(PT),
Len - 1));
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src, LenV, 1);
return DstEnd;
}
};
struct StrNCpyOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
Value *LenOp = CI->getArgOperand(2);
// See if we can get the length of the input string.
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen == 0) return 0;
--SrcLen;
if (SrcLen == 0) {
// strncpy(x, "", y) -> memset(x, '\0', y, 1)
B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
return Dst;
}
uint64_t Len;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
Len = LengthArg->getZExtValue();
else
return 0;
if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
// These optimizations require DataLayout.
if (!TD) return 0;
// Let strncpy handle the zero padding
if (Len > SrcLen+1) return 0;
Type *PT = FT->getParamType(0);
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
B.CreateMemCpy(Dst, Src,
ConstantInt::get(TD->getIntPtrType(PT), Len), 1);
return Dst;
}
};
struct StrLenOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
Value *Src = CI->getArgOperand(0);
// Constant folding: strlen("xyz") -> 3
if (uint64_t Len = GetStringLength(Src))
return ConstantInt::get(CI->getType(), Len-1);
// strlen(x) != 0 --> *x != 0
// strlen(x) == 0 --> *x == 0
if (isOnlyUsedInZeroEqualityComparison(CI))
return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
return 0;
}
};
struct StrPBrkOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
FT->getReturnType() != FT->getParamType(0))
return 0;
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
// strpbrk(s, "") -> NULL
// strpbrk("", s) -> NULL
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2) {
size_t I = S1.find_first_of(S2);
if (I == std::string::npos) // No match.
return Constant::getNullValue(CI->getType());
return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
}
// strpbrk(s, "a") -> strchr(s, 'a')
if (TD && HasS2 && S2.size() == 1)
return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI);
return 0;
}
};
struct StrToOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy())
return 0;
Value *EndPtr = CI->getArgOperand(1);
if (isa<ConstantPointerNull>(EndPtr)) {
// With a null EndPtr, this function won't capture the main argument.
// It would be readonly too, except that it still may write to errno.
CI->addAttribute(1, Attributes::get(Callee->getContext(),
Attributes::NoCapture));
}
return 0;
}
};
struct StrSpnOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
!FT->getReturnType()->isIntegerTy())
return 0;
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
// strspn(s, "") -> 0
// strspn("", s) -> 0
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2) {
size_t Pos = S1.find_first_not_of(S2);
if (Pos == StringRef::npos) Pos = S1.size();
return ConstantInt::get(CI->getType(), Pos);
}
return 0;
}
};
struct StrCSpnOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
!FT->getReturnType()->isIntegerTy())
return 0;
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
// strcspn("", s) -> 0
if (HasS1 && S1.empty())
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2) {
size_t Pos = S1.find_first_of(S2);
if (Pos == StringRef::npos) Pos = S1.size();
return ConstantInt::get(CI->getType(), Pos);
}
// strcspn(s, "") -> strlen(s)
if (TD && HasS2 && S2.empty())
return EmitStrLen(CI->getArgOperand(0), B, TD, TLI);
return 0;
}
};
} // End anonymous namespace.
namespace llvm {
class LibCallSimplifierImpl {
const DataLayout *TD;
const TargetLibraryInfo *TLI;
StringMap<LibCallOptimization*> Optimizations;
// Fortified library call optimizations.
MemCpyChkOpt MemCpyChk;
MemMoveChkOpt MemMoveChk;
MemSetChkOpt MemSetChk;
StrCpyChkOpt StrCpyChk;
StpCpyChkOpt StpCpyChk;
StrNCpyChkOpt StrNCpyChk;
// String and memory library call optimizations.
StrCatOpt StrCat;
StrNCatOpt StrNCat;
StrChrOpt StrChr;
StrRChrOpt StrRChr;
StrCmpOpt StrCmp;
StrNCmpOpt StrNCmp;
StrCpyOpt StrCpy;
StpCpyOpt StpCpy;
StrNCpyOpt StrNCpy;
StrLenOpt StrLen;
StrPBrkOpt StrPBrk;
StrToOpt StrTo;
StrSpnOpt StrSpn;
StrCSpnOpt StrCSpn;
void initOptimizations();
void addOpt(LibFunc::Func F, LibCallOptimization* Opt);
public:
LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI) {
this->TD = TD;
this->TLI = TLI;
}
Value *optimizeCall(CallInst *CI);
};
void LibCallSimplifierImpl::initOptimizations() {
// Fortified library call optimizations.
Optimizations["__memcpy_chk"] = &MemCpyChk;
Optimizations["__memmove_chk"] = &MemMoveChk;
Optimizations["__memset_chk"] = &MemSetChk;
Optimizations["__strcpy_chk"] = &StrCpyChk;
Optimizations["__stpcpy_chk"] = &StpCpyChk;
Optimizations["__strncpy_chk"] = &StrNCpyChk;
Optimizations["__stpncpy_chk"] = &StrNCpyChk;
// String and memory library call optimizations.
addOpt(LibFunc::strcat, &StrCat);
addOpt(LibFunc::strncat, &StrNCat);
addOpt(LibFunc::strchr, &StrChr);
addOpt(LibFunc::strrchr, &StrRChr);
addOpt(LibFunc::strcmp, &StrCmp);
addOpt(LibFunc::strncmp, &StrNCmp);
addOpt(LibFunc::strcpy, &StrCpy);
addOpt(LibFunc::stpcpy, &StpCpy);
addOpt(LibFunc::strncpy, &StrNCpy);
addOpt(LibFunc::strlen, &StrLen);
addOpt(LibFunc::strpbrk, &StrPBrk);
addOpt(LibFunc::strtol, &StrTo);
addOpt(LibFunc::strtod, &StrTo);
addOpt(LibFunc::strtof, &StrTo);
addOpt(LibFunc::strtoul, &StrTo);
addOpt(LibFunc::strtoll, &StrTo);
addOpt(LibFunc::strtold, &StrTo);
addOpt(LibFunc::strtoull, &StrTo);
addOpt(LibFunc::strspn, &StrSpn);
addOpt(LibFunc::strcspn, &StrCSpn);
}
Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
if (Optimizations.empty())
initOptimizations();
Function *Callee = CI->getCalledFunction();
LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
if (LCO) {
IRBuilder<> Builder(CI);
return LCO->optimizeCall(CI, TD, TLI, Builder);
}
return 0;
}
void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) {
if (TLI->has(F))
Optimizations[TLI->getName(F)] = Opt;
}
LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
const TargetLibraryInfo *TLI) {
Impl = new LibCallSimplifierImpl(TD, TLI);
}
LibCallSimplifier::~LibCallSimplifier() {
delete Impl;
}
Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
return Impl->optimizeCall(CI);
}
}